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Abstract

Nearest neighbor-preserving embeddings exist for �2 (Euclidean) and �1 (Man-

hattan) metrics, as well as doubling subsets of �2, where doubling dimension is

today the most effective way of capturing input structure. These randomized

embeddings bound the distortion only for distances between the query point

and a point-set. Motivated by the study of fast Approximate Nearest Neigh-

bor search in �1, this paper settles the missing case of doubling subsets of �1.

In particular, we introduce a randomized dimensionality reduction by means

of a near neighbor-preserving embedding; the latter is related to the decision-

with-witness problem. The input set gets represented via appropriate covering

point-sets. For this, we leverage either approximate r-nets or randomly shifted

grids, with different tradeoffs between preprocessing time and target dimen-

sion. We exploit Cauchy random variables, and derive a concentration bound

of independent interest.
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1. Introduction

Proximity search is a key computational question with a wide variety of ap-

plications. The corresponding problems in metric spaces of low dimension have

been usually handled by space tessellation. Such solutions are affected by the

curse of dimensionality, which makes them too costly in high dimensions. In the

past two decades, the increasing need for manipulating high-dimensional data

has led to randomized and approximation algorithms with polynomial depen-

dence on the dimension, since the latter cannot be assumed as fixed but is part

of the input parameters.

Approximate Nearest Neighbor search, which is an optimization problem,

constitutes a cornerstone question in this area. Existing reductions (see, e.g. [1]),

which incur a polylogarithmic time overhead, reduce this search to the following

decision problem with witness, namely the (c, R)-Approximate Near Neighbor

question:

Definition 1 (Approximate Near Neighbor). Let (X, dX) be a metric space.

Given P ⊆ X and reals R > 0, c ≥ 1, construct a data structure S which, given

a query point q ∈ X, performs as follows:

• If the nearest neighbor of q lies within distance at most R, then S is allowed

to report any point p∗ ∈ P , such that dX(q, p∗) ≤ cR.

• If all points lie at distance more than cR from q, then S returns ⊥.

The data structure S always returns either a point at distance ≤ cR or ⊥, even

when none of the above two cases occurs.

We shall now suppose that R = 1, because this can always be achieved by

re-scaling the input point set, and we refer to this problem as c-ANN, or simply

2
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ANN. We focus on subsets of �d1, in other words, the input dataset consists of

n vectors in Rd endowed with the standard �1 distance function, also known as

Manhattan metric, whose norm is denoted by � · �1. Note that all logarithms

are base 2.

Previous work. Major landmarks in the study of data structures for high-

dimensional normed spaces are the different variants, proofs, and applications

of the celebrated Johnson-Lindenstrauss Lemma (e.g. [2, 3, 4]), sketches based

on p-stable distributions [5], and Locality Sensitive Hashing (e.g. [6, 7, 8]). In

the core of most high-dimensional solutions, lies the fact that for certain metric

spaces, e.g. �p for p ∈ [1, 2], the distance can be efficiently sketched. Spaces

which are considered to be harder in this context, such as �∞, can also be

treated [9], and are quite interesting since they can be used as host spaces for

various norms [10].

Significant amount of work has been undertaken for point sets of low dou-

bling dimension, since it is today one of the primary paradigms for capturing

input structure (formal definitions in the next section). For any finite metric

space X of doubling dimension dim(X), there exists a data structure [11, 12]

with expected preprocessing time O(2dim(X)n log n), space usage O(2dim(X)n)

(or even O(n)) and query time O(2dim(X) log n+ ε−O(dim(X)).

Indyk and Naor [13] introduced the notion of nearest-neighbor preserving

embeddings, which are randomized embeddings between two metric spaces with

guaranteed bounded distortion only for the distances between a query point and

a point set. They achieved a dimension reduction for doubling subsets of �2, with

the target dimension depending only on the input dataset’s doubling dimension.

Even before, Indyk [5] had introduced a randomized embedding for dimension

reduction in �1, which is suitable for proximity search purposes, and it achieves

target dimension polylogarithmic in the size of the point set. Naturally, such

approaches can be easily combined with any known data structure to be used in

the projection space. Randomized embeddings have been recently used in the

ANN context [14], for doubling subsets of �p, 2 < p < ∞.

3
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Dimensionality reduction in �1 cannot be achieved in the same generality as

in �2, even by assuming that the point set is of low doubling dimension [15]:

There are arbitrarily large n-point subsets P ⊆ �1 which are doubling with

constant 6, such that every embedding with distortion D of P into �k1 requires

k = nΩ(1/D2). Aiming at more restrictive guarantees, e.g. preserving distances

within some pre-defined range, is a relevant workaround. Then, dimension re-

duction techniques for doubling subsets of �p, p ∈ [1, 2], have been proposed

in [16], but they rely on partition algorithms which require the whole point set

to be known in advance. Hence, applicability of such techniques is very limited

and, specifically, they do not seem amenable to an online setting where query

points are not known in advance.

Our results. A new dimensionality reduction scheme is proposed, by

means of a near neighbor-preserving embedding for doubling subsets of �1, thus

settling a case that remained open. Our definition is essentially a modified ver-

sion of the nearest neighbor preserving embedding of [13]: the required guaran-

tees are weaker, since we consider the decision version of the problem, therefore

the embedding depends on some range parameter R > 0.

Definition 2 (Near-neighbor preserving embedding). Let (Y, dY ), (Z, dZ) be

metric spaces and X ⊆ Y . A distribution over mappings f : Y → Z is a

near-neighbor preserving embedding with range R > 0, distortion D ≥ 1 and

probability of correctness P ∈ [0, 1] if for every α ≥ D and any q ∈ Y , if x ∈ X

is such that dY (x, q) ≤ R, then with probability at least P,

• dZ(f(x), f(q)) ≤ D ·R,

• ∀p ∈ X : dY (p, q) > D · α ·R =⇒ dZ(f(p), f(q)) > α ·R.

Considering a point set P ⊂ �d1 of cardinality n, our results concern �k1 as

the target space, where k depends on the doubling dimension of P . We assume

that R = 1, since we can re-scale the given point set. More specifically:

1. In Theorem 10, we prove that for every ε ∈ (0, 1/2) and c ≥ 1, there

is a randomized mapping h : �d1 → �k1 that can be computed in time

4
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Õ(dn1+1/Ω(c)) and is near neighbor-preserving for P with distortion 1+6ε

and probability of correctness Ω(ε), where

k = (log λP · log(c/ε))Θ(1/ε)
/ζ(ε),

for a function ζ(ε) > 0 depending only on ε. Although the mapping h

depends on the point set, the parameter c is user-defined and therefore

provides a trade-off between preprocessing time and target dimension.

2. In Theorem 13, we show that for every ε ∈ (0, 1/2), there is a randomized

mapping h� : �d1 → �k1 that can be computed in time O(dkn), and is

near neighbor-preserving for P with distortion 1+6ε and probability of

correctness Ω(ε), where

k = (log λP · log(d/ε))Θ(1/ε)
/ζ(ε),

for a function ζ(ε) > 0 depending only on ε. In this case, the function

h� is oblivious to P and well-defined over the whole space, but the target

dimension depends on d.

On the low-preprocessing-time extreme, one can embed the dataset in near-

linear time, but the target dimension is polynomial in log log n. This is to

be juxtaposed to the analogous result in [5], which achieves target dimension

polynomial in log n, without any assumption on the doubling dimension of the

dataset. On the other hand, it is possible to obtain a preprocessing time of

dn1+δ for any constant δ > 0, and target dimension which depends solely on

the doubling dimension.

Methodology. Both of the aforementioned embeddings h, h� consist of two

basic components. First, we represent the point set P with an ε-covering set,

and then we apply a random linear projection à la Indyk [5] to that set, using

Cauchy variables.

The role of the covering set is to exploit the doubling dimension of P . In the

analogous result for �2 in [13], no representative sets were used; the mapping was

5



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

just a random linear projection of P . In the case of �1 however, a similar analysis

of a linear projection with Cauchy variables without these representative sets

seems to be impossible, since the Cauchy distribution is heavy tailed.

In Theorem 10, we consider c-approximate r-nets as a covering set. Inspired

by the algorithm of [17] for �2, we design an algorithm that computes a c-

approximate r-net in �1 in subquadratic, but superlinear, time. On the other

hand, Theorem 13 relies on randomly shifted grids, which can be computed

in linear time, but are inferior to r-nets in terms of capturing the doubling

dimension of the point set, hence inferior in terms of the target dimension.

To bound the distortion incurred by the randomized projection, we exploit

the 1-stability property of the Cauchy distribution. To this end, we establish

a new concentration bound for sums of independent Cauchy variables, which

should be of interest beyond the scope of this paper. To overcome the technical

difficulties associated with the heavy tails of the Cauchy distribution, we study

sums of square roots of Cauchy variables, whereas in [5], Indyk considers sums

of truncated Cauchy variables instead. Although our concentration bound is

rather weak, it is sufficient for our purposes and its analysis is much simpler

compared to that in [5].

Algorithmic implications. Our results show that efficient dimension re-

duction for doubling subsets of �1 is possible, in the context of ANN. In par-

ticular, these results imply efficient sketches, meaning that one can solve ANN

with minimal storage per point. Dimensionality reduction also serves as a prob-

lem reduction from a high-dimensional hard instance to a low-dimensional easy

instance. Since the algorithms presented in this paper are quite simple, they

should also be of practical interest: they easily extend the scope of any imple-

mentation which has been optimized to solve the problem in low dimension, so

that it may handle high-dimensional data.

Our embedding can be combined with the bucketing method in [1] for the

(1+ε)-ANN problem in �d1. For instance, setting c = log n in Theorem 10,

yields preprocessing time dn1+o(1), space n1+o(1) and query time O(d)·(log λP ·

6
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log log n)O(1/ε) assuming that the doubling dimension is a fixed constant. This

improves upon existing results: the query time of [18] depends on the aspect ra-

tio of the dataset, while the data structures of [11, 12] support queries with time

complexity which depends exponentially on the doubling dimension. However,

it is worth noting that one could potentially improve the results of [11, 12, 18] in

the special case of �1, by employing ANN data structures with fast query time,

in order to accelerate the traversal of the net-tree. Hence, while our result gives

a simple framework for exploiting the intrinsic dimension of doubling subsets of

�1, it is unlikely that it shall improve upon simple variants of previous results

in terms of complexity bounds.

This paper is the complete and final version of our results that appeared in

preliminary form in [19].

Paper structure. The next section introduces basic concepts and some

relevant existing results. Section 3 establishes a new concentration bound on

sums of independent Cauchy variables. Section 4 achieves dimensionality re-

duction by means of representing the point set by a carefully chosen net, while

Section 5 employs randomly shifted grids for the same task. We conclude with

a discussion of our results, and of potential improvements.

2. Preliminaries

In this section, we define basic notions about doubling metrics and present

some relevant existing results.

Definition 3. Consider any metric space (X, dX) and let B(p, r) = {x ∈ X |
dX(x, p) ≤ r}. The doubling constant of X, denoted λX , is the smallest integer

λX such that for any p ∈ X and r > 0, the ball B(p, r) can be covered by λX

balls of radius r/2 centered at points in X.

The doubling dimension of (X, dX) is defined as log λX . Nets play an im-

portant role in the study of embeddings, as well as in designing efficient data

structures for doubling metrics.

7
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Definition 4. For c ≥ 1, r > 0 and metric space (V, dV ), a c-approximate

r-net of V is a subset N ⊆ V such that no two points of N are within distance

r of each other, and every point of V lies within distance at most c·r from some

point of N .

Theorem 5. Let P ⊂ �d1 such that |P | = n. Then, for any c > 0, r > 0, one can

compute a c-approximate r-net of P in time Õ(dn1+1/c�), where c� = Ω(c). The

result is correct with high probability. The algorithm also returns the assignment

of each point of P to the point of the net which covers it.

Proof. We employ some standard ideas from [1]. An analogous result for �2 can

be found in [17]. Let us first suppose that r = 1, since we are able to re-scale

the point set. Let us now consider a randomly shifted grid with side-length 2.

The probability that two points p, q ∈ P fall into the same grid cell is at least

1 − �p − q�1/2. For each non-empty grid cell, we snap points to a grid: each

coordinate is rounded to the nearest multiple of δ = 1/10dc. Then, coordinates

are multiplied by 1/δ and each point x = (x1, . . . , xd) ∈ [2δ]d is mapped to

{0, 1}2d/δ by a function G as follows: G(x) = (g(x1), . . . , g(xd)), where g(z) is

a binary string of z ones followed by 2/δ − z zeros. For any two points p, q in

the same grid cell, let f(p),f(q) be the two binary strings obtained by the above

mapping. Notice that,

�f(p)− f(q)�1 ∈ (2/δ) · �p− q�1 ± 1.

Hence,

�p− q�1 ≤ 1 =⇒ �f(p)− f(q)�1 ≤ (2/δ) + 1,

�p− q�1 ≥ c =⇒ �f(p)− f(q)�1 ≥ (2/δ) · c− 1.

Let us now employ the LSH family of [1], for the Hamming space. After

standard concatenation, we may assume that the family is (ρ, c�ρ, n−1/c� , n−1)-

sensitive, where ρ = (2/δ) + 1 and c� = Ω(c). Let α = n−1/c� and β = n−1.

Notice that for the above two-level hashing table, we obtain the following

guarantees: Any two points p, q ∈ P , such that �p− q�1 ≤ 1, fall into the same

8
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bucket with probability ≥ α/2. Any two points p, q ∈ P , such that �p−q�1 ≥ c,

fall into the same bucket with probability ≤ β.

Finally, we independently build k = Θ(n1/c� log n) hashtables as above,

where the random hash function is defined as a concatenation of the function

which maps points to their grid cell id and one LSH function. We pick an arbi-

trary ordering p1, . . . , pn ∈ P . We follow a greedy strategy in order to compute

the approximate net. We start with point p1, and we add it to the net. We

mark all (unmarked) points which fall at the same bucket with p1, in one of

the k hashtables, and are at distance ≤ cr. Then, we proceed with point p2.

If p2 is unmarked, then we repeat the above. Otherwise, we proceed with p3.

The above iteration stops when all points have been marked. Throughout the

procedure, we are able to store one pointer for each point, indicating the center

which covered it.

Correctness. The probability that a good pair p, q does not fall into the

same bucket for any of the k hashtables is ≤ (1− α/2)
k ≤ n−10. Hence, with

high probability, the packing property holds, and the covering property holds

because the above algorithm stops when all points are marked.

Running time. The time to build the k hashtables is k · n = Õ(n1+1/c�).

Then, at most n queries are performed: for each query, we investigate k buck-

ets and the expected number of false positives is ≤ k · n2 · β = Õ(n1+1/c�).

Hence, if we stop after having seen a sufficient amount of false positives, we ob-

tain time complexity Õ(n1+1/c�) and the covering property holds with constant

probability. We can repeat the above procedure O(log n) times to obtain high

probability of success.

The main result in the context of randomized embeddings for dimension

reduction in �d1 is the following theorem, which exploits the 1-stability property

of Cauchy random variables and provides with an asymmetric guarantee: The

probability of non-contraction is high, but the probability of non-expansion

9



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

is constant. Nevertheless, this asymmetric property is sufficient for proximity

search.

Theorem 6 (Thm 5, [5]). For any ε ≤ 1/2, δ > 0, ε > γ > 0 there is a proba-

bility space over linear mappings f : �d1 → �k1 , where k = (ln (1/δ))1/(ε−γ)/ζ(γ),

for a function ζ(γ) > 0 depending only on γ, such that for any pair of points

p, q ∈ �d1:

Pr
�
�f(p)− f(q)�1 ≤ (1− ε) �p− q�1

�
≤ δ,

Pr
�
�f(p)− f(q)�1 ≥ (1 + ε) �p− q�1

�
≤ 1 + γ

1 + ε
.

Note that the embedding is defined as f(u) = Au/T , where A is a k×d

matrix with each element being an i.i.d. Cauchy random variable. In addition,

T is a scaling factor defined as the expectation of a sum of truncated Cauchy

variables, such that T = Θ(k log (k/ε)), see [5, Lem. 5].

One key observation here is that, given a point set P in a space of bounded

aspect ratio Φ, one can directly employ Theorem 6. The number of points can

be upper bounded by a function of λP and Φ, and hence the new dimension k

depends only on these parameters. Here, we establish better bounds than those

in Theorem 6 for doubling subsets of �d1, without any assumption on the aspect

ratio.

3. Concentration bounds for Cauchy variables

In this section, we prove some basic properties of the Cauchy distribution,

which serves as our main embedding tool.

Let CD denote the Cauchy distribution with density c(x) = (1/π)/(1 + x2).

One key property of the Cauchy distribution is the so-called 1-stability property:

Let v = (v1, . . . , vk) ∈ Rk and X1, . . . , Xk be i.i.d. random variables following

CD, then
�k

j=1 Xivi is distributed as X·�v�1, where X ∼ CD.

The Cauchy distribution has undefined mean. However, for 0 < q < 1, the

mean of the q-th power of a Cauchy random variable can be defined. More

10
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specifically, for some X ∼ CD we have

E
�
|X|1/2

�
=

2

π

� ∞

0

√
x

1 + x2
dx =

2

π

π√
2
=

√
2.

The following lemma provides a bound for the moment-generating function

of |X|1/2.

Lemma 7. Let X ∼ CD. Then for any β > 1:

E
�
exp (−β|X|1/2)

�
≤ 2

β
.

Proof. For any constant β,

� 1

0

e−βx1/2

dx =
2

β2

�
1− β + 1

eβ

�
.

Then, for any β > 1,

E
�
exp (−β|X|1/2)

�
=

� ∞

−∞
e−β|x|1/2 · c(x) dx =

2

π

� ∞

0

e−βx1/2 · 1

1 + x2
dx

=
2

π

� 1

0

e−βx1/2 · 1

1 + x2
dx+

2

π

� ∞

1

e−βx1/2 · 1

1 + x2
dx

≤ 2

π

� 1

0

e−βx1/2

dx+
2

π

� ∞

1

e−β · 1

1 + x2
dx

=
2

π
· 2

β2

�
1− β + 1

eβ

�
+

1

2eβ

≤ 4

πβ2
+

1

2eβ

≤ 2

β
.

Let S :=
�k

j=1 |Xj | where each Xj is an i.i.d. Cauchy variable. To prove

concentration bounds for S, we study the sum S̃ :=
�k

j=1 |Xj |1/2. By Hölder’s

Inequality, for any x ∈ Rd and p > q > 0,

�x�p ≤ �x�q ≤ d1/q−1/p �x�p .

Consequently, for x = (X1, . . . , Xk) ∈ Rk, p = 1 and q = 1/2 we have that

S ≤ S̃2 ≤ k · S, hence for any t > 0,

Pr[S ≤ t] ≤ Pr[S̃ ≤
√
tk]. (1)
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We use the bound on the moment-generating function, to prove a Chernoff-

type concentration bound for S̃, which by Eq. (1) translates into a concentration

bound for S.

Lemma 8. For every D > 1,

Pr

�
S̃ ≤ E[S̃]

D

�
≤

�
10

D

�k

.

Proof. Since Xj ’s are independent, E[S̃] =
√
2k. Then, by Lemma 7 and

Markov’s inequality, for any β > 1, it follows that

Pr

�
S̃ ≤ E[S̃]

D

�
= Pr

�
exp(−βS̃) ≥ exp

�
−β · E[S̃]

D

��

≤ E[exp(−βS̃)]

exp(−β E[S̃]/D)

=
E[exp(−β|Xj |1/2)]k
exp(−β

√
2k/D)

≤
�
2

β

�k

· e
√
2βk/D.

Setting β = D completes the proof.

4. Net-based dimension reduction

This section describes the dimension reduction mapping for �1 via r-nets.

Let P ⊂ �d1 be a set of n points with doubling constant λP . For some point

x ∈ Rd and r > 0, we denote by B1(x, r) the �1-ball of radius r around x. The

embedding is non-linear and is carried out in two steps.

First, let us compute a c-approximate (ε/c)-net N of P with the algorithm

of Theorem 5. Moreover, the algorithm assigns each point of P to the point of

N which covered it. Let g : P → N be this assignment. In the second step, for

every s ∈ N and any query point q ∈ �d1, we apply the linear map of Theorem 6.

That is, f(s) = As/T , where A is a k×d matrix with each element being an

i.i.d. Cauchy random variable. Recall that value T satisfies

T = Θ(k log (k/ε)).

12
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By the 1-stability property of the Cauchy distribution, f(s) is distributed as

�s�1 ·(Y1, . . . , Yk), where each Yj is i.i.d. and Yj ∼ CD. Hence, �f(s)�1 = �s�1 ·S
where S :=

�
j |Yj |.

We now define the embedding to be h = f ◦ g. We apply h to every point in

P , and f to any query point q. It is clear from the properties of the net that g

incurs an additive error of ±ε on the distance between q and any point in P , so

it is sufficient to consider the distortion of f .

Our analysis consists of studying separately the following disjoint subsets of

N : Points that lie at distance at most D0 from the query and points that lie at

distance at least D0, for some D0 > 1 chosen appropriately. For the former set,

we directly apply Theorem 6, since it has bounded diameter.

The next lemma guarantees the low distortion for points of the latter set,

namely those that are sufficiently far from the query. We consider the sum of

the square roots of each |Yj |, i.e., S̃ =
�

j |Yj |1/2, in order to employ the tools

of Section 3.

Lemma 9. Fix a query point q ∈ �d1. For any ε ≤ 1/2, c ≥ 1, δ ∈ (0, 1), there

exists D0 = O(log(k/ε)) such that for k = Θ
�
log2 λP · log(c/ε) + log(1/δ)

�
,

with probability at least 1− δ,

∀s ∈ N : �s− q�1 ≥ D0 =⇒ �f(s)− f(q))�1 ≥ 4.

Proof. Assume wlog that the query point is the origin (0, . . . , 0). For some

D0 > 1, we define the following subsets of N :

Ni := {s ∈ N | Di ≤ �s�1 < Di+1}, Di = 22iD0, i = 0, 1, 2, . . .

By the definition of doubling constant and the fact that two points of N lie at

distance at least ε,

|Ni| ≤ λ
�log(4cDi+1/ε)�
P ≤ λ

4 log(cDi+1/ε)
P .

13
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Therefore, by the union bound, and Eq. (1):

Pr

�
∃i∃s ∈ Ni : �f(s)�1 ≤ 4 �s�1

Di

�
= Pr

�
∃i∃s ∈ Ni : S ≤ 4T

Di

�

≤
∞�

i=0

|Ni|Pr

�
S̃ ≤

√
4kT√
Di

�

=
∞�

i=0

|Ni|Pr

�
S̃ ≤ E[S̃] ·

�
2T

k22iD0

�
.

By Lemma 8, for D0=�800T/k�=Θ(log(k/ε)) and k > 4· log λP · log(cD0/ε) +

2 log(2λP /δ):

∞�

i=0

|Ni|Pr

�
S̃ ≤ E[S̃]

10 · 2i+1

�
≤

∞�

i=0

λ
4 log (cDi+1/ε)
P

�
1

2i+1

�k

=
∞�

i=0

2log(λP )(4 log (cD0/ε)+2i+2)

2k(i+1)

≤
∞�

i=0

2log(λP )·4 log (cD0/ε) · 22 log(λP )(i+1)

2(4·log λP ·log(cD0/ε))(i+1) · 22 log(2λP /δ))(i+1)

≤
∞�

i=0

2−2 log(2/δ))(i+1)

=
∞�

i=0

�
δ2

4

�i

− 1

=
δ2

4− δ2

≤ δ.

Finally, for some large enough constant C, we demand that

k > C (log λP · log(c log k/ε) + log(1/δ)) > 4 · log λP · log(cD0/ε)+2 log(2λP /δ)

which is satisfied for k = Θ
�
log2 λP · log(c/ε) + log(1/δ)

�
.

Theorem 10. Let P ⊂ �d1 such that |P | = n. For any ε ∈ (0, 1/2) and c ≥ 1,

there is a non-linear randomized embedding h = f ◦ g : �d1 → �k1 , where

k = (log λP · log(c/ε))Θ(1/ε)
/ζ(ε),

14
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for a function ζ(ε) > 0 depending only on ε, such that, for any q ∈ �d1 , if there

exists p∗ ∈ P such that �p∗ − q�1 ≤ 1, then, with probability Ω(ε):

�h(p∗)− f(q)�1 ≤ 1 + 3ε,

∀p ∈ P : �p− q�1 > 1 + 9ε =⇒ �h(p)− f(q)�1 > 1 + 3ε.

Set P can be embedded in time Õ(dn1+1/Ω(c)), and any query q ∈ �d1 can be

embedded in time O(dk).

Proof. Let f, g be the mappings defined in the beginning of the section and

D0 = Θ(log(k/ε)). Assume wlog for simplicity that q = 0d. Then, by Lemma 9

for k = Θ
�
log2 λP · log(c/ε)

�
, with probability at least 1− ε/5, we have:

∀p ∈ P : �p− q�1 ≥ D0 + ε =⇒ �h(p)− f(q)�1 ≥ 4.

By Theorem 6, for γ = ε/10 and δ = ε/(5λ
8 log (cD0/ε)
P ), with probability at least

1− ε/5, we get:

∀p ∈ P : �p−q�1 ∈ (1+9ε, D0+ε) =⇒ �h(p)− f(q)�1 > (1+8ε)(1−ε) ≥ 1+3ε.

Moreover,

Pr
�
�h(p∗)− f(q)�1 ≤ 1 + 3ε

�
≥ 1− 1 + ε/10

1 + ε
≥ 1− (1− ε/2).

Then, the target dimension needs to satisfy the following inequality:

k ≥
�
ln (5λ

8 log (cD0/ε)
P /ε)

�2/ε

ζ(ε)
=

�
Θ(log log k · log λP + log λP · ln(c/ε))

�2/ε

ζ(ε)
.

Hence, for k = (log λP · log(c/ε))Θ(1/ε)
/ζ(ε), we achieve a total probability

of success in Ω(ε), which completes the proof.

5. Dimension reduction based on randomly shifted grids

In this section, we explore some properties of randomly shifted grids, and we

present a simplified embedding which consists of a first step of snapping points

to a grid, and a second step of randomly projecting grid points.

15



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Let w > 0 and t be chosen uniformly at random from the interval [0, w]. The

function

hw,t(x) = w ·
�
x− t

w

�

induces a random partition of the real line into segments of length w. Hence,

the function

gw(x) = (hw,t1(x1), ..., hw,td(xd)),

for t1, . . . , td independent uniform random variables in the interval [0, w], induces

a randomly shifted grid in Rd. For a set X ⊆ Rd, we denote by gw(X), the image

of X on the randomly shifted grid points defined by gw. For some x ∈ Rd and

r > 0, the number of grid cells of gw(�
d
1) that B1(x, r) intersects per axis is

independent, and in expectation is 1+2r/w. Then, the expected total number

of grid cells that B1(x, r) intersects is at most (1+2r/w)d.

Now let P ⊂ �d1 be a set of n points with doubling constant λP and q ∈ �d1 a

query point. For w = ε/d, the �1-diameter of each cell is ε and therefore gw(P )

is an ε-covering set of P .

Lemma 11. Let R > 1 and P � := B1(q,R) ∩ P . Then, for w = ε/d

E
�
|gw(P �)|

�
≤ 8λ

2 log(dR/ε)
P .

Proof. By the doubling constant definition, there exists a set of balls of radius

ε/d2 centered at points in P �, of cardinality at most λ
2 log(dR/ε)
P which covers

P �. For each ball of radius ε/d2, the expected number of intersecting grid cells

is (1+2/d)d ≤ e2. The lemma follows by linearity of expectation.

The next lemma shows that, with constant probability, the growth on the

number of representatives, as we move away from q, is bounded.

Lemma 12. Let {Di}i∈N be a sequence of radii such that, for any i, Di+1 =

4Di. Let Ai be the points of gw(P ) within distance Di+1 = 22(i+1)D0 from q.

Then, with probability at least 1/3,

∀i ∈ {−1, 0, . . .} : |Ai| ≤ 4i+3λ
2 log(dDi+1/ε)
P .
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Proof. By Lemma 11, E[|Ai|] ≤ 8λ
2 log(dDi+1/ε)
P for every i ∈ {−1, 0, . . .}. Then,

a union bound followed by Markov’s inequality yields

Pr
�
∃i ∈ {0, 1, . . .} : |Ai| ≥ 4i+1 E[|Ai|]

�
≤ 1/3.

In addition,

Pr
�
|A−1| ≥ 4E[|Ai|]

�
≤ 1/4.

Theorem 13. Let P ⊂ �d1 such that |P | = n. For any ε ∈ (0, 1/2), there is a

non-linear randomized embedding h� : �d1 → �k1 , where

k = (log λP · log(d/ε))Θ(1/ε)
/ζ(ε),

for a function ζ(ε) > 0 depending only on ε, such that for any q ∈ �d1 , if there

exists p∗ ∈ P such that �p∗ − q�1 ≤ 1, then with probability Ω(ε),

�h�(p∗)− f(q)�1 ≤ 1 + 3ε,

∀p ∈ P : �p− q�1 > 1 + 9ε =⇒ �h�(p)− f(q)�1 > 1 + 3ε.

Any point can be embedded in time O(dk).

Proof. We follow the same reasoning as in the proof of Theorem 10. The embed-

ding is h� = f ◦ gε/d, where f is the randomized linear map defined in Section 4.

As before, we apply h� to every point in P , and only f to queries. The randomly

shifted grid incurs an additive error of ε in the distances between q and P .

Assume wlog that q = 0d and let Ai be the points of gε/d(P ) within distance

Di+1 = 22(i+1)D0 from q. Hence, by Lemma 12,

Pr

�
∃i∃s ∈ Ai : �f(s)�1 ≤ 4 �s�1

Di

�
≤

∞�

i=0

|Ai|Pr

�
S ≤ 4T

Di

�

≤
∞�

i=0

4i+3λ
2 log(dDi+1/ε)
P Pr

�
S̃ ≤

√
4kT√
Di

�
.

As in Lemma 9, for D0 = �800T/k� = Θ(log (k/ε)), k ≥ 20 log λP · log
�
dD0

εδ

�

and δ = ε/5,

∞�

i=0

4i+3λ
2 log(dDi+1/ε)
P Pr

�
S̃ ≤

√
4kT√
Di

�
≤

∞�

i=0

22i+6+2 log λP [log(dD0/ε)+2(i+1)]

2k(i+1)

≤ ε/5.

17
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Hence, for k = Ω
�
(log2 λP · log(d/ε)

�
, with probability at least 1−ε/5, we have:

∀p ∈ P : �p− q�1 ≥ D0 + ε =⇒ �h�(p)− f(q)�1 ≥ 4.

Now, we are able to use Theorem 6 for points which are at distance at most

D0+ε from q, and the near neighbor. By Lemma 12, with constant probability,

the number of grid points at distance≤ D0+ε, is at most 32·λ4 log(dD0/ε)
P . Hence,

by Theorem 6, for γ = ε/10 and δ = ε/(160λ
4 log (dD0/ε)
P ), with probability at

least 1− ε/5, it holds:

∀p ∈ P : �p− q�1 ∈ (1 + 9ε, D0 + ε) =⇒ �h�(p)− f(q)�1 > 1 + 3ε.

Moreover, with probability at least ε/2, we obtain:

�h�(p∗)− f(q)�1 ≤ 1 + 3ε.

As in Theorem 10, the target dimension needs to satisfy the following:

k ≥
�
ln (160λ

4 log (dD0/ε)
P /ε)

�2/ε

ζ(ε)
.

Hence, for k = (log λP · log(d/ε))Θ(1/ε)
/ζ(ε) we achieve total probability of

success Ω(ε).

6. Conclusion

We have filled in a gap in the spectrum of randomized embeddings with

bounded distortion only for distances between the query and a point set: such

embeddings existed for �2 and �1 and for doubling subsets of �2. Here we settle

the case of doubling subsets of �1 with a near neighbor-preserving embedding.

In the meantime, we obtain a concentration bound on sums of independent

Cauchy variables. Our algorithms are quite simple, therefore they should also

be of practical interest.

We rely on approximate r-nets or randomly shifted grids. For the former,

Theorem 10 provides with a trade-off between the preprocessing time required

and the target dimension. On the other hand, Theorem 13 has the advantage

18
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of fast preprocessing: any point is embedded in O(dk) time, and the embedding

is oblivious to the point set. In regards to the near-linear preprocessing time,

the two results are comparable, since the dimension in Theorem 13 can be

substituted by the target dimension of Theorem 6.

Let us underline that any potential improvements to Theorem 6 should lead

to improvements to Theorems 10 and 13. The target dimension in these theo-

rems follows from a direct application of Theorem 6 to the representative data

points which lie inside a bounding ball centered at the query.
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