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ABSTRACT: Molecular dynamics simulation is a powerful technique for
studying the structure and dynamics of biomolecules in atomic-level detail by
sampling their various conformations in real time. Because of the long
timescales that need to be sampled to study biomolecular processes and the big
and complex nature of the corresponding data, relevant analyses of important
biophysical phenomena are challenging. Clustering and Markov state models
(MSMs) are efficient computational techniques that can be used to extract
dominant conformational states and to connect those with kinetic information.
In this work, we perform Molecular Dynamics simulations to investigate the
free energy landscape of Angiotensin II (AngII) in order to unravel its bioactive
conformations using different clustering techniques and Markov state
modeling. AngII is an octapeptide hormone, which binds to the AT1
transmembrane receptor, and plays a vital role in the regulation of blood
pressure, conservation of total blood volume, and salt homeostasis. To mimic
the water−membrane interface as AngII approaches the AT1 receptor and to compare our findings with available experimental
results, the simulations were performed in water as well as in water−ethanol mixtures. Our results show that in the water−ethanol
environment, AngII adopts more compact U-shaped (folded) conformations than in water, which resembles its structure when
bound to the AT1 receptor. For clustering of the conformations, we validate the efficiency of an inverted-quantized k-means
algorithm, as a fast approximate clustering technique for web-scale data (millions of points into thousands or millions of clusters)
compared to k-means, on data from trajectories of molecular dynamics simulations with reasonable trade-offs between time and
accuracy. Finally, we extract MSMs using various clustering techniques for the generation of microstates and macrostates and for the
selection of the macrostate representatives.

■ INTRODUCTION

The renin−angiotensin (RAS) system is a hormone system
implicated in hypertension. The octapeptide Angiotensin II
(Asp-Arg-Val-Tyr-Ile-His-Pro-Phe, AngII) is a physiologically
active component of the RAS system, which regulates
vasoconstriction, electrolyte and water absorption, as well as
blood pressure and total blood volume.1−3 AngII results from
the conversion of its precursor angiotensin-I (Asp-Arg-Val-Tyr-
Ile-His-Pro-Phe-His-Leu, AngI) into AngII by the angiotensin-
I converting enzyme located on the surface of vascular
endothelial cells, predominantly those of the lungs. AngII
then binds to the AngII transmembrane receptor, AT1, which
promotes various intracellular signaling pathways, resulting in
hypertension, endothelial dysfunction, vascular remodeling,
and end organ damage.4

The bound structure of AngII on its receptor AT1 remains
so far elusive although many efforts have aimed to establish the
bioactive bound conformation of AngII. A recent crystallo-
graphic structure of AT1 in complex with the nonpeptide
antagonist ZD7155 shows that AT1-ZD7155 is well buried

inside the protein, and thus it could be assumed that, similarly,
AngII most probably interacts primarily with the protein
environment than with the solvent. It has been suggested that
as AngII enters the receptor, the loss of aqueous solvation is
compensated by the intermolecular interactions of polar
residues resulting in the folding of the peptide into a compact
conformation.6 Indeed, an X-ray structure of the Angiotensin II
(AngII)-Fab complex shows that the hormone peptide adopts
a compact U-shaped structure (Figure 1a) when it is bound to
the receptor7 with the membrane when bound to the AT1
receptor.5 However, photolabeling studies of [Bpa3]AngII with
the AT1 receptor indicate a model where the peptide in its
bound form adopts a rather extended β-strand structure
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(Figure 1a).8 Furthermore, several nuclear magnetic resonance
(NMR) studies of AngII in aqueous and organic solvents
suggest the existence of a mixture of unfolded and folded
conformations ranging from extended β-structures to the more
compact U-shaped ones.3,6,9−11

Organic solvents such as 2,2,2-trifluoroethanol or simple
temperature annealing have been reported to favor the fold of
the angiotensin peptide in a rather compact structure
determined through circular dichroism measurements.12

However, recent NMR and molecular dynamics (MD) studies
of the [Val5] AngII analogue in a water/ethanol (35% v/v)
binary solvent at low temperatures suggest that the peptide is
primarily in an extended β-structure and that most regions of
the peptide are preferentially solvated by ethanol mole-
cules.13,14 Besides the inherent flexibility of the octapeptide,
another reason for the divergent structural models proposed
over the years could be the use of different solvents, such as
water/ethanol and dimethyl sulfoxide as well as different
experimental conditions. Key structures of AngII, such as
folded (U-shape) and extended (β-strand), are illustrated in
Figure 1a.
Mixtures of ethanol and water can influence the stability and

conformational properties of biological molecules in diverse
ways and, importantly, act as a mimic for the peptide−
membrane interface. Using such solvents in the presence of
biomolecules that usually function in environments that are
only partly aqueous may produce results that help in
understanding the role(s) of water in maintaining the
macromolecule structure and activity and can act as mimics
of the water−membrane interface. In enzyme catalysis,
mixtures of water and ethanol provide reaction media that
enable enzymes to act on substrates that are not soluble in
water, although substrate specificity, reaction rates, and protein
stability may be altered by the solvent mixture. The observed
effects may be the result of direct interactions of solvent
alcohol molecules with a protein. In general, preferential
solvation of proteins by organic cosolvents and clustering of
organic molecules in the binary solution are considered
possible mechanisms that could either allow or block proteins
from jumping between different conformational states.15−17

The aim of this paper is to describe the conformations of
AngII using clustering techniques and Markov state modeling
in water−ethanol mixtures as a water−membrane model

interface mimic to mimic the approach of the AngII peptide
to the water−membrane interface. Also, we use and validate
the efficiency of an inverted-quantized k-means algorithm (IQ-
means) as a fast approximate clustering technique for web-
scale data compared to k-means. Moreover, we aim to provide
an atomic-level picture of the intermolecular interactions
governing AngII−water and AngII−water−ethanol mixtures
using MD simulations. The structural and dynamic properties
of these systems are outlined in the context of identifying the
solvent microenvironment around the AngII peptide and in
describing the representative conformations of AngII in these
two media. Our results are in excellent agreement with relevant
experimental data and provide insights into the bioactive
conformation of this hormone. Moreover, since identifying the
transition states by simply sampling MD simulations is not
sufficient, we apply Markov state models (MSMs),18−23 a
powerful framework to analyze MD simulations and extract the
long-time statistical conformational dynamics. A step of this
framework is to discretize the trajectories from the simulations
using clustering techniques, such as k-means. For long
simulations resulting in big data, clustering may consist of a
time-consuming and computationally intensive process. To
reduce the computational effort, we employ IQ-means, a fast
approximate clustering method designed for web-scale
clustering (e.g., hundreds of millions of points, such as images
and web documents into thousands or millions of clusters).
Our results validate the efficiency of IQ-means in clustering
MD simulations and discretizing trajectories for the MSM and
provide a new scheme for efficient big data handling.

■ METHODS

System Preparation. Human AngII was simulated in
water and ethanol/water-35% (v/v) solvents at different
temperatures, T = 278, 298, 310, and 323 K (Table S1).
The initial structure of the octapeptide was retrieved from the
Protein Data Bank, 1N9V.pdb.3 The apparent pH was chosen
to be 4 in order to match the experimental conditions of refs
13, 14. Therefore, in our model, the peptide termini were
ionized. Asp was not protonated and charged (−1), Arg was
protonated and charged (+1) and His was protonated and
charged (+1). The system was solvated in pure water or 35%
ethanol-1,1-d2-water (v/v) and neutralized with 1 Cl− ion. In

Figure 1. (a) AngII representative structures. The dotted line indicates the end-to-end distance of terminal residues. The conformations are
visualized as cartoon. (b) Histogram and probability densities, P(r), of end-to-end distances of the terminal residues in water (blue) and water/
ethanol (warm pink) simulations. Conformations concentrate mainly in three peaks U (u-shaped) = 0.5 nm, I (intermediate) = 1.1−1.3 nm and E
(extended) = 1.8−2.0 nm. (c) Pool of AngII conformations clustered by GROMOS.
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both systems one AngII peptide was solvated in a 15 Å solvent
box.
MD Simulations. MD simulations were performed using

GROMACS 4.6.1.24 The AMBER99SB-ILDN force field25 was
chosen for the peptide, and TIP4P26 was used for the water
model. The model for the ethanol molecule was the one
previously studied in ref 13. A 2 fs time step was used together
with PME for the calculation of the long-range electrostatics
and a cutoff of 1.4 nm for both electrostatics and van der Waals
interactions. The nonbonded neighbor list is updated every five
steps. LINCS27 is used as a constraint algorithm for the C−H
bond, and Berendsen coupling was used for the pressure and
temperature control in the equilibration phase, while Nose−́
Hoover was employed for the production runs. The simulated
systems are summarized in Table S1. The analysis of the
trajectories dynamical and structural properties such as
distances, number of hydrogen bonds, mean squared displace-
ments, and radial distribution functions (RDFs) was performed
with GROMACS 4.6.1 tools using default options. In the first
50 ns the systems equilibrated and thus this time was
discarded. The reported self diffusion coefficients, D, were
calculated by fitting the linear regime of the mean squared
displacement curves of each system and using the Einstein
relationship:

=D t r t6 ( ) lim ( )
t

Initially, MD simulations for AngII using single starting
conformation were performed up to 600 ns (Figures S1−S3).
In order to increase the sampling for the construction of
MSMs, 10 conformations chosen from each system were
selected based on root mean squared deviation (RMSD) >0.15
nm and were used to initiate new, independent simulations (80
× 100 ns = 8 μs total simulation time, Table S1, Figure
S5−S8). Conformational snapshots were saved every 10 ps so
that finally 100,000 conformations for each system were
selected for MSM construction and subsequent analysis.
MSMs. To unravel the bioactive conformation of AngII, we

processed the MD simulations using Markov state modeling;
MSMs were constructed using the PyEMMA software.28

MSMs are discrete-time models based on the kinetic exchange
between states that describe a decomposition of the conforma-
tional space into small metastable regions.29−31 MSMs provide
the means to understand and gain an insight from simulation
data with complex nature by predicting long timescale
dynamics from long or multiple short trajectories. The
construction of an MSM is far from trivial, since it involves a
lot of decisions. The key steps to build an MSM (Figure 2) are
as follows:

(1) The selection of features from the MD trajectories and
the application of time-lagged independent component
analysis (TICA) transformation, to prepare the state
space.

(2) The “geometric” clustering step, to discretize the
trajectories into finite states, the microstates.

(3) The estimation of a transition probability matrix for the
microstates with proper lag time for the Markov model.

(4) The “kinetic” clustering step, to group the microstates by
the transition probability matrix into sets of kinetically
related states, the macrostates.

(5) The coarse-graining of the kinetic model based on the
produced macrostates.

Feature Selection and Dimension Reduction. Instead
of using raw MD trajectory conformations, we select a set of
features in order to characterize best the rare event transitions.
Distance metrics, such as RMSD between heavy atom or Cα
coordinates21,31,52 or backbone dihedral angles,31,38 are often
candidates for the construction of Markov models.23,28 Here,
we experimented with different featurizations and TICA lag
times by checking representations against end-to-end distances
and by estimating and validating the resulting MSMs, and we
keep all the dihedral angles (all backbone phi/psi and chi1
angles) and the minimum distances between peptide heavy
atoms (Table S2), which, compared to AngII end-to-end
distances (Figure 1a), appear to finely discretize key structures.
It should be noted that we do not directly use dihedral angles
but their cosine and sine values (doubling the number of
selected angle coordinates) because, after the cos/sin trans-
formation, standard operations such as calculating and
subtracting the mean can be performed.28,53 The resulting
dataset consists of 59 features.
For the efficient generation of the microstates, it is

recommended to reduce the dimensions of the selected
features28 in order to improve the quality of the discretiza-
tions32 and the CPU time.

TICA. TICA is a linear transformation method, which finds
coordinates of maximal autocorrelation at a given lag time and
has been shown to be optimal in approximating the relevant
slow reaction coordinates from MD simulations.33,34 Thus,
TICA is considered to be ideal to construct MSMs. TICA
parameters, such as lag time, features, and remaining model’s
parameters, are historically chosen heuristically and can be
evaluated using scoring functions such as the generalized

Figure 2. MSM construction steps.
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matrix Rayleigh quotient54 to pick the best model.35 In this
work, we selected a TICA lag time of 50 steps (0.5 ns),
reducing the dimension of our data to 22 and 26 for AngII
simulations at 310 K for water and water/ethanol systems,
respectively, while preserving 95% of the kinetic variance. This
was achieved by testing and evaluating the resulting state space
on the resulting free-energy landscape free energy computed
over the first two TICA coordinates, its discretization ability
against the examined key structures of AngII, and by evaluating
the quality of the estimated MSMs.
Microstates. The discretization of the conformational

space can be accomplished by clustering techniques such as
k-means, Ward’s method,55 k-medoids, GROMOS, etc. The
number of microstates typically ranges from 100 to 100,000.23

Here, a k-means clustering with 100 centers was carried out. In
Figures S22 and S23, we demonstrate that using more
microstates (250, 500) appeared to provide worse descritiza-
tions, increasing the errors of the constructed MSMs. The
results were compared with those of a fast approximate
clustering algorithm, IQ-means.36

k-means. For the discretization of the trajectories, it is
suggested to use k-means,28 which appears to produce the best
MSMs for protein folding along with Ward’s method. k-means
produces a balanced clustering and, combined with k-means+
+37 initialization, consists a fast solution that converges in only
a few iterations with reproducible results.
IQ-means. IQ-means is a fast approximation clustering

method for web-scale clustering. It uses multiple ingredients
from advanced approximate k-means variants, designed for
large-scale datasets (big data). Some key ingredients of IQ-
means are: (i) the fine representation of data in a 2D grid, (ii)
the multiindex-based inverted search from centroids to cells,
and (iii) the dynamic version of the algorithm that comes as a
natural extension from Expanding Gaussian Mixtures
(EGM).38 It has been reported to achieve the clustering of
100 million images on a single machine in less than an hour in
calculations using deep learned representations for the
images.36

IQ-means starts by learning a codebook for data
representation, as in the inverted multi-index,56 using a small
sample of the data. Pretrained codebooks can be also used, if
available. All points are then quantized on the codebook’s grid,
like DRVQ,57 and a discrete two-dimensional distribution of
points over cells is constructed. The algorithm alternates
between an assignment and an update step, similarly to k-
means. During the assignment step, searches for a set of
individual points in the nearest cells of each centroid are made
following a reverse approach, which makes it extremely fast.
Instead of looking for the nearest centroid of every cell, it looks
for the nearest cells (points) for each centroid using a window
(ranged search) in the 2D grid.
Estimation of MSMs. MSMs are the models that describe

the kinetics of molecules by a reversible transition matrix54 of
conditional transition probabilities among the microstates. An
MSM is composed of the conditional probabilities for a state
space, that consists of s(t) discrete trajectories, jumping
between n microstates at lag time τ (pij = Pr (s(t + τ) = j ∨ s(t)
= i)). The probability of jumping between states is computed
by the maximum likelihood estimator.
Implied Timescales. To ensure the accuracy of the MSM,

we select a lag time, so that the implied relaxation timescales
are approximate constant within the statistical error. The
behavior of the implied timescales consists of a way to check if

the model is Markovian.19 The implied timescales refer to the
relaxation timescales of a molecule implied by the transition
matrix of a Markov model at a lag time τ and is given by

= | |t t( )i ln ( )i
, where λi(τ) is the ith eigenvalue of the

transition matrix P(τ). For a Markovian system, λi(τ) should
be constant and independent of the lag time τ.

Model Validation. The model, at the selected lag time, is
validated using the Chapman−Kolmogorov test23 a formula-
tion for the Chapman−Kolmogorov equation (P(kτ) = Pk(τ)).
Because of this test, a Markov model estimated at a lag time τ
should be able to predict estimates performed at longer
timescales kτ within the statistical error.

Macrostates. The model is coarse-grained using the
transition probabilities among the microstates to a simpler,
“humanly” readable, model. There are a variety of coarse-
graining techniques (Perron cluster cluster analysis (PCCA)18

and BACE39) to simplify the model, exploiting the kinetic
relevance of the states. Here, we performed PCCA++.40

PCCA. PCCA coarse-grains MSMs exploiting the eigens-
pectrum of the transition probability matrix. Starting with all
the microstates merged into one big macrostate, it iteratively
splits the most kinetically diverse macrostates, until the
requested number of states is reached. The most common
approaches for MSMs are PCCA+41 and PCCA++.41

Kinetic Modeling. The final coarse-grained kinetic model
and the estimation of the transition rates between the
metastable states are generated using hidden Markov models
(HMMs). HMMs consist of an efficient approximation of the
kinetics on discretized molecular state spaces.42

Macrostate Representatives. In this work, the macro-
state representatives are selected using GROMOS clustering.43

Instead of randomly sampling from the macrostates,
GROMOS is applied on large groups of sampled conforma-
tions from each macrostate and the medoid of the bigger
cluster is assumed as a “dominant” representative. We use large
samples from the metastable states to minimize the required
computational power and time, ensuring quality of the results
(larger samples have smaller approximation error).

GROMOS. GROMOS43 is a method for clustering using a
given distance cutoff and comparing the RMSD of their atomic
positions. Figure 1c shows an example of clustering a pool of
conformations using their RMSD distances.

Metadata Representatives. The metadata representa-
tions for protein conformations in a trajectory, as suggested by
Zhang et al.,44 are simple 3D points representatives produced
by multidimensional scaling (MDS). To generate these
representations a distance matrix of the backbone atoms (for
an example of 3 out of the 276 used AngII backbone atom
distances for MDS, see Figure S10) is computed for each
conformation and then classical MDS is applied to reduce the
dimension of the matrix to 3. The eigenvalues from the MDS
seem to preserve the amount of variations in data, consisting of
a fine metadata representation with a single 3D point for each
conformation. Such representations allow us to efficiently
visualize our simulations into noncomplex plots.

■ RESULTS AND DISCUSSION

Conformational Sampling of AngII in Different
Solvents and Temperatures. The RMSD compared to the
initial structure has been calculated for all different systems
(Figure S1). The average RMSD for both systems in water and
water/ethanol solvent remains the same. However, it is
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observed that for elevated temperatures (310, 323 K) the
RMSD fluctuations increase, indicating a folding/unfolding
pattern of the peptide. The folding/unfolding behavior of the
peptide is noticeable also in the plots of the radius of gyration
of AngII in all different systems (Figure S2). In our
simulations, we observe that the folding/unfolding events of
AngII at elevated temperatures (310, 323 K) seem to be
significantly more frequent in the binary solvent (water/
ethanol) than in water (Figures 1b and S5−S7). Also, we
notice the impact of the starting conformations on the folding
behavior of the peptide. In Figure 3, the probability densities of

end-to-end distances, namely, distances of Cα terminal atoms
(Figure 1a), show that the conformational samples were
significantly increased using multiple trajectories, providing
both folded and unfolded structures (Figures S5−S7). On the
contrary, during simulations initiated using a single con-
formation, the molecule adopts mainly an extended coil
structure (Figure S3). To differentiate between the three major
conformations that AngII adopts, we denote a “U” structure for
the U-shaped folded conformations, an “E” structure for an
extended conformation and an “I” structure for intermediate
conformations.
Representative Conformations of AngII Observed in

Water and in Water/Ethanol. A cluster analysis was
performed for the peptide in order to find out the
representative conformations of AngII in pure water and in
water/ethanol during the simulation at different temperatures
(T = 278, 298, 310, and 323). The conformations were
clustered by comparing the RMSD of the Cα atoms of the
peptide according to the GROMOS method implemented in

Gromacs, using a cutoff of 0.15 nm. The medoids from the
most populated clusters of each system are selected as the
representative conformations and are shown in Figure 4. We

observe that the dominant conformation of AngII in water and
water/ethanol is mainly an extended, coil structure (Figure
4i,iv). Note that at the lowest simulated temperature, 278 K,
the AngII peptide is mainly in its open extended conformation,
which remains stable throughout the simulation. This is in
agreement with previous NMR and MD simulation stud-
ies.8,9,13 However, at elevated temperatures, there is a small
population of folded conformations that resemble the U-
shaped molecule found in other studies.7,45,46 More specifi-
cally, the percentage of these compact structures in water is 7%
at 310 K (Figure 4ii) and 6% at 323 K (Figure 4iii). In water/
ethanol, the same percentage is found to be 6% at 310 K
(Figure 4v) and 17% at 323 K (Figure 4vi). In Figure 1a, all
the key structures of AngII (U-shaped, intermediate, and
extended) are shown.

MSM for AngII in Pure Water and in Water/Ethanol.
In order to build a kinetic model for the AngII conformational
states in water and in water/ethanol and to provide the
different metastable states of these systems and compare with
the above-mentioned representative conformations, we per-
formed an MSM. For this purpose, we combined (a) the
trajectories of AngII in pure water and (b) in water/ethanol in
310 K in two different datasets, respectively. Because of the
short length of AngII and its intrinsic flexibility, the peptide is
mainly unstructured. However, probability densities of end-to-
end distances indicate a preference for specific states. As seen
in Figure 1b, the probability densities, P(r), calculated for all
different systems can be roughly divided into three categories
that correspond to three major peaks. The peak corresponding
to U at 0.5 nm represents U-shaped folded conformations, the
peak corresponding to I at 1.1−1.3 nm corresponds to
intermediate structures, and the peak corresponding to E at
1.8−2.0 nm to extended ones. This categorization gives us a
qualitative and coarse-grained description of the conforma-
tional preferences of AngII under different conditions. It is,
however, obvious from the plots of Figure 1b (also Figures

Figure 3. Probability densities of end-to-end distances of the terminal
residues for MD simulations with single trajectory and multiple
trajectories (10 different starting conformations).

Figure 4. First cluster representative conformations of AngII (i) in
water and in (iv) water/ethanol are shown at various temperatures. U-
shaped conformations are less populated in water at (ii) 310 K and
(iii) 323 K and in water/ethanol at (v) 310 K and (vi) 323 K.
Peptides are represented in cartoon while some key residues are
shown in sticks. Structures at 278, 298, 310, and 323 K are colored in
yellow, magenta, cyan, and blue, respectively.
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S5−S8 and Table S3) that in the presence of ethanol
molecules in the solvent the peptide adopts more U-shaped
structures than in the absence of ethanol. This is especially
obvious in the magnitude of the P(r) peaks at higher
temperatures (310 and 323 K).
To further examine the dynamic behavior of AngII folding

and unfolding, we built MSMs for AngII in water and in water/
ethanol at 310 K. We chose this temperature as it is more
relevant to the conditions encountered by AngII in cells in the
human body. The features (cos and sin of dihedral angles and
minimum distances between heavy atoms) used to construct
the MSM seem to preserve the key structures (U, I, E) of the
conformations. Figure 5a illustrates the used features colored
by their end-to-end distances, reduced by PCA in three
dimensions for visualization. Similar end-to-end distances are
concentrated together, which verifies that the selected features
are suitable to represent the key structures of AngII. Notice
that in the front plane of the visualized dimensions (Figure 5a)
are the U-shaped conformations (darker colors, lower end-to-
end distances), while as we move backward are the

intermediate and then the extended conformations (lighter
colors, higher end-to-end distances). TICA is applied on the
selected features (initial feature space) with a lag time of 50
steps (0.5 ns) to prepare the statespace for the “geometric”
clustering. The adapted description of the conformational
states using selected features and TICA transformation is
verified on the free-energy surface of the first two TICA
coordinates (Figure 5b), where the discretization of state space
seems to properly describe the folding process of AngII in the
water−ethanol solvent. In Figure 5b, sampled conformations of
states with high probability are shown. On the left state lie
folded U-shaped conformations, and on the right are extended
states. Then, a k-means clustering with 100 centers was carried
out (Figure 5c). Using more microstates (such as 250, 500)
appeared to provide worse discretizations, increasing the errors
of the constructed MSMs (Figures S22 and S23).
Implied timescales (shown in Figure 5d) appear to converge

at 200 steps, indicating a lag time τ = 2 ns. The estimated
Markov state model at 2 ns (200 steps) lag time is validated
using the Chapman−Kolmogorov test (Figure 5e). We use the

Figure 5. MSM construction for AngII in water/ethanol at 310 K. (a) Feature selection. Features colored by end-to-end distances (darker color,
lower distance); dimension reduced to three using PCA for visualization. (b) Dimension reduction using TICA. (c) Mircostate clustering. (d)
Estimation of implied timescales; different colors correspond to implied timescales. Confidence intervals are depicted with shaded areas. Implied
timescales at 2 ns converge and are constant within error. (e) Validation of estimated MSM at 2 ns (200 steps) lag time with the Chapman−
Kolmogorov test. (f) Probability Density plots for each macrostate. (g) Kinetic model of MSM with representatives for each state.
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implied timescales plots (Figures 5d and S27) as a heuristic to
estimate a number of metastable states. From the timescale
separation (Figure S27b), we observe some comparably large
timescale gaps, within the time resolution of the model,
between the 6th and 7th, and the 8th and 9th relaxation
timescales, suggesting seven to nine metastable states. We
evaluated coarse-grained models with seven to nine metastable
states (retaining six to eight relaxation timescales accordingly)
using the Chapman−Kolmogorov test. The model with the
assumed eight metastable states yields a passing Chapman−
Kolmogorov test (Figure 5e), having better predictions within
the statistical error, in comparison to the other models
(Figures S28 and S29). Thus, the microstates are coarse-
grained to eight macrostates with PCCA++ (Figure 5f,g),
which appear to produce a fine coarse-grained MSM for the
assumed eight states of AngII. Finally, the transition
probabilities for each macrostate are shown over the arrows
in the kinetic model estimated by an HMM using the eight
metastable states found by PCCA++ (Figure 5g).
The representatives shown in Figure 5g are selected using

GROMOS clustering, with a cutoff of 0.15 nm, at samples of
500 conformations from each macrostate. For each macrostate,
the dominant representative is shown, based on the cluster’s
population (the top two representatives are shown in Figure
S34 with the number of neighbors in each cluster, for clarity).
Notice that each metastable state in Figure 5g corresponds to a
probability density graph in Figure 5f, which shows the
structural preference of the peptide in that state. The
metastable states may exhibit conformational heterogeneity,
since they are produced by coarse-graining, simplifying, MD
simulations, combining both structural and kinetic similarity of
conformations, and thus dominant cluster representatives
should be taken into account. More plots and details for the
selection of parameters, the construction of MSMs for AngII in
water and water−ethanol at 310 K, and the resulting models
(including plots such as metastable states against time,
probability density plots for the macrostate samples used for

GROMOS, and the top two macrostate representatives with
their number of neighbors in cluster) can be found in Figures
S18−S46.
Based on our kinetic model, the presence of ethanol does

not seem to affect the kinetics of the folding/unfolding events.
The peptide appears to present a folding/unfolding behavior in
both environments, jumping between folded (U-shaped) and
unfolded (Intermediate, Extended) states. Only the preference
of AngII toward more compact structures appears to be
affected in the presence of ethanol. Figure 6 shows the
resulting MSM for AngII in water at 310 K (the detailed steps
are shown in Figures S35−S46). The comparison of IQ-means
with k-means on TICA coordinates and the MSM using IQ-
means discretization is shown in Figures S47−S63. Also,
further calculations on the generation of the macrostates using
BACE before PCCA++ are shown in Figures S64−S70.

MSM of AngII in Pure Water and in Water/Ethanol
Using IQ-Means. Before generating the MSMs with IQ-
means discretization, we compare IQ-means to k-means
clustering on the reduced dimensions produced by TICA.
We apply both clustering methods for various number of
clusters (microstates) on the TICA coordinates of AngII in
water/ethanol at 310 K. The results are compared in terms of
time and quality. The quality is assessed using the average
distortion, calculated by the cost function of k-means, which is
the average squared distance of each point from its cluster’s
center. In Figure 7 (also Figure S47), IQ-means appears to
outperform k-means in time for many clusters, with fair loss in
distortion (1.5 times worse than k-means), making it a
reasonable trade-off. Every experiment was performed three
times for reliability and the mean values are reported. In Figure
7a there are three plots for IQ-means, because some steps can
be considered as preprocessing. Only the clustering step is
mandatory for every run. Experiments were run on a computer
with an Intel(R) Xeon(R) CPU E5-2620 v4 at 2.10 GHz using
64 GB of RAM. More calculations to demonstrate the

Figure 6. MSM for AngII in water at 310 K. (a) Probability density plots for each macrostate. (b) Kinetic model of MSM with representatives for
each state.
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efficiency of IQ-means against k-means on higher dimensions,
such as backbone atoms distances are shown in Figure S9.
To validate the microstates produced by IQ-means, we

compare the resulting metastable states (Figures 8 and 9),
since similar discretization should result to analogous MSMs.
The IQ-means microstates are generated using same features
and TICA components with previous experiments (Figure
5a,b). The probability densities of the MSMs with k-means and
IQ-means appear to be similar in both solvents at 310 K
(Figures 8a,c and 9a,c), especially for the U-shaped metastable
states. The MSM with IQ-means microstates appear to result
to macrostates that correspond to the ones that were generated
by k-means microstates. This can be also verified by the
distribution of the macrostates through time. In Figure S52,
conformations’ end-to-end distances are plotted against time
and colored according to their macrostate membership. The
distribution of metastable states through time is similar for
both MSMs (same colors are used for similar macrostates
generated by both models). Thus, the structural preference of
the peptide in the metastable states that were identified using
k-means and IQ-means microstates, appear to be comparable.
More details for the construction of MSM with IQ-means, and
further comparisons to MSM with k-means (for AngII in water
and water−ethanol at 310 K) are provided in Figures S48−
S63.

Metadata Representation. Metadata representations, as
proposed by Zhang et al.,44 are generated by applying MDS on
a matrix with 276 distances between the, totally, 24 backbone
atom distances (Figure 10a shows a sample of the distances)
for each conformation of AngII in water/ethanol at 310 K.
Coloring each 3D point by the corresponding end-to-end
distance in Figure 10b, we observe that the representations
appear to distinguish the key structures of AngII (U-shaped,

Figure 7. Comparison of IQ-means with k-means on TICA
coordinates. (a) k (number of clusters) versus time (s). Max time
for both methods is at 900 clusters, where k-means runs for 14.2 s,
while IQ-means needs only 5.6 s for all steps (with preprocessing)
from which only 2.7 s are used for clustering. Min time for both is at
100 clusters, where k-means runs for 2.4 s, while IQ-means for 4.2 s
for all steps , but only 1.4 s for the clustering step. (b) Average
distortion versus k (number of clusters).

Figure 8. MSM for AngII in water/ethanol, T = 310 K. (a,b)
Microstates generated with k-means. (a) Probability density plots for
each macrostate. (b) Kinetic model of MSM. (c,d) Microstates
generated with IQ-means. (c) Probability density plots for each
macrostate. (d) Kinetic model of MSM. Probability densities of the
MSMs appear to be similar especially for the U-shaped metastable
states.

Figure 9. MSM for AngII in water, T = 310 K. (a,b) Microstates
generated with k-means. (a) Probability density plots for each
macrostate. (b) Kinetic model of the MSM. (c,d) Microstates
generated with IQ-means. (c) Probability density plots for each
macrostate. (d) Kinetic model of the MSM. Probability densities of
the MSMs appear to be similar especially for the U-shaped metastable
states.
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Intermediate, and Extended structures). Conformations with
similar end-to-end distances are concentrated together, which
verifies the representatives Also, we further exploit these
representations to visualize the resemblance of resulting
clusterings using k-means and IQ-means. Figure 10c,d presents
the results of clustering with three centers, which appear to be
similar. Also the metastable states from the constructed MSMs
with k-means and IQ-means are validated on these
representatives. In Figure 10e,f, we notice how the metastable
states are distributed to structurally similar conformations.
More clustering calculations, using these representations with
k-means, IQ-means, and a hierarchical fuzzy c-means
algorithm44 are shown in Figures S11−S17.
Diffusion of AngII Peptide in Water and in Water/

Ethanol. In Tables 1 and 2, the calculated translational
diffusion coefficients for the AngII octapeptide and for ethanol
are presented. Diffusion coefficients were calculated from mean
squared displacements (see Methods and Figure S71).
Comparison with previous available experimental and simu-
lation data shows a very good agreement, which allows us to
explore solvent structural properties in a more detail.
Preferential Binding of Solvent Molecules at the

Peptide Surface. It is well known that preferential
interactions between the peptide residues and the different
solvent components are important for peptide/protein

structure and dynamics.14,16,47 Therefore, the RDFs of
important residues/atoms of the system have been calculated
for all systems at all temperatures. The RDF between the
center of mass (COM) of each residue in the peptide and the
atoms of the solvent and cosolvent has been calculated. The
temperature dependence of the RDF is shown in Figure S71
for the two terminal residues. According to the results, the
temperature increase does not affect the positions of the peaks
and the valleys of the RDFs but only slightly their heights and
depths. Furthermore, comparison of the RDFs of the residues
COM with the oxygen atom of water and ethanol molecules at
the same temperature clearly indicates differences at the
heights but not the positions of the first peaks (Figure S72). A
slight preference for water molecules is observed for Phe8,
where the RDF for the oxygen of water molecules starts at a
distance of 0.3 nm, indicating probably the formation of a
hydrogen bond (Figure S72, last figure). In addition,
comparison of the RDFs of peptide residues COM with
water molecules in pure water and water molecules in the
binary water/ethanol solvent does not indicate any change in
the positions of the peaks and valleys that could be due to the
presence of the ethanol (data not shown). In simulations of
[val5]AngII in water/ethanol (35% v/v), Gerig13 has reported
preferential solvation of peptide hydrogens by ethanol
molecules. More specifically, he reports that hydrogen atoms
of valine and tyrosine side chains preferentially interact with
ethanol molecules, while hydrogens of Arg1, Arg2, Phe8, and
His6 side chains are in a solvent environment rich in water
molecules. In our system, which is similar to the one of Gerig13

except for the fact that we have used the human [Ile5]AngII
analogue, we have assessed the preferential solvation of the
peptide by calculating the RDF of the COM of each peptide
residue with the Owater and Oethanol of the solvent. Integration of
the RDF plots up to the first valleys gives an indication of the
coordination numbers for the first solvation shell around each
residue (Figure S72). As seen in Table 3, most of the peptide
residues interact mainly with water molecules except for the
apolar residues of Val3 and Ile5. The strong interaction of the
peptide with water is seen also in the number of hydrogen
bonds formed between the peptide and the solvent molecules
(Figure S73). There are on average ∼15 hydrogen bonds

Figure 10. Metadata representatives. (a) Illustrates 3 from the 276
backbone atom distances used for MDS. (b) 3D point metadata
representations colored by end-to-end distances; red/black points
(smaller end-to-end distances) are U-shaped conformations; yellow/
white points (bigger end-to-end distances) are Intermediate (I) and
Extented (E). (c,d) Comparison of (c) k-means and (d) IQ-means on
these representations with three cluster centers. (e,f) Distribution of
metastable states from MSMs (AngII in water/ethanol, 310 K),
shown on the metadata representatives of the conformations. (e)
MSM with k-means. (f) MSM with IQ-means. Metastable states
appear to be similarly distributed on metadata feature space.

Table 1. Diffusion of AngII Dpeptide × 10−5 cm2 s−1

temperature in water in water/ethanol
simulation of ref

13a

278 K 0.1846 (±0.0458) 0.0579 (±0.0025) 0.053 (±0.007)

298 K 0.6045 (±0.0245) 0.3497 (±0.0899) 0.11 (±0.02)

310 K 0.9412 (±0.3155) 0.1563 (±0.0141)

323 K 2.7192 (±0.6804) 0.4776 (±0.1569)
aSimulations and experiments for AngII in ethanol/water-35% (v/v),
reported in ref 13.

Table 2. Diffusion of Ethanol Molecules Dethanol × 10−5 cm2

s−1

temperature in water/ethanol simulation of ref 13a exp.a

278 K 0,7344 (±0,0034) 0.342 (±0.013) 0.22

298 K 12809 (±0,0105) 0.839 (±0.022) 0.68

310 K 17711 (±0,0645)

323 K 23184 (±0,0908)
aSimulations and experiments for AngII in ethanol/water-35% (v/v),
reported in ref 13.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00881
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

I



formed between the peptide and water and only ∼2 hydrogen
bonds between the peptide and ethanol molecules.
Solvent Structural Properties. As mentioned, one of the

aims of the present study is to provide an atomic-level picture
of the intermolecular interactions governing AngII−water and
AngII−water−ethanol mixtures using MD simulations. To
describe the solvent microenvironment around the AngII
peptide in the two solvents, we performed polar analysis
interactions of the solvent around AngII.
The hydrophobic clustering of ethanol molecules in bulk

aqueous solutions has been experimentally investigated48−51

showing that ethanol is primarily monomeric for mole fractions
of χeth < 0.07, while it self-associates when 0.07 < χeth < 0.74.
Mass spectrometry analysis indicates that the ethanol rich
clusters consist of less than eight ethanol molecules.50 In our
system, where χeth is around 0.14, we do observe minor ethanol
aggregation. The percentage of ethanol molecules that self-
associate is around 14% and the average size of the clusters
formed is two ethanol molecules independent of the
temperature. Larger aggregates of ethanol are also observed
comprising three to four molecules but with a low percentage
(1−3%) of occurrence. A detailed analysis of the polar
interactions between water and ethanol molecules has been
performed for an area with r = 0.4 nm around the peptide.
Figure S74 presents the number of hydrogen bonds formed
between water−water, ethanol−ethanol, and water−ethanol
molecules in the proximity of the peptide. There are on
average two hydrogen bonds formed between ethanol
molecules around the peptide, while the ethanol−water
hydrogen bonds are >15 indicating a clear preference of
ethanol to associate with water molecules in the vicinity of
AngII.
Intrapeptide Hydrogen Bonds. To further characterize

the microenvironment of AngII, we calculated the percentages
of intrapeptide hydrogen bond formation in pure water and in
water/ethanol that are presented in Table S4. As mentioned
before, during all different simulations, the peptide is mainly in
the open, extended conformation where the formation of
intrapeptide hydrogen bonds does not seem to be favored.
However, it is important to mention the occurrence of some
intrapeptide hydrogen bonds that are characteristic of the
AngII octapeptide and compare these with known exper-
imental models. Therefore, common features between our
model and the X-ray structure of AngII bound to mAb
Fab13126 as well as the NMR structure of AngII in aqueous
solution are (a) the formation of a hydrogen bond between
Asp1-side-OD1 and Arg2-main-NH. In fact, in our simulations
we additionally observed Asp1-Arg2 side chain-side chain
hydrogen bonds resulting in a total percentage of occurrence of
the Asp1-Arg2 hydrogen bond of about 1−4% in pure water
and 3−12% in water/ethanol (see Table S4), (b) the
formation of a His6-side-ND1 and Pro7-main-O hydrogen
bond with a percentage of occurrence of 6−13% in water and
2−8% in water/ethanol. Interestingly, the Asp1-Arg2 and
His6-Pro7 hydrogen bonds discussed above are common for

all simulated systems, sampling both extended and U-shaped
conformations, although the former is marginally present in
pure water. A hydrogen bond that appears only in the water/
ethanol system at elevated temperatures (310, 323 K) is the
one formed between Arg2 and Phe8 residues with an
occurrence of 3−8%. This hydrogen bond could bring the
two peptide termini in a close distance and stabilize a compact
U-shape structure (Figure 4v).

■ CONCLUSIONS

In this paper, we provide an atomic-level picture of the
intermolecular interactions governing AngII−water and
AngII−water−ethanol mixtures using MD simulations. Both
mixtures are solvents that can influence the stability and
conformational properties of biological molecules in diverse
ways. The structural and dynamical properties of these systems
are outlined in the context of identifying the solvent
microenvironment around the AngII peptide and in describing
the representative conformations of AngII in these two media.
While the phospholipid bilayer is more polarized and its 2D
structure may influence the AngII conformation and dynamics,
here we have chosen to perform our simulations in water and
water−ethanol mixtures to compare our findings with available
experimental results in this solvent mixture. Our results are in
excellent agreement with relevant experimental data and
provide insights into the bioactive conformation of this
hormone.
In order to increase sampling for the construction of MSMs,

10 different conformations were chosen for each system to
initiate new, independent simulations. Results validate that the
samples for the various structures of AngII were significantly
increased using multiple trajectories, while using a single
trajectory resulted to mainly an extended coil structure. Here,
we are interested in whether we have enough structural data to
characterize the free-energy landscape of the AngII folding and
kinetically connect the different states with a Markov state
model. By using multiple trajectories with different starting
configurations, we increase the conformational variability of
the sample and, as evident by the good discretization of states
shown in Figure 5b, this is achieved with the MSM model
produced by this sampling.
Our cluster analysis, in agreement with previous studies,

validates that the dominant conformation of AngII in water
and water/ethanol is mainly an extended structure, but at
elevated temperatures there is a small population of folded (U-
shaped) conformations. Also, the RMSD fluctuations and the
radius of gyration of AngII indicate that the folding/unfolding
events of AngII at elevated temperatures (310, 323 K) seem to
be significantly more frequent in the binary solvent (water/
ethanol) than in water. The kinetic models produced by MSMs
also confirm that the presence of ethanol does not seem to
affect the kinetics of the folding/unfolding events but only the
preference of AngII toward more compact structures. This
points to the fact that because the water−ethanol interface
mimics the water−lipid interface, the water−membrane model
interface induces the peptide to assume its bioactive
conformation, as the peptide has to assume the bioactive
conformation before it docks to the receptor.
While the kinetic models of AngII in water and in water/

ethanol may differ, based on our kinetic model, the presence of
ethanol does not seem to affect the kinetics of the folding/
unfolding events. This means that the peptide appears to
present a folding/unfolding behavior in both environments.

Table 3. Coordination Numbers of each Peptide Residue
with Oethanol and Owater in the First Solvation Shell for the
System of AngII in Water/Ethanol

Res. 1 Res. 2 Res. 3 Res. 4 Res. 5 Res. 6 Res. 7 Res. 8

Owater 16 11 2 14 2 14 15 12

Oethanol 2 2 1 8 1 2 3 2
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The presence or absence of ethanol does not seem to affect the
folding events, since the peptide appears to have structurally
similar folded (U-shaped) and unfolded (intermediate,
extended) states, jumping from one to another. Only the
frequency of the folding and the preference of the peptide
toward more compact (folded) structures are affected having
more conformations in a U-shaped structure in the water/
ethanol mixtures.
Experiments with IQ-means suggest that it could consist an

efficient approximation for k-means in discretizing MD
trajectories for MSMs, with a fair trade-off between time and
accuracy. IQ-means could be used for long simulations
resulting in big data to reduce the computational effort, either
by replacing k-means as a proper approximation, or by
performing fast approximations to experiment with the
microstates, before using k-means. Also, GROMOS seems to
provide intuitive representatives for the MSMs and the
metadata representations are able to produce simple,
straightforward 3D point visualizations for the trajectories.
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