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Abstract

Over the past decade, neural networks have been successful at making predictions from
biological sequences, especially in the context of regulatory genomics. As in other fields of
deep learning, tools have been devised to extract features such as sequence motifs that can
explain the predictions made by a trained network. Here we intend to go beyond explainable
machine learning and introduce SEISM, a selective inference procedure to test the association
between these extracted features and the predicted phenotype. In particular, we discuss
how training a one-layer convolutional network is formally equivalent to selecting motifs
maximizing some association score. We adapt existing sampling-based selective inference
procedures by quantizing this selection over an infinite set to a large but finite grid. Finally,
we show that sampling under a specific choice of parameters is sufficient to characterize
the composite null hypothesis typically used for selective inference—a result that goes well
beyond our particular framework. We illustrate the behavior of our method in terms of
calibration, power and speed and discuss its power/speed trade-off with a simpler data-split
strategy. SEISM paves the way to an easier analysis of neural networks used in regulatory
genomics, and to more powerful methods for genome wide association studies (GWAS).

1 Introduction

In the recent years, neural networks have been successfully used for making predictions from biological se-
quences. In particular, they have brought significant improvements in regulatory genomics, e.g. to predict
cell-type specific transcription factor binding, gene expression, chromatin accessibility or histone modifica-
tions from a DNA sequence (Zhou & Troyanskaya, 2015; Kelley et al., 2018; Avsec et al., 2021a;b). These
tasks are expected to be a good proxy for predicting the functional effect of non-coding variants, and help us
in turn make better sense of the observed human genetic variation and its effect on various phenotypical traits
including diseases. Most successful models have used convolutional neural networks (CNNs, LeCun & Bengio,
1998) and more recent approaches have explored self-attention mechanisms (Vaswani et al., 2017). These
models have been trained from experimental data obtained from ChIP-seq, ATAC-seq, DNase-seq, or CAGE
assays, that provide examples where both the DNA sequence and the outcome of interest are known.

A commonly outlined limitation of neural networks is their lack of explainability or black box aspect, i.e.,
the contrast between their excellent prediction accuracy and the possibility to explain these in intuitive or
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mechanistic terms (Ras et al., 2022; Molnar, 2022). Elementary one-layer CNNs don’t face this issue, as
their trained filters have a straightforward interpretation as position weight matrices (PWMs, Harr et al.,
1983; Schneider & Stephens, 1990), a historical and basic element of regulatory genomics. Nonetheless, these
simple models are notoriously too simple to capture the complexity of the regulatory code which requires
to account not only for individual motif presence but for their long range sequence context and mutual
interactions (Avsec et al., 2021b). Multi-layer CNNs and self-attention mechanisms model this additional
complexity but are less straightforward to interpret. Tools inspired from the explainable deep learning
literature have been adapted to extract features beyond PWMs and one-layer CNNs to explain the predicted
regulatory behavior (Novakovsky et al., 2022). It is therefore often possible to explain the predictions of a
trained neural network for biological sequences, either directly through estimates of its parameters or through
features extracted post hoc.

Unfortunately, finding features somewhat associated to an outcome is often not enough, as an observed non-
zero association can be spurious. In experimental science, it is actually common to quantify the significance
of this association, e.g., by testing the hypothesis that it is zero. Genome wide association studies (GWAS,
Visscher et al., 2017) for example find genetic variants correlated with a trait by building a linear model
explaining this trait by each variant and testing the hypothesis that the weight is zero. Statistical significance
has its own limitations (Wasserstein & Lazar, 2016), but often provides an intuitive scale for identifying
relevant features. Quantifying the significance of associations between interpretable features and predicted
outcome is equally important in the context of neural networks but has received little attention to our
knowledge.

0

B

B

B

B

@

AGCA:::A

CGTA:::C

GTGC:::A

:::

CAGA:::T

1

C

C

C

C

A

0

B

B

B

B

@

3:2

0:1

6:7

:::

2:3

1

C

C

C

C

A

s association score

f(s)

smin smax

s(z; y)

Motif space

Y

Input dataset

Sequences

Phenotypes y

(NN training)

Motifs selection

Selection event

Motifs space meshing

Selection event definition Empirical conditional null distribution

p-value computationand sampling

Phenotypes space

2 Y

Restricted to

µ

s(z;µ) = 0
y
0
∼ N(µ; !2)

s association score

f(s)
y
0
∼ N(µ; !2)

y

z s(z; y)

the selection event

Figure 1: Overview of our SEISM procedure. (a) The input is a set of sequences and corresponding pheno-
types in some space Y (b) It trains a convolutional neural networks to predict a phenotype from sequences,
which leads to the selection of sequence motifs. (c) Then SEISM partitions the space of motifs to quantize
the selection. The selection event is the set of phenotype vectors that would lead to selecting an element
in the same mesh. (d) Using a sampling strategy, SEISM builds a null distribution for the test statistic,
conditional to the selection event. The p-values associated with a selected motif is the quantile of its score
under this distribution.

Here, we set out to go beyond explainable machine learning by introducing SElective Inference for Sequence
Motifs (SEISM), depicted in Figure 1, a valid statistical inference procedure for these features. In order to
do so, we cast commonly used CNNs in a feature selection framework, and show that it achieves similar
selection performances as existing bioinformatics algorithms on de novo motifs discovery tasks. This selec-
tion needs to be accounted for when testing the association of the features with the predicted trait. This
problem has been discussed and addressed in the growing literature on selective inference over the past few
years (Taylor & Tibshirani, 2015; Reid et al., 2018; Slim et al., 2019), but existing methods only apply to a
selection from a finite set. We work around this issue by quantizing our selection to a very large but finite
space, making it amenable to existing sampling strategies. We show that the resulting procedure is well
calibrated and compare it to a data-split strategy on a variety of settings.

2



For the sake of simplicity, we choose to restrict this presentation to simple one-layer CNNs and sequence
motifs. The procedure that we introduce, however, is by no means limited to this framework, and could be
applied to any of the more expressive features proposed in the explainable machine learning literature.

Our contributions are as follows:

• We formally cast one-layer CNNs into a motif discovery tool, reaching similar performances as
de-novo motifs discovery tools from the bio-informatics literature (Section 3).

• We define a framework to perform post-selection inference dealing with selection over a continuous
set of features, and thereby we make interpretable features amenable to inference (Section 4).

• The standard Gaussian framework for selective inference typically allows several means to be under
the same selective null hypothesis, and require the variance to be known, both of which make more
difficult the sampling under this null. We provide invariance results suggesting a practical procedure
that works around these issues (Section 4.6). To our knowledge, they were a blind spot in sampling-
based post-selection inference approaches beyond our specific context.

• We provide a PyTorch implementation of SEISM at:

https://gitlab.in2p3.fr/antoine.villie1/seism.

2 A short overview of our SEISM procedure

SEISM aims to detect sequence motifs associated with a biological outcome, and to test the statistical
significance of this association. To this end, it performs different steps which we will briefly describe here,
in order to give the reader an overview of the procedure. They are summarized in Algorithm 1, and more
details will be given in the following sections.

(i) SEISM takes as input biological sequences X associated with a phenotype y. The user must also
specify the number of motifs to find, as well as a parameter controlling the meshing of the motif space,
that is the precision with which the found motifs will be tested.

(ii) The motif selection step corresponds to the maximisation of a so-called association score s(·, ·), which
depends on the phenotype and on the motifs z through their activation patterns in the biological
sequences ϕz,X . This step is formally equivalent to training a one hidden layer CNN. We implement
a greedy procedure, optimizing each new filter over the residuals of the previously entered ones, using
a gradient descent method initialized at the k-mer with the best score. To that end, we enumerates
the k-mers contained in X using the DSK software (Rizk et al., 2013) and compute their scores s(·, ·).

(iii) SEISM splits the set of sequence motifs into meshes according to the input parameter. This step leads
to the definition of a set of null hypotheses and of a selection event E, i.e. the set of outcomes y′ that
would have led to the selection of motifs within the same meshes as the ones selected in (ii), namely
the sequence of meshes (Mi1

, . . . , Miq
). Formally, the selection event reads

E :=
{

y′ ∈ Y : ∀j ∈ [q] , arg max
z∈Z

s(z, Pjy′) ∈Mij

}

, (1)

for some projection matrix Pj , to be defined later.

(iv) It approximates the conditional null distribution of the test statistics by sampling biological outcomes y′

under the null, conditionally to the selection event. This sampling is performed using a hit-and-run
strategy (according to Algorithm 2), by building a discrete time Markov chain on E whose distribution
converges to the uniform one.

(v) SEISM finally computes the p-values for the null hypotheses defined in (iii), associated with the selected
motifs in ii, using the empirical distribution of the test statistics, and returns the motifs with their
association p-values. Given these p-values, one can adjust the number of selected motifs discarding the
ones with non-significant p-values. This multiple-testing issue has not been investigated in this paper,
but the practitioner can use for instance a Bonferroni bound to select the number of motifs.
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Algorithm 1 SEISM algorithm (general formulation)

# Description: SEISM selects a set of sequence motifs (z1, . . . , zq) based on an association score s(·, ·), and
evaluate their p-values based on a partition Z =

⊔

Mi.

Inputs: Response y ∈ Y ⊆ Rn, sequence samples X, feature function z ∈ Z 7→ ϕz,X ∈ Rn, association
score s : Z × Y → R, number of selected motifs q ≥ 1, meshes Z =

⊔

i=1

Mi, sampling algorithm HR.

Result: ((p1, z1), . . . , (pq, zq)), sequence of p-values and sequence motifs.

# Selection step: Selection of the sequence motifs (z1, . . . , zq) and the sequence of meshes (Mi1
, . . . , Miq

).

1 for j = 1, . . . , q do

2 zj ← arg max
z∈Z

s(z, Pjy) ; // Pk orthogonal projection onto Span
ℓ<j

{

ϕzℓ,X
}⊥

3 ij ← i s.t. zj ∈Mi ; // the mesh Mij
is selected

4 end

# Inference step: SEISM provides a p-value pk on the statistical influence of the selected sequence motifs zk

conditional on the selection event (1) of observations y′ that would have led to same selection of the sequence
of meshes (Mi1

, . . . , Miq
).

5 y
′(1), ..., y

′(N) ← HR(y,
(

Mi1
, . . . , Miq

)

) ; // Sampling outcomes under the selected null

6 for j = 1, . . . , q do

7 F̃j( · ; y
′(1), ..., y

′(N)) ← empirical cumulative distribution function of s(rMij
, Πjy′) under the selected

null ; // rMij
is a motif representing Mij

and Πj the orthogonal projection onto

Span
ℓ 6=j

{

ϕzℓ,X
}⊥

8 pj ← F̃j(s(rMij
) ; y

′(1), ..., y
′(N)) ; // output the jth p-value

9 end

3 One hidden layer CNNs select sequence motifs maximizing an association score

One-layer CNNs have been at the core of the rising popularity of deep learning over the past decade, by
enabling major improvements in computer vision tasks (Krizhevsky et al., 2012). Although they are formally
a specialized fully connected feedforward networks with additional constraints on the weights, CNNs are
equivalent to, and more often thought of as, a set of convolutions of the vectorial input with some smaller
vectors referred to as filters. When applying the network, dot products are taken between each of them and
successive windows of the vectorial input followed by some non-linear operation, producing an activation
profile for each filter. In one-layer networks, these activations are pooled across the windows into a single
scalar for each filter and these scalars are combined—typically through a linear or regular fully connected
network—to provide a prediction for the input. Because convolution filters are homogeneous to the input,
they easily lend themselves to interpretation: as small image patches for image inputs, and as sequence
motifs for appropriately encoded biological sequence inputs. Accordingly, activation profiles reflect how
much each piece of the input is similar to the filter—in the sense of the dot product—and applying a one-
layer CNN amounts to applying a predictive function to a modified representation of the original data by
these similarity profiles. Because convolution filters are jointly optimized with the parameterization of the
predictive function, CNNs are often described as a strategy to jointly learn a data representation and a
function acting on this representation, both being optimized for a prediction objective. In computer vision,
the optimized filters of the first layer typically learn to detect edges with different orientations. In biological
sequences, they learn short sequences whose presence anywhere in the input is predictive of the output
phenotype used for training.

Unlike input sequences that are formed by a discrete succession of letters in some alphabet, trained filters
are continuous and therefore account for possible variation in the predictive short sequence, e.g., a T mostly
followed by a C but sometimes an A or a G and so on (Figure 2). These probabilistic objects have also been
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Figure 2: A motif represented by its position weight matrix and corresponding sequence logo. The total
height of the letters indicates the information content of the position (in bits), closely related to the Shannon
entropy.

used for a long time in the bioinformatics literature and referred to as position weight matrices (PWMs).
Inferring PWMs either according to their frequency in a set of sequences (Bailey et al., 2006) or their
discriminating power between two sets (Bailey, 2021) has been a major theme over the past thirty years.
Here we formalize the training a one-layer CNN as equivalent to the selection of a set of sequence motifs
that are optimal for some association score. This formalization will be instrumental in the definition of our
hypothesis testing procedure in Section 4.

Notations Let X represent a data set of n one-hot encoded sequence samples {x1, x2, . . . , xn}, in a set X
of biological sequences assumed to be over an alphabet A—for DNA sequences, A = {A, C, T, G}. One-hot
encoding maps each letter in A to a vector in {0, 1}|A|, with all-zero entries except for a single 1 at the
coordinate corresponding to the order of the letter in A—for DNA sequences, A is encoded as (1, 0, 0, 0).
Every xi is therefore encoded as a matrix in {0, 1}|A|×|xi|—although in practice, encoded sequences are often
padded with dummy columns to have the same lengths. We denote yi ∈ Y the measurement of a biological
property associated with sequence xi, and y ∈ Yn the corresponding vector of outcomes. We consider one-
layer CNNs with a Gaussian non-linearity with scale ω, a max global pooling and a linear prediction function.
These CNNs parameterize a function f : X → Y by q filters of length k, namely Z := {z1, . . . , zq} ∈ Zq,
where Z is a subset of R|A|×k, given by the simplex in this paper:

Z =

{

z ∈ R
|A|×k
+ : ∀j ∈ [k] ,

|A|
∑

i=1

zi,j = 1

}

, (2)

and q weights β ∈ R
q.

More precisely, we define f(xi) :=
(

ϕZ,Xβ
)

i
, with ϕZ,X ∈ R

n×q defined as ϕZ,X = Cnϕ̃Z,X , where
Cn = In − n−11n1⊤

n is the centering operator, In the identity matrix, 1n the all-one vector in R
n, and

ϕ̃Z,X
i,j := max

u∈[xi]ℓ

{

exp

(

−||zj − u||2
2ω2

)}

, (3)

where [xi]ℓ denotes the set of ℓ consecutive entries of the vector xi (and of its reverse-complement coun-
terpart), and ω is a bandwidth hyperparameter whose impact and tuning is studied in Appendix A. This
model differs with a typical CNN in two ways. First, it uses a Gaussian activation function instead of an
exponential one; second the use of the centering operator that sets the average of the activation to zero.
These adjustments were made to improve the SEISM algorithm’s selection performances.

3.1 From empirical risk minimization to association scores

The function f is learned in a classical penalized empirical risk minimization framework, using the
data {X, y}:

min
(Z,β)∈(Z×Rq)

n−1
∥

∥y −ϕZ,Xβ
∥

∥

2
+ λ||β||2, (4)
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for some λ > 0. Equation (4) formalizes the idea that learning a one-layer CNN on one-hot encoded
sequences amounts to learning a data-representation ϕZ,X of the sequences parameterized by a set Z of
filters—corresponding to PWMs—and a linear function with weights β acting on this representation. Noting
that there exists a unique explicit optimal β for Eq. (4), it follows immediately that:

arg min
Z

{

min
β

{

n−1||y −ϕZ,Xβ||2 + λ||β||2
}

}

= arg max
Z

{

sridge
λ (Z, y)

}

, (5)

where sridge defines a particular quadratic association score between an outcome y and a set of filters Z:

sridge
λ (Z, y) := yT ϕZ,X

[

(ϕZ,X)T ϕZ,X + λnIq

]−1
(ϕZ,X)T y. (6)

It formalizes the training of a CNN as the selection of a set of filters whose association with y in the sense
of sridge

λ is maximal. Of note, one has

lim
λ→∞

λn× sridge
λ (Z, y) = yT ϕZ,X(ϕZ,X)T y =: sHSIC(Z, y) ,

so for large values of the regularization hyperparameter, selecting filters by learning a CNN is equivalent
to selecting filters with the classical HSIC score (Song et al., 2012), because ϕ already includes a centering
operator. In addition to connecting sridge with sHSIC, we observed that the centering in the definition
of ϕZ,X led to the selection of better sequence motifs in our experiments. Observe that the centering matrix
is an orthogonal projection matrix onto E := Range(Cn), the orthogonal of the vector line generated by the
vector 1, and it holds

∥

∥y −ϕZ,Xβ
∥

∥

2

n
=

∥

∥Cny −ϕZ,Xβ
∥

∥

2

n
+

∥

∥y −Cny‖2
n . (7)

The solution of (4) is unchanged if y is replaced by Cny, and so we can assume that y ∈ E without any
generality loss. Furthermore, this shows that we can work with skewed data in a classification context, since
imbalanced classes will have no effect on the result.

3.2 Greedy optimization

It is common to solve (4) by stochastic gradient descent (SGD) jointly over the q filters. More generally, this
approach for training a neural network with a single, large hidden layer is known to find a global optimizer at
the large q limit under some assumptions (Soltanolkotabi et al., 2019). Our objective here is slightly different:
we do not necessarily aim at approximating a continuous measure with a large number of particules, but we
aim at selecting a small number of particules lending themselves to a biological interpretation. Furthermore,
the number of relevant motifs on a given dataset is generally unknown. In this context, it is known that jointly
optimizing the convolution filters leads to irrelevant PWMs, with some actual motif split across several filters
and other duplicated (Koo & Eddy, 2019). A possible strategy is to forego filter-level interpretation, train an
overparameterized network—with a much larger q than the expected number of motifs—and use attribution
methods to extract relevant motifs or other interpretable features from the trained network (Shrikumar et al.,
2018). Here we adopt a different strategy using a forward stepwise procedure, where we iteratively optimize
each of the convolution filters over the residual error left by the previous ones.

More precisely at each of the q steps, we select zj such that:

zj = arg max
z∈Z

sridge(z, Pjy) , (8)

where Pj is the projection operator onto the orthogonal of the subspace Span
ℓ<j

{

1, ϕzℓ,X
}

, see line 2 of

Algorithm 1. This is how zj is optimized over the residuals of the previous filters. The vector 1 enforces that
we project on a subspace of E , in particular P1 = Cn. Without this projection, iterating (8) would return
the same z. Of note, joint optimization procedures of the q filters don’t face this issue, and forward selection
procedures over finite sets of features work around the problem by iteratively removing the selected elements
from the set over which selection if performed (Slim et al., 2019). This sequential strategy combined with
the testing procedure introduces in Section 4 provides a data-driven mean to choose the number q of relevant
motifs.
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In practice, we solve (8) with a standard gradient descent algorithm, initialized at the k-mer with the best
association score. The k-mer list is obtained using the DSK software (Rizk et al., 2013). We work on a less
constrained set than Z (2) and don’t enforce the positivity constraint during optimization. We project the
optimized motifs onto the full Z at the end of the process. Our procedure also requires to choose a motif
length k. We proceed adaptively by choosing the length leading to the highest score, within a user-specified
range.

With the one-layer CNNs training formally cast as the successive selection of q sequence motifs optimizing
an association score, we now turn to the problem of testing the significance of these associations. Of note,
what follows is only based on the definition of an association score and could be applied to perform inference
on other features coming from the training step of any algorithm, as long as one can define an association
score between the feature and the outcome.

4 Post-selection testing of the association between the outcome and trained
convolution filters

We now turn to the problem of testing the association between the selected motifs z and the trait y. In order
to do so, we need to solve three interrelated problems. First, the motifs were specifically selected for their
association with the trait, which leads to the well known post-selection inference problem. Any inference
procedure that disregards that the hypothesis was constructed using the same data used for testing is likely
invalid and produces deflated p-values. Second, we deal with a continuous selection event, because (8)
is performed over a continuous set Z. By contrast, existing solutions for post-selection inference address
selections over finite sets. Third, the null hypothesis commonly used for similar post-selection inference
problems is composite, i.e., it corresponds to several values of the parameters. Existing methods work
around this issue by fixing theses parameters to arbitrary values, thereby limiting the scope under which
they are calibrated. Here we present our solutions to these three problems.

Consider the Gaussian model:
y = µ + σǫ (9)

where µ ∈ E is the target deterministic signal, and ǫ ∼ N (0, Cn) the standard Gaussian distribution on E .

4.1 Selective null hypothesis

We follow Yamada et al. (2018) and test the association of a motif z through the following null hypothesis:

H0 : “s(z, µ) = 0”, (10)

for some association score s. For a z chosen independently of the data, H0 could be tested by sampling y′

under the corresponding distribution, and using the quantile of the s(z, y′) scores corresponding to s(z, y)
as a p-value—i.e., the probability when sampling under H0 to observe a score as extreme as s(z, y). In
our case, however, the motifs z in the trained convolution filters were specifically selected for their strong
association with y, and this procedure would not produce calibrated p-values. This problem is known as
post-selection inference, and has been discussed and addressed in a growing literature over the past few
years. Although data-split strategies — which split the data into two parts, and then perform the selection
and the inference on the two different parts — lead to valid procedures (Wasserman & Roeder, 2009), they
necessarily result in a reduction of the sample size, unsatisfying when the original sample size is limited.
Alternatively, selective inference frameworks were developed in the recent years to address these issues. We
refer to (Hastie et al., 2015, Chapter 6) and references therein for a general presentation. Taylor et al. (2014)
and Lee et al. (2016) address scenarios where the selection event, i.e. the set of data outputs that would
result in the selection of the same set of features, is polyhedral—determined by the finite intersection of
linear constraints. Reid & Tibshirani (2013), and later Reid et al. (2015) extend this selection to clusters or
groups of features, still in the linear framework. Yamada et al. (2018) extended post-selection inference to
the non-linear framework, by proposing a kernel-based approach, where the selection is performed through
the HSIC criterion. Slim et al. (2019) generalize this work, by allowing the selection to be carried out with
a wider range of tools, making use of quadratic association scores.
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To our knowledge, post-selection inference literature only addresses the problem of selecting features from
a discrete collection and does not provide a solution for selections from a continuous set like our Z. Hence,
testing (10) directly is not feasible and we resort to the quantization of the motif space to address this
problem.

In addition to that, we push the analysis of the statistical model further, in order to be able to apply it with
weaker assumptions on the data distribution.

4.2 Dealing with selection events over a continuous set of features

Formally, our selection event Econt. is the set of outcomes y′ that would have led to the selection of the same
set of motifs Z = {z1, . . . , zq} than the one selected using y from the real dataset, when applying the same
selection procedure:

Econt. :=
{

y′ ∈ E : ∀j ∈ {1, . . . , q} arg max
z∈Z

s(z, Pjy′) = zj

}

, (11)

where Pj is the orthogonal projection onto Span
ℓ<j

{

1, ϕzℓ,X
}⊥

.

A simple rejection approach to sample from the null (10) conditioned to Econt. would be to sample y in E
under (9, 10) and only retain those in Econt.. Unfortunately, Econt. belongs to a strictly lower-dimensional
vector space of R

n and is therefore a null set for the Lebesgue measure on R
n. For sHSIC and sridge, and

noting that a maximum is also a critical point, we indeed obtain:

y′ ∈ Econt. =⇒ ∀j ∈ {1, . . . , q} Pjy′ ∈ Span
{

∇zϕzj ,X
}⊥

.

For q = 1 and assuming that the different directions of the gradient are independent, this spans is a
vector subspace with dimension n − 4 × k. We empirically observed that sampling from this subspace
produced a non-zero proportion of y′ in Econt.. Nonetheless, choosing a sampling distribution that leads
to the correct conditional distribution is not straightforward—and may not even be possible—as discussed
in Supplementary Material B. Moreover, relying on conditional probability with respect to a null set is
not well defined and may lead to the Borel-Kolmogorov paradox (Bungert & Wacker, 2022), which further
complicates its use.

We choose to circumvent this issue using a partition of the space Z of motifs spaces, over which our selec-
tion (8) operates, into a very large but finite set of meshes: Z =

⊔

Mi. As depicted in Figure 3, we consider
a regular partition of each coordinates into m bins:

1

0:75

0:5

0:25

0

1 0:75 0:5 0:25 0

0

0:25

0:5

0:75

1

A C

G

Figure 3: Discretization of the 3-letters alphabet simplex {A, C, G}, with a binning parameter for the meshes
m = 4.

Based on this partition into meshes, we define a quantized selection event E as follows. First, given an
outcome y we define the sequence of the q selected meshes (Mi1

, . . . , Miq
) as

∀j ∈ {1, . . . , q} , arg max
z∈Z

s(z, Pjy) ∈Mij
,
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Second, the selection event is given by:

E(i1, . . . , iq) :=
{

y′ ∈ Y : ∀j ∈ {1, . . . , q} , arg max
z∈Z

s(z, Pjy′) ∈Mij

}

, (12)

the set of outcomes y′ that would have led to the selection of motifs within the same meshes as the selected
ones (Mi1

, . . . , Miq
).

We now show how quantization (12) of the selection problem make enables the definition of a valid inference
procedure. We start with the simplest case where we select a single motif (q = 1).

4.3 Test with only one motif q = 1, µ and σ fixed

In this section, considering the motif z1 was chosen by the SEISM selection procedure, selection event (12)
boils down to:

E(i1) :=

{

y′ ∈ Y : arg max
z∈Z

s(z, y′) ∈Mi1

}

(13)

We use this simplified case to introduce our null hypotheses and test statistics attached to this selection
event, and consider two options:

• A first option consists in representing the mesh Mi1
by its center c1. Then the corresponding null

hypothesis is the following:

H
′
0,1 : “s(c1, µ) = 0”, (14)

It can be tested using statistic V ′
1 = s(c1, y).

• A second possibility is to represent Mi1
by the motif with the highest association score within. In

this case, the null hypothesis becomes:

H
′′
0,1 : “∀z ∈Mi1

, s(z, µ) = 0”, (15)

We test it using statistic V ′′
1 = max

z∈Mi1

s(z, y).

In both cases, we reject the null hypothesis if the test statistics are greater than a threshold, determined
by their cumulative distributions under the nulls (14), (15) conditionally to E(i1) : F′

1,(i1) and F′′
1,(i1). In

practice, there is no closed form for these conditional cumulative distributions, and we rely on an empirical
version that we build using a hit-and-run sampler algorithm, as described in Section 4.4.

Hypotheses (14) and (15) lead to very similar results when the meshes are small enough, which is easily the
case in practice. (14) gives us insights on one specific motif of the mesh — the center, but (15) tells us about
whether there exists a motif within Mi1

associated with the phenotype. To illustrate the difference, let us
consider a meshing with only one bin per coordinate, that is the meshing with only one mesh, containing all
the motifs:

• Testing the center-based null hypothesis (14) boils down to testing the association of µ with the
motif c1 with the same probabilities for each letter of A at every position, and produces a p-value
of 1, regardless of the data, since for any k-mer u, ‖c−u‖2= k× (0.752 + 3× 0.252), which leads to
∀X ∈ X , ϕc,X = 0 according to the centering step, and to a zero score for any y′ ∈ E .

• By contrast, one can obtain a strictly less than 1 p-value for (15), because different y′ ∈ E can lead
to different scores, which means that there may exist a motif in Z associated with y— but does not
inform us on which motif it is.
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Algorithm 2 Hypersphere Directions hit-and-run sampler

/* Description: The Hypersphere Directions hit-and-run sampler creates a discrete-time

Markov chain on an open and bounded region and is used to approximate a uniform

distribution on the selection event E. */

Inputs: Response y ∈ E ⊆ Rn, B and R the numbers of burn-in iterations and replicates.

Result: y
′(B+1), ..., y

′(B+R) ∈ E ⊆ Rn the replicates sampled under the conditional null distribution

10 ỹ
′(0) ← L(y); /* L is the cumulative distribution function of N (µ, σ2Cn) */

11 for t = 1, . . . , B + R do

12 Sample uniformly θ(t) from {θ ∈ Rn, ‖θ‖= 1};

13 a(t) ← max

{

max
θ

(i)
t >0

− ỹ
′(t−1)

θt

; max
θ

(i)
t <0

1− ỹ
′(t−1)

θt

}

;

14 b(t) ← max

{

min
θ

(i)
t <0

− ỹ
′(t−1)

θt

; min
θ

(i)
t >0

1− ỹ
′(t−1)

θt

}

; /* Sampling λ(t) from
]

a(t), b(t)
[

ensures that

ỹ
′(t−1) + λ(t)θ(t) ∈]0, 1[n */

15 while y
′(t) /∈ E do

/* This loop is parallelized on several cores until one of them discovers a

replicates in the selection event. */

16 Sample uniformly λ(t) from
]

a(t), b(t)
[

;

17 ỹ
′(t) ← ỹ

′(t−1) + λ(t)θ(t);

18 y
′(t) ← L−1(ỹ

′(t));
19 end

20 end

4.4 Sampling from the conditional null distribution with the Hit-and-Run algorithm

Even after reducing our selection to a finite set (Section 4.2), a rejection sampling strategy that would
draw y′ from either (9, 16) or (9, 17) and only retain those leading to the selection of the same mesh as y

is not tractable as the rejection rate is empirically too low. Following Slim et al. (2019), we resort to a
Hypersphere Direction strategy (Algorithm 2).

The hit-and-run algorithm produces uniform samples from an open and bounded acceptance region—
corresponding, in our case, to the selection event. It starts from any point in the acceptance region, draws a
random direction from this point and samples along this direction until it finds one elements that also falls
in the acceptance region. It then follows the same procedure from this new starting point. The hit-and-run
sampler therefore also relies on rejection but it does so along a single dimension rather than from R

n. It
explores the selection event step by step, starting from a point that belongs to this event, which guarantees
a higher acceptance rate. To speed up the procedure, we parallelize the rejection step across several cores.
Because each point sampled by the hit-and-run procedure depends on the previous one, it is impossible to
parallelize the whole sampling process. By contrast, the rejection step used for computing a single replicate,
once a sampling direction has been fixed, can be parallelized. We draw several distances to the initial point
independently, optimizing new independent points, until one of them belongs to the selection event. This
parallelization provides a significant time saving, as discussed in Section 5.3. Algorithm 2 produces uniform
samples from an open and bounded acceptance region. The boundedness assumption does not hold in our
case as the arg max over Z of the score only depends on the direction of y and not on its norm. The
openness requirement is ensured by the definition of the meshes. Following Slim et al. (2019) again, we use
the reparameterization ỹ = L(y), where L : Rn →]0, 1[n is defined as L(y)i = Lµ,σ2(yi) for i = 1, . . . , n
and Lµ,σ2 denotes the cumulative distribution function of N (µ, σ2Cn). Sampling uniform ỹ from the open
bounded space ]0, 1[n indirectly provides normal samples from N (µ, σ2Cn).
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Combining this sampling strategy with the quantization of the selection event introduced in Section 4.2 and
the selective null hypotheses attached to this event introduced in Section 4.3 provides a selective inference
procedure for one selected motif z1 (q = 1) and a null defined by a given pair (µ, σ) of parameters. Our
next two steps are to handle the selection of multiple motifs, and the general case where several µ describe
the same null hypothesis and σ is not specified.

4.5 Dealing with the selection of several motifs (q > 1)

We now consider that we selected q > 1 motifs with the SEISM procedure, leading to the general (12)
selection event E(i1, . . . , iq) . Generalizing our single-motif strategy of Section 4.3, we propose two options
for defining null hypotheses (and test statistics) related to this selection event:

• The first one relies on the centers of the selected meshes:

H0,j : “s(cj , Π′
jµ) = 0”, (16)

where Π′
j is the orthogonal projector onto Spanℓ 6=j

{

ϕcℓ,X
}⊥

. In other words, it expresses that the
center of the mesh Mij

is associated with µ after removing its component carried by the span of the
centers of the meshes corresponding the the q − 1 other motifs.

• And the second one takes advantages of the best motifs in each mesh:

H0,j : “∀(z∗
iℓ

)ℓ 6=j ∈ (Miℓ
)ℓ 6=j , ∀z ∈Mij

, s(z, Π′′
(

(

z∗
iℓ

)

ℓ 6=j

)

µ) = 0”, (17)

with Π′′
(

(

z∗
iℓ

)

ℓ 6=j

)

being the projection onto Spanℓ 6=j

{

ϕ
z∗

iℓ
,X}⊥

.

Generalizing what we introduced for q = 1 (Section 4.3), we test those hypotheses using V ′
j = s(cj , Π′

jy) and
V ′′

j = maxz∈Mij
s(z, Π′′

j y). To that end, we rely on their cumulative distributions under the nulls (16), (17)
conditionally to E(i1, . . . , iq) : respectively F′

1,...,q(i1,...,iq) and F′′
1,...,q,(i1,...,iq), empirically approximated with

Algorithm 2.

Following the work of Loftus & Taylor (2015) in the finite case, both versions of our null hypothesis are
joint across the q motifs: each of them considers the association between the j-th selected motif and µ after
projecting onto the span of all others, not just the ones that were selected before — using Π′ and Π′′. This
is to be contrasted to our sequential selection process, which adjusts at each steps for the previously selected
motifs using P .

In order to give more insights on these null hypotheses, we derive the following proposition:

Proposition 4.1 (Description of the selective nulls). Let Z = {z1, . . . , zq} be q sequence motifs. Let s(·, ·)
be a score such that "nullity implies orthogonality" (for instance sHSIC or sridge):

(A1) Nullity implies orthogonality: If {s(z, y) = 0} then {〈ϕz,X , y〉 = 0}, for every (y, z) ∈ E × Z,
and for some function z → ϕz,X ∈ E.

Let µ ∈ E and decompose µ as

µ =
q

∑

j=1

αjϕzj ,X + µ (18)

with µ ∈ E orthogonal to Span(ϕZ,X).

It holds that “s(zj , Πjµ) = 0” is equivalent to “αj = 0” for some decomposition (18).

If Rank(ϕZ,X) = q then the decomposition (18) is unique, and the greedy selection procedure described
in Section 3 enforces this situation. We interpret this as follows: we look at a motif zℓ and would like to
test its significance; in view of property (A1), we can eliminate the effects that are captured by the other
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motifs by using the orthogonal projection onto the orthogonal of Span(ϕzj ,X), given by Πj (using Πj = Π′
j

or Πj = Π′′
(

(

z∗
iℓ

)

ℓ 6=j

)

), and consider Πjy to test the association “s(zj , Πjµ) = 0”; equivalent to testing

“αj = 0” by the above proposition.

4.6 Sampling under selective multiple hypotheses with known σ

The sampling strategy described in Section 4.4 builds a conditional null distribution—therefore offering a
selective inference procedure—for a given µ and σ. In practice, σ is not known, and several values of µ

can describe the selective null hypotheses (16) or (17) for a given motif selection. Of note, this issue is
not specific to our selective inference procedure. It will arise in any sampling-based post-selection inference
strategy including data-split: even if the latter samples from a non-selective null hypothesis, it still needs
concrete values for µ and σ.

We leave aside the choice of σ for now, and describe how we can sample from any null distribution (16)
or (17) using µ = 0 for a given σ. Our results holds for scores verifying the following assumption—this
includes both sHSIC and sridge:

(A2) Nullity implies translation-invariant: If s(z, y) = 0 then ∀y′ ∈ E , s(z, y′) = s(z, y + y′), for
every (y, z) ∈ E × Z;

Under this assumption, the following proposition ensures that using the quantile of the empirical distribution
of scores sampled under µ = 0 leads to a calibrated test procedure:

Proposition 4.2. Let s be an association score such that (A2) holds. Let V ′
j = s(cj , Π′

jy) and V ′′
j =

maxz∈Mij
s(z, Π′′

j y), formed from y sampled from (9) with any mean µ such that s(z′, µ) = 0, any known

variance σ > 0, and such that z′ = arg maxz∈Z s(z, y). The conditional null distributions F′
j,(i1,...,iq) and

F′′
j,(i1,...,iq), with mean 0 and variance σ verify:

F
′
j,(i1,...,iq)(V

′
j ) ∼ Unif (0, 1) and F

′′
j,(i1,...,iq)(V

′′
j ) ∼ Unif (0, 1)

Proof. Assumption (A2) under the Gaussian model (9) implies the following property:

∀(z, A, y) ∈ Z ×A× E such that y = µ + σǫ,

“s(z, Aµ) = 0” =⇒ “s(z, Ay) = s(z, σAε)”,
(19)

which implies that, for a composite null hypothesis of the form H0 : “s(z, Aµ) = 0”, the distribution
of s(z, Ay) does not depend on the mean µ that satisfies H0. Hence, even if the hypothesis H0 corresponds
to a set of probability distributions of y that may depend on µ, the distribution of the statistic s(z, Ay)
does not depend on µ under this hypothesis. We can then conclude that if σ is known, as it is assumed
to be the case in this section, then a test statistic of the form V = s(z, Πy) has the same distribution
as s(z, σΠǫ).

4.7 Sampling under selective multiple hypotheses with unknown σ

In practice, σ is often unknown. To address this issue, we rely on the normalized versions of the test
statistics V ′ and V ′′ introduced in Section 4.3, defined by

T ′
j :=

s(cj , Π′
jy)

‖y‖2
and T ′′

j := max
z∈Mij

s
(

z, Π′′((zℓ)ℓ 6=j

)

y
)

‖y‖2
(20)

where zℓ = arg maxz∈Z s(z, Pℓy). We will denote G′
j,(i1,...,iq) and G′′

j,(i1,...,iq) their cumulative distribution
functions under the null, conditionally to E(i1, . . . , iq).

We will also make use of a third assumption, here again fulfilled by sHSIC and sridge:
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(A3) Two-homogeneity: It holds that s(z, ty) = t2s(z, y) for all (y, z) ∈ E × Z and all t > 0.

Of note, normalizing the association score with respect to the labels does not affect the selection:

∀y ∈ Y, arg max
z∈Z

s(z, y) = arg max
z∈Z

s(z, y)
‖y‖2

(21)

If µ = 0, the distribution of the normalized statistics does not depend on σ, and the empirical cumulative
distribution functions of normalized scores obtained by sampling under µ = 0 and any σ still provide a valid
inference procedure :

Proposition 4.3. Let s be an association score such that (A2) and (A3) hold. Let T ′
j = s(cj , Π′

jy)/‖y‖2

and T ′′
j = maxz∈Mij

s(z, Π′′
j y)/‖y‖2, formed from y sampled from (9) with mean µ = 0, and any variance

σ > 0. Then for all σ′ > 0, their conditional null distributions G′
j,(i1,...,iq) and G′′

j,(i1,...,iq) with mean 0 and

variance σ′ verify:
G

′
j,(i1,...,iq)(T

′
j) ∼ Unif (0, 1) and G

′′
j,(i1,...,iq)(T

′′
j ) ∼ Unif (0, 1)

Proof. Let us consider two different normal models as defined in (9) under the global null hypothesis “µ = 0”
and given by

y(1) = σ(1)ε(1) and y(2) = σ(2)ε(2)

Then

s(cj , Π′
jy(1))

‖y(1)‖2
∼

s(cj , Π′
jy(2))

‖y(2)‖2
and

s(z, Π′′
(

(zℓ)ℓ 6=j

)

y(1))

‖y(1)‖2
∼

s(z, Π′′
(

(zℓ)ℓ 6=j

)

y(2))

‖y(2)‖2
.

The proof directly follows assumption (A3) applied with t = ‖y(·)‖2. Proposition 4.3 is complementary
to Proposition 4.2 and provides a selective inference procedure when σ is unknown, under the special null
hypothesis µ = 0.

Our final result investigates the testing procedures for the general null hypotheses (16) and (17)—not re-
stricted to µ = 0—with an unknown σ. Recall that the decision rule is to reject the null hypothesis if the
observed value of the statistic is greater than a given threshold t. We show that choosing t to be a quantile
for the global null hypothesis (µ = 0) leads to a calibrated (for the type I error) non-selective procedure,
see (22).

Proposition 4.4 (Global null achieves lowest observed significance). Let Z = {z1, . . . , zq} be q sequence
motifs. Let s(·, ·) be a score such that (A1) and (A2) hold. Let µ ∈ E be such that

H0 : “s(Z, µ) = 0”

Then

∀t > 0 , sup
µ∈H0

P

[

s(Z, µ + σǫ)
‖µ + σǫ‖2

≥ t

]

= P

[

s(Z, ǫ)
‖ǫ‖2

≥ t

]

(22)

We provide a proof in Appendix C. This proof makes an ad-hoc use of Anderson’s theorem on a symmetric
convex cone (whereas it is usually devoted to symmetric convex bodies).

Proposition 4.4 shows that data-split produces a calibrated procedure for testing the general null hypothe-
ses (16) and (17) when sampling under the global null (µ = 0) the test statistics (20). We could not prove
an equivalent statement for conditional null hypotheses, and Proposition 4.4 therefore does not guarantee
the validity of a selective inference procedure sampling under the global null (µ = 0). Yet, we used it as
a heuristic justification of SEISM and we observed that it leads to empirically calibrated procedures, see
Section 5.2.

In view of Proposition 4.4 and its proof, one can see that the alternatives µ such that ‖Pqµ‖/‖µ‖ is large
have small power. As the selection procedure described in Section 3 achieves good results (Section 5.1),
the chosen motifs Z should capture the principal components of µ, and therefore are such that ‖Pqµ‖/‖µ‖
should be small.
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5 Results

5.1 SEISM performs as well as state-of-the-art de novo motif discovery methods

In order to compare the accuracy of our selection step with existing motif discovery algorithms, we use
the 40 ENCODE Transcription Factors ChIP-seq datasets from K562 cells (ENCODE Project Consortium,
2004), each of which contains a known TF motif, denoted m∗, derived using completely independent assays
(Jolma et al., 2013). STREME (Bailey, 2021) and MEME (Bailey et al., 2006) are state-of-art bioinformatics
methods for de-novo motifs discovery tasks. STREME identifies motifs that maximize a Fisher score of
association between the presence of the motif and the binary class of sequences. By looking for maximum
likelihood estimates of the parameters of a mixture model - made up of a background distribution and a model
for generating k-mers at some positions - that may have produced a particular dataset using an expectation
maximisation technique, MEME finds enriched motifs in this dataset. Finally CKN-seq (Chen et al., 2017)
is a one-layer CNN tailored to small scale datasets. We set up STREME, MEME and SEISM to select 5
sequence motifs. SEISM is run with a regularization parameter λ = 0.01. CKN-seq jointly optimizes its
filters, which notoriously leads to poor performances when few filters are used. We train it consequently over
128 filters. We measure these accuracy of all methods by comparing the motifs they discover with the known
motif corresponding to the transcription factor m∗. We rely on the Tomtom method (Gupta et al., 2007),
which quantifies the probability that the euclidean distance between a random motif and m∗ is lower than the
distance between the discovered motif and m∗. More precisely for each method we use the lowest Tomtom
p-value between the known TF motif m∗ and any of those discovered by the method. The Tomtom score is
then defined as − log10 of the Tomtom p-value. We define the accuracy of the method as the proportion of
experiments where the Tomtom score between its best match and the true TF motif was higher than some
threshold.
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Figure 4: Left: Proportion of datasets where the true motif was detected by the designated algorithm. A
true motif is said to be detected if its highest Tomtom score with the discovered motifs is greater than 2.
Right: Accuracy of motif discovery algorithms on ENCODE TF ChIP-seq datasets. The curves display the
proportion of ChIP-seq datasets were the best motif identified by the designated algorithm has a Tomtom
score greater than x.

Figure 4 (left panel) demonstrates that SEISM is just as good as, if not superior to, state-of-the-art bioinfor-
matics algorithms at detecting sequence motifs when thresholding Tomtom p-values at 0.01. The one-layer
CNN with jointly optimized filters performs poorly in this experiments, emphasising the importance of greedy
optimization for selecting the right motif.

Figure 4 (right panel) shows that SEISM performs slightly worse than STREME and MEME for high
thresholds on the Tomtom scores. This suggests that the matrix z that SEISM identifies is close enough to
the PWM matrix of the true motif, but farther away than the matrices identified by STREME or MEME.
This discrepancy reflects a different usage of z to parameterize a distribution of k-mers. In practice, we
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observe that on a given dataset, the p-values of the best motifs discovered by SEISM and STREME are not
separated by more than 2 orders of magnitude, which leads to minor differences in the motifs, as illustrated
in Table 1.

Reference motif SEISM motif STREME motif
(ATF4_DBD) p-value= 10−6 p-value= 3× 10−8
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Table 1: Comparison between two discovered sequence motifs by SEISM or STREME, and the true motif
(ATF4_DBD)

Both SEISM and MEME/STREME exploit a distribution of k-mers at the transcription factor binding site.
MEME and STREME maximize the likelihood of a categorical model, whereby the matrix z directly defines
the probability to observe each letter at each of the k sites:

∀
(

u, z ∈ Z
)

, Lcat(u; z) =
k

∏

i=1

uT
i zi (23)

SEISM on the other hand is based on a Gaussian model. Through representation (3), z is meant to maximize
the Gaussian likelihood of a set of k-mers, i.e.

∀
(

u, z ∈ Z
)

, Lgaus(u; z) = C

k
∏

i=1

e− ‖ui−zi‖2

2ω2 (24)

where C is a constant such that the sum of probabilities over R4×k equals 1. If we consider a binary y to
match the setting of MEME/STREME, this set is made of one k-mer for each positive sequence. Importantly,
the true TF motifs from (Jolma et al., 2013) that we use to assess selection accuracies are also defined through
the maximum likelihood in a categorical model, which can explain why the z obtained with MEME/STREME
are closer to the true PWM than the one obtained with SEISM.

We now illustrate on a simple example how the same distribution of k-mers is parameterized by different
matrices under the two models. To build an easy example, we focus on k-mers of length 1, with

P (A) = 0.3, P (C) = 0.4, P (G) = 0.1, P (T ) = 0.2 (25)

The matrix z1 = (0.3, 0.4, 0.1, 0.2)T used with the categorical model trivially constructs such a distribution.
But using the same matrix in a Gaussian model with a parameter ω fixed as described in Appendix A leads
to a slightly different distribution:

P (A) = 0.28, P (C) = 0.43, P (G) = 0.11, P (T ) = 0.18 (26)

A distribution closer to Equation (25) can be constructed with a Gaussian model parameterized by z2 =
(0.315, 0.38, 0.08, 0.225)T .

To clarify the relationships between those two motifs, we will rewrite (23) considering u is one hot encoded.
That is, for each position i, it has only one 1 for letter j(i) and 0’s elsewhere:

∀
(

u, z ∈ Z
)

, Lcat(u; z) =
k

∏

i=1

zi,j(i) (27)
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Assuming that the columns of z are normalized and ω = 1, we can modify (24):

∀
(

u, z ∈ Z
)

, Lgaus(u; z) = C

k
∏

i=1

e− ‖ui−zi‖2

2ω2 = C2

k
∏

i=1

euT
i zi = C2

k
∏

i=1

ezi,j(i) (28)

With the Gaussian model and a few assumptions, the motifs can the be seen as defining the log probability
to observe each letter at each of the k sites. This gives us a new interpretation for the filters learned by
CNNs and suggests that in this framework it might be interesting to constrain ez rather than z to be in Z.

We used a Gaussian activation function since it is closer to typical CNNs approaches. Our framework
is generic enough to allow other activation functions based on the categorical model, or more realistic
variants (Ruan & Stormo, 2017).

5.2 Statistical validity and performances

In order to assess the statistical validity and of the SEISM procedure with the different strategies, we simulate
datasets under the null hypothesis. To that end, we draw one sequence motif z̃ with length k = 8 for each
simulated dataset using a uniform distribution on Z restricted to motifs with an information level fixed at
10 bits. Then, we draw a set of n = 30 biological sequences X as follows: all sites are generated according
to a uniform distribution over A, C, T, G for all sequences, and for half of the sequences one k-mer is drawn
according to the categorical model parameterized by z̃. The phenotypes y are drawn from N (0, σ2Cn) to
generate data under the null hypothesis for calibration experiments, and from N (ϕz̃,X , σ2Cn) to generate
data under the alternative for experiments on statistical power, with σ = 0.1 in both cases. We then run
the SEISM procedure to select and test two sequence motifs. For both the data-split strategy and the
hypersphere direction sampling one, the distribution from which the replicates are drawn uses the empirical
variance from y as variance parameter. Although any choice for this parameter leads to a valid procedure,
as described in Section 4.6, we make this choice for numerical stability considerations. For the data-split
strategy, we sample 1000 replicates under the null hypothesis to compute the p-value. For SEISM, we sample
50, 000 replicates under the conditional null hypothesis using the hypersphere direction sampler, after 10, 000
burn-in iterations.

Figure 5 (top) shows the Q-Q plot of the distribution of quantiles of the uniform distribution against the
p-values obtained across 1000 datasets under the null hypothesis for the data-split strategy and 100 datasets
for the hypersphere direction sampling one. All the data points are well-aligned with the diagonal, which
confirms the correct calibration of both the data-split and hypersphere direction sampling strategies, either
considering the best motif or the center of the mesh and regardless of the size parameter.

Figure 5 (bottom) shows the same Q-Q plot on data generated under the alternative hypothesis. From
this figure, we observe that on small datasets, the post-selection strategy is more powerful than the data-
split one, regardless of the size of the mesh considered or the choice concerning the definition of the null
hypothesis. The variance observed on the curves associated with the selective inference procedure is due to
the presence of a weak residual signal after the first motif as a result of an imperfect selection step. Testing
it with the best motif in the mesh captures this signal, resulting in curves under the diagonal. By contrast,
focusing on the center of the meshes leads to testing motifs that do not capture this signal, placing us in the
conservative situation, described at the end of Section 4.7. The residual signal is not well explained by the
mesh’s centers, and thus its component on the orthogonal of the span of the activation vector of the second
motif is important. The larger the mesh, the farther its center is to the selected motif and thus the less
signal it captures, which explains the differences between the two curves.

5.3 Computation costs

The section serves as an overview of how various user-specified parameters impact the computation time
required by the post-selection inference procedure.

As discussed in 4.6, the hit-and-run algorithm is actually a rejection sampler. Its overall computation cost
depends mainly on two characteristics: the cost of the selection step, that is the cost of selecting q motifs
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Figure 5: Q-Q plots obtained by applying data-split and different hit-and-run sampling strategies to select
two motifs and test their association with an outcome. Top: data simulated under the null hypothesis. The
proximity between the quantiles of the obtained p-values and those of the uniform distribution confirms that
all SEISM strategies presented in this article are correctly calibrated. Bottom: data simulated under an
alternative hypothesis, where the outcome depends on the activation ϕ

˜z,X of a single motif in the sequence.
The distributions of the p-values computed with the post-selection inference (PSI) strategies have a larger
deviation to the uniform distribution than the distributions of the p-values computed with the data-split
strategy (purple).

for a given phenotype y, and the acceptance rate. Although some parameters affect the selection cost, the
acceptance rate is primarily responsible for determining if a user-specified combination of parameters results
in a tractable configuration for the post-selection method in a reasonable amount of time. This rate is high
compared with a naive rejection sampler over E , as the hit-and-run strategy reduces the dimension over
which the rejection step is performed: from n with a naive sampler to 1. Nonetheless some parameters may
have a major impact on the rejection rate. To clarify it, we studied in Figure 6 the impact of several user-
specified parameters — the number of motifs to be discovered, the precision of the meshes, the regularization
parameter of the ridge score and the number of computation cores allowed during the rejection step of the
hit-and-run sampler.

Although the number of motifs to be found by SEISM undoubtedly affects the selection cost, we can roughly
consider that this relationship is linear. The upper left figure in Figure 6, however, demonstrates that the
influence on the overall computing cost is superlinear, in line with the exponential growth of the number
of distinct selection events one may describe with a fixed mesh size. As a result, the post-selection process
quickly becomes intractable for discovering and test more than a few motifs.
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We make a similar observation for mesh precision: computation time grows exponentially with the number of
bins used to define the meshing. This can be explained by the exponential relationship between the number
of bins and the number of different meshes (and thus the rejection rate). Of note, mesh precision has no
impact on the selection time, and therefore the computation time is entirely explained by the acceptance
rate.

We observe that the greater the regularization parameter λ, the lower the computation time. This can be
explained by detailing its impact on the rejection rate. To understand it, it is necessary to note that the
motifs are not selected over Z, but over a less constrained set as described in 3. They are only projected
onto Z at the end of the whole procedure, to ease their interpretation. The meshes are then defined over a
vectorial space, leading to an infinite number of meshes. Compared to a small regularization parameter, a
higher λ favors motifs resulting in a ϕz,X with a higher norm. With regard to the activation function, such
motifs are located closer from the k-mers, and thus from Z. λ has then no effect on the number of existing
meshes, but impacts the number of acceptable ones, in the sense that they have a reasonable probability to
be selected. A lower λ leads to better selection performances, but to a higher number of acceptable meshes,
and thus to a lower acceptance rate. We empirically set λ = 0.01 to provide a good trade-off.

Finally, the rejection sampling step can be parallelized over several computation cores, which accelerates the
whole procedure, as described in Section 4.4. As long as the acceptance rate is small enough, using j cores
to parallelize the rejection step should roughly divide the computation time by j.

We can clearly identify limitations inherent to the use of the selective inference procedure. Although it is
more powerful than the data-split approach, it can not be used in every situation. This latter approach does
indeed not include any rejection step, and the only factor influencing its overall computation time is the
selection time, only marginally influenced by the aforementioned parameters.

6 Discussion and future works

We have introduced a procedure to test the association between features learned by a neural network and
the outcome predicted by this network. We did so by relying on the post-selection inference framework and
formalizing the network training as a feature selection step. Along the way, we addressed general problems
related to selective inference over composite hypotheses, which has implications beyond testing of features
extracted by trained neural networks. In particular to our knowledge, all previous procedures had to work
under the assumption that the variance was known. Our strategy to normalize the statistic to make it
scale-free could easily be transferred to kernelPSI for testing the association of kernels with a trait, or to
previous selective inference frameworks for testing groups of variables using sampling strategies (Slim et al.,
2019; Reid et al., 2018).

Through the SEISM procedure, we are also drawing connections between neural networks for biological
sequences and two related fields: sequence motif detection, and GWAS.

Sequence motif detection has been a major theme in bioinformatics for the past 30 years and many methods
have been proposed to identify motifs that are over-represented in a set of sequence compared to some
control class or background distribution. The earliest CNNs for regulatory genomics Alipanahi et al. (2015);
Zhou & Troyanskaya (2015) already exploited the fact that trained convolution filters of the first layer could
be interpreted as PWMs, and more recent work have sought to extract PWMs from entire multi-layer trained
networks through attribution methods. The selection step of our procedure merely formalizes that training
a one-layer CNN is equivalent to selecting a finite set of PWMs that have a maximal association to the
outcome for some particular score. This formalization also highlights the specific way by which CNNs with
exponential activation functions parameterize the distribution of k-mers at a binding site. Although the
PWM returned by most bioinformatics models represents a categorical distribution—probability to draw
each letter at each site, trained convolution matrices parameterize a Gaussian distribution. In practice, this
difference leads to discrepancies between the trained convolution filters and PWMs learned using categorical
likelihoods—including those offered by databases and often used as ground truth. This observation also
suggests alternative sets of constraints for convolution filters—e.g., each column of the pointwise exponential
of the filter should belong to the simplex.
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Figure 6: Impact of different parameters on the computation time for 100 replicates for the post-selection
inference procedure. Upper left: Impact of the number of motifs to be discovered Upper right: Impact
of the number of bins defining the meshes. Bottom left: Impact of the ridge regularization parameter.
Bottom right: (Log scale) Impact of the number of threads over which the hit-and-run sampling is paral-
lelized.
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By providing an inference procedure for features extracted by the trained model, our work also connects
neural networks for genomic sequences to GWAS. The good predictive performances of these neural networks
is often explained by their ability to jointly learn an appropriate data representation and a regular prediction
function acting on this representation. Nonetheless, the space from which these representations are learned is
seldom formalized and to our knowledge the association of the extracted features with the predicted outcome
is never tested. GWAS on the other hand relies on hypothesis testing, but commonly relies on relatively
simple genomic variants such as single nucleotide polymorphisms (SNPs) or k-mer presence (Jaillard et al.,
2018; Roux de Bézieux et al., 2022). Our framework paves the way to GWAS over richer sets of variants,
e.g. capturing the presence of entire polymorphic genes through large convolution filters, or the interaction
of simpler variants through multilayer or self-attention networks (Avsec et al., 2021a). This will require
scaling to entire genomes as inputs, and making more complex networks, such as multi-layer CNNs and
networks using attention mechanisms, amenable to inference. The most important step in achieving this
goal is to formulate the training of these networks as a feature selection problem and formalize the association
between these features and the phenotype. The inference framework might then be directly derived from this
present work. For instance, we may test motif interactions derived from convolutional-attention networks
(Ullah & Ben-Hur, 2021), a (motif, position) couple as selected in (Ditz et al., 2022) or motifs extracted
by TF-MoDISco (Shrikumar et al., 2018). For this latter case, we can note that the inference procedure we
describe is completely independent from the selection method, and we can then apply directly this procedure
to TF-MoDISco’s motifs. More relevant association scores than, e.g., sridge could be devised for such motifs,
but the procedure is nonetheless valid. For other features, the definition of a relevant association score, which
meets the assumptions described in Section 4, is needed. A few practical problems may arise. First, the
hit-and-run sampler requires the selection method to be stable, that is, running the selection method twice
on the same input will lead to the same selection on features. This property is required to guarantee the
theoretical convergence of the the algorithm but may not be necessary in practice. Second, some attention
may be required to avoid the that computational cost become prohibitive, in particular depending on the
regularity properties of the selection event leading to a higher rejection probability or to a higher number
of replicates required. Granted that these technical challenges can be addressed, we are confident that
extending SEISM to more general networks and corresponding features will benefit both the fields currently
using these networks—such as regulatory genomics—and GWAS.
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Supplemental Materials of “Neural Networks beyond explainability: Selective
inference for sequence motifs"

A Tuning the activation bandwidth hyperparameter

The data representation ϕZ,X depends on a hyperparameter ω controlling the bandwidth of the gaussian

non-linearity (Equation 3): exp
(

− ||zj−u||2

2ω2

)

. Assuming that the positions are independant, we know that

the expected value of the distance between a motif z and a k-mer u with length k is proportional to k.

In order to get an activation that does not depend on the length of the motifs, we simply set ω to be
proportional to

√
k. From empirical tests, we set ω =

√
0.9∗k

2 to achieve good selection results by choosing
the motif that maximizes the association score among a set of possible lengths.

B Disintegration of the selection event given by sequence motifs

In this section we consider the selection event:

Econt.(Z) :=
{

y′ ∈ E , ∀i ∈ {1, . . . , q} arg max
z∈Z

s(z, Piy
′) = zi

}

, (S1)

given by the sequence of selected motifs Z = (z1, . . . , zq). We denote by µ the law of y as given by Eq. (9),
a Gaussian distribution on E .

A first remark on the uniqueness of the selection

Consider the mapping π : E → Zq given by π(y′) = Z where Z = (z1, . . . , zq) is the sequence of motifs
such that y′ ∈ Econt.(Z). It is not clear that π is well defined as a same y′ may lead to the selection of at
least two different motifs sequences Z and Z′. As a first remark, we can see that the set of problematic y′

is exactly
P :=

⋃

Z 6=Z′

Econt.(Z) ∩ Econt.(Z
′) .

When one assumes that Z = (z1, . . . , zq) is unique, one implicitly assumes that µ(P) = 0. For sufficiently
regular scores, this is however the case. For sake of readability, we will not comprehensively study this issue
but we will present an argument for the scores sHSIC and sridge. In this case, we can circumvent this difficulty
considering the Gaussian random field

z 7→ 〈ϕz,X , y〉 for (HSIC) and z 7→ 〈
(

‖ϕz,X‖2 + λn
)−1/2

ϕz,X , y〉 for (Ridge)

indexed by Z where y is distributed with respect to a multivariate Gaussian distribution Eq. (9). Its
autocovariance function is given by (z, z′) 7→ σ2〈ϕz,X , ϕz′,X〉 from Eq. (9) (one has to multiply by
(

‖ϕz,X‖2 + λn
)−1/2(

‖ϕz′,X‖2 + λn
)−1/2

for the Ridge). The score is just the largest norm of this Gaussian
random field. It is well established in theory of Gaussian random fields that the law of this maximum is
regular and the argument maximum is unique. The interested reader may consult the pioneering work of
Tsirelson (Tsirelson, 1976) and Lifshits (Lifshits, 1983). In Tsirelson’s theorem, the parameter set is count-
able. This says that the same result holds true for separable bounded Gaussian processes, since in this case,
the distribution of the supremum coincides a.s. with the one of the supremum on some countable nonrandom
set. To avoid a cumbersome presentation, we will assume that almost surely the selected sequence motifs
Z = (z1, . . . , zq) is uniquely defined, hence π is well defined.
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The disintegration steps

To sample conditionally on (S1), one need to consider the conditional law with respect to this event. We
will denote this law by µZ , it depends only on µ, Z and π. This law is described by the theorem of
disintegration, see for instance (Ambrosio et al., 2005, Theorem 5.3.1). Denote ν the pushforward measure
of µ by π, denoted by ν = π#µ, a probability measure on the set Zq of Z. By the disintegration theorem,
there exists a ν-almost everywhere uniquely determined Borel family of probability measures µZ (the though-
after conditional distributions) such that

• Supported by Econt.(Z): µZ

{

E \ π−1(Z)
}

= 0 for ν-almost every Z;

• Expectation of the conditional expectation is the expectation: It holds that, for every Borel
test map f : E → [0, +∞],

∫

E
fdµ =

∫

Zq

(

∫

π−1(Z)

fdµZ

)

dν(Z) , (S2)

where one can remark that π−1(Z) = Econt.(Z) by definition of π. Let us comment on this result regarding
our purposes. First, we have mentioned that we known that the support Econt.(Z) is included in some
subspace, say S, defined by the first order conditions. Second, although one can use a rejection sampling
strategy on the subspace S to draw points on the support Econt.(Z) (viewed as a subset of the same Hausdorff
dimension as the subspace S), it is not clear at all what should be the density of µZ . Indeed, the family of
probability measures µZ is the unique family that satisfies Eq. (S2). It implies that a measure µZ depends
on the others measures µZ′ and this dependency is geometrically given by the (piece-wise) topological sub-
manifold given by the function z 7→ ϕz,X from Z to E .

From a practical view point, we tried various law for µZ such as the uniform, or a rejection sampling based
on the Gaussian distribution (9), but none of them matched the condition (S2). In the next subsection, we
recall a toy example: the disintegration of the uniform measure on the sphere is not the uniform measure.
Even in this simple geometrical example, the calculus of the conditional law might be seen as tedious. We
believe that the calculus of µZ is somehow out of reach for our purposes and our analysis with selection
events defined by meshes more suited.

A toy example on the sphere

Let S be the 2-sphere embedded in the 3-Euclidean space. Let µ be the uniform measure on the sphere S. Let
{Sθ : θ ∈ [0, π)} be a family of sub-spaces of co-dimension 1 (hyper-planes) sharing Span{(0, 0, 1)} (say the
north pole) as a revolution axis parameterized by θ. The parameter θ can be interpreted as the longitude.

Figure S1: For θ = 0, Sθ is the light red plan, the conditional measure dµ0(φ) is depicted with a red area
and is proportional to | sin(φ)|, which is not the uniform measure.
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Let π̄ be the function that maps a point to its longitude modulo π. By spherical symmetries, the pushforward
measure ν = π̄#µ is the uniform measure on [0, π), so that dν(θ) = (1/π)dθ. Condition (S2) (the lhs of the
equality below) is given by the coordinate integration system (the rhs) in:

∫

S

fdµ =

∫ π

0

(

∫

π̄−1(θ)

fdµθ

)

dν(θ) =

∫ π

0

(

∫ 2π

0

f(θ, φ)
| sin φ|

4π
dφ

)

dθ ,

where φ is the latitude. Note that π̄−1(θ) = S∩Sθ and it is in bijection with [0, 2π) using the mapping that to
a point maps its latitude. Using this representation, it is not hard to see that the uniform measure on π̄−1(θ)
is given by (1/2π)1[0,2π)(φ) while the above equality shows that the conditional measure µθ of the uniform
measure on the sphere has density (1/4)| sin φ|1[0,2π)(φ), see Figure S1. It proves that the disintegration of
the uniform measure on the sphere is not the uniform measure, but rather a distribution that will put few
mass around the poles and large mass around the equator.

C Proof of Proposition 4.4

Consider the orthogonal decompositon
E = R⊕ S ⊕ T

where R is the span of ϕZ,X , T is the span of µ (orthogonal to R by Proposition 4.1), and S such that the
equality holds. Consider y ∈ E and its othogonal decomposition y = r + s + te where e = µ/‖µ‖2 is a unit
norm vector that spans T . Let τ > 0 and note that it is enough to prove that

Pµ

{s(Z, Y )

‖Y ‖2
≤ τ

}

≥ P0

{s(Z, Y )

‖Y ‖2
≤ τ

}

,

where Y is a random variable with the same distribution as µ + σǫ (resp. σǫ) on the probability space
defined by Pµ (resp. P0). Not that the event decomposed as

{

y :
s(Z, y)

‖y‖2
≤ τ

}

=
{

(t, r, s) : s(Z, r) ≤ τ(t2‖µ‖2 + ‖r‖2 + ‖s‖2)
}

By othogonality, note that Lµ(r, s) = L0(r, s) and this law is a centered Gaussian multivariate law. We
deduce that the aforementioned probabilities are of the form

Pµ

{s(Z, Y )

‖Y ‖2
≤ τ

}

=

∫ ∞

0

w0(t)ϕµ(t)dt

where

w0(t) = P0

{

s(Z, r) ≤ τ(t2‖µ‖2 + ‖r‖2 + ‖s‖2)
}

ϕµ(t) = exp
(

−(t− µe)2/2
)

+ exp
(

−(t + µe)2/2
)

with µe = 〈e, µ〉 = ‖µ‖2. Note that w0 : (0,∞) → (0, 1) is an increasing continuous function. It is an
increasing homeomorphism and the Fubini’s equality yields

Pµ

{s(Z, Y )

‖Y ‖2
≤ τ

}

=

∫ ∞

0

w0(t)ϕµ(t)dt

=

∫ ∞

0

∫ 1

0

1{u≤w0(t)}du ϕµ(t)dt

=

∫ ∞

0

∫ 1

0

1{w−1
0 (u)≤t}du ϕµ(t)dt

=

∫ 1

0

∫ ∞

w−1
0 (u)

ϕµ(t)dtdu

3



By Anderson’s theorem, the measure of the interval [−w−1
0 (u), w−1

0 (u)] for the centered Gaussian density is
greater than the one for a non-centered Gaussian density with the same variance. As a result, we deduce
that

∫ ∞

w−1
0 (u)

ϕµ(t)dt ≥
∫ ∞

w−1
0 (u)

ϕ0(t)dt ,

which achieves the proof.
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