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CUTOFF FOR PERMUTED MARKOV CHAINS

ANNA BEN-HAMOU AND YUVAL PERES

Abstract. Let P be a bistochastic matrix of size n, and Π be a permutation matrix of size n.
In this paper, we are interested in the mixing time of the Markov chain whose transition matrix
is given by Q = PΠ. In other words, the chain alternates between random steps governed by P
and deterministic steps governed by Π. We show that if the permutation Π is chosen uniformly
at random, then under mild assumptions on P , with high probability, the chain Q exhibits
cutoff at time logn

h
, where h is the entropic rate of P . Moreover, for deterministic permutations,

we improve the upper bound on the mixing time obtained by Chatterjee and Diaconis [11].

Résumé. Soit P une matrice bistochastique de taille n, et Π une matrice de permutation de
taille n. Dans cet article, nous nous intéressons au temps de mélange de la châıne de Markov
dont la matrice de transition est donnée par Q = PΠ. En d’autres termes, la châıne alterne
entre des sauts aléatoires gouvernés par P et des sauts déterministes gouvernés par Π. Nous
montrons que si la permutation Π est choisie uniformément au hasard, alors, sous de légères
hypothèses sur P , avec grande probabilité, la châıne Q présente un cutoff au temps logn

h
, où h

est le taux entropique de P . De plus, pour des permutations déterministes, nous améliorons la
borne supérieure sur le temps de mélange obtenue par Chatterjee and Diaconis [11].

1. Introduction

1.1. Setting and main results. Let P be a bistochastic transition matrix on a finite state
space Ω of size n, and let π be a permutation on Ω. Denote by Π the corresponding permutation
matrix (defined by Πi,j = 1{j=π(i)}). We are interested in the mixing time of the Markov chain
with transition matrix Q = PΠ. By the bistochastic assumption, the uniform distribution on Ω
is stationary for P , and it is stationary for Q as well. The total-variation distance to equilibrium
at time t ≥ 1 starting from state x ∈ Ω is then given by

Dx(t) =
∑
y∈Ω

(
1

n
−Qt(x, y)

)
+

.

For ε ∈ (0, 1), the ε-mixing time is defined as

tmix(ε) = min{t ≥ 0, D(t) ≤ ε} ,
where D(t) = maxx∈ΩDx(t). The original Markov chain P might have a very large mixing
time (it might not even mix at all, if P is reducible or periodic), and it is natural to ask which
permutations on the state space are able to speed up convergence to stationarity. Consider for
instance the lazy random walk on the circle Zn given by X0 = 0 and, for k ≥ 0,

Xk+1 = Xk + εk+1 (mod n) ,

where (εk)k≥1 is an i.i.d. sequence uniformly distributed on {−1, 0, 1}. It is well known that this
chain mixes in order n2 steps (and does not have cutoff). Now consider alternating random
uniform jumps in {−1, 0, 1} and deterministic jumps given by some bijection f on Zn. This
corresponds to the permuted Markov chain

Xk+1 = f(Xk) + εk+1 (mod n) .

He, Pham, and Xu [18] recently proved that, for n prime and for f(x) = x−1 when x 6= 0,
and f(0) = 0, this chain takes only order log n steps to mix. For f(x) = 2x, it was shown by
Eberhard and Varjú [16] that the chain has cutoff at time c log n, for some absolute constant
c > 0.
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In the general setting, Chatterjee and Diaconis [11] recently showed that, under some assump-
tions on P , if the permutation π satisfies some expansion condition with respect to P , then the
mixing time of Q = PΠ is logarithmic, and that all but a vanishing fraction of permutations
satisfy this expansion condition.

We refine this result by showing that, under mild assumptions on the matrix P , for almost
every permutation π, the chain Q = PΠ has cutoff at a time logn

h , where h is the entropic rate
of P , that is

h =
1

n

∑
x,y∈Ω

P (x, y) log
1

P (x, y)
. (1)

To be more precise, this result holds for a sequence of chains Qn = PnΠn on Ωn with |Ωn| = n,
all asymptotic statements being understood as n tends to +∞. To alleviate notation, we will
later keep this dependence in n implicit.

Theorem 1. Let Pn be a bistochastic transition matrix on Ωn with |Ωn| = n ≥ 1, and let hn be
the corresponding entropy rate. Assume that

δn = min {Pn(x, y), x, y ∈ Ωn, Pn(x, y) > 0} =
1

no(1)
, (2)

∆ = sup
n≥1

max
x,y∈Ωn

Pn(x, y) < 1 , (3)

hn = o

(
log n

log logn

)
. (4)

Let πn be a uniform random permutation on Ωn, and Πn be the corresponding permutation
matrix. Then, for all ε ∈ (0, 1), the mixing time of the chain Qn = PnΠn satisfies

hnt
(n)
mix(ε)

log n

P−→
n→+∞

1 .

Note that assumption 2 means that δn satisfies log δn
logn → 0. In particular, it holds if infn δn > 0.

Also note that assumption 3 implies that hn ≥ log 1
∆ = Ω(1). Hence the cutoff time logn

hn
is

always O(log n) but it may be much smaller than log n: assumption 4 only requires that logn
hn

grows faster than log log n.
An interesting consequence of Theorem 1 is the following.

Corollary 2. Let d ≥ 2 be a fixed integer and let (Gn = (Vn, En))n≥1 be a sequence of d-regular
digraphs (i.e. for all vertices, the in-degree and out-degree are both equal to d), with |Vn| = n.
For each n ≥ 1, let πn be a uniformly chosen permutation on Vn, and kn be a positive integer.
Consider the Markov chain on Vn for which one step consists in kn simple random walk steps on
Gn followed by an application of πn. This chain has transition matrix Qn = Mkn

n Πn, where Mn

is the transition matrix of the simple random walk on Gn, and Πn is the matrix associated to πn.

Then, if kn = o
(

logn
log logn

)
, the sequence of chains (Qn)n≥1 has cutoff at time logn

Hn
where

Hn =
1

n

∑
u,v∈V (Gn)

Mkn
n (u, v) log

1

Mkn
n (u, v)

·

Proof of Corollary 2. It suffices to observe that the bistochastic matrix Pn = Mkn
n satisfies the

assumptions of Theorem 1. Indeed, since d ≥ 2, the probabilities Mkn
n (u, v) are all at most

1/2 and assumption 3 is satisfied. And since kn = o
(

logn
log logn

)
, for all u, v ∈ Vn such that

Mkn
n (u, v) > 0, we have

Mkn
n (u, v) ≥

(
1

d

)kn
=

1

no(1)
,
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hence assumption 2 is satisfied. Moreover, we have

Hn ≤ log
(
dkn
)

= o

(
log n

log logn

)
,

and assumption 4 is satisfied as well. �

The following proposition (whose proof is given in Section 2.4) shows that the threshold

kn = o
(

logn
log logn

)
is not far from being optimal.

Proposition 3. In the setting of Corollary 2, for kn = Ω(log n), one may find examples of
graphs for which the chain Qn does not have cutoff.

Our second result concerns deterministic permutations. Let us first recall the result of
Chatterjee and Diaconis [11]. For A ⊂ Ωn, let En(A) be the subset of states attainable by Pn in
one step starting from A. Assume that the sequence of permutations (πn)n≥1 is such that for all
n ≥ 1, there exists αn ∈ (0, 1) such that for all A ⊂ Ωn with |A| ≤ n/2, we have

|En ◦ πn ◦ En(A)| ≥ (1 + αn)|A| . (5)

Under some assumptions on Pn, Chatterjee and Diaconis [11] show that the total-variation
distance of Qn satisfies

D(n)

(
(1 + o(1))4 log n

α2
nδ

8
n

)
−→
n→∞

0 ,

where δn = min{Pn(x, y), x, y ∈ Ωn, Pn(x, y) > 0}. We show that the dependence on δn can be
improved from δ−8

n to δ−4
n , under weaker assumptions on Pn.

Theorem 4. Let Pn be a bistochastic transition matrix on Ωn with |Ωn| = n, and assume that
there exists γ > 0 such that for all n and for all x ∈ Ωn, we have Pn(x, x) ≥ γ. Let πn be a
permutation on Ωn satisfying assumption (5). Then the total-variation distance of Qn = PnΠn

satisfies

D(n)

(
17 log n

α2
nδ

4
n

)
−→
n→∞

0 .

1.2. Related work. Theorem 1 describes a sharp transition in the convergence to equilibrium:
the first order of the mixing time tmix(ε) does not depend on the target ε. In other words,
the total-variation distance to the stationary measure abruptly falls from 1 to 0 over a short
time-scale which is negligible with respect to the mixing time. This behavior is known as cutoff.
Since its discovery in the early 1980’s by Diaconis and Shahshahani [14] and Aldous [1], this
phenomenon has been shown to occur for a wide variety of finite Markov chains. However, the
question of characterizing the chains which have this property is still largely open, except in
some specific settings such as birth-and-death chains [15], and more generally random walks on
trees [2]. Recently, an impressive step was made by Salez [26], who showed that all non-negatively
curved Markov chains satisfying a simple condition have cutoff.

In recent years, a lot of attention has been devoted to random instances: instead of being fixed,
the sequence of transition matrices is drawn at random according to some probability distribution,
and one looks for a result that holds for almost all realizations. A recurring observation in this
framework is that random instances often exhibit cutoff, at a time that can be described in
terms of entropy (the “entropic time”). For random walks on random graphs, this was pioneered
by Lubetzky and Sly [24], who established cutoff for the simple and non-backtracking random
walks on random regular graphs. This was later extended to random walks on random graphs
with given degrees [3, 4, 5], and to random directed graphs [7]. Other notable examples are
random lifts of graphs [6, 13], random Cayley graphs for Abelian groups [19], and for upper
triangular matrices [20].

Bordenave, Caputo, and Salez [8] considered random transition matrices obtained by permuting
independently and uniformly at random each row of a fixed transition matrix P . They establish
cutoff at the entropic time logn

h , with h given in (1). Our setup is similar, except the perturbation
is reduced from n to only one random permutation. We note however that our model is
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significantly simplified by assuming that P has uniform stationary distribution. Also, their result
holds under weaker versions of assumptions (2) and (3). On the other hand, they assume that h

is of order 1, whereas we only need h = o
(

logn
log logn

)
.

Another model that has some resemblance with our setup is the one considered by Hermon,
Sly, and Sousi [21]. The authors consider a random graph formed by adding to a fixed bounded-
degree graph the edges of a uniform random matching on the vertex set. The random walk is
shown to have cutoff, at a time that can be described through the entropy of the walk on an
auxiliary graph referred to as the quasi-tree. Similarly to our result, this gives a simple random
perturbation that makes a large class of transition matrices have cutoff. Let us note that one
main difference is that our model has a spontaneous non-backtracking tendency which simplifies
the analysis of typical paths.

The spectral properties of the random matrix Q = PΠ were investigated by Bordenave, Qiu,
Zhang, et al. [9]. In particular, they show that, under some sparsity and regularity assumptions
on P , the spectral gap of Q is bounded away from 0, which implies that the mixing time is
O(log n).

Finally, let us note that multiplying a transition matrix by a permutation fits into the general
topic of speeding up Markov chains. For references on this topic, we refer the reader to the paper
of Chatterjee and Diaconis [11] and to the survey of Hildebrand [22] for the case of random
walks on groups.

1.3. Organization of the paper. Theorem 1 and Proposition 3 are proven in Section 2, and
Theorem 4 in Section 3.

2. Cutoff for random permutations

To alleviate notation, the dependence on n will often be implicit: for instance, we will write
Ω instead of Ωn and P instead of Pn. Also, δ will stand for δn as defined in (2), and h for hn.

2.1. Coupling with i.i.d. samples. Before entering into the proof of Theorem 1, we describe
a coupling for typical trajectories, which helps approximating the annealed law of the walk and
will be crucially used later on. This coupling takes advantage of the fact that the walk and
the permutation π along its trajectory can be generated simultaneously as follows: initially,
X0 = x ∈ Ω and Dom(π) = Ran(π) = ∅; then at each time k ≥ 0,

(1) choose an element Yk ∈ Ω according to the distribution P (Xk, ·);
(2) if Yk 6∈ Dom(π), i.e. if the image of Yk by π has not been chosen yet, choose π(Yk)

uniformly at random in Ω \ Ran(π), and update Dom(π) and Ran(π) accordingly;
otherwise, π(Yk) is already defined, and no new image is chosen;

(3) in both cases, let Xk+1 = π(Yk).

The sequence (Xk)k≥0 is then exactly distributed according to the annealed law. Now, consider
a sequence (X?

k , Y
?
k )k≥0 generated in the following way: initially X?

0 = x ∈ Ω; then at each time
k ≥ 0,

(1) choose an element Y ?
k ∈ Ω according to the distribution P (X?

k , ·);
(2) let X?

k+1 be uniformly distributed on the entire set Ω.

Note that the process (X?
k , Y

?
k )k≥1 is simply an i.i.d. sequence and that both X?

k and Y ?
k are

uniformly distributed on Ω. The two processes (Xk, Yk)k≥0 and (X?
k , Y

?
k )k≥0 may be coupled

until time

T = inf{k ≥ 0, X?
k ∈ Ran(π) or Y ?

k ∈ Dom(π)} .

Since at step k, both |Dom(π)| and |Ran(π)| are at most k, we have

P (T ≤ t) ≤ 2t2

n
· (6)
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2.2. Lower bound. Let x ∈ Ω be a fixed starting point and let

t =

⌈
c
log n

h

⌉
,

for 0 < c < 1. Let A be the set of y ∈ Ω such that there exists a path from x to y which has
probability larger than logn

n to be taken by the chain in t steps. Since, for all y ∈ A, we have

Qt(x, y) ≥ logn
n , and since Qt(x, ·) is a probability, the set A has size less than n

logn . Hence

Dx(t) ≥ Qt(x,A)− |A|
n
≥ Qt(x,A)− 1

log n
·

Taking expectation with respect to the permutation, we have

EQt(x,A) ≥ Px

(
t−1∏
s=0

P (Xs, Ys) >
log n

n

)
= Px

(
t−1∏
s=0

P (X?
s , Y

?
s ) >

log n

n

)
+ o(1) ,

where the last equality is by (6). Taking logarithms in the complementary event, singling out the
particular first step (and using that log 1

P (X?
0 ,Y

?
0 ) ≤ log 1

δn
= o(log n)), and applying Chebychev

Inequality, we have

Px

(
t−1∏
s=0

P (X?
s , Y

?
s ) ≤ log n

n

)
= Px

(
t−1∑
s=1

log
1

P (X?
s , Y

?
s )
≥ log n+ o(log n)

)

= O

(
σ2

(1− c)2h log n

)
,

where

σ2 =
1

n

∑
x,y∈Ω

P (x, y)

(
log

1

P (x, y)
− h

)2

.

By assumption (2), we have

σ2 = o (h log n) . (7)

Hence
min
x∈Ω

E [Dx(t)] −→
n→+∞

1 ,

which yields D(t)
P−→ 1.

2.3. Upper bound. Let

t = 2

⌈
c log n

2h

⌉
,

for c > 1. Letting P? be the matrix defined by

∀x, y ∈ Ω , P?(x, y) = P (y, x) ,

and Q? = P?Π
−1, a key observation is that for all x, y ∈ Ω,

Qt(x, π(y)) =
∑
u,v∈Ω

Qt/2(x, u)Q
t/2
? (y, v)1{v=π−1(u)} .

The proof of the upper bound then relies on a special exploration procedure, which generates
the permutation π together with two disjoint weighted trees Tx and Ty, keeping track of only
certain paths from x and from y. Initially at a time 0, Dom0(π) = Ran0(π) = ∅, the tree Tx(0) is
reduced to x and the tree Ty(0) is reduced to y. Then, for k = 1, 2, . . . , we iterate the following
steps to generate Tx(k) and Ty(k):

(1) Each vertex u ∈ Tx(k − 1) ∪ Ty(k − 1) determines a unique sequence (u0, . . . , ud) where
u0 ∈ {x, y} is the ancestor of u, for each 1 ≤ i ≤ d, ui is a child of ui−1, and ud = u.
The integer d is called the height of u, denoted h(u), and the weight of u is defined as

w(u) =

{∏d−1
s=0 Q(us, us+1) if u0 = x,∏d−1
s=0 Q?(us, us+1) if u0 = y.
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If u0 = x (resp. u0 = y), we say that (u, i) is a stub if P (u, i) > 0 (resp. if P?(u, i) > 0).
The weight of a stub is naturally defined as

w(u, i) =

{
w(u)P (u, i) if u0 = x,

w(u)P?(u, i) if u0 = y,

and its height as h(u, i) = h(u) + 1. A stub (u, i) is said to be free at time k− 1, which is
denoted (u, i) ∈ Fk−1, if either u0 = x and i 6∈ Domk−1(π) or u0 = y and i 6∈ Rank−1(π).
Pick a free stub (u, i) ∈ Fk−1 such that

w(u, i) ≥ wmin = n−2/3 and h(u, i) <
t

2
· (8)

If u0 = x, set Domk(π) = Domk−1(π) ∪ {i}; if u0 = y, set Rank(π) = Rank−1(π) ∪ {i}.
(2) If u0 = x, then choose i′ = π(i) uniformly at random in Ω\Rank−1(π) and set Rank(π) =

Rank−1(π)∪{i′}. If u0 = y, then choose i′ = π−1(i) uniformly at random in Ω\Domk−1(π)
and set Domk(π) = Domk−1(π) ∪ {i′}.

(3) For A ⊂ Ω, let

N (A) = A ∪ {z ∈ Ω, ∃a ∈ A, P (a, z) > 0 or P?(a, z) > 0} .

If N ({i′})∩N (Tx(k − 1) ∪ Ty(k − 1)) = ∅, then add i′ as a child of u in the corresponding
tree and leave the other tree unchanged to form Tx(k) and Ty(k). Otherwise, both
Tx(k) = Tx(k − 1) and Ty(k) = Ty(k − 1).

The exploration stage stops when the set of free stubs satisfying (8) is empty. Let τ be
the number of times step (2) is performed and let Tx = Ty(τ) and Ty = Ty(τ). Note that, by
condition (8), we have

wminτ ≤
∑
u∈Tx

w(u) +
∑
u∈Ty

w(u) ≤ t . (9)

Also note that the stub picked in step (1) can be chosen arbitrarily provided it satisfies
condition (8). We choose to explore in the following order:

(i) Reveal around x, choosing free stubs with minimal height, until no free stub has height
strictly less than

t0 :=

⌈
log logn

log(1/∆)

⌉
.

Let x1, . . . , xm be the vertices of Tx at height t0 at the end of this first stage.
(ii) Reveal around y, choosing free stubs with minimal height, until no free stub has height

strictly less than t0. Let y1, . . . , ym′ be the vertices of Ty at height t0 at the end of this
first stage.

(iii) Sequentially for ` = 1, . . . ,m, complete the exploration around x`, until height t/2.
(iv) Sequentially for ` = 1, . . . ,m′, complete the exploration around y`, until height t/2.

Let

r :=

⌈
log n

12 log(1/δ)

⌉
.

By assumption (2), we have r → +∞. An oriented graph G (resp. G?) on n vertices may
naturally be associated to the matrix Q (resp. Q?), by placing an oriented edge from u to v
when Q(u, v) > 0 (resp. Q?(u, v) > 0). We say that x is a Q-root (resp. a Q?-root), which we
denote x ∈ R (resp. x ∈ R?), if the (oriented) neighborhood of x in G (resp. G?) up to level r is
a tree.

Lemma 5. For s = t0 ∧ r, we have

max
x∈Ω

Qs(x,Rc) P−→ 0 and
|Rc?|
n

P−→ 0 .
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Proof of Lemma 5. Let us first prove the first claim. Let R =
⌈

logn
5 log(1/δ)

⌉
. When sequentially

revealing the neighborhood of x in G up to level R, choosing free stubs with minimal height,
the total number of steps is at most (1/δ)R = n1/5+o(1), and at each step, the probability of
having a “bad event”, i.e. choosing a state u such that either u = x or there exists v with

P (u, v) > 0 and P (u′, v) > 0 for some other already exposed u′, is at most (1/δ)R+2

n−(1/δ)R
= n−4/5+o(1).

Hence, the probability of having at least two such bad events up to level R is n−6/5+o(1). Hence,
with high probability, all x ∈ Ω are such that there is at most one problematic vertex in their
R-neighborhood. Let x ∈ Ω. If there is no problematic vertex in its R-neighborhood, then the
claim is clear. Otherwise, let u be this single problematic vertex. If by time s the walk has
exited the only path from x to u, then it lies on a Q-root. By assumption (3), at each step, the
probability to follow the path is at most ∆ < 1, except, in the case u 6= x, when the walk is
at u, which can happen at most once in every two steps. Hence the probability not to have
exited the path by time r is at most ∆

s
2
−1 = o(1), which proves the first claim. Since Q has

uniform stationary distribution, this implies that |R
c|
n

P−→ 0. Since P and P? satisfy the same
assumptions, the same can be said for |R?|, establishing the second claim. �

Let Bx be the set of vertices at (oriented) distance at most r from x in G (i.e. Bx corresponds to
the states that can be reached in at most r steps by the chain Q). We have |Bx| ≤ (1/δ)r = o(n).
Combined with Lemma 5, this yields

D(t+ s) ≤ max
x∈R
Dx(t) + oP(1) ≤ max

x∈R

∑
y∈R?\Bx

(
1

n
−Qt(x, π(y)

)
+

+ oP(1) .

The rest of the proof is devoted to establishing

min
x∈R

min
y∈R?\Bx

Qt(x, π(y)) ≥ 1 + oP(1)

n
· (10)

Let Hx be the set of free stubs (u, i) with u ∈ Tx and h(u, i) = t
2 at the end of the exploration

stage. Similarly, let Hy be the set of free stubs (v, j) with v ∈ Ty and h(v, j) = t
2 . Let also

θ :=
1

n(log n)2
·

We have

Qt(x, π(y)) ≥
∑

(u,i)∈Hx

∑
(v,j)∈Hy

w(u, i)w(v, j)1w(u,i)w(v,j)≤θ1{j=π(i)} .

Note that, conditionally on the exploration stage, the sum on the right-hand side above can be
written as

∑
i 6∈Domτ (π) ai,π(i), where the numbers ai,j satisfy

0 ≤ ai,j ≤ θ and
∑

i 6∈Domτ (π)
j 6∈Ranτ (π)

ai,j ≤ 1 .

Define

Zθ(x, y) =
∑

(u,i)∈Hx

∑
(v,j)∈Hy

w(u, i)w(v, j)1w(u,i)w(v,j)≤θ ,

and note that (n− τ)−1Zθ(x, y) corresponds to the conditional expectation of
∑

i 6∈Domτ (π) ai,π(i)

given the exploration stage. Using Chatterjee [10, Proposition 1.1, or rather the refined bound
for the left tail given in Theorem 1.5, (ii)], we have, for all ε > 0,

P
(
nQt(x, π(y)) < Zθ(x, y)− ε

)
≤ P

(n− τ)
∑

i 6∈Domτ (π)

ai,π(i) < Zθ(x, y)− ε


≤ exp

(
− ε2

4θn

)
= o

(
1

n2

)
.
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To complete the proof of (10), we now have to show that minx∈Rminy∈R?\Bx Zθ(x, y) = 1+oP(1).
To do so, we decompose 1− Zθ(x, y) into three terms that are treated separately: the weight of
free stubs at height t/2 but with product larger than θ, the weight of stubs that are not free and
childless (i.e. those that did not satisfy the condition at step (3) of the exploration stage), and
the weight of free stubs at height less than t/2 (i.e. those that have weight smaller than wmin).

Lemma 6. For all ε > 0,

P

 ∑
(u,i)∈Hx

∑
(v,j)∈Hy

w(u, i)w(v, j)1{w(u,i)w(v,j)>θ} > ε

 = o

(
1

n2

)
.

Proof of Lemma 6. First observe that∑
(u,i)∈Hx

∑
(v,j)∈Hy

w(u, i)w(v, j)1{w(u,i)w(v,j)>θ} ≤
∑

z∈{x,y}

∑
(u,i)∈Hz

w(u, i)1{w(u,i)>
√
θ} .

We will show that, for all ε > 0,

P

 ∑
(u,i)∈Hx

w(u, i)1{w(u,i)>
√
θ} > ε

 = o

(
1

n2

)
.

Since the argument for y is completely similar, we do not include it (the only difference is that
we have to condition also on the whole tree Tx but this does not change the argument).

Let J0 be the σ-field corresponding to steps (i) and (ii), with x1, . . . , xm the vertices at height
t0. For ` = 1, . . . ,m, let J` be the σ-field containing J0 plus the first ` steps of step (iii), i.e.
the subtrees rooted at x1, . . . , x`. Observe that∑

(u,i)∈Hx

w(u, i)1{w(u,i)>
√
θ} ≤

m∑
`=1

w(x`)W` ,

where

W` =
∑

(u,i)∈Hx
ur=x`

w(u, i)

w(x`)
1{w(u,i)

w(x`)
>
√
θ
} .

Now consider the martingale sequence (Mk)
m
k=0 defined by M0 = 0, and, for k = 1, . . . ,m,

Mk =

k∑
`=1

w(x`)
(
W` − E[W`

∣∣ J`−1]
)
.

Note that

E[W`

∣∣ J`−1] ≤ Px`

t/2−t0−1∏
s=0

P (Xs, Ys) >
√
θ
∣∣ J`−1

 .

Using the coupling of Section 2.1 and bound (9), we have

E[W`

∣∣ J`−1] ≤ O
(

t2

wminn

)
+ Px`

t/2−t0−1∏
s=0

P (X?
s , Y

?
s ) >

√
θ

 .

Singling out the particular first step, taking logarithms, and using that t0h = o(log n), we
have

Px`

t/2−t0−1∏
s=0

P (X?
s , Y

?
s ) >

√
θ

 ≤ P

t/2−t0−1∑
s=1

(
h− log

1

P (X?
s , Y

?
s )

)
> un

 ,

with un = (c−1)
2 log n + o(log n). Using Chebychev Inequality, we get E[W`

∣∣ J`−1] = o(1),
uniformly in `, which implies

m∑
`=1

w(x`)W` ≤Mm + o(1) .
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Now the increments of (Mk)
m
k=0 are bounded by

|Mk −Mk−1| ≤ w(xk) ≤ ∆t0 ≤ 1

log n
,

and its quadratic variation satisfies

m∑
k=1

E
[
(Mk −Mk−1)2

∣∣ Jk−1

]
≤

m∑
k=1

w(xk)
2E[Wk

∣∣ Jk−1] = o

(
1

log n

)
.

By Freedman Inequality [17, Theorem 1.6] applied to the martingale
(

log(n)Mk

)m
k=0

which has
increments bounded by 1 and quadratic variation v = o(log n), we obtain

P (Mm > ε) ≤
(

ve

v + ε log n

)ε logn

= o

(
1

n2

)
. �

Let F be the set of free stubs (u, i) with u ∈ Tx ∪ Ty at the end of the exploration stage.

Lemma 7. For all ε > 0,

P

x ∈ R, y ∈ R? \ Bx, ∑
(u,i)∈F

w(u, i) < 2− ε

 = o

(
1

n2

)
.

Proof of Lemma 7. For k ≥ 0, let Fk denote the set of free stubs (u, i) with u ∈ Tx(k∧τ)∪Ty(k∧τ)
(i.e. after k ∧ τ rounds of the exploration process), and consider the random variable

Wk :=
∑

(u,i)∈Fk

w(u, i).

Initially, W0 = 2, and, for k ≥ 1, the difference Wk −Wk−1 is either 0 or negative, depending on
whether the condition of step (3) is satisfied or not. More precisely, denoting by (uk, ik) the free
stub selected at the kth iteration of step (1) and letting i′k be the state selected at step (2), we
have for all k ≥ 1,

Wk −Wk−1 = −1k≤τw(uk, ik)1N ({i′k})∩N (Tx(k−1)∪Ty(k−1))6=∅ ,

where for A ⊂ Ω,

N (A) = A ∪ {z ∈ Ω, ∃a ∈ A, P (a, z) > 0 or P?(a, z) > 0} .

Now, let {Gk}k≥0 be the natural filtration associated with the exploration stage. Note that τ is
a stopping time, that w(uk, ik) is Gk−1-measurable and that

P
(
N ({i′k}) ∩N (Tx(k − 1) ∪ Ty(k − 1)) 6= ∅

∣∣ Gk−1

)
≤ (1 + 2/δ)2|Tx(k − 1) ∪ Ty(k − 1)|

n− |Rank−1(π)|

≤ 9(k + 1)

δ2(n− k + 1)
,

where we used that |Rank−1(π)| is at most k−1 and |Tx(k−1)∪Ty(k−1)| at most k+ 1. Hence,

E
[
Wk −Wk−1

∣∣ Gk−1

]
≥ −1k≤τw(uk, ik)

9(k + 1)

δ2(n− k + 1)
,

and

E
[
(Wk −Wk−1)2

∣∣ Gk−1

]
≤ 1k≤τw(uk, ik)

2 9(k + 1)

δ2(n− k + 1)
·

Using that

wminτ ≤
∑
k≤τ

w(uk, ik) ≤ t ,
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and assumption (2), we get

m :=
τ∑
k=1

E
[
Wk−1 −Wk

∣∣ Gk−1

]
≤ no(1)t2

nwmin − t
,

and

v :=
τ∑
k=1

E
[
(Wk −Wk−1)2

∣∣ Gk−1

]
≤ no(1)t2

nwmin − t
·

Now, fix ε > 0 and consider the martingale (Mk)k≥0 defined by M0 = 0 and

Mk :=
k∑
i=1

{
(Wi−1 −Wi) ∧ ε− E

[
(Wi−1 −Wi) ∧ ε

∣∣Gi−1

]}
.

The increments of (Mk)k≥0 are bounded by ε by construction, and, recalling that wmin = n−2/3

by (8) and that t = O(log n) by (3), the quadratic variation up to time τ satisfies

τ∑
k=1

E
[
(Mk −Mk−1)2

∣∣Gk−1

]
≤ v = n−

1
3

+o(1) .

Thus, Freedman Inequality [17] yields

P (Mτ > 7ε) ≤
(

ev

v + 7ε2

)7

= o

(
1

n2

)
. (11)

Now on the event x ∈ R and y ∈ R? \ Bx, one must have maxk(Wk−1 −Wk) ≤ ε for n large
enough (since ∆ < 1 and r → +∞), hence

{x ∈ R, y ∈ R? \ Bx} ⊆ {W0 −Wτ ≤Mτ +m} .
Since W0 −Wτ = 2−

∑
(u,i)∈F w(u, i) and m = o(1), this concludes the proof. �

Lemma 8. For all ε > 0,

P

 ∑
(u,i)∈F

w(u, i)1{w(u,i)<wmin} > ε

 = o

(
1

n2

)
.

Proof of Lemma 8. Let Fx be the set of free stubs (u, i) with u ∈ Tx. Consider m = blog nc
independent Markov chains with transition matrix Q all started at x, each being killed as soon
as its weight falls below wmin, and write A for the event that their trajectories form a tree of
height less than t/2. The conditional probability of A given the permutation π satisfies

P (A|π) ≥

 ∑
(u,i)∈Fx

w(u, i)1{w(u,i)<wmin}

m

.

Taking expectation and using Markov inequality, we deduce that

P

 ∑
(u,i)∈Fx

w(u, i)1{w(u,i)<wmin} > ε

 ≤ P(A)

εm
,

where the average is now taken over both the Markov chains and the permutation. We will now
show that P(A) = o(1)m, so that ε−mP(A) = o(n−2). Generate the m killed trajectories one
after the other, revealing the permutation along the way, as described in Section 2.1. Given
that the first `− 1 trajectories form a tree of height less than t/2, we claim that the conditional
chance that the `th one also fulfills the requirement is o(1), uniformly in 1 ≤ ` ≤ m. Indeed,

• either its weight falls below η = (1/log n)2 before it ever leaves the graph spanned by
the first `− 1 trajectories and reaches an unvisited state: thanks to the tree structure,
there are at most `− 1 < m possible trajectories to follow, each having weight at most η,
so the chance is less than mη = o(1).
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• or the remainder of its trajectory after the first unpaired half-edge has weight less than
wmin/ηδ (where δ accounts for the step exiting the graph spanned by the previous
trajectories): this part consists of at most t/2 states which can be coupled with uniform

samples from Ω for a total-variation cost of mt2

2n , as in Section 2.1. Thus, the conditional
chance is at most

mt2

2n
+ P

 t/2∏
s=1

P (X?
s , Y

?
s ) <

wmin

ηδ

 = o(1) ,

by Chebychev Inequality.

Since P? satisfies the same assumptions as P , the same argument may be repeated to show that

P

 ∑
(u,i)∈Fy

w(u, i)1{w(u,i)<wmin} > ε

 = o

(
1

n2

)
. �

Combining Lemma 6, 7 and 8, we obtain minx∈Rminy∈R?\Bx Zθ(x, y) = 1 + oP(1), which
concludes the proof of the upper bound.

2.4. Proof of Proposition 3. In the setting of Corollary 2, let us show that, for kn = Ω(log n),
there exist graphs for which the chain Qn does not have cutoff. Consider a graph Gn formed
by the disconnected union of one 3-regular Ramanujan graph Rn of size rn ∼ n√

logn
, and of

n−rn
4 copies of K4 (the complete graph on four vertices). Take kn ≥ a log n with a > 3

log(2) , and

consider the Markov chain with transition matrix Qn = Mkn
n Πn where Mn is the transition

matrix of the simple random walk on Gn and Πn is a uniform random permutation matrix. We
claim that, starting from one copy of K4, the mixing time of Qn is determined by the hitting
time of Rn. Indeed, observe that, when restricted to Gn \Rn, the chain Qn is very similar to
a random walk on a 4-regular directed random graph, which takes order log n steps to mix.
Since the hitting time of Rn is approximately distributed as a Geometric random variable with
parameter 1√

logn
, the chain Qn reaches Rn before it mixes on Gn \ Rn. Once it has reached

Rn, then kn simple random walk steps makes it basically uniformly distributed on Rn. This is
because, by [23], the simple random walk on Rn has cutoff at time 3

log(2) log n. Hence, applying

the random permutation makes the chain approximately uniformly distributed over a set of rn
vertices, among which a vanishing proportion belong to Rn. Now, starting from the uniform
distribution over a set of about rn vertices, the chain on Gn \Rn only requires order log log n
steps to mix (this is because the range at time k is roughly of size rn4k and the walk mixes when
the range has size about n). All in all, the mixing time is of order

√
log n, and there is no cutoff.

3. Deterministic permutations

Let P be a bistochastic trnasition matrix on Ω, with |Ω| = n, and let

δ = min {P (x, y), x, y ∈ Ω, P (x, y) > 0} .
Assume that the matrix P has laziness parameter γ > 0, i.e.

∀x ∈ Ω , P (x, x) ≥ γ .
Let π be a fixed permutation on Ω. For A ⊂ Ω, we denote by E(A) the subset of elements
attainable in one step of P starting from A, and we assume that there exists α ∈ (0, 1) such
that for all A ⊂ Ω with |A| ≤ n/2,

|E ◦ π ◦ E(A)| ≥ (1 + α)|A| . (12)

Consider the matrix Q = PΠ, where Π is the matrix associated to π. We proceed by bounding
the mixing time of Q2. Note that by assumption (12), the matrix Q2 is irreducible. For x, y ∈ Ω,
we have

Q2(x, y) =
∑
z∈Ω

P (x, π−1(z))P (z, π−1(y)) .
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Following Morris and Peres [25], we define, for S ⊂ Ω, S 6= ∅,

ϕS =
1

2|S|
∑
y∈Ω

min

{∑
x∈S

Q2(x, y) ,
∑
x∈Sc

Q2(x, y)

}
.

Note that, if y ∈ π ◦ π(S), then for x = π−1 ◦ π−1(y) ∈ S, we have

Q2(x, y) ≥ P (x, x)P (π(x), π(x)) ≥ γ2 .

Moreover, since Q2 has uniform stationary distribution,
∑

x∈Sc Q
2(x, y) ≤ 1. Hence,

∑
y∈π◦π(S)

min

{∑
x∈S

Q2(x, y) ,
∑
x∈Sc

Q2(x, y)

}
≥ γ2

∑
x∈Sc

Q2(x, π ◦ π(S)) .

Similarly, ∑
y∈π◦π(Sc)

min

{∑
x∈S

Q2(x, y) ,
∑
x∈Sc

Q2(x, y)

}
≥ γ2

∑
x∈S

Q2(x, π ◦ π(Sc)) .

Therefore,

ϕS ≥
γ2

2|S|

{∑
x∈S

Q2(x, π ◦ π(Sc)) +
∑
x∈Sc

Q2(x, π ◦ π(S))

}

≥ γ2δ2

2|S|
{∣∣π−1 ◦ E ◦ π ◦ E(S) \ S

∣∣+
∣∣π−1 ◦ E ◦ π ◦ E(Sc) \ Sc

∣∣} .
Assume without loss of generality that |S| ≤ n/2. Since P has some laziness, S ⊂ π−1◦E◦π◦E(S),
and, by assumption, we have∣∣π−1 ◦ E ◦ π ◦ E(S)

∣∣ = |E ◦ π ◦ E(S)| ≥ (1 + α)|S| .

We obtain

ϕ? := min
S⊂Ω, S 6=∅

ϕS ≥
γ2δ2α

2
.

By [25, Theorem 4 and Lemma 10], this implies that the mixing time of Q is bounded by

tmix(ε) ≤
∫ 1/ε2

4/n

4

uϕ2
?

du

≤ 16

γ4δ4α2

(
log
(n

4

)
+ 2 log

(
1

ε

))
.

Denoting by D(γ)(·) the worst case total-variation distance when P has laziness γ, we have in
particular that for all γ such that 16 < 17γ4,

D(γ)

(
17

δ4α2
log n

)
−→
n→∞

0 .

Using Chen and Saloff-Coste [12, Proposition 3.1], we may then extend this bound to all positive
laziness parameters: for all γ ∈ (0, 1), we have

D(γ)

(
17

δ4α2
log n

)
−→
n→∞

0 .
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