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Abstract
We present a finite volume scheme for the anisotropic diffusion equation. This scheme is obtained

as a limit of an asymptotic preserving (AP) scheme for the M1 model of radiative transfer. The latter
was designed in [BDF12] and [Fra12] on polygonal meshes and [BHL21] on conical meshes. After having
presented the construction of the scheme, we show that it writes as a convex combination of two consistent
terms. The first one is second order consistent and may generate instabilities on unstructured meshes.
The second one is first order consistent and more stable. It can be modified so as to reach a second order
consistency using a reconstruction procedure. Moreover, we prove that the explicit time discretisation of
our scheme preserves the positivity of the unknown under a CF L condition. Some numerical test cases
are given in order to illustrate the good properties of the scheme.
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1 Introduction
In this work, we study a finite volume scheme for the anisotropic diffusion equation (1) in two space dimen-
sions:

∂tE − div (κ∇E) = S. (1)

The unknown is denoted by E. The diffusion tensor is κ and we assume that, for any x ∈ Ω (Ω being the
domain of computation), κ(x) is a symmetric positive definite 2 × 2 matrix. The source term S is non-
negative and depends on time and space. In order to be consistent with [BHL21], we define σ = κ−1 and we
write (1) under the following form:

∂tE − div
(
σ−1∇E

)
= S. (2)

We also assume that there exists σ2 ≥ σ1 > 0 such that:

∀x ∈ Ω, Sp(σ(x)) ⊂ [σ1, σ2].

We focus on a generalization of the scheme that was developed in [Fra12] and [FBD11] on polygonal un-
structured meshes and in [BHL21] for conical meshes (that is to say, meshes whom edges are curved). This
scheme was developed to solve the isotropic diffusion equation and we want to extend it to the anisotropic
case. We will describe the scheme only for polygonal unstructured meshes. Moreover, inspired by the conical
scheme [BHL21] and by [Hoc22], we develop a composite scheme. We call it composite because the associated
fluxes are neither purely nodal nor edge-based. They are computed using quantities which are defined on
the degrees of freedom: the nodes and the middles of edges of the mesh (point of quadrature formula). The
values of the unknown are located at the barycenters of the cells.

The question of defining an accurate finite volume scheme for the diffusion equation on deformed meshes is
a long-standing problem. It is well-known that a standard two-point flux is consistent only on rectangular
meshes. To our knowledge, the first attempt to design a consistent scheme is that of D. Kershaw [Ker81]. This
scheme was not proved to be consistent on general meshes, and numerical tests indicate that it is convergent
only when cells are parallelograms. This scheme does not satisfy the maximum principle, and an attempt
to make it positive was proposed in [Per81]. Apart from this scheme, the diamond scheme was analyzed
in [CVV99], and proved to be consistent. In such a strategy, one uses node values as auxiliary unknowns,
allowing to compute consistent fluxes. These auxiliary unknowns are computed using interpolation. It is
also possible to use a mixed finite element approach [RT83] and recast it as a finite volume method (see
[AWY97]). Such a scheme is consistent, but not positive. Another strategy, called DDFV (Discrete Duality
Finite Volume) was proposed by F. Hermeline in [Her98, Her00, Her03, Her07]. In this strategy, instead
of computing the auxiliary (nodal) unknowns by interpolation, they are defined as a solution to a diffusion
problem on a dual mesh. Several other methods were proposed, such as the mimetic finite difference method
(see, for instance, [BBL09, LMS14]), or the SUSHI (Scheme Using Stabilization and Harmonic Interfaces)
method, by R. Eymard, T. Gallouët and R. Herbin [Eym10]. In a second step, the mimetic finite difference
method was extended as the virtual element method (VEM) [YSGN22, BaDVBC+13]. Let us also mention
the MPFA (Multi Point Flux Approximation) method proposed in [AEK+07, BM07].

All the above schemes are convergent, but are not positive. This may be an important issue in applications,
since the unknown may be a temperature or a concentration. A truncation strategy is in principle possible,
but it breaks the conservation property of the scheme, which is also highly desirable. To address this problem,
several strategies have been proposed. Most of them consist in using different consistent estimations of the
fluxes and in combining them so that the matrix of the scheme becomes an M-matrix, thereby recovering
positivity. Such a strategy was initially proposed in [BM05] and [LP09]. It makes the scheme nonlinear,
even though the considered equation (1) is linear. Following these works, many similar strategies have been
proposed. Let us cite [LMS14, YSGN22, SY16, SYY09, AN21, WPL+22, NSL22, BL16], among others. Of
course, we do not claim this list to be exhaustive.

In the present work, we propose a family of schemes that are naturally consistent, conservative and positive.
Contrary to the above mentioned works, positivity is not enforced by modifying an existing non-positive
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scheme. The starting point of our approach are schemes defined in [FBD11, BHL21] for the M1 model [DF99],
which is a hyperbolic nonlinear model that satisfies a positivity principle and a diffusion limit. Such a scheme
is positive by construction, and we study its diffusion limit, which is of course positive.

The present article is organised as follows. In Section 2, we present the semi-discrete version of our scheme.
We first recall the M1 limit diffusion scheme from [BHL21] in the case of conical degenerate (that is to say,
polygonal) meshes. We generalize it and we write a two-parameter family of consistent schemes that are
valid on unstructured polygonal meshes. Then we extend it to the anisotropic diffusion case. We also present
a modification of this scheme so as to reach second order convergence. Then we focus on the time discretised
version of the scheme. We prove that the explicit version is positivity-preserving on general unstructured
meshes under a CFL condition that is presented in Section 3. Moreover, in Section 4 we study a particular
case which has a less restrictive CFL condition. The last section is devoted to numerical test cases.

2 Numerical method
In order to make the algebra clearer, vectors are denoted in bold in the rest of the paper.

2.1 Composite normal vectors set on straight unstructured meshes and prop-
erties

xr+1

xr+1/2

xr

xr−1/2

xr−1

Cr+1/2
j

Cr−1/2
j

Cr
j

Ωj

Figure 1: Normals at nodes, at edges : composite set

Let Ωj be a cell of the mesh T paving the domain Ω. Let xr−1, xr and xr+1 be 3 consecutive nodes of Ωj .
We define:

• the middle of the edge [xr,xr+1]: xr+1/2 = (xr + xr+1)/2,

• the normal to the edge [xr,xr+1]: Cr+1/2
j = (xr+1 − xr)⊥,

• the normal to the node r:

Cr
j = 1

2(xr+1 − xr−1)⊥ = 1
2

(
Cr+1/2
j + Cr−1/2

j

)
, (3)
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where, for any vector ξ ∈ R2:

ξ =
(
ξ1
ξ2

)
, ξ⊥ =

(
−ξ2
ξ1

)
.

We present here some notations that will be used in the remainder of the paper. We define a degree of
freedom as either a node or a middle of an edge. We also define:

• (xr)r the coordinates of the vertices of the cell j;

• (xr+1/2)r+1/2 the coordinates of the mid-edge points of the cell j;

•
∑
r∈Ωj

grj the sum over all the vertices of the cell j of the quantity g (grj being the evaluation of the
function g on the vertex r in cell j);

•
∑
r+1/2∈Ωj

g
r+1/2
j the sum over all the mid-edge points of the cell j of the quantity g;

• Ndof =
∑
i|dof∈Ωi

1 the number of cells that contains the given degree of freedom dof ;

•
∑
i|dof∈Ωi

gdof
i the sum, for a given degree of freedom, over all the cells that contains this degree of

freedom;

•
∑
j∈T gj the sum over all the cells of the mesh;

•
∑
r∈T g

r the sum over all the nodes of the mesh;

•
∑
r+1/2∈T g

r+1/2 the sum over all the mid-edge points of the mesh;

• h the maximum length of edges of the mesh,

• 〈·, ·〉 the inner product in R2.

Moreover, for any mid-edge point r+ 1/2, we denote by j and k the two cells that are separated by the edge
containing xr+1/2, see Figure 2.

Ωj

Ωk

xr+1

xr

xr+1/2

Figure 2: The neighbouring cells of mid-edge point xr+1/2

We have the following identity for any θ ∈ [0, 1]:

|Ωj | =
1− θ

2
∑
r∈Ωj

〈
Cr
j ,xr − xj

〉
+ θ

2
∑

r+1/2∈Ωj

〈
Cr+1/2
j ,xr+1/2 − xj

〉
, (4)

which is a consequence of Theorem 2.1 below. We also have the following:
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• for any cell j: ∑
r∈Ωj

Cr
j =

∑
r+1/2∈Ωj

Cr+1/2
j = 0, (5)

• for any inner node r and any inner edge r + 1/2:∑
i|r∈Ωi

Cr
i =

∑
i|r+1/2∈Ωi

Cr+1/2
i = 0. (6)

Theorem 2.1. Let g ∈ C2(R2;R). Then, for all θ ∈ [0, 1]:

1
|Ωj |

∫
∂Ωj

gn = 1
|Ωj |

(1− θ)
∑
r∈Ωj

g(xr)Cr
j + θ

∑
r+1/2∈Ωj

g(xr+1/2)Cr+1/2
j

+O(h). (7)

Moreover, the remainder in (7) vanishes when g is an affine function.

2.2 Isotropic M1 diffusion limit scheme
Our scheme is based on the limit scheme for the M1 model of the isotropic radiative transfer [BHL21] on
a conical degenerate mesh (when the curvature of each edge vanishes). The M1 model is a moment model
for the radiative transfer equation. It depends on a small parameter ε > 0 which inverse accounts for the
optical thickness of the medium. When ε tends to 0 (ie the medium is highly opaque), the model converges
toward (2) and the scheme designed in [BHL21] converges toward the scheme (8), which is consistent with (2)
(see Section 2.4 for the explanations and [BHL21] for some numerical examples). In this case, the diffusion
coefficient σ is a positive scalar constant. The scheme writes:

|Ωj |
d

dt
Ej + 3

4

(1− π

4

) ∑
r∈Ωj

〈
ur,Cr

j

〉
Erj + π

4
∑

r+1/2∈Ωj

〈
ur+1/2,C

r+1/2
j

〉
E
r+1/2
j

 (8)

+1
4

(1− π

4

) ∑
r∈Ωj

〈
EjCr

j − Erβrjσur,ur
〉

+ π

4
∑

r+1/2∈Ωj

〈
EjCr+1/2

j − Er+1/2β
r+1/2
j σur+1/2,ur+1/2

〉
= |Ωj |Sj ,

with:

Edof = 1
Ndof

∑
i|dof∈Ωi

Ei, (9)

Edof
j =


Ej if 〈udof,Cdof

j 〉 > 0,
1∑

i∈I+
dof
〈udof,Cdof

i 〉
∑
i∈I+

dof

〈udof,Cdof
i 〉Ei else, I+

dof =
{
i,
〈
udof,Cdof

i

〉
> 0
}
, (10)

For any node r, ur is defined by:

βrur = 1
σEr

∑
i|r∈Ωi

EiCr
i , (11)

with:

βdof =
∑

i|dof∈Ωi

βdof
i , βdof

i = Cdof
i ⊗ (xdof − xi). (12)
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and for any mid-edge point r + 1/2:
〈ur+1/2,xk − xj〉 = Ej − Ek

σEr+1/2
,

〈ur+1/2, (xk − xj)⊥〉 = 1
2 〈ur + ur+1, (xk − xj)⊥〉.

Equation (8) is not exactly identical to the scheme from [BHL21], we simplified some numerical coefficients
(in particular, the diffusion coefficient wrote as 1/(3σ) and not as 1/σ). As explained in [BHL21], the
quantity udof is computed so as to make the scheme conservative. To this end, we impose the following
relation around each dof : ∑

i|dof∈Ωi

EiCdof
i − Edofβ

dof
i σudof = 0. (13)

Equation (13) can be written as:

βdofudof = 1
σEdof

∑
i|dof∈Ωi

EiCdof
i . (14)

For a node r, Equation (14) reads as (11) and the matrix βr is invertible (under some assumptions on the
mesh, see Section 3.1). Thus ur is well defined. However, for a midpoint r + 1/2, the matrix βr+1/2 is not
invertible. Indeed, denoting by j and k the two cells that are separated by the edge containing r + 1/2 (see
Figure 2) and using (6), we have:

Cr+1/2
j + Cr+1/2

k = 0.

This leads to:

βr+1/2 = Cr+1/2
j ⊗ (xk − xj). (15)

Therefore this matrix has rank 1 and it is not invertible. Using (15), Equation (14) can be simplified:

〈ur+1/2,xk − xj〉 = Ej − Ek
σEr+1/2

. (16)

Thus we see that ur+1/2 is only defined in one direction. In [BDH21] and [BHL21], the following formula is
proposed so as to compute ur+1/2 in the orthogonal direction:〈

ur+1/2, (xk − xj)⊥
〉

= 1
2
〈
ur + ur+1, (xk − xj)⊥

〉
. (17)

Eventually, as explained in [BHL21], the explicit time discretisation of (8) preserves the positivity of the
solution if, at any iteration n, the time step ∆t satisfies:

∆t ≤ Cσh2 min
j∈T

{
Enj∑
i∈Vj

Eni

}
.

2.3 A two-parameter family of consistent numerical schemes for the diffusion
equation on unstructured polygonal meshes

The scheme (8) is a composite scheme as it uses unknowns located at the nodes and the mid-edges with a
ponderation of π/4. As in [Fra12], we notice that it writes as a convex combination of pure advection term
and a source term. The consistency of each term is proved in Section 2.4. We can generalize it for any
(η, θ) ∈ [0, 1]2 and obtain a two-parameter family of numerical schemes:

|Ωj |
d

dt
Ej + (1− η)

(1− θ)
∑
r∈Ωj

〈
ur,Cr

j

〉
Erj + θ

∑
r+1/2∈Ωj

〈
ur+1/2,C

r+1/2
j

〉
E
r+1/2
j

 (18)
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+η

(1− θ)
∑
r∈Ωj

〈
EjCr

j − Erβrjσur,ur
〉

+ θ
∑

r+1/2∈Ωj

〈
EjCr+1/2

j − Er+1/2β
r+1/2
j σur+1/2,ur+1/2

〉
= |Ωj |Sj .

Remark 1. We can notice the following particular cases:

• θ = 0 is the nodal scheme : it uses only the unknowns located at the nodes of the mesh,

• θ = 1 is not a purely edged-based scheme : it uses only the unknowns located at the edges of the mesh
in order to compute the evolution of E but the quantities ur are used as intermediate unknowns and
appear in the computation of the tangential part of ur+1/2.

Remark 2. This decomposition of the scheme as the sum of a node-based contribution and an edge-based
contribution is inspired from [Hoc22]. In this work, the author adapts some classical schemes (VFFC,
Rusanov, Roe) to composite fluxes and generates new one-parameter families of numerical schemes.

Remark 3. The methodology we have developped here consists in starting from a model (here the M1 model)
that satisfies the diffusion limit, discretizing it on conical meshes, then take the particular case of polygonal
mesh in the diffusion limit. This gives a two-paramter family of diffusion schemes. We could apply it to
other models, such as the P1 model. Using the paper [BDH21] instead of [BHL21], we would end up with a
one-parameter family of diffusion schemes that are second-order consistent, but not positive.

2.4 Interpretation of the scheme and consistency of the fluxes
In this section we give formal arguments indicating that the scheme (18) is consistent with the diffusion
equation (2) for any (θ, η) ∈ [0, 1]2. First we show that udof is consistent with −(∇E)dof/(σEdof).

Lemma 2.2. The quantity udof is consistent with −(∇E)dof/(σEdof).

Proof. We use arguments from [BHL21]. We have:

E(xi) = E(xdof) + 〈xi − xdof,∇E(xdof)〉+O(h2). (19)

Multiplying (19) by Cdof
i and summing the result over the cells around any inner dof leads to:∑
i|dof∈Ωi

E(xi)Cdof
i = E(xdof)

∑
i|dof∈Ωi

Cdof
i︸ ︷︷ ︸

=0

−βdof∇E(xdof) +O(h3), (20)

where βdof is defined by (12). Since the nodal matrix βr is invertible (see [Fra12] for further details), we
have, for any inner node r:

1
σE(xr)

β−1
r

 ∑
i|r∈Ωi

E(xi)Cr
i

 = −1
σE(xr)

(∇E)(xr) +O(h).

Using (11), this proves that ur is consistent with −(∇E)r/(σEr).
Besides, using arguments from Section 2.2, for any inner mid-point r+ 1/2, Equation (20) can be written as:〈

∇E(xr+1/2),xk − xj
〉

= E(xk)− E(xj) +O(h2).

This leads to: 〈
1

σE(xr+1/2)∇E(xr+1/2),xk − xj
〉

= −E(xj)− E(xk)
σE(xr+1/2) +O(h2). (21)
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Moreover, one has: 〈
1

σE(xr+1/2)∇E(xr+1/2), (xk − xj)⊥
〉

(22)

= 1
2

〈
1

σE(xr)
∇E(xr) + 1

σE(xr+1)∇E(xr+1), (xk − xj)⊥
〉

+O(h2).

Equations (16) (17) (21) and (22) prove that ur+1/2 is consistent with −(∇E)r+1/2/(σEr+1/2)

The scheme (18) is a convex combination of two terms within square brackets that can be interpreted as
follows. The first one:

(1− θ)
∑
r∈Ωj

〈
ur,Cr

j

〉
Erj + θ

∑
r+1/2∈Ωj

〈
ur+1/2,C

r+1/2
j

〉
E
r+1/2
j (23)

is an advection term. It corresponds to the discretisation of div (Eu) using an upwind scheme (see [BCHS20]
and [BHL21] for further details). This scheme is consistent of order 1. Using Lemma 2.2, u is consistent
with −∇E/(σE). This gives that (23) is an approximation of −div

(
σ−1∇E

)
that is first order consistent.

The second term within brackets in (8) reads as:

(1− θ)
∑
r∈Ωj

〈
EjCr

j − Erβrjσur,ur
〉

+ θ
∑

r+1/2∈Ωj

〈
EjCr+1/2

j − Er+1/2β
r+1/2
j σur+1/2,ur+1/2

〉
. (24)

Using Theorem 2.1, it corresponds to writing:∫
Ωj

div (Eu) ≈ (1− θ)
∑
r∈Ωj

Ērj
〈
ur,Cr

j

〉
+ θ

∑
r+1/2∈Ωj

Ē
r+1/2
j

〈
ur+1/2,C

r+1/2
j

〉
,

with:

Ēdof
j = Ej − 〈xdof − xj , Edofσudof〉.

Since

E(xdof) = E(xj) + 〈xdof − xj ,∇E(xdof)〉+O(h2), (25)

we infer that Ēdof
j is a second order approximation of E(xdof). Multiplying by Cdof

j and using (12) gives:

Ēdof
j Cdof

j = EjCdof
j − Edofβ

dof
j σudof.

Therefore (24) is an approximation of −div
(
σ−1∇E

)
that is second order consistent.

2.5 Extension to the anisotropic case
In this section, we generalize the scheme (18) to the case of an anisotropic diffusion coefficient, that is to say
when σ is a positive definite matrix that depends on the space coordinates. Thus we define σdof = σ(xdof)
at any dof . The extension is straightforward and reads as:

|Ωj |
d

dt
Ej + (1− η)

(1− θ)
∑
r∈Ωj

〈
ur,Cr

j

〉
Erj + θ

∑
r+1/2∈Ωj

〈
ur+1/2,C

r+1/2
j

〉
E
r+1/2
j

 (26)

+η

(1− θ)
∑
r∈Ωj

〈
EjCr

j − Erβrjσrur,ur
〉

+ θ
∑

r+1/2∈Ωj

〈
EjCr+1/2

j − Er+1/2β
r+1/2
j σr+1/2ur+1/2,ur+1/2

〉
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= |Ωj |Sj ,

where:

βdofσdof udof = 1
Edof

∑
i|dof∈Ωi

EiCdof
i . (27)

This writes, for any node r:

βrσr ur = 1
Er

∑
i|r∈Ωi

EiCr
i , (28)

and for any mid-edge point r + 1/2:

〈ur+1/2, σr+1/2(xk − xj)〉 = Ej − Ek
Er+1/2

. (29)

A natural way of completing the definition of ur+1/2 then writes:〈
ur+1/2, [σr+1/2(xk − xj)]⊥

〉
= 1

2
〈
ur + ur+1, [σr+1/2(xk − xj)]⊥

〉
. (30)

However, this method is not optimal as it makes the scheme unstable. Collecting (29) and (30) we would
end up with: 

〈
ur+1/2, σr+1/2(xk − xj)

〉
= Ej − Ek

Er+1/2
,

〈
ur+1/2, [σr+1/2(xk − xj)]⊥

〉
= 1

2
〈
ur + ur+1, [σr+1/2(xk − xj)]⊥

〉
.

(31)

We propose another way of computing ur+1/2 which is more stable. Our idea is to compute first (σu)r+1/2
and then deduce ur+1/2:

〈
σr+1/2ur+1/2, xk − xj

〉
= Ej − Ek

Er+1/2
,

〈
σr+1/2ur+1/2, (xk − xj)⊥

〉
= 1

2
〈
σrur + σr+1ur+1, (xk − xj)⊥

〉
.

(32)

The first line of system (32) is the same as (29) since σr+1/2 is symmetric, thus the scheme still remains locally
conservative (ie Equation (27) is still satisfied). We will see from a theoretical point of view in Section 3
and from a practical point of view in Section 5 that this choice leads to a much more stable scheme. We can
summarize (31) and (32) as:


〈
Pr+1/2ur+1/2, P

−1
r+1/2σr+1/2(xk − xj)

〉
= Ej − Ek

Er+1/2
,〈

Pr+1/2ur+1/2,
[
P−1
r+1/2σr+1/2(xk − xj)

]⊥〉
= 1

2

〈
Prur + Pr+1ur+1,

[
P−1
r+1/2σr+1/2(xk − xj)

]⊥〉
.

(33)
The matrix Pr+1/2 has to be symmetric and invertible. Choosing Pr+1/2 = I2 leads to (31) while choosing
Pr+1/2 = σr+1/2 leads to (32).

Remark 4. Using the same arguments as in Section 2.4, the previous scheme is consistent for both choices
Pdof = I2 and Pdof = σdof.

Remark 5. If σ is isotropic and constant, ie σdof = σ̄I2 for some constant σ̄ > 0, then Systems (31), (32)
and (33) are equivalent.

Remark 6. We can notice the following particular cases:
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• (η, θ) = (1/4, π/4) is an extension of the conical degenerate scheme (8) from [BHL21] to an anisotropic
diffusion coefficient,

• (η, θ) = (1/4, 0) is an extension of the nodal scheme from [Fra12] and [FBD11] to an anisotropic
diffusion coefficient,

• η = 0 is studied below in Section 4.

2.6 Second order reconstruction
Following the ideas of [BHL21], we briefly recall a reconstruction procedure so as to make our scheme second
order accurate in space. We only modify the computation of the advection terms. We approximate the
unknown in each cell using an affine function:

P 1
j (x) = Ej + 〈(∇E)j ,x− xj〉.

The exponent 1 stands for the degree of the approximation polynomial. Then the gradient of E is limited
so as to ensure: P 1

j (xdof) ≥ 0 for any dof of cell j, and we write :

P 1
j (x) = Ej + αj,E〈(∇E)j ,x− xj〉,

where αj,E is a scalar limiter (see [DK87]). The scheme now reads as:

|Ωj |
d

dt
Ej + (1− η)

(1− θ)
∑
r∈Ωj

〈
ur,Cr

j

〉
Ẽrj + θ

∑
r+1/2∈Ωj

〈
ur+1/2,C

r+1/2
j

〉
Ẽ
r+1/2
j

 (34)

+η

(1− θ)
∑
r∈Ωj

〈
EjCr

j − Erβrjσrur,ur
〉

+ θ
∑

r+1/2∈Ωj

〈
EjCr+1/2

j − Er+1/2β
r+1/2
j σr+1/2ur+1/2,ur+1/2

〉
= |Ωj |Sj ,

with:

Ẽdof
j =


P 1
j (xdof) if 〈udof,Cdof

j 〉 > 0,
1∑

i∈I+
dof
〈udof,Cdof

i 〉
∑
i∈I+

dof

〈udof,Cdof
i 〉P 1

i (xdof) else.

The computations of udof and Edof are unchanged. The second term within brackets in (34) already being
of order 2, thus (34) is second order consistent

2.7 Boundary conditions
The boundary conditions are imposed using the method described in [BHL21].

2.7.1 Periodic boundary conditions

In the case of periodic boundary conditions, we add some ghost cells on the outside of the mesh so as to
make it periodic. We then define the unknown E on these new cells so as to make it periodic and we use
this new geometric data to compute the βdof

j on the boundary of the domain.

11



2.7.2 Dirichlet boundary condition

We implement Dirichlet boundary conditions as follows. Let dof be a degree of freedom where the solution
is imposed at Eboundary. Then Edof = Eboundary and udof is given by:

βrσr ur = 1
Eboundary

∑
i|r∈Ωi

(Ei − Eboundary)Cr
i ,


〈
Pr+1/2ur+1/2, P

−1
r+1/2σr+1/2(xr+1/2 − xj)

〉
= Ej − Eboundary

Eboundary
,〈

Pr+1/2ur+1/2,
[
P−1
r+1/2σr+1/2(xr+1/2 − xj)

]⊥〉
= 1

2

〈
Prur + Pr+1ur+1,

[
P−1
r+1/2σr+1/2(xr+1/2 − xj)

]⊥〉
,

and:

Edof
j =

{
Ej if 〈udof,Cdof

j 〉 > 0,
Eboundary else.

3 Theoretical study of the scheme
In this section, we study the properties of the scheme (26). We first prove that it is conservative. Then we
focus on the stability of the explicit scheme. We give a sufficient condition on the time step ∆t so as to
ensure the positivity of the unknown E at each iteration. We assume periodic boundary conditions.
In the following, the constant C is independent from the the characteristic length h of the mesh (defined in
Section 3.1), from σ and the unknown E.

3.1 Assumptions on the mesh
We present here the assumptions on the regularity of the mesh. We denote by h the maximal length of the
edges of the mesh (h = ∆x for a cartesian mesh). We assume that there exists a constant C1 such that, for
any dof and any cell j:

1
C1
h2 ≤ |Ωj | ≤ C1h

2,
1
C1
h ≤ ‖Cdof

j ‖ ≤ C1h, Ndof ≤ C1, (35)

∀ξ ∈ R2, 〈βrξ, ξ〉 ≥
1
C1
h2‖ξ‖2, (36)

and thus we have: ‖β−1
r ‖ ≤ Ch−2. In addition, we assume that, for any cell j and any dof of j:

1
C1
h ≤ ‖xdof − xj‖ ≤ C1h, (37)

and for any neighbouring cells i and j:

1
C1
h ≤ ‖xi − xj‖ ≤ C1h. (38)

Proposition 3.1. When the source term vanishes, the scheme (34) is conservative:

d

dt

∑
j∈T
|Ωj |Ej

 = 0.
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Proof. Using the definition of ur (28) and ur+1/2 (33) the following properties are satisfied:∑
j∈T

∑
r∈Ωj

〈
EjCr

j − Erβrjσrur
〉

=
∑
r∈T

∑
i|r∈Ωi

〈EiCr
i − Erβri σrur〉 = 0,

and: ∑
j∈T

∑
r+1/2∈Ωj

〈
EjCr+1/2

j − Er+1/2β
r+1/2
j σr+1/2ur+1/2

〉
=

∑
r+1/2∈T

∑
i|r+1/2∈Ωi

〈
EiCr+1/2

i − Er+1/2β
r+1/2
i σr+1/2ur+1/2

〉
= 0.

Besides, the advection part of the scheme being conservative (cf [BHL21]), the result is proved.

3.2 Computation of the CFL condition
In this section, we explain how to compute a CFL condition that ensures the positivity of the numerical
solution when using an explicit time discretisation of (26). For clarity, we remove all the exponents for the
iteration n. The explicit time discretisation of (26) writes:

|Ωj |
En+1
j − Ej

∆t + (1− η)

(1− θ)
∑
r∈Ωj

〈
ur,Cr

j

〉
Erj + θ

∑
r+1/2∈Ωj

〈
ur+1/2,C

r+1/2
j

〉
E
r+1/2
j



+η

(1− θ)
∑
r∈Ωj

〈
EjCr

j − Erβrjσrur,ur
〉

+ θ
∑

r+1/2∈Ωj

〈
EjCr+1/2

j − Er+1/2β
r+1/2
j σr+1/2ur+1/2,ur+1/2

〉
= |Ωj |Sj .

We define:

Cu = max
dof
‖udof‖, Cσu = max

dof
‖σdofudof‖. (39)

We have, for every cell j:

1
|Ωj |

∣∣∣∣∣∣
∑
r∈Ωj

〈
ur,Cr

j

〉
Erj

∣∣∣∣∣∣+ 1
|Ωj |

∣∣∣∣∣∣
∑

r+1/2∈Ωj

〈
ur+1/2,C

r+1/2
j

〉
E
r+1/2
j

∣∣∣∣∣∣ ≤ C Cu

h

∑
i∈Vj

Ei, (40)

1
|Ωj |

∣∣∣∣∣∣
∑
r∈Ωj

〈
EjCr

j ,ur
〉∣∣∣∣∣∣+ 1

|Ωj |

∣∣∣∣∣∣
∑

r+1/2∈Ωj

〈
EjCr+1/2

j ,ur+1/2

〉∣∣∣∣∣∣ ≤ C Cu

h

∑
i∈Vj

Ei, (41)

and:

1
|Ωj |

∣∣∣∣∣∣
∑
r∈Ωj

〈
Erβ

r
jσrur,ur

〉∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

r+1/2∈Ωj

〈
Er+1/2β

r+1/2
j σr+1/2ur+1/2,ur+1/2

〉∣∣∣∣∣∣
 ≤ CCuCσu

∑
i∈Vj

Ei. (42)

Using equations (40), (41), (42) and the fact that f ≥ 0 lead to:

Ej −∆tCCu
1 + hCσu

h

∑
i∈Vj

Ei ≤ En+1
j .
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Therefore, assuming that the energy is positive at iteration n, a sufficient condition to have En+1 > 0, where
En+1 is computed with (26), reads as:

∆t ≤ C h

Cu

1
1 + hCσu

min
j∈T

{
Ej∑
i∈Vj

Ei

}
.

In the next sections, we estimate the quantities Cu and Cσu in the cases Pdof = I2 and Pdof = σdof in (33).

Lemma 3.2. Let r be a given node. Under Assumptions (35) and (36), the nodal quantity ur defined in
(28) satisfies:

‖ur‖ ≤ C
1
σ1h

, ‖σrur‖ ≤ C
1
h
.

Lemma 3.3. Under Assumptions (35), (36), (37) and (38), the constants Cu and Cσu can be bounded as
follows:

• if Pdof = I2 then:

Cu ≤ C
σ2

σ2
1h
, Cσu ≤ C

σ2
2

σ2
1h
,

• if Pdof = σdof then:

Cu ≤ C
1
σ1h

, Cσu ≤ C
1
h
.

Remark 7. The way we prove Lemma 3.3 does not allow us to simplify the inequalities in terms of σ1 and
σ2.

Therefore we see that the constants Cu and Cσu are larger in the case Pdof = I2 than in the case Pdof = σdof.
Thus the CFL condition is better in the second case and reads as:

∆t ≤ Cσ1h
2 min
j∈T

{
Ej∑
i∈Vj

Ei

}
. (43)

Remark 8. If σ is isotropic and constant, ie σdof = σ̄I2 for some constant σ̄ > 0, then the CFL condition
(43) is identical to the CFL for the diffusion limit scheme from [BHL21] which writes:

∆t ≤ Cσ̄h2 min
j∈T

{
Ej∑
i∈Vj

Ei

}
.

3.3 Proof of Lemma 3.2
One can easily show: ∥∥∥∥∥∥ 1

Er

∑
i|r∈Ωi

EiCr
i

∥∥∥∥∥∥ ≤ Ch.
Using ‖β−1

r ‖ ≤ Ch−2 and ‖σ−1
r ‖ ≤ Cσ−1

1 gives the result.
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3.4 Proof of Lemma 3.3
First case: Pdof = I2

Equation (31) can be written as:

Br+1/2ur+1/2 = yr+1/2, yr+1/2 =

 Ej−Ek

Er+1/2

1
2

〈
ur + ur+1,

[
σr+1/2(xk − xj)

]⊥〉
 , (44)

with:

Br+1/2 =

 [
σr+1/2(xk − xj)

]T[[
σr+1/2(xk − xj)

]⊥]T
 =

([
σr+1/2(xk − xj)

]⊥
σr+1/2(xk − xj)

)
. (45)

We claim that the right hand side of (44) satisfies:

‖yr+1/2‖ ≤ C
σ2

σ1
.

Indeed, on the one hand we have |(Ej − Ek)/Er+1/2| ≤ C. On the other hand, defining:

R =
(

0 1
−1 0

)
,

and using Lemma 3.2, we have:

|〈ur, [σr+1/2(xk − xj)]⊥〉| = |〈σrur, σ−1
r Rσr+1/2(xk − xj)〉| ≤ C‖σ−1

r Rσr+1/2‖ ≤ C
σ2

σ1
.

We easily prove:

‖σr+1/2(xk − xj)‖ ≥ Cσ1h. (46)

Since the matrix Br+1/2/‖σr+1/2(xk − xj)‖ in (45) is a rotation matrix, one has:

B−1
r+1/2 = 1

‖σr+1/2(xk − xj)‖2
BTr+1/2, hence : ‖B−1

r+1/2‖ ≤ C
1
σ1h

.

Moreover, writing:

σr+1/2B
−1
r+1/2 = 1

‖σr+1/2(xk − xj)‖2
(
σ2
r+1/2(xk − xj) σr+1/2Rσr+1/2(xk − xj)

)
,

leads to:

‖σr+1/2B
−1
r+1/2‖ ≤

σ2

σ1h
,

and this inequality is optimal (we can not find an inequality that does not involve σ1 and σ2). This implies:

‖ur+1/2‖ ≤ C
σ2

σ2
1h
, ‖σr+1/2ur+1/2‖ ≤ C

σ2
2

σ2
1h
.

This gives the desired result.
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Second case: Pdof = σdof

Equation (44) can be written as:

B̃r+1/2σr+1/2ur+1/2 = ỹr+1/2,

with:

B̃r+1/2 =
(

[xk − xj ]T[
(xk − xj)⊥

]T
)
, ỹr+1/2 =

(
Ej−Ek

Er+1/2
1
2
〈
σrur + σr+1ur+1, (xk − xj)⊥

〉) .
Using Lemma 3.2, one can easily show that ‖ỹr+1/2‖ ≤ C. Using ‖B̃−1

r+1/2‖ ≤ C/h gives the desired result.

4 Upwind advection scheme
In this section, we focus on the scheme obtained by choosing η = 0 in (26). We show that this scheme has a
much less restrictive positivity preserving condition than in the case η 6= 0. This scheme corresponds to the
discretisation of the heat equation using an upwind scheme:

|Ωj |
d

dt
Ej + (1− θ)

∑
r∈Ωj

〈
ur,Cr

j

〉
Erj + θ

∑
r+1/2∈Ωj

〈
ur+1/2,C

r+1/2
j

〉
E
r+1/2
j = |Ωj |Sj . (47)

We define:

R+
j = {r, 〈Cr

j ,ur〉 > 0}, R−j = {r, 〈Cr
j ,ur〉 ≤ 0},

R̃+
j = {r + 1/2, 〈Cr+1/2

j ,ur+1/2〉 > 0}, R̃−j = {r + 1/2, 〈Cr+1/2
j ,ur+1/2〉 ≤ 0},

and:

Ek(r) = 1∑
i∈I+

r
〈ur,Cr

i 〉
∑
i∈I+

r

〈ur,Cr
i 〉Ei. (48)

Similarly to (48), we define k(r + 1/2) as the index of the unique cell containing the edge r + 1/2 such that
〈ur+1/2,C

r+1/2
i 〉 > 0. Equation (47) writes:

|Ωj |
d

dt
Ej +

(1− θ)
∑
r∈R+

j

〈
ur,Cr

j

〉
+ θ

∑
r+1/2∈R̃+

j

〈
ur+1/2,C

r+1/2
j

〉Ej (49)

+(1− θ)
∑
r∈R−

j

〈
ur,Cr

j

〉
Ek(r) + θ

∑
r+1/2∈R̃−

j

〈
ur+1/2,C

r+1/2
j

〉
Ek(r+1/2) = |Ωj |Sj .

4.1 Explicit time discretisation
The explicit time discretisation of (49) reads as:

En+1
j = Ej

1− ∆t
|Ωj |

(1− θ)
∑
r∈R+

j

〈
ur,Cr

j

〉
+ θ

∑
r+1/2∈R̃+

j

〈
ur+1/2,C

r+1/2
j

〉
 (50)

− ∆t
|Ωj |

(1− θ)
∑
r∈R−

j

〈
ur,Cr

j

〉
Ek(r) + θ

∑
r+1/2∈R̃−

j

〈
ur+1/2,C

r+1/2
j

〉
Ek(r+1/2)

+ ∆tSj .
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One can notice:

− ∆t
|Ωj |

(1− θ)
∑
r∈R−

j

〈
ur,Cr

j

〉
Ek(r) + θ

∑
r+1/2∈R̃−

j

〈
ur+1/2,C

r+1/2
j

〉
Ek(r+1/2)

 ≥ 0. (51)

Therefore, reminding that f ≥ 0, a natural CFL condition writes:

∆t
|Ωj |

(1− θ)
∑
r∈R+

j

〈
ur,Cr

j

〉
+ θ

∑
r+1/2∈R̃+

j

〈
ur+1/2,C

r+1/2
j

〉 ≤ 1. (52)

This criterion depends on time but it can be simplified, see Lemma 4.1.

Lemma 4.1. Under Assumptions (35), (36), (37) and (38), a sufficient condition so as to satisfy Equation
(52) reads as:

• if Pdof = I2 then:

∆t ≤ Cσ
2
1
σ2
h2,

• if Pdof = σdof then:

∆t ≤ Cσ1h
2.

Proof. Using (51) and:

∆t
|Ωj |

∣∣∣∣∣∣∣(1− θ)
∑
r∈R+

j

〈
ur,Cr

j

〉
+ θ

∑
r+1/2∈R̃+

j

〈
ur+1/2,C

r+1/2
j

〉∣∣∣∣∣∣∣ ≤ CCu
∆t
h2 ,

where Cu is defined in (39), gives the desired result.

4.2 Implicit time discretisation
The implicit version writes:

En+1 − En

∆t +B(un+1)En+1 = S, (53)

where, for all cells j and l:

(B(u))jl = 1j=l
1
|Ωj |

(1− θ)
∑
r∈R+

j

〈
ur,Cr

j

〉
+ θ

∑
r+1/2∈R̃+

j

〈
ur+1/2,C

r+1/2
j

〉
+1− θ
|Ωj |

∑
r∈Ωj∩Ωl

1r∈R−
j

〈
ur,Cr

j

〉
1l∈I+

r

〈ur,Cr
l 〉∑

i∈I+
r
〈ur,Cr

i 〉

+ θ

|Ωj |
∑

r+1/2∈Ωj∩Ωl

1r+1/2∈R̃+
j

〈
ur+1/2,C

r+1/2
j

〉
.

System (53) is solved using a fixed-point iteration:

Ek+1 − En

∆t +B(uk)Ek+1 = S. (54)
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Lemma 4.2. Under Assumptions (35), (36), (37) and (38), the implicit scheme (53) preserves the positivity
for any time step ∆t.

Proof. We prove that I + ∆tB(u) is the transpose of an M−matrix, thus it is invertible and its inverse has
non-negative coefficients. First, we have:

∀u, ∀j, (B(u))jj ≥ 0, ∀l 6= j, (B(u))lj ≤ 0.

and:

∀j,
∑
l

(B(u))lj = 0 (55)

Indeed, the scheme being conservative (see [BHL21]) for the proof):

∀u, ∀E, 〈1, B(u)E〉 = 0, 1 =

1
...
1


hence:

∀u, B(u)T1 = 0,

which gives (55). Therefore I + ∆tB(u) is the transpose of a strict M−matrix, thus its inverse has non
negative coefficients. In addition, each line of (I + ∆tB(u))−1 contains at least one positive coefficient. This
gives that, if Ekj > 0 for any cell j, then Ek+1

j > 0.

We give now a sufficient condition on the time step ∆t so as to ensure the convergence of the fixed-point
iteration (54).

Lemma 4.3. Under Assumptions (35), (36), (37) and (38), and assuming that there exists δ > 0 such that:

∀k,Ekdof ≥ δ > 0, (56)

and if:

∆t ≤ Cσ1h
2 δ

‖En + S‖ ,

then (53) admits a unique solution and the sequence (Ek)k∈N converges toward it.

Proof. Equation (53) can be written as:

fn(En+1) = En+1, fn(E) = [I + ∆tB(u(E))]−1 (En + S).

The fixed point iteration (54) writes:

fn(Ek+1) = Ek.

We prove here that if ∆t is small enough, then fn is a contraction mapping. This property ensures the
convergence of the sequence (Ek)k∈N.
Since u and B are uniformly bounded with respect to E, we can use ideas from [BL16]. This gives that fn
is a contraction mapping if:

C∆t ‖∇EB(u)‖ ≤ 1.

Using the same arguments as in Section 3, it can be proven that there exists a constant such that:∥∥∥∥∂udof

∂Ej

∥∥∥∥ ≤ C 1
δ
Cσ

1
σ1h

,
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with Cσ = σ2/σ1 if Pdof = I2 and Cσ = 1 if Pdof = σdof. This leads to:

‖∇EB(u)‖ ≤ C 1
δ
Cσ

1
σ1h2 .

The condition on ∆t eventually writes:

∆t ≤ Cδ 1
Cσ

σ1h
2 1
‖En + S‖ .

We can notice that, as in the explicit case, the choice Pdof = σdof leads to a less restrictive constraint.

Remark 9. If we change the definition of Edof in (9) and replace it by:

Edof = hγ + 1
Ndof

∑
i|dof∈Ωi

Ei,

then we do not need Assumption (56) and the condition on ∆t becomes:

∆t ≤ C 1
Cσ

σ1h
2+γ 1
‖En + S‖ .

5 Numerical results
In this section, we present some numerical test cases so as to illustrate the good properties of our scheme.
We use an explicit time discretisation. For the test cases of Sections 5.1 and 5.3, we define the analytical
solution E and compute the source term S so as to satisfy Equation (2). In some of the test cases, we use
random meshes. They are generated by randomly moving the nodes of a cartesian grid. We denote by Nx
the number of cells in the x direction and Ny the number of cells in the y direction.
Moreover, it is well known that the purely nodal scheme (θ = 0 in (26)) may exhibit some cross-stencil
propagation. This issue is corrected using the composite scheme (θ > 0 in (26)). We do not give here any
illustration of this property, examples can be found in [BHL21].

5.1 1D test case
For x = (x, y), the diffusion coefficient is given by:

σ(x) = α exp (− sin(2πx)), α = 4π2e, E(x, t) = exp (t− sin(2πx)). (57)

Thus (2) becomes:

∂tE −
1
α
∂x [exp (sin(2πx))∂xE] = S,

with:

S(t,x) = S(t, x) = et
[
exp (− sin(2πx))− e−1 sin(2πx)

]
.

We use cartesian meshes with Nx cells in the x direction and Ny = 1 cell in the y direction. The time
step is given by ∆t = 0.1(∆x)2. Periodic boundary conditions are imposed. The computational domain is
Ω = [0, 1]2. The final time is t = 0.003, we choose η = 1/4, θ = 1 and Pdof = I2. The initial condition is
given by E(t = 0) in (57). Figure 3 shows the L1 error as a function of the space step h = ∆x = 1/Nx and
Ny = 1. As it is a 1D test case, the results do not significantly vary with θ and we plot the error for θ = 1.
We can see that the scheme is first order convergent for any (θ, η) ∈ [0, 1]2 and even second order convergent
for η = 1 and any θ. Moreover, the reconstruction procedure of Section 2.6 makes the scheme second order
convergent for any (θ, η) ∈ [0, 1]2.
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Figure 3: L1 error at t = 0.003, with θ = 1, Pdof = I2 and initial condition given in (57). The right hand
side picture is computed using the reconstruction procedure of Section 2.6.

Figure 4: L∞ error at t = 0.003, with θ = 1 and Pdof = I2 and initial condition given in (57). The right
hand side picture is computed using the reconstruction procedure of Section 2.6

5.2 Isotropic 2D test case
This test case is borrowed from [BHL21]. We set σ = 3I2 (which comes down to choosing a scalar diffusion
coefficient equal to 3) and S = 0, thus (2) reads as:

∂tE −
1
3∆E = 0. (58)

Here the two schemes (31) and (32) give exactly the same result. The exact solution of (58) satisfying
E(t = 0) = δx0 for a given x0 is:

E(t,x) = 3
4πt exp

(
−3‖x− x0‖2

4t

)
. (59)

The initial data is E(t = t0) and the exact solution is E(t = t0 + tf ) with t0 = 0.01 and tf = 0.001. We
choose x0 = (0.5, 0.5). The computational domain is Ω = [0, 1]2. The boundary conditions do not affect the
result since the solution is almost 0 on the boundary.
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Figures 5 and 6 show the solution on a triangle mesh and on Voronoi type mesh respectively.

For Kershaw type meshes (see Figure 9) and non-convex type meshes (see Figure 13), the time step is
given by ∆t = (∆x)2/100.
Figure 7 shows the L1 error on cartesian meshes for different values of θ and η. For this type of mesh,
the time step is given by ∆t = (∆x)2/10. Figure 8 shows the L1 and L∞) errors with the reconstruction
procedure for η = 1/2.

Figure 10 (resp 11) shows the L1 (resp L∞) error on Kershaw type meshes (see Figure 9).

Figure 7 shows that the scheme is first order convergent for any (θ, η) ∈ [0, 1]2 and even second order
convergent for η = 1 and any θ. However, one can notice some missing points in Figures 10 and 11. They
are due to instabilities of the scheme on Kershaw type meshes, which are highly deformed. Figure 12 shows
the L1 and L∞ errors with the reconstruction procedure for η = 0 on Kershaw type meshes. We see that
the scheme is more stable for small values of η. Moreover, one can notice that the reconstruction procedure
of Section 2.6 allows to reach a second order convergence for η < 1 and any θ.

Figures 14, 15 and 16 that the scheme is second order convergent in both L1 and L∞ norm even on highly
deformed meshes with non convex cells 13.

Figure 5: Numerical solution at time t = 0.001 with η = 1 and θ = π/4 on a triangle mesh.
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Figure 6: Numerical solution at time t = 0.001 with η = 1 and θ = π/4 on a Voronoi type mesh.

Figure 7: L1 error on cartesian meshes for different values of θ with η = 0 (up left), η = 1/2 (up right) and
η = 1 (down).
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Figure 8: L1 error on cartesian meshes for different values of θ with η = 1/2 and the reconstruction procedure.

Figure 9: Kershaw type mesh of size 20× 20.
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Figure 10: L1 error on Kershaw type meshes for different values of θ with η = 0 (up left), η = 1/4 (up right)
and η = 1/2 (down).
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Figure 11: L∞ error on Kershaw type meshes for different values of θ with η = 0 (up left), η = 1/4 (up
right) and η = 1/2 (down).

Figure 12: L1 (left) and L∞ (right) errors on Kershaw type meshes for different values of θ with η = 0 and
the reconstruction procedure.
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Figure 13: non-convex type mesh

Figure 14: L1 (left) and L∞ errors on non-convex type meshes with η = 1.

Figure 15: L1 (left) and L∞ errors on non-convex type meshes with η = 0 and the reconstruction procedure.
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Figure 16: L1 (left) and L∞ errors on non-convex type meshes with η = 1/2 and the reconstruction procedure.

5.3 Stationary analytical solution
This test case comes from [LP20] and [CCP13]. The computational domain is Ω = [0, 0.5]2. The time step
is given by ∆t = 0.01(∆x)2. The final time is tf = 0.001. The solution reads as:

E(t,x) = 1 + sin(πx) sin(πy).

The diffusion coefficient is given by:

κ(x, y) = σ−1(x, y) = 1
x2 + y2

(
y2 + αx2 −(1− α)xy
−(1− α)xy x2 + αy2

)
, α = 10−6.

Its eigenvalues are 1 and α. The source term reads as:

S(x, y) = −〈∇E(x, y),divκ(x, y)〉 − Tr (κ(x, y)H(x, y)) ,

with:

∇E(x, y) = π

(
sin(πx) cos(πy)
cos(πx) sin(πy)

)
, divκ(x, y) = 1

x2 + y2 [(3α− 1)I2 − 2κ(x, y)]
(
x
y

)
and:

H(x, y) = π2
(
− sin(πx) sin(πy) cos(πx) cos(πy)
cos(πx) cos(πy) sin(πx) sin(πy)

)
.

We use random meshes, see Figure 17 for an example. Dirichlet boundary conditions are imposed : the
numerical solution is set to be equal to the exact solution on the boundary of the domain. Figure 18 and
20 (resp 19 and 21) show the L1 (resp L∞) error for different values of η and θ and for the two possibles
formulas for Pdof. The space step is h = ∆x = 1/Nx = ∆y = 1/Ny. We can see some missing points on the
curve Pdof = I2. This is due to instabilities of the scheme with this choice of Pdof. The scheme is more stable
when choosing Pdof = σdof. We can see that the scheme is first order convergent for any (θ, η) ∈ [0, 1]2 and
even second order convergent for η = 1 and any θ.
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Figure 17: Random mesh of size 20× 20.

Figure 18: L1 error on random meshes with θ = π/4 for different values of η with Pdof = I2 (left) and
Pdof = σdof (right).

Figure 19: L∞ error on random meshes with θ = π/4 for different values of η with Pdof = I2 (left) and
Pdof = σdof (right).
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Figure 20: L1 error on random meshes with η = 1/4 for different values of θ with Pdof = I2 (left) and
Pdof = σdof (right).

Figure 21: L∞ error on random meshes with η = 1/4 for different values of θ with Pdof = I2 (left) and
Pdof = σdof (right).

6 Conclusion
In this work, we propose an extension of a diffusion scheme to the anisotropic diffusion equation. In addition,
we develop a two-parameter family of consistent schemes which are positivity-preserving under a CFL
condition. As in [BDH21] we have shown that the flaws of the classical nodal-bases scheme (θ = 0) are
corrected by the composite scheme (θ > 0). Moreover, we emphasize that the edge-based version of our
scheme (θ = 1) is consistent on unstructured meshes. A relevant perspective to this work would be to
modify our method so as to make it third order consistent.

7 Appendix
7.1 Link with a classical cartesian grid solver
Choosing η = θ = 1 in (26) with a scalar diffusion coefficient σ(x) allows to recover the classical 5-points
flux scheme on a cartesian grid (Nx = Ny). Indeed, one has:
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Cr+1/2
j = xk−xj , |Ωj | = h2 = (∆x)2

〈
ur+1/2,C

r+1/2
j

〉
=
〈
ur+1/2,xk − xj

〉
= 2 Ej − Ek

σr+1/2(Ej + Ek) ,

and
〈
ur+1/2, (xk − xj)⊥

〉
is not involved. Using:

β
r+1/2
j ur+1/2 = 1

2
〈
ur+1/2,xk − xj

〉
Cr+1/2
j = 1

2
Ej − Ek

σr+1/2Er+1/2
(xk − xj) = Ej − Ek

σr+1/2(Ej + Ek) (xk − xj),

we have:

〈
EjCr+1/2

j − Er+1/2β
r+1/2
j σr+1/2ur+1/2,ur+1/2

〉
= 2[Ej −

1
2(Ej − Ek)] Ej − Ek

σr+1/2(Ej + Ek) = Ej − Ek
σr+1/2

.

Eventually, the scheme (26) now reads as:

d

dt
Ej +

∑
r+1/2∈Ωj

Ej − Ek
σr+1/2(∆x)2 = Sj . (60)

Using the notations of Figure 22, Equation (60) writes:

d

dt
Ej +

4∑
l=1

Ej − Ekl

σkl
(∆x)2 = Sj ,

which is exactly the classical 5-points flux scheme.

Ωj

Ωk1

Ωk2

Ωk3

Ωk4

Figure 22: On cartesian grid, the typical five points scheme is recovered choosing η = 1 and θ = 1.

7.2 Proof of Theorem 2.1
Let j ∈ T , we show the following equality: let ξ ∈ R2 and θ ∈ [0, 1],∫

∂Ωj

〈ξ,x〉ndx = (1− θ)
∑
r∈Ωj

〈ξ,xr〉Cr
j + θ

∑
r+1/2∈Ωj

〈ξ,xr+1/2〉C
r+1/2
j . (61)

On the one hand, we have ∫
∂Ωj

〈ξ,x〉ndx =
∑

r+1/2∈Ωj

(∫ xr+1

xr

〈ξ,x〉ndx
)
.
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On each edge, the outward unit normal vector n is constant and it is given by nr+1/2
j = Cr+1/2

j /‖Cdof
j ‖.

Therefore we have:

∑
r+1/2∈Ωj

(∫ xr+1

xr

〈ξ,x〉ndx
)

=
∑

r+1/2∈Ωj

〈
ξ,

∫ xr+1

xr

xdx︸ ︷︷ ︸
=‖xr+1−xr‖xr+1/2

〉
nr+1/2
j =

∑
r+1/2∈Ωj

〈
ξ,xr+1/2

〉
Cr+1/2
j .

Moreover, we have: ∑
r+1/2∈Ωj

〈
ξ,xr+1/2

〉
Cr+1/2
j =

∑
r∈Ωj

〈ξ,xr〉Cr
j . (62)

Indeed, using (3) leads to:∑
r∈Ωj

〈ξ,xr〉Cr
j = 1

2
∑
r∈Ωj

〈ξ,xr〉Cr−1/2
j + 1

2
∑
r∈Ωj

〈ξ,xr〉Cr+1/2
j

= 1
2

∑
r+1/2∈Ωj

〈ξ,xr+1〉Cr+1/2
j + 1

2
∑

r+1/2∈Ωj

〈ξ,xr〉Cr+1/2
j ,

which gives (62). This proves (61) and gives the result (7).
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