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A novel Fuzzy rule value reinforcement learning based energy management strategy is proposed for the fuel cell hybrid electric vehicle. The optimization target of the proposed method is to reduce hydrogen consumption and maintain the continuous operation of the battery. Fuzzy rule value reinforcement learning uses a fuzzy inference system to approximate the state-action value function, which enables the possible implementation of continuous state and/or action space. It does not rely on data or experience to set rules, but learns and adjusts rules by itself through interacting with the environment. Therefore, the proposed method can adapt to the changes in models or operating conditions, such as fuel cell degradation and changes in driving conditions. Simulation tests verify the effectiveness of the proposed method in solving energy management problems. Faster and smoother convergence and powerful adaptability to the environment changes are also verified.

I. INTRODUCTION

Nowadays, fossil energy shortage and environmental pollution caused by vehicle emissions are drawing more and more public concerns. Fuel cell hybrid electric vehicles (FCHEV) are attracting increasing attention because of their environment-friendly nature and competitive vehicle performance [START_REF] Sorlei | Fuel Cell Electric Vehicles -A Brief Review of Current Topologies and Energy Management Strategies[END_REF]. In the control framework of FCHEV, energy management strategy (EMS) is a key element to make the whole system work more efficiently by adjusting the power distribution of different energy sources.

EMS methods can be generally classified into three categories: Rule-based, optimal control based, and learning based methods. Rule-based EMS establishes rules based on the characteristics of the concerned system. Among different rule-based EMS methods, fuzzy logic rule-based EMS is among the most attractive ones due to its practical effectiveness [START_REF] Phan | Interval Type 2 Fuzzy Logic Control for Energy Management of Hybrid Electric Autonomous Vehicles[END_REF]. However, the design of the EMS rules highly relies on historical data and engineering experience [START_REF] Liu | Driving conditions-driven energy management strategies for hybrid electric vehicles : A review[END_REF].

Energy management problems can be regarded as constrained horizontal sequence optimization problems [START_REF] Zhou | Multi-mode predictive energy management for fuel cell hybrid electric vehicles using Markov driving pattern recognizer[END_REF]. Among various resolution methods, dynamic programming (DP) based EMS can provide a numerical global optimal solution [START_REF] Sundström | Optimal Hybridization in Two Parallel Hybrid Electric Vehicles using Dynamic Programming[END_REF]. However, the vehicle operating condition and model have to be known prior which is unrealistic in practice. Stochastic dynamic programming (SDP) [START_REF] Liu | Hybrid Electric Vehicle Downshifting Strategy Based on Stochastic Dynamic Programming during Regenerative Braking Process[END_REF], Pontryagin's minimum principle (PMP) [START_REF] Nguyen | Realtime energy management of battery/supercapacitor electric vehicles based on an adaptation of pontryagin's minimum principle[END_REF] and equivalent consumption minimization strategy (ECMS) [START_REF] Zhang | Optimization for a fuel cell/battery/capacity tram with equivalent consumption minimization strategy[END_REF] have also been proposed to solve the optimization problem. Using these methods, a quasi-optimal solution can be obtained via real-time implementation. However, accurate system models and information on future driving conditions are needed to achieve high performance.

Reinforcement learning (RL), as a kind of machine learning, is attracting increasing attention in EMS development [START_REF] Silver | Mastering the game of Go with deep neural networks and tree search[END_REF]. The most discriminant property of RL is that the control policy can be learned by interacting with the environment without relying on the system model and prior knowledge of driving conditions. Thanks to the property, RLbased methods have the potential to adapt to environment changes, such as the degradation of vehicle components and the changes in vehicle driving conditions.

Recently, RL-based EMS methods have been increasingly studied. Among different proposals, Q-Learning [START_REF] Watkins | Q-Learning[END_REF], which is a basic value-based RL method has been proposed in the energy management problems of various hybrid vehicles [START_REF] Guo | Reinforcement Learning based Energy Management for Fuel Cell Hybrid Electric Vehicles[END_REF]. There are two main drawbacks of Q-Learning based methods:

• Impractical when the state-action space is very large;

• Only works for discrete action space and state space.

EMS problems are usually formulas with continuous state space and action space. The continuous state-action spaces could be divided into discrete learning spaces. Then the stateaction function 𝑄𝑄(𝑠𝑠, 𝑎𝑎) is in the form of a look-up table. However, when the number of state variables increases, the size of the table will increase exponentially, resulting in heavy computation, which is the "curse of dimensionality".

To extend the basic discrete RL to continuous-space applications, function approximation is often used to generalize across the state and/or action spaces. Particularly, deep neural networks (DNN) have been extensively applied as a function approximation method and the corresponding RL methods emerge as an important paradigm called deep reinforcement learning (DRL) [START_REF] Volodymyr | Playing Atari with Deep Reinforcement Learning Volodymyr[END_REF]. In recent works, DRL methods have also been studied for EMS problems [START_REF] Du | Deep reinforcement learning based energy management for a hybrid electric vehicle[END_REF]. Even though many DRL methods have been proposed and achieved interesting results in different applications, the use of deep neural network approximators still has the disadvantages of difficult hyperparameter tuning, long training time, large computational burden and poor generalization.

Fuzzy logic constructs approximators by imitating human language cognitive ability, which is more intuitive and easier to construct compared with DNN, but it highly relies on the human experience. When it is used to approximate the value/policy function of reinforcement learning, it will have a faster and smoother convergency. At the same time, the rules of fuzzy logic will not need human experience but update themselves through RL interacting with the environment. Fuzzy Q-Learning as the first fuzzy reinforcement learning (FRL) method is proposed in [START_REF] Glorennec | Fuzzy Q-learning[END_REF], which uses fuzzy logic to approximate Q-function to solve the continuous problem. In [START_REF] Jouffe | Fuzzy inference system learning by reinforcement methods[END_REF], the authors showed how fuzzy inference systems can be applied to reinforcement learning. In [START_REF] Kofinas | Fuzzy Q-Learning for multi-agent decentralized energy management in microgrids[END_REF], fuzzy Q-Learning was proposed for the multi-agent energy management in the microgrid, which enhances the EMS optimization problem trained stable, fast and smooth convergency.

In the paper, a novel fuzzy rule value reinforcement learning (FRVRL) is proposed for the energy management of FCHEV. The classic fuzzy Q-Learning has been improved so that it has faster convergence and fewer computational requirements. Specifically, the fuzzy rules can be learned from the interactions with the environment which alleviate the dependency on experiences. In addition, the learned FRVRL-based EMS also demonstrates satisfactory robustness to different uncertainty sources stemming from the driving condition and the system states. Simulation results have been illustrated to verify the effectiveness of the proposed FRVRL-based EMS.

II. SYSTEM MODELING

The studied FCHEV energy system is shown in Fig. 1. Its power source consists of a fuel cell (FC) system and a battery system. They all share the DC bus through the DC/DC converter, which is used to provide the power required by the load or to absorb the load energy. The specific model of each part will be analyzed in this section.

A. Fuel cell model

The single-cell voltage 𝑉𝑉 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 of the FCs is expressed as 
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where is the exchange current density. 𝐼𝐼 𝑐𝑐𝑙𝑙𝑚𝑚 = 1.6𝑚𝑚 𝑐𝑐𝑚𝑚 2 is the limiting current density. 𝑅𝑅 𝑙𝑙ℎ𝑚𝑚 is the fuel cell resistance.

For the FC stack, the model is as follows:

fc cell cell fc fc fc V n V I A i = ⋅ = ⋅ (2)
where 𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the number of single FCs, and 𝐴𝐴 𝑓𝑓𝑐𝑐 is the active area of the FC electrode plate. Then the hydrogen consumption model of the FC stack can be derived as follows:

2 2 2 H fc fc H H fc M P I m M nF nV F = =  (3)
where 𝑚𝑚̇𝐻𝐻 2 is the rate at which hydrogen is consumed, and 𝑀𝑀 𝐻𝐻 2 is the molar mass of hydrogen. 𝑃𝑃 𝑓𝑓𝑐𝑐 is the output power of FCs. The converter model will only be concerned about its power characteristics. The DC/DC converter power efficiency model for FCs is as follows:
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where 𝑃𝑃 𝑓𝑓𝑐𝑐 ′ is the output power of the FC system. It is considered that 𝑃𝑃 𝑓𝑓𝑐𝑐 ′ is equal to the power command from the control strategy. 𝜂𝜂 𝑑𝑑𝑐𝑐 is the efficiency of DC/DC converter for fuel cells. 𝑃𝑃 𝑎𝑎𝑎𝑎𝑎𝑎 is the auxiliary system, and it can be considered as a constant current load 𝐼𝐼 𝑎𝑎𝑎𝑎𝑎𝑎 = 2.0 𝐴𝐴. The fuel cells parameters are 𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 200, the effective area of the electrode is 𝐴𝐴 𝑓𝑓𝑐𝑐 = 324 𝑐𝑐𝑚𝑚 2 , the pressure of anode hydrogen is 50 kPa over atmosphere pressure, and cathode oxygen is obtained from the air by natural aspiration. As shown in Fig. 2, when the current is 437 A, the FC power reaches the max power of 104 kW and the efficiency is 43.19 %; When the current is 63.2 A, the FC efficiency reaches the max efficiency of 54.49 %, and the power is 15.7 kW.

B. Battery model

The battery is modeled using a simple one-order circuit model [START_REF] Lian | Rule-interposing deep reinforcement learning based energy management strategy for power-split hybrid electric vehicle[END_REF]. The output current of the battery and the evolution of the battery state of charge are characterized by the following equations
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where 𝐼𝐼 𝑏𝑏𝑎𝑎𝑏𝑏 is the output current of the batteries. When 𝐼𝐼 𝑏𝑏𝑎𝑎𝑏𝑏 > 0, the battery is discharged, and when 𝐼𝐼 𝑏𝑏𝑎𝑎𝑏𝑏 < 0, the battery is charged. 𝑆𝑆𝑆𝑆𝐶𝐶 𝑏𝑏𝑎𝑎𝑏𝑏 is the state of charge (SOC) of batteries. 𝑄𝑄 𝑏𝑏𝑎𝑎𝑏𝑏 is the battery capacity. Especially, the open-circuit voltage 𝑉𝑉 𝑙𝑙𝑐𝑐 and the internal resistance 𝑅𝑅 𝑏𝑏𝑎𝑎𝑏𝑏 are dependent on 𝑆𝑆𝑆𝑆𝐶𝐶 𝑏𝑏𝑎𝑎𝑏𝑏 and the dependencies are represented in the form of map functions shown in Fig. 3. Considering the power loss of the battery-side DC/DC converter, the battery output power is expressed as
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where 𝑃𝑃 𝑏𝑏𝑎𝑎𝑏𝑏 ′ is the output power of the power converter whose efficiency is 𝜂𝜂 𝑎𝑎𝑏𝑏𝑐𝑐 . The capacity of the studied battery is 6.6 Ah, and the standard voltage is 244.8V.

C. Vehicle dynamics model

Supposing a vehicle is moving forward at velocity 𝑣𝑣 on a road with gradient 𝜃𝜃, its dynamic equation is:

2 1 cos sin 2 m air f s a D F t dv C A v Gf G m F d F F F ρ θ θ = + + + + + + = (7) 
where 𝐹𝐹 𝑚𝑚 represents the driving force provided by the motor, 𝐹𝐹 𝑎𝑎𝑙𝑙𝑎𝑎 is air resistance, 𝐹𝐹 𝑓𝑓 is rolling resistance, 𝐹𝐹 𝑙𝑙 denotes slope resistance and 𝐹𝐹 𝑎𝑎 represents acceleration resistance. 𝜌𝜌 and 𝐶𝐶 𝐷𝐷 represent air density and air resistance coefficient respectively. 𝐴𝐴 represents the windward surface volume of the vehicle body, and 𝑣𝑣 represents the vehicle velocity. 𝑚𝑚 represents the vehicle mass. 𝐺𝐺 = 𝑚𝑚𝑚𝑚 represents the gravity of the vehicle, and 𝑓𝑓 represents the sliding resistance coefficient.

The required power for the vehicle is:

/ veh m m P F v η = ⋅ (8)
where, 𝑃𝑃 𝑣𝑣𝑐𝑐ℎ represents the required power of the motor, 𝜂𝜂 𝑚𝑚 represents the transmission efficiency of the electric machine. According to the power balance, the required power of the motor is provided by the fuel cell and battery:

veh fc bat P P P ′ ′ = + (9) 
For the studied vehicle, the vehicle weight is 2500 kg, the windward area is 1.8 m2, the air density is 1.25 kg/m2, the air resistance coefficient is 0.3, the rolling friction coefficient is 0.01, and the total mechanical transmission efficiency is set as 90%, the gravity acceleration is 9.8m/s 2 .

III. THEPROPOSED NOVEL FUZZY Q-LEARNING BASED EMS

A. EMS problem formulation

The objective of EMS is to optimize the vehicle performance by dispatching instantaneously the demand power among different energy sources. In this work, the objective is to minimize the fuel (hydrogen) consumption while maintaining the battery SOC. The objective is formulated mathematically as the integral of instantaneous reward 𝑟𝑟(𝑡𝑡):
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where 𝑆𝑆𝑆𝑆𝐶𝐶 𝑏𝑏𝑎𝑎𝑏𝑏 is the reference of SOC corresponding to the battery characteristics. The EMS is dedicated to determining 𝑃𝑃 𝑓𝑓𝑐𝑐 (𝑡𝑡), 𝑡𝑡 ∈ [0, 𝑇𝑇] using the observables [𝑃𝑃 𝑣𝑣𝑐𝑐ℎ (𝑡𝑡), 𝑆𝑆𝑆𝑆𝐶𝐶 𝑏𝑏𝑎𝑎𝑏𝑏 (𝑡𝑡)] to achieve the maximaxition of the objective function 𝐽𝐽.

B. Fuzzy Interrace System for the Energy Management

Problem of FCHEV Fuzzy logic is a mathematical language that imitates the human brain's uncertainty concept judgment and reasoning thinking. A basic fuzzy inference system (FIS) consists of four parts: fuzzifier, defuzzifier, inference engine, and knowledge base. The control based on FIS is an effective and widely used method to deal with energy management problems. In our application, the EMS deals with a multi-input single-output FIS control system. As shown in Fig. 4, the crisp input is the system state 𝒔𝒔 = [𝑃𝑃 𝑣𝑣𝑐𝑐ℎ , 𝑆𝑆𝑆𝑆𝐶𝐶 𝑏𝑏𝑎𝑎𝑏𝑏 ], and the crisp output is the action of the control system 𝒂𝒂 = �𝑃𝑃 𝑓𝑓𝑐𝑐 �. With the fuzzifier, the fuzzy state 𝒙𝒙 = [𝑥𝑥 1 , 𝑥𝑥 2 , … , 𝑥𝑥 𝑀𝑀 ] of the energy system can be derived by predefined membership functions. The meaning of the fuzzy sets ["NH", "NM", "NL", "ZO", "PL", "PM", "PH"] for 𝑃𝑃 𝑣𝑣𝑐𝑐ℎ are "Negative High", "Negative Middle", "Negative Low", "Zero", "Positive Low", "Positive Middle", and "Positive High". For another state 𝑆𝑆𝑆𝑆𝐶𝐶 𝑏𝑏𝑎𝑎𝑏𝑏 , the meaning of ["VL", "L", "M", "H", "VH"] are "Very Low", "Low", "Middle", "High", and "Very High". The fuzzy sets of the two input states are shown in Table I and Table II. Then the membership functions are chosen as shown in Fig. 5. The membership functions of the two crisp input states can then be transformed into fuzzy states 𝒙𝒙 with fuzzy logic operation "AND". The number of states in 𝒙𝒙 is identical to the number of rules. In our case, the rule is set for each combination of the two fuzzy sets. Hence, the dimensional number of fuzzy state 𝒙𝒙 is 𝑀𝑀 = 35.

Traditionally, fuzzy rules can be constructed using experienced data and/or engineering experience. The logic rules are formed like: IF 𝑃𝑃 𝑣𝑣𝑐𝑐ℎ is " Positive High" (PH), AND 𝑆𝑆𝑆𝑆𝐶𝐶 𝑏𝑏𝑎𝑎𝑏𝑏 is "Very Low"(VL), THEN 𝑃𝑃 𝑓𝑓𝑐𝑐 is "Super High" (SH).

The inference engine deduces, then the fuzzy output based on each rule. The control action is calculated by deffuzier combining all fuzzy outputs. For instance, the calculation can be realized using the weighted average defuzzification method as:

1 1 u a M i i i t M i i x x = = = ∑ ∑ (11) 
where In traditional FIS, the performance of the fuzzy logic controller is limited by the designed rules due to the shortage of data and experience. In the paper, a fuzzy rule value reinforcement learning (FRVRL) method is proposed to learn the rules automatically through continuous interaction with the environment and without the dependence on prior knowledge or experiences.

𝑥𝑥

C. Fuzzy rule value reinforcement learning

Reinforcement Learning (RL) is a type of machine learning in which the agent takes action by interacting with the environment for maximum cumulative rewards (see Fig. 6. As a result, a sequence [𝒔𝒔 0 , 𝒂𝒂 0 , 𝑟𝑟 0 , 𝒔𝒔 1 , 𝒂𝒂 1 , 𝑟𝑟 1 , 𝒔𝒔 2 … ] can be obtained during the learning process. 𝒔𝒔 𝑏𝑏 , 𝒂𝒂 𝑏𝑏 denote respectively the state, action, and reward 𝑟𝑟 𝑏𝑏 denotes the instantaneous reword between instant 𝑡𝑡 and 𝑡𝑡 + 1.

Agent Enviroment

Action a t

State s t

Next State s t+1

Reward r t

Fig. 6. Reinforcement Learning Principle

As one of the most popular RL methods, Q-Learning learns 𝑄𝑄-value 𝑄𝑄(𝒔𝒔 𝑏𝑏 , 𝒂𝒂 𝑏𝑏 ) to evaluate the value of each stateaction pair. The 𝑄𝑄 -value 𝑄𝑄(𝒔𝒔 𝑏𝑏 , 𝒂𝒂 𝑏𝑏 ) is learned with the following updating [START_REF] Sutton | Reinforcement Learning: An Introduction second edition[END_REF] law:

1 1 ( , ) ( , ) max ( , ) ( , ) t t t t t t t t t t t t Q s a Q s a Q Q r Q s a Q s a α γ + + = + ⋅ ∆ ∆ = + - ( 12 
)
where 𝛼𝛼 ∈ (0,1) is the learning rate, which represents the update speed of the 𝑄𝑄-table 𝑄𝑄(𝒔𝒔 𝑏𝑏 , 𝒂𝒂 𝑏𝑏 ). If the learning rate is too high, it will be difficult to retain the past effective experience. If the learning rate is too low, the number of iterations will increase, which will bring computational burden. And 𝛾𝛾 ∈ (0,1) is the decay coefficient, which is to give different weights to the rewards, so that the closer to the current state the reward weight is higher, and the reward of the subsequent state will decrease by the power of 𝛾𝛾 . In general, 𝛼𝛼 is close to 0, and 𝛾𝛾 is close to 1.

However, it imposes a severe computational burden in conventional Q-learning when the state dimension is high in continuous-state problems. Using fuzzy membership functions as state approximators in Q-learning is promising to solve continuous-state problems [START_REF] Watkins | Q-Learning[END_REF]. Inspired by this idea, we propose in this study the FRVRL method by combining fuzzy logic inference and RL. In FRVRL, 𝒔𝒔 𝒃𝒃 is the crisp set of the input states which are converted into fuzzy state sets 𝒙𝒙 𝑏𝑏 with the membership functions of the FIS fuzzifier.

For 𝑖𝑖 th rule ( i ∈ {1, … , 𝑀𝑀} ), the fuzzy rule can be expressed as:

IF 𝑆𝑆 𝑙𝑙 , THEN choose 𝒖𝒖 𝑙𝑙 , 𝒖𝒖 𝑙𝑙 ∈ 𝑈𝑈 with 𝑞𝑞�𝑆𝑆 𝑙𝑙 , 𝑈𝑈 𝑗𝑗 �
We define the rule value as 𝑞𝑞�𝑆𝑆 𝑙𝑙 , 𝑈𝑈 𝑗𝑗 �, 𝑖𝑖 ∈ {1, … , 𝑀𝑀}, 𝑗𝑗 ∈ {1, … , 𝑁𝑁} representing the accumulated value to take the action 𝑈𝑈 𝑗𝑗 in fuzzy state 𝑆𝑆 𝑙𝑙 . The action 𝑢𝑢 𝑙𝑙 is taken by maximizing the rule value as arg max ( , )

i u j i j U q S U = ( 13 
)
To achieve exploration versus exploitation in the learning process, a fuzzy output action value is chosen between the instantaneously optimal action and a random fuzzy action according to the 𝜖𝜖 -𝐺𝐺𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺.

arg max ( , ) ([0,1))

([0,1)) i u j i j U j q S U random random U U random ε ε ≥   =  ∈ <   (14)
The clips output action can be obtained by operating the fuzzy state 𝒙𝒙 𝑏𝑏 and fuzzy output values 𝒖𝒖 𝑙𝑙 according to [START_REF] Guo | Reinforcement Learning based Energy Management for Fuel Cell Hybrid Electric Vehicles[END_REF]. Take the action, then observe the next clip state 𝒔𝒔 𝑏𝑏+1 and reward 𝑟𝑟 𝑏𝑏 of the environment in the Section. II. FRVRL learns the rule values 𝑞𝑞�𝑆𝑆 𝑙𝑙 , 𝑈𝑈 𝑗𝑗 �, 𝑖𝑖 ∈ {1, … , 𝑀𝑀}, 𝑗𝑗 ∈ {1, … , 𝑁𝑁} treating each rule as an independent existence. For 𝑖𝑖th rule, the rule value table 𝑞𝑞 𝑙𝑙 �𝑈𝑈 𝑗𝑗 �, 𝑗𝑗 ∈ {1, … , 𝑁𝑁} is an N-dimensional vector corresponding to N fuzzy action output sets. The instantaneous reward needs to be distributed to the update of each fuzzy rule value table according to the firing strength of each rule. Here the fuzzy state 𝒙𝒙 𝑏𝑏 represents the firing strength of each rule. 1 , 1, 2,...,

i t i M i i x r r i M x = ⋅ = = ∑ (15)
The membership 𝑥𝑥 𝑙𝑙 in 𝒙𝒙 𝒃𝒃 corresponding to each fuzzy state 𝑆𝑆 𝑙𝑙 should also be considered to evaluate the fuzzy rule value. Accordingly, the update law of 𝑖𝑖th rule value table 𝑞𝑞�𝑆𝑆 𝑙𝑙 , 𝑈𝑈 𝑗𝑗 � is formulated as follows:

( , ) (1 ) ( , ) [ max ( , )] j i j i j i i j U q S U q S U r q S U α α γ =- + + (16) 
The control structure of the proposed novel fuzzy Qlearning based EMS for the FCHEV and the pseudocode of the algorithm are as follows: 

A. Test driving cycles

The proposed EMS is tested using 2 standard driving cycles Urban Dynamometer Driving Schedule (UDDS) and New European Driving Cycle (NEDC). The velocity and power of the specific FCHEV under those 2 driving conditions are shown in Fig. 8. The proposed FRVRL-based EMS is trained only with "UDDS" and tested with both driving cycles. 9. Compared to regular reinforcement learning methods, for instance, the results presented in our previous work [START_REF] Guo | Reinforcement Learning based Energy Management for Fuel Cell Hybrid Electric Vehicles[END_REF], the proposed FRVRL significantly reduces the convergence time of training. Fast training and less computation ensure its possibility as a real-time online learning algorithm. In the training process, After the training process, the rule surface of action decision is obtained and shown in Fig. 10. With higher demand power and lower SOC, the action tends to be higher power output. Conversely, low power demand and high SOC require action with low output power. These are our engineering experiences, but the action decisions in Fig. 10 do not always conform to those experiences, as the states of some regions are harder to explore and thus do not reflect well in the rules of the training results. To test the adaptability of the proposed FRVRL to the change of the initial state, we set the initial SOC values as [25%, 50%, 75%] under the "UDDS" driving cycle condition. The SOC trajectory and power allocation are shown in Fig. 11 and Fig. 12 separately. The final state of SOC under 3 different initial state are all 51.4%, which verified the adaptability of the proposed method to the changes in the initial state of the environment. To verify the capability of the proposed method for the maintenance of the batteries SOC, 10 repeated UDDS cyclic driving conditions as external environment changes were used for testing. The test results are shown in Fig. 13. The proposed method can maintain the batteries SOC well around 50% in long-lasting tests. The average values of SOC are: 50.58%, 50.68% and 51.51% corresponding to the initial SOC state of 50%. During the last driving cycle, the average values of SOC are: 50.68%, 50.69% and 50.69%, and the hydrogen consumptions are 33.20g, 33.27g and 32.27g, respectively. The corresponding hydrogen consumption per 100 kilometers is 269g, which is lower than the result of rulebased EMS for the FCHEV under the same condition with 353g/100km hydrogen consumption.

To further test the adaptation of the proposed method to different driving conditions, the agent trained under the "UDDS" driving cycle is used to test the "NEDC" driving condition. As shown in Fig. 14, the proposed method ensures the continuous and efficient operation of the EMS under the repeated 10 "NEDC" driving cycles. The test results show that the proposed algorithm has rapid adaptability to various driving conditions and initial state changes. The average values of SOC are: 54.03%, 54.17% and 58.99% corresponding to the initial SOC state of 50%. During the last driving cycle, the average values of SOC are 54.56%, 54.56% and 54.58%, and the hydrogen consumptions are 32.67g, 32.67g and 32.66g, respectively. Since the distance corresponding to the driving condition is fixed, the distance of a single cycle of UDDS is 11.99 km, and the distance of NEDC is 10.93km. Therefore, the hydrogen loss per 100 kilometers can be calculated according to the total hydrogen consumption and the total distance. The corresponding hydrogen consumption per 100 kilometers is 299g, which is lower than the result of rule-based EMS for the FCHEV under the same condition with 361g/100km hydrogen consumption. See more details about the test results of the proposed FRVRL-based EMS for the FCHEV in TABLE V. V. CONCLUSIONS A novel energy management strategy named fuzzy rule value reinforcement learning is proposed for the fuel cell hybrid electric vehicle. Fuzzy inference systems are used to approximate the state-action Q-function for reinforcement learning. The proposed method is able to learn the fuzzy rules automatically by combining the advantages of both fuzzy logic inference and RL. The effectiveness of the proposed method is verified by simulation tests. From the obtained results, reducing hydrogen consumption and maintaining the battery have been achieved via the proposed EMS. The test results also show that the proposed method has a faster convergence speed and adaptability to the changes in initial SOC and driving conditions, which makes the proposed method highly promising for online implementation. Compared to traditional rule-based EMS, the proposed FRVRL does not rely on prior data and experience and achieves high performance by interacting with the environment.
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 1 Fig. 1. Energy system for fuel cell hybrid electric vehicle.
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 2 Fig. 2. The output voltage and efficiency of fuel cells
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 3 Fig. 3. The characteristics of the batteries
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 4 Fig. 4. Fuzzy Interrace System scheme
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 5 Fig. 5. Membership functions of state variables
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 7 Fig. 7. The proposed novel Fuzzy Q-Learning based EMS for FCHEVTABLE IV. THE PROCEDURE OF THE PROPOSED FRVRL Fuzzy Rule Value Reinforcement Learning: Initialize 𝑞𝑞�𝑆𝑆 𝑙𝑙 , 𝑈𝑈 𝑗𝑗 �, 𝑖𝑖 ∈ {1, … , 𝑀𝑀}, 𝑗𝑗 ∈ {1, … , 𝑁𝑁}, arbitrarily Repeat for each episode: Reset the environment with the initial state 𝒔𝒔 𝒃𝒃 = 𝒔𝒔 𝟎𝟎 Repeat for each step of the episode: Obtain the fired strength 𝑥𝑥 𝑙𝑙 , 𝑖𝑖 ∈ {1, … , 𝑀𝑀} of each fuzzy state 𝑆𝑆 𝑙𝑙 from the clips state 𝒔𝒔 𝑏𝑏 with FIS. Get the fuzzy output action value 𝑢𝑢 𝑙𝑙 from each fuzzy rule value table with 𝜀𝜀 -𝑚𝑚𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 approach 𝒖𝒖 𝒊𝒊 = �

Fig. 8 .

 8 Fig. 8. Velocity and power of the FCHEV under different driving cyclesB. Test Results AnalysisThe learning rate is set as 𝛼𝛼 = 0.01, and the decay rate is set 𝛾𝛾 = 0.999 . The system states are constrained as 𝑃𝑃 𝑣𝑣𝑐𝑐ℎ (𝑡𝑡) ∈ [-50𝑘𝑘𝑘𝑘, 50𝑘𝑘𝑘𝑘] and 𝑆𝑆𝑆𝑆𝐶𝐶 𝑏𝑏𝑎𝑎𝑏𝑏 (𝑡𝑡) ∈ [0%, 100%] , and control action 𝑃𝑃 𝑓𝑓𝑐𝑐 (𝑡𝑡) ∈ [0, 100 𝑘𝑘𝑘𝑘]. The initial state of 𝑆𝑆𝑆𝑆𝐶𝐶 𝑏𝑏𝑎𝑎𝑏𝑏 (𝑡𝑡) is set as 50% during the training process. The number of training episodes is set at 1000, and the training time is about 10 minutes for the training process. The learning process of the proposed Fuzzy Q-learning is shown in Fig.9. Compared to regular reinforcement learning methods, for instance, the results presented in our previous work[START_REF] Guo | Reinforcement Learning based Energy Management for Fuel Cell Hybrid Electric Vehicles[END_REF], the proposed FRVRL significantly reduces the convergence time of training. Fast training and less computation ensure its possibility as a real-time online learning algorithm. In the training process, After the training process, the rule surface of action decision is obtained and shown in Fig.10. With higher demand power and lower SOC, the action tends to be higher power output. Conversely, low power demand and high SOC require action with low output power. These are our engineering experiences, but the action decisions in Fig.10do not always conform to those experiences, as the states of some regions are harder to explore and thus do not reflect well in the rules of the training results.
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 9 Fig. 9. Average reward and H2 consumption rate in the training process of proposed fuzzy Q-learning based EMS for the FCHEV
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 12 Fig. 12. The Power allocation of the proposed FRVRL based EMS under the driving cycle of "UDDS"
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 1314 Fig. 13. The SOC trajectory of the proposed FRVRL based EMS under 10 driving cycles of "UDDS"

TABLE I

 I 

	.	VEHICLE REQUIRED POWER FUZZY TABLE
	𝑷𝑷 𝒗𝒗𝒗𝒗𝒗𝒗 Fuzzy sets	NH NM	NL	ZO	PL	PM	PH
	Typical Value (kW) -50	-20	-10	0	10	20	50
	TABLE II.	BATTERIES SYSTEM POWER FUZZY TABLE
	𝑺𝑺𝑺𝑺𝑺𝑺 𝒃𝒃𝒂𝒂𝒃𝒃 Fuzzy sets VL	L	M	H	VH
	Typical Value (%)	20	40	50	60	80

  𝑙𝑙 ∈ 𝒙𝒙 𝑏𝑏 is the ith element of x denoting the membership value corresponding to ith fuzzy state set, which means the fired strength of the ith rule. And 𝒖𝒖 𝑙𝑙 is the fuzzy output action value corresponding to the ith rule, which is generated from the knowledge base. 𝒖𝒖 𝑙𝑙 can be configured as the constant that equals the central value of the corresponding action fuzzy set in the space of 𝑃𝑃

𝑓𝑓𝑐𝑐 . The dimension of output fuzzy sets is set as 𝑁𝑁 = 8. Here, a nonequidistant method is used for the division of fuzzy sets, and the state with lower power is divided more finely. The typical values of the fuzzy sets are assembled as 𝑼𝑼 = {𝑈𝑈 1 , 𝑈𝑈 2 , … , 𝑈𝑈 𝑁𝑁 } in this study are shown in TABLE III. Hence, 𝒖𝒖 𝑙𝑙 ∈ 𝑼𝑼.

TABLE V .

 V TEST RESULTS AFTER 10 DRIVING CYCLES TIME OF THE PROPOSED FRVRL BASED EMS

	Driving Cycle	Initial SOC	1st Diving Cycle Average H2 Rate Final Reward (g/100km) SOC	10th Driving Cycle Average H2 Rate Final Reward (g/100km) SOC
		25% -0.199	469.06 51.3% -0.025	276.90 51.3%
	UDDS	50% -0.026	287.41 51.4% -0.025	277.90 51.4%
		75% -0.092	141.95 51.4% -0.025	277.90 51.4%
		25% -0.209	579.51 60.7% -0.037	298.90 60.7%
	NEDC	50% -0.037	377.68 60.7% -0.037	298.90 60.7%
		75% -0.044	328.00 71.1% -0.037	298.81 60.7%

ACKNOWLEDGEMENT

This work has been supported by the ANR DEAL (contract ANR-20-CE05-0016-01). This work has also been partially funded by the CNRS Energy unit (Cellule Energie) through the project "PEPS GIALE".