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Abstract
We optimized control laws for stabilization of two shear flows: a DNS of a flow past a cluster of three
rotating cylinders—the fluidic pinball—and the cavity flow experiment. The fluidic pinball is stabilized in
increasingly reacher control law spaces employing 9 sensors downstream and 3 actuators (the cylinders). As
for the cavity, two regimes are controlled in single-input single-output manner: a single-mode driven regime
and a mode-switching regime. Key enablers are automated machine learning algorithms augmented with
gradient  search:  explorative  gradient  method  for  the  open-loop  parameter  optimization  and  a  gradient-
enriched machine learning control (gMLC, [1]) for the feedback optimization. For both plants, the need of
feedback for  control  is  demonstrated.  gMLC learns  the  control  law significantly  faster  than  previously
employed genetic programming control both in DNS and experiment. 
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1. Introduction
Flow control is at the heart of many engineering applications. However, control design is challenged by the
high-dimensionality, the inherent nonlinearities with many frequency crosstalks and time-delays between
actuation and sensing. Hence, most closed-loop control studies of turbulence resort to a model-free approach.
Genetic programming control (GPC), pioneered by Dracopoulos (1997) over 20 years ago, has been proven
to be particularly successful for nonlinear feedback turbulence control in many experiments [2].  GPC has a
powerful capability to find new mechanisms (exploration) and populate the best minima (exploitation). Yet,
the  exploitation  is  inefficient  leading  to  increasing  redundant  testing  of  similar  control  laws  with  poor
convergence to the minimum. This challenge is well known and is addressed in this study with a gradient
augmented algorithm. The methodology is applied to two shear flows: a cluster of three rotating cylinders—
the fluidic pinball—at Reynolds number Re=100 and the cavity flow for two regimes: a narrow-bandwidth
and a mode-switching regime; the flow is forced with a DBD actuator and monitored by a hot-wire sensor.

2. Methodology
The control problem is formulated as an optimization problem where a cost function J characterizing the
performance is minimized. The cost functions associated with the stabilization problems are: For the fluidic
pinball, the residual fluctuation energy of the actuated flow field with respect to the symmetric steady flow.
For the cavity, the PSD maximum peak for the streamwise velocity measured downstream plus an actuation
penalization term. For both cases, the cost function J are values averaged over the whole evaluation time.
The control objective is then to derive the optimal control law K* that minimizes J: 

K∗
=argmin

K∈Λ
J (K ) (1)

with Λ being the space of control laws and K a function of the plant’s sensor signals. In general, equation (1)
is a challenging non-convex optimization problem presenting, a priori, several local minima.
The employed algorithms are the Explorative Gradient Method (EGM) [3] for parametric optimization and 
the gradient-enriched Machine Learning Control (gMLC) for control law optimization. Starting point is 
machine learning control (MLC, [4]) based on linear genetic programming. The gradient-enriched version 
combines the evolutionary iterative process for exploration of the search space and intermediate gradient 
descent steps with downhill simplex to exploit local gradient information for a fast convergence towards the 
minima. The gradient-descent is performed in a subspace defined by the most performing control laws 
(Figure 1a). 
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Figure 1 gMLC methodology and results. (a) gMLC algorithm steps and conceptual progress in the search space.
(b) Fuidic pinball vorticity fields for the unforced flow (top) and the gMLC controlled flow (bottom). (c) PSD of  the
downstream velocity for the mode-switching regime of the cavity: unforced flow (black) and gMLC controlled (red).

3. Results and discussion
For the fluidic  pinball,  the  control  laws  are  optimized in  three successively richer  search spaces.  First,
stabilization is  pursued with steady symmetric forcing,  achieving a 51% reduction of  the  cost  function.
Second, we allow for asymmetric steady forcing, reducing the cost by 72%. And third, we determine an
optimal feedback controller employing nine velocity probes downstream and reduces the cost by 80%. As
expected, the control performance increases with every generalization of the search space. Surprisingly, both
open-  and  closed-loop  optimal  controllers  include  an  asymmetric  forcing,  which  surpasses  symmetric
forcing. Intriguingly, the best performance is achieved by a combination of phasor control and asymmetric
steady forcing. The resulting mean flow looks similar to the optimal asymmetric steady forcing (Figure 1b). 
For the cavity, first, steady forcing is employed to stabilize the two regimes, revealing that a strong enough
blowing kills the main frequencies of the cavity and increases the background noise. Second, feedback laws
are optimized reducing the cost by 98% for the narrow-bandwidth regime and 94% for the mode-switching
regime (Figure 1c) and with less than 2% of the maximum actuation power. Expectedly, the law learned in
the simpler regime is only able to partially control the complex one. Surprisingly, the law learned in the most
complex regime is able to control even better the simpler regime than the law learned in the same condition.
Finally, like for the fluidic pinball, the need of feedback has been demonstrated to be an essential feature to
mitigate the oscillations of the cavity.

4. Conclusion
The  presented  stabilizations  are  expected  to  be  independent  of  the  employed  optimizer.  The  chosen
optimizers  balance  exploration  (search  for  better  minima)  and  exploitation  (downhill  descent  of  found
minima). The search has been significantly accelerated both in DNS and by intermittently adding gradient-
based descends. The resulting EGM and gMLC algorithms are proved to be efficient for both exploration and
exploitation. Building on this success, we foresee that gradient-enriched MLC will  greatly accelerate the
optimization of control laws for MIMO control as compared to linear genetic programming control. Recent
experimental applications of gMLC include successful drag reduction of a generic truck model under yaw
and lift increase of a high-Reynolds number airfoil.
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