Maxence Grand
email: maxence.grand@univ-grenoble-alpes.fr

An Accurate PDDL Domain Learning Algorithm from Partial and Noisy Observations

This paper presents a novel approach to learn PDDL domain called AMLSI (Action Model Learning with State machine Interaction) based on grammar induction. AMLSI learns with no prior knowledge from a training dataset made up of action sequences built by random walks and by observing state transitions. The domain learnt is accurate enough to be used without human proofreading in a planner even with very highly partial and noisy observations. Thus AMLSI takles a key issue for domain learning that is the ability to plan with the learned domains. It often happens that small learning errors lead to domains that are unusable for planning. AMLSI contribution is to learn domains from partial and noisy observations with sufficient accuracy to allow planners to solve new problems. Compared to other approaches, AMLSI uses smaller training datasets and exploits both feasible and infeasible generated action sequences.

I. INTRODUCTION

Hand-coding PDDL domains is generally viewed as difficult, tedious and error-prone. The reason is that the experts of the domains to model are not always PDDL experts and vice versa. To overcome this issue, two main approaches have been proposed. One is to develop knowledge engineering tools facilitating PDDL writing, e.g., GIPO [START_REF] Simpson | Planning domain definition using GIPO[END_REF], PDDL Studio [START_REF] Plch | Inspect, edit and debug pddl documents: Simply and efficiently with pddl studio[END_REF], Viz [START_REF] Vodrázka | Visual design of planning domains[END_REF]. These tools provide support for consistency and syntactic error checking, domain visualisation etc. An inconvenient of these tools is that they require PDDL expertise and background in software engineering [START_REF] Shah | Knowledge engineering tools in planning: State-of-theart and future challenges[END_REF].

The other approach is to develop machine learning algorithms to automatically generate PDDL domains as, for instance, ARMS [START_REF] Yang | Learning action models from plan examples using weighted MAX-SAT[END_REF], SLAF [START_REF] Shahaf | Learning partially observable action schemas[END_REF], LSONIO [START_REF] Mourão | Learning STRIPS operators from noisy and incomplete observations[END_REF], LOCM [START_REF] Cresswell | Acquiring planning domain models using LOCM[END_REF]. These algorithms use training datasets made of state/action sequences generated by a planner, or randomly generated (random walks). Classically, IPC benchmarks are used to generate training datasets. The performance of these algorithms is measured as the syntactical distance between the learned domains and the ones used to generate the training datasets.

These approaches have three main drawbacks. First, most of these approaches require a lot of data to perform the learning of PDDL domains and in many real world applications, acquiring training datasets is difficult and costly, e.g., Mars Exploration Rover operations [START_REF] Bresina | Activity planning for the mars exploration rovers[END_REF] or fleet of Autonomous Underwater Vehicules for offshore missions [START_REF] Carreno | Task allocation strategy for heterogeneous robot teams in offshore missions[END_REF], [START_REF] Lesire | A distributed architecture for supervision of autonomous multi-robot missions[END_REF]). Second, the learned domains are not enough accurate to be used "as is" in a planner: a step of expert proofreading is still necessary to correct them. Even small syntactical errors can make sometime the learned domains useless for planning. Therefore, we consider that domain accuracy, that we define as the capacity of a learned domain to solve planning problems that were not used in the training dataset, is a better performance indicator than syntactical distance in practice. Third, even if some approaches, e.g., [START_REF] Mourão | Learning STRIPS operators from noisy and incomplete observations[END_REF], [START_REF] Segura-Muros | Learning numerical action models from noisy and partially observable states by means of inductive rule learning techniques[END_REF], [START_REF] Rodrigues | Incremental learning of relational action models in noisy environments[END_REF] are able to learn from noisy and/or partially observable data, few approaches are able to handle very high levels of noise and high levels of partial observations as can be encountered in real world applications, especially in robotics where observations are extracted using miscalibrated or noisy sensors.

To adress these drawbacks, we propose a novel PDDL domain learning algorithm called AMLSI (Action Model Learning with State machine Interaction). AMLSI assumes it is possible to build a training dataset made up of feasible and infeasible action sequences with a trial and error method, and to observe state transitions. Suppose that we wish to learn the PDDL domain of an ATM, sequences of actions tested could be inserting a card, typing a PIN number and then aborting money withdrawal etc. Some forbidden sequences can also be tested, e.g, typing a PIN number and then inserting a card, etc. Based on these feasible as well as infeasible state/action sequences, AMLSI provides a PDDL domain (in this case, of the ATM state machine). AMLSI does not require any prior knowledge regarding the feasibility of actions in a given state, and state observations can be partial and noisy. AMLSI is highly accurate even with highly partial and noisy observations. Thus it minimizes PDDL proofreading and correction for domain experts. We show experimentally that in many cases AMLSI does not even require any correction of the learned domains. AMLSI is lean and efficient on data consumption. It uses a supervised learning approach based on grammar induction. Training data are action sequences labeled by either (partial and noisy) state observations or "failure". Both, feasible and infeasible action sequences are used by AMLSI to learn PDDL domains, thus maximizing data usability. Finally, we show that AMLSI is the only approach to our best knowledge able to learn accurate domain with such a level of partial and noisy observations (see Table IV).

The rest of the paper is organized as follows. Section II proposes the problem statement. Section III details the AMLSI algorithm and section IV presents the comparative evaluation of AMLSI with state-of-the-art performance indicators on 13 IPC benchmarks.

II. PROBLEM STATEMENT

In this paper, we address STRIPS language in PDDL. A STRIPS planning problem is a tuple P = (L, A, S, s 0 , G, δ, τ, λ), where L is a set of logical propositions describing the world states, S is a set of state labels, s 0 ∈ S is the label of the initial state, and G ⊆ S is the set of goal labels. λ is an observation function λ : S → 2 L that assigns to each state label the set of logical propositions true in that state. A is a set of action labels. Action preconditions, positive and negative effects are given by the functions prec, add and del that are included in δ = (prec, add, del). prec is defined as prec : A → 2 L . The functions add and del are defined in the same way. Without loss of generality, we chose this formal framework inspired by [START_REF] Höller | Assessing the expressivity of planning formalisms through the comparison to formal languages[END_REF] in order to define the STRIPS learning problem as the lifting of a state transition system into a propositional language.

The function τ : A × S → {true, f alse} returns whether an action is applicable to a state, i.e. τ (a, s) ⇔ prec(a) ⊆ λ(s). Whenever action a is applicable in state s i , the state transition function γ : A × S → S returns the resulting state

s i+1 = γ(s i , a) such that λ(s i+1) = {λ(s i)\del(a)∪add(a)}.
A sequence < a 0 , a 1 , . . . , a n > of actions is applicable to a state s 0 when each action a i with 0 ≤ i ≤ n is applicable to the state s i . Given an applicable sequence < a 0 , a 1 , . . . , a n > in state s 0 , γ(s 0 , < a 0 , a 1 , . . . , a n >) = γ(γ(s 0 , a 0), < a 1 . . . a n >) = s n+1 . It is important to note that this recursive definition of γ entails the generation of a sequence of states < s 0 s 1 . . . s n+1 >. A goal state is a state s such that g ∈ G and λ(g) ⊆ λ(s). s satisfies g, i.e. s |= g if and only if s is a goal state. An action sequence is a solution plan to a planning problem P if and only if it is applicable to s 0 and entails a goal state.

In formal languages, a set of rules is given that describe the structure of valid words and the language is the set of these words. For STRIPS planning problem P , this language is defined as (0 ≤ i ≤ n):

L(P) = {ω =< a 0 , a 1 , . . . , a n > |a i ∈ A, γ(s 0 , ω) |= g}
We know that the set of languages generated by STRIPS planning problems are regular languages [START_REF] Höller | Assessing the expressivity of planning formalisms through the comparison to formal languages[END_REF]. In other words, a STRIPS planning problem P generates a language L(P) that is equivalent to a Deterministic Finite Automaton (DFA) Σ = (S, A, γ). S and A are respectively the nodes and the edges of the DFA, and γ is the transition function.

For any edge a ∈ A, we call pre-set of a the set preset(a) = {s ∈ S | γ(s, a) = s } and post-set of a the set postset(a) = {s ∈ S | γ(s, a) = s }.

A STRIPS learning problem is as follows: given a set of observations Ω ⊆ L(P), is it possible to learn the DFA Σ, and then infer P ?

For instance, suppose Ω = {a, ab, ba, bab, abb, . . .

} such that s 0 a - → s 2 , s 0 a - → s 2 b - → s 2 , s 0 b - → s 1 a - → s 2 , s 0 b - → start s 0 s 1 s 2 b a a b preset(a) postset(a)
Fig. 1: An example of DFA with pre-states and post-states

s 1 a - → s 2 b - → s 2 , s 0 a - → s 2 b - → s 2 b - → s 2 .
. . Can we learn Σ (see Figure 1) with actions {a, b}, the initial state s 0 and some states marked as goal G = {s 2 } so that all the observations in Ω are a path from the initial state to a goal state? Knowing Σ and the logical propositions mapping the states labels, is P computable? III. THE AMLSI APPROACH AMLSI has been devised to solve STRIPS learning problems. In practice, it computes P as PDDL domain and problem files. Regarding the training dataset, AMLSI uses random walks to generate Ω. AMLSI assumes that L, A, S, and s 0 are known, and the observation function λ is possibly partial and noisy. A partial observation is a state where some logical propositions are missing, and a noisy observation is a state where the truth value of some propositions is erroneous. No knowledge of the goal states G is required. Once Σ is learned, AMLSI infers the action precondition, positive and negative effect functions in δ from the state transition function γ. Finally, the operators of the PDDL domain file are induced from δ.

The AMLSI algorithm consists of 4 steps: (1) generation of the observations, (2) learning of the DFA corresponding to these observations, (3) generation of the PDDL operators, and (4) refinement of the operators to cope with noisy and partial state observations.

A. Observation Generation

To generate the observations in Ω, AMLSI uses random walks by applying a randomly selected action to the initial state of the problem. If this action is feasible, it is appended to the current action sequence. This procedure is repeated until the selected action is not feasible in the current state. The feasible prefix of the action sequence is then added to I + , the set of positive samples, and the complete sequence, whose last action is not feasible, is added to I -, the set of negative samples. Random walks are repeated until I + and I -achieve an arbitrary size. As an example, consider below the sets of feasible sequences I + and not feasible sequences I -in the blockworld domain.

B. DFA Learning

The learning of the DFA Σ = (S, A, γ) that models the planing problem to learn is based on regular grammar induction. Regular grammar induction is a well-defined problem [START_REF] Gold | Language identification in the limit[END_REF]. Many algorithms have been proposed to solve it. Among them, RPNI 1 [START_REF] Oncina | Inferring regular languages in polynomial update time[END_REF] is one of the few able to learn a DFA using a set of positive and negative samples. Moreover, RPNI has all the right properties: (1) it is able to identify the class of the regular languages in the limit in polynomial time, and (2) it is optimal, i.e., RPNI learns the smallest automaton accepting the positive samples and rejecting the negative samples, when the samples are characteristic [START_REF] Dupont | Incremental regular inference[END_REF]. This last property is important to reduce the number of transitions to explore while generating the PDDL operators.

In practice, RPNI takes as input I + and I -. I + (resp. I -) are the positive (resp. negative) samples, i.e., the feasible (resp. infeasible) action sequences, and returns a DFA accepting all the positive samples, and rejecting all the negative ones. RPNI performs a depth first search in the lattice of the acceptor trees of I + [START_REF] Angluin | Inference of reversible languages[END_REF] by merging nodes while checking that the new DFA obtained rejects all the negative samples contained in I - and stays deterministic. A complete description of RPNI is available in [START_REF] Oncina | Inferring regular languages in polynomial update time[END_REF]. In order to show how RPNI is used to learn a DFA modeling a planning problem, we propose to develop our example from I + and I -given above. We suppose that RPNI merges the nodes in ascending order.

The tree of DFA explored by RPNI is given in Figure 2. The initial DFA is the acceptor tree built from I + . First, RPNI tries to merge the pair of nodes 0 and 1. The merging succeeds (the obtained DFA is deterministic and rejects all the negative samples). Then, RPNI tries to merge the pair of nodes 0 and 2. The merging fails (the resultant DFA accepts the negative example (pick up(a), put down(b)) contained in I -). Thus, RPNI backtracks to the previous successful merging and tries to merge the next pair of nodes 0 and 3. This merging makes the DFA non-deterministic (the node 0 has now two outgoing transitions labeled with the same action label pick up(a) and pick up(b)). To remove the non-deterministic transition pick up(a) (resp. put down(b)), RPNI merges the pair of nodes 0 and 5 (resp. the pair of nodes 2 and 6). However, the DFA is always non-deterministic (the node 2 has now two outgoing transitions labeled with the same action label put down(b)). To remove the nondeterministic transition put down(b), RPNI merges the pair of nodes 4 and 9. The DFA obtained after these mergings is now deterministic and rejects all the negative examples. Then, RPNI can continue to merge the next pair of nodes until all the pairs of nodes have been tried. The final DFA obtained is optimal and deterministic. It models all the observations contained in I + and I -.

Improvement of RPNI with unobserved sequences

If we look closely at the previous example, we can observe that the learned DFA accepts not only the sequences contained in I + but also some unobserved sequences, i.e., not present in I + . For instance, the final DFA of the example Figure 2 accepts the sequence (pick up(a), pick up(a)). Whatever the sequence in the Blockworld domain, the action pick up(a) can not be followed by the action pick up(a). More generally, the DFA learned by RPNI can accept or reject unobserved sequences. RPNI does not provide any warranty on unobserved sequences. However in practice, some sequences are not observed because it is difficult to have a very large set of observations. From the point of view of the learned planning domain, if the DFA is permissive by accepting unoberverved sequences, plans produced using the learned planning domains are more likely to be incorrect. Therefore, we propose to force the DFA learned to accept only the sequences defined in I + and reject all the other unobserved sequences. A simple way to achieve this is to compute all the unobserved pairwise sequences (a i a j) and add them to the set of negative examples I -. The computation of the set of unobserved pairwise sequences (PS) consists in computing all the possible couples of actions from the actions A of the DFA and to subtract the couples present in I + . Formally, the set of unobserved pairwise sequences added to I -is defined as follows:

{(a i , a j) | (a i , a j) ∈ A 2 and ω ∈ I + s.t. ω = (ω 1 , a i , a j , ω 2)}
For instance, the pairwise sequence (pick up(a), pick up(a)) will be added to I -because (pick up(a), pick up(a)) is not a subsequence contained in I + . In contrast, the sequence (pick up(a), put down(a)) will not be added to I -because (pick up(a), put down(a)) is a subsequence of the sequence (pick up(a), put down(a), pick up(a), stack(ab)) contained in I + .

Note that the unobserved sequences are only used for the DFA learning step. For the next steps, we assume that I - contains only observed sequences.

C. Operator Generation

In this step, we present how to generate δ = (prec, add, del) from the learned DFA. Operator generation is based on three steps:

Precondition generation: To learn the preconditions prec(a) of action a, AMLSI computes the logical propositions that are in all the states preceding a in Σ:

prec(a) = ∩ s∈preset(a) λ(s)
1) Effect generation: To learn the positive effects add(a) of action a, AMLSI computes the logical propositions that are never in states before the execution of a, and always present after a execution:

add(a) = ∩ s∈postset(a) λ(s) \ prec(a) Symetrically, del(a) = prec(a) \ ∩ s∈postset(a) λ(s)
2) Action generalisation: Once preconditions and effects are learned, actions are lifted to PDDL operators with OI-subsumption (subsumption under Object Identity) [START_REF] Esposito | Multistrategy theory revision: Induction and abduction in INTHELEX[END_REF]. First of all, constant symbols in preconditions and effects are substituted by variable symbols. For instance, suppose actions stack(a b) and stack(b c) are such that {(clear b)} ∈ prec(stack(a b)), and {(clear c), (ontable c)} ∈ prec(stack(b c)). The substitution entails {(clear ?y)} ∈ prec(stack(?x ?y)), and {(clear ?y), (ontable ?y)} ∈ prec(stack(?x ?y)). Then, the less general preconditions and effects, i.e. preconditions and effects encoding as many propositions as possible, are computed as intersection sets. In our example, {(clear ?y)} ∈ prec(stack(?x ?y)) and {(ontable ?y)} ∈ prec(stack(?x ?y)).

This generalization method allows to ensure that all the necessary preconditions, i.e. the preconditions allowing to differentiate the states where actions (e.g. stack(a b), stack(b c) etc.) are applicable from states where they are not, to be rightfully coded in the corresponding operators (e.g. stack(?x ?y)).

D. Operator refinement

As we assume partial and noisy observations, it is necessary to refine the PDDL operators. Operator refinement is composed of three steps.

1) Effect refinement: This step ensures that the generated operators allow to regenerate the induced regular grammar (see section III-B). We use the pre-set postset to verify that for each couple of consecutive actions a and a in the DFA, the effects of action a applied in the state s satisfy the preconditions of action a . If it is not the case, we add in the effects of a the propositions satisfying the preconditions of a . For instance, suppose action pick up(b) is an outcoming edge of s and an incoming edge of s , and action stack(a b) is an outcoming edge of s . Likewise suppose {(holding b)} ∈ postset(pick up(b)) and {(holding ?x)} ∈ prec(stack(?x ?y)), we put {(holding ?x)} ∈ add(pick up(?x)) to ensure that the action stack(a b) is feasible in state s after applying pick up(a) in state s.

2) Precondition refinement: In this step, we assume like [START_REF] Yang | Learning action models from plan examples using weighted MAX-SAT[END_REF] that the propositions of the negative effects must be in the action preconditions. Thus for each negative effect in an operator, we add the corresponding proposition in the preconditions. For instance, if (handempty) ∈ del(pick up(?x)) then we put (handempty) ∈ prec(pick up(?x)).

Since effect refinements depend on preconditions and precondition refinements depend on effects, we repeat these two steps until convergence, i.e. no more precondition or effect is added. The refinement converges because refinements only add preconditions and effects, and the set of preconditions and effects is bounded (In our experiments, see Section IV, less than 10 iterations are needed to converge).

3) Tabu Search: The refinement step previously described is able to find most of the preconditions and the effects of the operators even with partial observations. However, this refinement does not prevent to remove relevant or add irrelevant preconditions and effects when observations are noisy. For instance, suppose that the action (stack b a) is applicable in two states s and s in the DFA, i.e., s and s ∈ preset((stack b a)). Now, suppose that the observation function λ(s) returns (clear a) as true and λ(s) returns (clear a) as f alse due to the noise. In that case, (clear b) is not included in the preconditions of (stack b a) even if it has to. Thus, after generalisation, the operator (stack ?x ?y) will not have as precondition (clear b).

To deal with this problem, we propose to use Tabu Search [START_REF] Glover | Tabu Search[END_REF]. Tabu Search is a classical meta-heuristic search method employing local search methods used for mathematical optimization. The idea is to explore variants of the operators set learned in the previous step by adding and removing preconditions and effects. At each steps only variants improving the set of learned operators are kept until a local minimum is found. To determine whether one variant is better than another it is necessary to define an evaluation function. This evaluation function is called a fitness function. In practice, a variant ∆ of an operators set is better than an other one given a positive and a negative set of observations if : (1) ∆ accepts more positive observations, (2) ∆ rejects more negative observations and (3) the state sequences produced by applying the transition function γ ∆ on the positive actions sequences observed in I + violate fewer preconditions and effects than the sequences produced with the other. Formally, the fitness function used by AMLSI to evaluate a candidate variant ∆ given the observations sets I + and I -is defined as follows:

f (∆, I + , I -) =
accept(∆, w) = 1 if γ ∆ (s 0 , w) is defined 0 otherwise reject(∆, w) = 1 if γ ∆ (s 0 , w) is undefined 0 otherwise

IV. EXPERIMENTS AND EVALUATION

The evaluation is carried out in two stages. First, we compare the performance of AMLSI and LSONIO as a function of the size of the training dataset. To the best of our knowledge, LSONIO is the only algorithm taking as input random walks and dealing with partial and noisy observations like AMLSI. Second, we perform an ablation study to highlight the performance gain of each component of the AMLSI algorithm compared to LSONIO on 4 scenarios:

A. Experimental setup

Our experiments are based on 13 IPC2 benchmarks: Blocksworld, Gripper, Hanoi, N-Puzzle, Peg Solitaire, Parking, Zenotravel, Sokoban, Visit All, Elevator, Spanner, Logistics and Floortile. All the PDDL benchmarks are STRIPScompliant. Table I shows our experimental setup.

AMLSI learns domains from one instance. To avoid performances being biased by the initial state, AMLSI is evaluated with different instances. Also, for each instance, to avoid performances being biased by the generated observations, experiments are repeated five times. Then, the length of the random walk observation sequences is randomly chosen between 10 and 30 actions. Finally we generate partial observations by randomly removing a fraction of the propositions of the states, and we generate noise by changing the value of a fraction of the observable propositions. All the tests were performed on an Ubuntu 14.04 server with a multi-core Intel Xeon CPU E5-

Hanoi

Eσ 19.4 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 19.4 0.9 0.9 0.9 0.9 0.9 0.9 29.1 36.9 34.8 0.9 0.9 0.9 21.3 36.7 34 0.9 0.9 0.9 2630 clocked at 2.30 GHz with 16GB of memory. PDDL4J library [START_REF] Pellier | PDDL4J: a planning domain description library for java[END_REF] was used to generate the benchmark data.

B. Evaluation metrics

Two metrics are used for the evaluation: the syntactical error [START_REF] Zhuo | Learning complex action models with quantifiers and logical implications[END_REF] that computes the distance between the original domain and the learned domain, and the accuracy [START_REF] Zhuo | Refining incomplete planning domain models through plan traces[END_REF] that measures the learned domain performance to solve new problems. Even though the syntactical error is the most used metric in the literature, we think that the accuracy is the most important metric in practise for planning because it measures to what extent a learned domain is useful. Indeed, it often happens that one missing precondition or effect, which amounts to a small syntactical error, makes the domain unable to solve any planning problems. These two metrics are therefore complementary and allow both a qualitative and quantitative evaluation of our approach.

Formally, the syntactical error error(o) for an operator is the Hamming distance between the learned operator and the ground truth operator, i.e. the number of extra or missing predicates in the preconditions prec(o), the positive effects add(o) and the negative effects del(o) divided by the total number of possible predicates. By extension, the syntactical error for a domain composed of a set of operator O is:

E σ = 1 |O| o∈O error(o)
Formally, the accuracy Acc = N N * is the ratio between N , the number of correctly solved problems with the learned domain, and N * , the total number of problems to solve. In the rest of this section the accuracy is computed over 20 problems. The problems are solved with Fast Downward v19.06 [START_REF] Helmert | The Fast Downward planning system[END_REF]. Plan validation is done with VAL [START_REF] Howey | Val's progress: The automatic validation tool for pddl2. 1 used in the international planning competition[END_REF], which is used in the IPC competitions.

C. Comparison with LSONIO

Figure 3 shows the average performance of AMLSI and LSONIO obtained on the 13 domains of our benchmarks when varying the training dataset size. The size of the training set is indicated in number of actions. For concision, we present here only the results obtained on the most difficult scenario 4 (partial intermediate observations (25%) and high level of noise (20%)). We observe that AMLSI outperforms LSONIO whatever the size of the learning dataset in terms of accuracy or in terms of syntactical distance. We also observe that AMLSI needs very little data to obtain a relatively large accuracy (almost 70% with only a learning dataset of 200 actions) in the most difficult scenario. Now, if we look at Table III to have a view of the performance of AMLSI and LSONIO by domain and by scenario, we observe that AMLSI outperforms LSONIO whatever the level of observability and noise. To summarize, AMLSI learns more accurate domain, can deal with a higher level of noise and needs less input data than LSONIO. The Base+PS variant is more robust to partial observations than the Base variant of AMLSI. This is due to the fact that DFA learned with PS are generally better that domain learned without PS (see Table II). More precisely, DFA learned with PS generally have fewer nodes and fewer transitions. This allows for fewer false transitions which makes it easier to learn effects and preconditions. However, when observations are noisy, the Base+PS variant is not able to learn domains accurate enough to be used for planning whatever the level of observability. Only the Base+PS+T variant is both robust to partial and noisy observations.

D. Ablation study

Our ablation study confirms that adding unobserved Pairwise Sequences improves the learning of the DFA, and makes AMLSI more robust to partial observations while refining the preconditions and the effects by using a Tabu Search allows AMLSI to learn accurate domains with a high level of noise.

V. RELATED WORK

Many approaches have been devised to learn planning domains. We propose below a classification according to the input data of the learning process. The input data can be plan "traces" obtained by resolving a set of planning problems, partial planning domains to complete or random walks. The input data can contain in addition to the actions also states which can be fully observable (FO), partially observerbale (PO), no observable (NO), or noisy. Table -IV summarises this classification. Note that some learning algorithms take as input other kind of input such as Natural Language [START_REF] Miglani | Nltopddl: One-shot learning of pddl models from natural language process manuals[END_REF], Images [START_REF] Asai | Unsupervised grounding of plannable first-order logic representation from images[END_REF] etc.

A first group of approaches takes as input a set of plan traces and a partial domain, and tries to incrementally refine this domain to complete it, as for instance, OpMaker [START_REF] Mccluskey | An interactive method for inducing operator descriptions[END_REF] or RIM [START_REF] Zhuo | Refining incomplete planning domain models through plan traces[END_REF]. In all of these approaches, it is assumed that the observations are complete and noiseless except Opemaker that induces operators with user interactions by using the GIPO tools [START_REF] Simpson | Planning domain definition using GIPO[END_REF]. A second group of approaches only takes plan traces as input. Most of them deals with partial observations (except Observer [START_REF] Wang | Learning by observation and practice: An incremental approach for planning operator acquisition[END_REF] and OLAM [START_REF] Lamanna | Online learning of action models for PDDL planning[END_REF] that needs complete observations). Among these approaches are ARMS [START_REF] Yang | Learning action models from plan examples using weighted MAX-SAT[END_REF], Louga [START_REF] Kucera | LOUGA: learning planning operators using genetic algorithms[END_REF], Plan-Milner algorithm [START_REF] Segura-Muros | Learning numerical action models from noisy and partially observable states by means of inductive rule learning techniques[END_REF], AIA [START_REF] Verma | Asking the right questions: Learning interpretable action models through query answering[END_REF], [START_REF]Learning user-interpretable descriptions of black-box AI system capabilities[END_REF] or FAMA [START_REF] Aineto | Learning action models with minimal observability[END_REF]. Among these works, the ARMS system is the most known. It gathers knowledge on the statistical distribution of frequent sets of actions in the plan traces. Then, it forms a weighted propositional satisfiability problem (weighted SAT) and solves it with a weighted MAX-SAT solver. Unlike ARMS, SLAF is able to learn actions with conditional effects. To that end, SLAF relies on building logical constraint formula based on a direct acyclic graph representation. Louga takes also as input plan traces and work with partial noiseless observations. However, Louga is able to learn actions with static properties and negative preconditions. Louga uses a genetic algorithm to learn action effects and an ad-hoc algorithm to learn action preconditions. FAMA takes as input partial plan traces, i.e. plan traces where some actions are missing, and observations are partial. This algorithm turns the task of learning into a planning problem: the learning problem is translated into a planning problem, and it resolves it by using a classical planner. Plan-Milner uses a classification algorithm based on inductive rule learning techniques: it learns action models with discrete numerical values from partial and noisy observations. The AIA algorithm learns planning domains by using a rudimentary query system. It generates plans and queries a black-box AI system with these plans to test them and updates its action model from the blackbox responses. Finally, the LOCM family of action model learning approaches [START_REF] Cresswell | Acquiring planning domain models using LOCM[END_REF], [START_REF] Cresswell | Generalised domain model acquisition from action traces[END_REF], [START_REF] Gregory | Domain model acquisition in the presence of static relations in the LOP system[END_REF] works without information about initial, intermediate and final states. These algorithms extract, from plan traces, parameterized automata representing the behaviour of each object of the planning problems. Then preconditions and effects are generated from these automata.

The last group of approaches takes as input random walks, that is, sets of action sequences randomly generated. Random walk approaches like IRALe [START_REF] Rodrigues | Incremental learning of relational action models in noisy environments[END_REF] deal with complete but noisy observations. IRALe is based on an online active algorithm to explore and to learn incrementally the action model with noisy observations. Other approaches such as LSONIO [START_REF] Mourão | Learning STRIPS operators from noisy and incomplete observations[END_REF] deal with both partial and noisy observations. LSONIO uses a classifier based on a kernel trick method to learn action models. It consists of two steps: (1) it learns a state transition function as a set of classifiers, and (2) it derives the action model from the parameters of the classifiers.

VI. CONCLUSION

We have presented AMLSI, a novel algorithm to learn PDDL domains from incomplete observations with high levels of noise. AMLSI is composed of four steps. The first step consists in building two training sets of feasible and infeasible action sequences. This maximizes data usability in situations where obtaining training datasets is costly and/timeconsuming. In the second step, AMLSI induces a regular grammar. The third step is the generation of the PDDL operators, and the last step refines the generated operators. Our experimental results show that AMLSI outperfoms the closest approach LSONIO and is able to learn accurate PDDL domains with little training data minimizing the need for expert proofreading.

Future works will focus on extending AMLSI in order to learn more expressive PDDL (e.g. temporal domains, HTN domains etc.)

Fig. 2 :

 2 Fig. 2: DFA Learning example

+

 w∈I+ s∈γ∆(s0,ω) |s ∩ λ(s)| -|s\λ(s)|where:

Fig. 3 :

 3 Fig. 3: Performance of AMLSI and LSONIO when the training dataset size increases in number of actions.

TABLE I :

 I Benchmark characteristics (from left to right): number of operators, number of predicates, average size of I + and I -training sets, average length of the positive (resp. negative) training sequences ω + ∈ I + (resp. ω -∈ I -).

	Domain	# nodes Without PS With PS	# Transitions Without PS With PS	Compression level Without PS With PS
	Blocksworld	34	27	84	52	20.6	23.7
	Gripper	8	8	16	16	74.9	74.9
	Hanoi	34.5	37	90.6	70.7	18.8	18.1
	N-Puzzle	12.1	12	24.2	24	49.6	50
	Peg Solitaire	29.4	35	51.6	47.9	8.6	8.1
	Parking	60.7	93.3	319.5	224.7	9.8	7
	Zenotravel	32.2	24.7	83.6	55.6	22.51	27.6
	Sokoban	26.5	24.7	69.3	48.9	37.7	37.6
	Visit-All	51.9	50.9	89.8	81.9	13.7	14.4
	Elevator	35.7	36.3	65.9	64.1	17.1	17.1
	Spanner	23.4	26	38.5	39.4	9.9	9.1
	Logistics	52.3	72.9	261	260	11.1	8.2
	Floortile	65.2	92.1	267.4	262.4	9.4	6.7

TABLE II

 II

	3) Partial intermediate observations (25%) and no noise
	(0%).
	4) Partial intermediate observations (25%) and high level
	of noise (20%).

: Induced automaton characteristics (from left to right): average number of nodes, average number of transitions, compression level, i.e. average number of observations per node. PS stands for Pairwise Sequences.

TABLE III :

 III Ablation study of AMLSI. For each metric, results are expressed as percentage and the best results are in bold.

 Table III compares the results obtained by three variants of AMLSI: (B) Base: DFA learning is done without PS (Pairwise Sequences, see Section III-B) and without Tabu Search, (B+PS) Base + PS: DFA learning is done with PS but without Tabu Search, and (B+PS+T) Base + PS + Tabu: DFA learning is done with PS and with Tabu Search during refinement step.

TABLE IV :

 IV State-of-the-art action model learning algorithms. From left to right: the kind of input data, the kind of environment: Fully Observable, Partially Observable or Non Observable, the maximum level of noise in observations, the minimal and maximal accuracy reported.

https://www.icaps-conference.org/competitions/