
HAL Id: hal-03895318
https://hal.science/hal-03895318

Submitted on 12 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pathlength of Outerplanar graphs
Thomas Dissaux, Nicolas Nisse

To cite this version:
Thomas Dissaux, Nicolas Nisse. Pathlength of Outerplanar graphs. LATIN 2022 - 15th Latin Amer-
ican Theoretical Informatics Symposium, Nov 2022, Guanajuato, Mexico. pp.172-187, �10.1007/978-
3-031-20624-5_11�. �hal-03895318�

https://hal.science/hal-03895318
https://hal.archives-ouvertes.fr

Pathlength of Outerplanar graphs∗

Thomas Dissaux1 and Nicolas Nisse1

1Université Côte d’Azur, CNRS, Inria, I3S, Sophia Antipolis, France

Abstract

A path-decomposition of a graph G = (V,E) is a sequence of subsets of V , called bags,
that satisfy some connectivity properties. The length of a path-decomposition of a graph G
is the greatest distance between two vertices that belong to a same bag and the pathlength,
denoted by p`(G), of G is the smallest length of its path-decompositions. This parameter
has been studied for its algorithmic applications for several classical metric problems like
the minimum eccentricity shortest path problem, the line-distortion problem, etc. However,
deciding if the pathlength of a graph G is at most 2 is NP-complete, and the best known
approximation algorithm has a ratio 2 (there is no c-approximation with c < 3

2 unless
P = NP). In this work, we focus on the study of the pathlength of simple sub-classes of
planar graphs. We start by designing a linear-time algorithm that computes the pathlength
of trees. Then, we show that the pathlength of cycles with n vertices is equal to bn2 c. Finally,
our main result is a (+1)-approximation algorithm for the pathlength of outerplanar graphs.
This algorithm is based on a characterization of almost optimal (of length at most p`(G)+1)
path-decompositions of outerplanar graphs.

1 Introduction

Path-decompositions of graphs have been extensively studied since their introduction in the
Graph Minor theory by Robertson and Seymour, for their various algorithmic applications. A
path-decomposition of a graph G = (V,E) is a sequence (X1, . . . , Xp) of subsets (called bags)
of V such that (1)

⋃
i≤pXi = V , (2) for all edges {u, v} ∈ E, there exists 1 ≤ i ≤ p such

that u, v ∈ Xi, and (3) for all 1 ≤ i ≤ z ≤ j ≤ p, Xi ∩ Xj ⊆ Xz. These constraints imply
this fundamental property (widely used in proofs), for all 1 ≤ i < p, S = Xi ∩Xi+1 separates
A =

⋃
j≤iXj \ S and B =

⋃
j≥iXj \ S (i.e. every path between A and B goes through S).

The most classical measure of path-decompositions is their width corresponding to the max-
imum size of the bags (minus one). The pathwidth of a graph G is the minimum width of
its path-decompositions. Typically, the famous theorem of Courcelle implies that numerous
NP-hard problems can be solved in polynomial times in graphs of bounded pathwidth [2].

We focus on an other measure of path-decomposition which, while less studied, has also
numerous algorithmic applications. This measure, the length `(D) of a path-decomposition D,
is the maximum diameter of the bags of D, where the diameter `(X) of a bag X is the largest
distance (in G) between two vertices of X. The pathlength p`(G) of a graph G, is the minimum
length among all its path-decompositions [5]. In particular, this measure captures several metric
properties of graphs. For example, the line distortion problem can be approximated (up to a
constant factor) when the pathlength is bounded by a constant [6], which has many applications

∗This work is partially funded by the project UCA JEDI (ANR-15-IDEX-01) and EUR DS4H Investments in
the Future (ANR-17-EURE-004).

1

in computer vision [15], computational chemistry and biology [11], in network design and dis-
tributed protocol [9], etc. Moreover, since the pathlength is an upper bound or the treelength,
the Traveling Salesman Problem admits a FPTAS in bounded pathlength graphs [13], efficient
compact routing schemes and sparse additive spanners can be built in the class of graphs with
bounded pathlength [12], and computing the metric dimension is FPT in the pathlength plus
the maximum degree [1], etc.

Unfortunately, deciding if the pathlength of a graph is at most 2 (p`(G) ≤ 2) is NP-complete
and there does not exist a c-approximation for any c < 3

2 (unless P = NP) [8]. On the other
hand, there exists a 2-approximation in general graphs [6]. While computing the pathwidth of
planar graphs is known to be NP-complete [14] , the case of pathlength has not been studied yet.
In this paper, we initiate this study by considering outerplanar graphs. Note that the pathwidth
of outerplanar graphs is known to be polynomial-time solvable, but the best known algorithm
to compute the pathwidth of outerplanar n-node graphs has complexity at least O(n11) [3].
Moreover, there exist 2-approximations for this problem, with time complexity O(nlog(n)),
that deal with the problem by relating the pathwidth of an outerplanar graph with the one of
its weak dual [3, 4].

Our contributions. In Section 3, we first present a linear-time algorithm that computes the
pathlength of trees, and prove that p`(Cn) = bn2 c for any cycle Cn with n vertices. Section 4
is devoted to our main contribution. We design an algorithm that computes, in time O(n3(n+
p`(G)2)), a path-decomposition of length at most p`(G) + 1 for any outerplanar n-node graph
G. This algorithm is based on a structural characterization of almost optimal (of length at most
p`(G) + 1) path-decompositions of outerplanar graphs.

2 Preliminaries

Let G = (V,E) be any graph. When it will not be specified below, n will always be the number
|V | of vertices. In what follows, any edge {x, y} is also considered as the set of two vertices
x and y. In particular, we say that X ⊆ V contains an edge e if e ⊆ X. Given a vertex
v ∈ V , let N(v) = {u ∈ V | {v, u} ∈ E} be the neighborhood of v and let N [v] = N(v) ∪ {v}
be its closed neighborhood. Given S ⊆ V , let N(S) = {v ∈ V \ S | ∃u ∈ S, {u, v} ∈ E} and
let G[S] = (S,E ∩ (S × S)) be the subgraph of G induced by the vertices of S. The distance
distG(u, v) (or dist(u, v) if there is no ambiguity) between u ∈ V and v ∈ V is the minimum
length (number of edges) of a path beetween u and v in G. A subgraph H of G is isometric if
distH(u, v) = distG(u, v) for all u, v ∈ V (H).

A path-decomposition of G is a sequence D = (X1, · · · , Xp) of subsets of vertices, called
bags, such that

⋃
i≤pXi = V , for every e ∈ E, there exists i ≤ p with e ⊆ Xi and, for every

1 ≤ i ≤ j ≤ q ≤ p, Xi ∩Xq ⊆ Xj . The length `(D) of D is the maximum diameter of one of its
bags, i.e., `(D) = maxi≤p `(Xi) = maxi≤p maxu,v∈Xi distG(u, v). The pathlength p`(G) of G is
the minimum length of its path-decompositions. A path-decomposition of G of length p`(G) is
said to be optimal.

Let us say that a path-decomposition is reduced if no bag is contained in another one. It is
easy to check that any graph admits an optimal reduced path-decomposition. In what follows,
we will use the following result.

Lemma 1 [5] For every isometric subgraph H of G, p`(H) ≤ p`(G).

An alternative (equivalent) way to define path-decompositions of a graph G = (V,E) is
through orderings of V . This representation will be particularly useful in Section 4. Let O =

2

(v1, · · · , vn) be an ordering (i.e., a permutation) of V . Let D(O) = (X1, · · · , X2n−2) be defined
as follows. Let X1 = {v1} and, for every 2 ≤ i < n, let X2i−2 = X2i−3 ∪ {vi}, let Si ⊆ X2i−2 be
the set of vertices x ∈ X2i−2 such that N [x] ⊆

⋃
j≤2i−2Xj (i.e., all vertices of X2i−2 whose all

neighbors belong to a bag Xj for some j ≤ 2i − 2) and let X2i−1 = X2i−2 \ Si. In particular,
note that Si ⊆ N [vi] and may be empty. Finally, let X2n−2 = X2n−3 ∪ {vn}. The following
claim is straightforward.

Claim 1 Let O be any ordering of the vertex-set V of a graph G = (V,E). Then, D(O) is a
(not reduced) path-decomposition of G.

Given an ordering O = (v1, · · · , vn) and 1 ≤ i ≤ j ≤ n, let O[vi, vj] = (vi, · · · , vj).
Given two sequences D = (X1, · · · , Xp) and D′ of subsets of V and S ⊆ V , let D ∪ S =

(X1 ∪ S, · · · , Xp ∪ S) (If S = {v}, we write D ∪ v instead of D ∪ {v}). Let D ∩ S and D \ S
be defined in a similar way (in these cases, the empty bags that may be created are removed).
Finally, let D�D′ be the sequence obtained by concatenation of D and D′. The following claim
is straightforward (and well known).

Claim 2 Let D be a path-decomposition of G = (V,E) and S ⊆ V .

1. Then, D′ = D∩S (resp., D′ = D\S) is a path-decomposition of G[V ∩S] (resp., of G\S).
Moreover, if G[V ∩ S] (resp., G \ S) is an isometric subgraph of G, then `(D′) ≤ `(D).

2. Let D′ be a path-decomposition of G[V \ S]. Then, D′ ∪ S is a path-decomposition of G.

3. Let V = A ∪ B with A ∩ B = S and S separating A \ S and B \ S (there does not exist
any edge {u, v} ∈ E with u ∈ A \ S and v ∈ B \ S), let D1 be a path-decomposition
of G[A] with last bag containing S, and let D2 be a path-decomposition of G[B] with the
first bag containing S. Then, D1 � D2 is a path-decomposition of G of length at most
max{`(D1), `(D2)}.

3 Pathlength of trees and cycles

We first begin by the trees, the easiest sub-class of planar graphs. Note that, intuitively, the
algorithm presented in Section 4, that computes the pathlength of outerplanar graphs follows
similar ideas as the one we present for trees.

Let k ∈ N and let Sk be the tree obtained from a star with three leaves by subdividing each
edges k times, i.e., by replacing each edge by a path with k + 1 edges.

Lemma 2 [5] For any k ∈ N, p`(Sk) = k + 1.

Note that, p`(Sk) = |V (Sk)|−1
3 . This is in contrast to the width counterpart where the pathwidth

of any n-node tree is at most O(log n).

Theorem 1 The pathlength of any tree and an optimal path-decomposition can be computed in
linear time.

Proof. Let T be any tree. If T is a path, the result is obvious (the pathlength equals one), so
we may assume that T has at least three leaves.

Let P0 be a longest path in T and let x and y be its endpoints (that are leaves). Let
z be any leaf of T maximizing its distance to P0 (i.e., for any leaf f of T , dist(f, P0) =
minv∈V (P0) dist(f, v) ≤ dist(z, P0)). Let v∗ be the projection of f on P0, i.e., v∗ is the ver-
tex of P0 minimizing its distance to z. Note that dist(v∗, f) ≤ min{dist(v∗, x), dist(v∗, y)}

3

a b d f g

X Y Z W

Figure 1: example of a tree T (with p`(T) = 2) and the path-decomposition obtained from
theorem 1 could be ({ab}, {bc}, X, Y, {cd}, {de}, Z,W, {ef}, {fg}).

(since otherwise, P0 would not be a longest path). Let T ′ be the inclusion-minimal subtree of
T containing x, y and z. Note that T ′ contains Sk as isometric subgraph for k = dist(v∗, z)− 1,
and so, Sk is an isometric subgraph of T . Then, by Lemmas 2 and 1, p`(T) ≥ p`(Sk) = k + 1.

We now show that p`(T) = k+1 by building a path-decomposition D of T with length k+1.
Let P0 = (x = v0, v1, · · · , vt = y). Let us describe an iterative algorithm that builds D. Let us
start with D containing only the bag {v0, v1}.

For i going from 1 to t− 1, let us do the following. Let T i be the connected component of
T\E(P0) (that is, removing the edges of P0 but keeping its vertices) that contains vi. Let F i

be the sequence of leaves of T i except vi (if vi is a leaf of T i) ordered by following any DFS of
T i starting from vi. Note that, by definition of z, for every f ∈ F i, dist(f, vi) ≤ k + 1 (let us
denote this Property by (∗∗)). Let Q = (Q1, · · · , Q|F i|) be the sequence of the paths from vi
to f , for every f ∈ F i, where the ordering of the paths follows the ordering of the leaves in F i.
For q going from 1 to |F i|, add V (Qq) as the next bag of D, and then, add the bag {vi, vi+1}
to D.

Let D = (X1, · · · , Xh) be the outcome of the above algorithm. First, by Property (∗∗), for
every 1 ≤ i ≤ h, diam(Xi) = maxu,v∈Xi distG(u, v) ≤ k + 1. Hence, it remains to prove that
D is a path-decomposition of T . By construction, it is clear that every vertex and every edge
of T belong to at least one bag of D. Moreover, for every 1 ≤ j ≤ t, again by construction, if
vj ∈ Xa∩Xb, then vj ∈ Xc for every a ≤ c ≤ b. Finally, let v ∈ V (T)\V (P0), let 1 ≤ i < t such
that v ∈ V (T i) and assume that v belongs to Xa∩Xb for 1 ≤ a < b ≤ h. By construction, there
are two leaves fa and fb of T i\{vi} such that v belongs to Pa and Pb, the path between vi and fa
and the path between vi and fb respectively, and with Xa = V (Pa) and Xb = V (Pb). Moreover,
fa < fb in the ordering of F i. Now, for every a ≤ c ≤ b, the bag Xc corresponds to the path Pc
between vi and a leaf fc of T i \ {vi} such that fa ≤ fc ≤ fb in the ordering of F i. By definition
of the DFS of T i from vi, the path Pc must also contain v and so v ∈ Xc = V (Pc). Hence, D is
a path-decomposition of T with length at most k + 1. An example of such a decomposition is
given in Figure 1.

The fact that the above algorithm can be done in linear time comes from the fact that P0

can be computed in linear time (the diameter of a tree can be computed using 2 BFSs) and
then, performing one DFS from vi for each T i suffices to compute the order of Q for each T i. �

Remark. The above proof actually shows that, in any tree T , p`(T) equals its minimum
eccentricity shortest-path. Note that it was already known that the minimum eccentricity
shortest-path of trees can be computed in linear time [7].

We will focus now on cycles.

Theorem 2 Let Cn be a cycle of length n. We have that p`(Cn) = bn2 c.

4

Proof. First, the path-decomposition consisting of a unique bag V (Cn) has length bn2 c, so,
p`(Cn) ≤ bn2 c. Let us show that it is an optimal path-decomposition.

For purpose of contradiction, let us suppose that Cn admits a reduced path-decomposition
D = (X1, . . . , Xp) of length k < bn2 c. First, let us show that we may assume that X1 induces
a connected subgraph (more precisely, a sub-path). Let us assume that it is not the case.
Since D is reduced, there is a vertex in X1 that is not in every Xi for 2 ≤ i ≤ p. Let v be
such a vertex. Since v is only in X1, the two neighbors of v also belong to X1. Let A be the
connected component of G[X1] containing v. Note that A is a path, otherwise V (A) = V (Cn)
contradicting that k < bn2 c. Let x and y be the two endpoints of A and let A′ = A\{x, y}. Then,
D′ = (A,X1 \A′, X2 \A′, · · · , Xp \A′) is a path-decomposition of length at most k and whose
first bag induces a path. Up to removing the redundant bags (note that A is not contained in
any other bag), we may assume that D′ is reduced.

Hence, let D = (X1, . . . , Xp) be a reduced path-decomposition of length k < bn2 c such that
X1 induces a path. We moreover assume that, among such decompositions, D maximizes |X1|.
We next show that |X1| = k+ 1. Let x and y be the two ends of the path induced by X1. Note
that |X1| − 1 = dist(x, y) ≤ k. For purpose of contradiction, let us assume that dist(x, y) < k.
Let x′ and y′ be respectively the neighbors of x and y not in X1. Let Xj and Xj′ be the first
bags (closest to X1) that contain y′ and x′ respectively. Note that y ∈ Xi for any 1 ≤ i ≤ j
(resp. x ∈ Xi′ for any 1 ≤ i′ ≤ j′), otherwise there would be no bag containing the edge {y, y′}
(resp. the edge {x, x′}). W.l.o.g., let suppose that j ≤ j′. Therefore, Xj contains x, y and y′.
Note that dist(x, y′) = dist(x, y) + 1 ≤ k. Then, D′ = (X1 ∪ {y′}, . . . , Xj−1 ∪ {y′}, Xj , . . . , Xp)
is a path-decomposition whose first bag induces a path of length |X1|. We show that D′ has
length at most k which will contradict the maximality of |X1| in D.

For purpose of contradiction, let us assume that D′ has length strictly larger than k. There-
fore, there exists 1 < h < j and w ∈ Xh such that dist(w, y′) > k. Since y ∈ Xh, then
dist(w, y) ≤ k. Note also that dist(w, y′) ≤ dist(w, y) + 1 ≤ k + 1 and so dist(w, y′) = k + 1.
Since dist(w, y) ≥ dist(w, y′)− 1 = k, then w is the unique vertex at distance k from y and at
distance at least k+ 1 from y′. Let w′ be the neighbor of w such that dist(w′, y) = k+ 1. Note
that w′ cannot be in a bag containing y since they are at distance k+ 1. Therefore, it is not in
Xi for 1 ≤ i ≤ j (since these bags contain y). Note that w′ and w have to be in some common
bag of D (since they are adjacent). Therefore, there is a bag Xl with j < l ≤ p that contains w
and w′. Since w ∈ Xh ∩Xl, then w ∈ Xj which contradicts the fact that P has length at most
k (since dist(w, y′) > k). Therefore, D′ is a path-decomposition of length k.

Hence, let D = (X1, . . . , Xp) be a reduced path-decomposition of length k < bn2 c such that
X1 induces a path of length exactly k. Let x′ and y′ be the neighbors of x and y not in X1.
Let Xj and Xj′ be the first bags (closest to X1) that contain y′ and x′ respectively. Note that
y ∈ Xi for any 1 ≤ i ≤ j (resp. x ∈ Xi for any 1 ≤ i ≤ j′). W.l.o.g., let suppose that j ≤ j′.
Therefore, Xj contains x, y and y′, a contradiction since x and y′ are at distance k+ 1 because
k < bn2 c. �

4 Outerplanar graphs

This section is devoted to our main result: a polynomial-time algorithm for computing a path-
decomposition of any simple (without parallel edges nor loops) outerplanar graph G with length
at most p`(G) + 1.

A graph G = (V,E) is outerplanar if it can be embedded in the plane without crossing
edges and such that all vertices lie on the outer face (the unbounded face). An edge of an
outerplanar graph is called an internal edge if it does not lie on the outer face. Note that, since

5

we only consider simple graphs, the fact that an edge is internal or not does not depend on the
outerplanar embedding. Let Eint ⊆ E be the set of internal edges and Eout = E \ Eint be the
set of outer edges. Note that any internal edge e ∈ Eint of an outerplanar graph G = (V,E) is
a separator (i.e., G \ V (e) has several connected components).

Path-decomposition with fixed first and last elements. Let G = (V,E) be a connected
graph and let v ∈ V (resp., e ∈ E). A path-decompostion D = (X1, · · · , Xp) of G starts from v
(resp., from e) if v ∈ X1 (resp., if e ⊆ X1). Similarly, D finishes with v (resp., with e) if v ∈ Xp

(resp., if e ⊆ Xp). Let x, y ∈ V ∪ E, a path-decomposition of G starting from x and finishing
with y is called a {x, y}-path-decomposition. Let p`(G, x, y) be the minimum length among
all {x, y}-path-decompositions of G. An {x, y}-path-decomposition is an optimal {x, y}-path-
decomposition if its length is p`(G, x, y). Clearly, any {x, y}-path-decomposition (X1, · · · , Xp)
corresponds to an {y, x}-path-decomposition (Xp, · · · , X1) of same length, and so:

Claim 3 For any connected graph G = (V,E) and x, y ∈ E ∪ V , p`(G, x, y) = p`(G, y, x).

The following claim directly holds by definition and because there always exists a reduced
optimal path-decomposition (note that, for any reduced path-decomposition D of a connected
graph, there exist x, y ∈ E such that D starts from x and finishes with y).

Claim 4 For any connected graph G = (V,E), p`(G) = minx,y∈E p`(G, x, y).

For our purpose, we need to refine the above claim as follows.

Lemma 3 For any connected graph G = (V,E), p`(G) = minx,y∈Eout p`(G, x, y).

Proof. Let x, y ∈ E such that p`(G) = p`(G, x, y) and such that the “distance” between x and
y is maximized (where the distance must be understood here as the number of internal faces
that must be crossed to go from x to y). Let D = (X1, · · · , Xp) be an optimal {x, y}-path-
decomposition of G (so D is an optimal path-decomposition of G).

For purpose of contradiction, let us assume that x ∈ Eint. Let C be a connected component
of G\x that does not contain y. Let D′ = D∩ (C ∪x)) (note that `(D′) ≤ `(D) by Claim 2 and
because G ∩ (C ∪ x) is an isometric subgraph of G) and D2 = D \ C (note that `(D2) ≤ `(D)
by Claim 2 and because G \ C is an isometric subgraph of G). Let D′′ be the reduced path-
decomposition of G[C ∪ x] obtained from D′ (i.e., by removing the bags that are contained in
others). Since D′′ is reduced, the last bag of D′′ must contain an edge x′ 6= x of G[C∪x]. Finally,
let D1 be the path-decomposition of G[C ∪ x] obtained from D′′ by reversing the order of the
bags. Then, D1�D2 is a {x′, y}-path-decomposition of G of length at most p`(G) (by Claim 2
and since D1 and D2 contains x respectively in its last bag and in its first bag), contradicting
the maximality of the distance between x and y. �

By lemma 3, the computation of p`(G) can be restricted to the O(n2) computations of
p`(G, x, y) for all fixed x, y ∈ Eout (since G is planar, |E| = O(n)). Most of what follows is
devoted to this task. Therefore, in Sections 4.1 to 4.2, x, y ∈ V ∪Eout will be fixed. Section 4.1
is devoted to the “easy” cases. Depending on x and y, it will sometimes be possible to reduce
the problem to smaller instances (and then proceed by induction) and, in other cases (roughly
when x = y and G \ x is connected), we present a greedy algorithm that computes an optimal
{x, y}-path-decomposition of G. Section 4.2 is devoted to the remaining case: roughly, when
x and y are distinct, not included in each-other, do not separate G and belong to a same
internal (bounded) face of G. In this latter case, we show that we can restrict our attention
to particular {x, y}-path-decompositions of G and that such an optimal decomposition can be
computed in polynomial time by dynamic programming. Finally, Section 4.3 formally states

6

our main result and describes our main algorithm that uses results of Sections 4.1 to 4.2 to
compute a path-decomposition of a connected outerplanar graph with length at most p`(G)+1.

4.1 Cases (depending on x and y) when recursion or greedy algorithm are
possible

Let G = (V,E) be a connected simple outerplanar graph and let x, y ∈ Eout ∪ V . In what
follows, recall that an edge is seen as a set of two vertices. In this section, we first show that
if G \ x is not connected (Section 4.1.1) or if x and y are “separated” (see formal definition
in Section 4.1.2), the problem of computing an optimal {x, y}-path-decomposition of G can be
reduced to similar problems in smaller instances. Then, in subsection 4.1.3, roughly, we show
that, if none of the previous two properties is met and either x = y or x ∈ y or y ∈ x, then an
optimal {x, y}-path-decomposition of G can be computed in linear time by a greedy algorithm.

4.1.1 Case when G \ x is not connected

Let us first assume that G \ x is not connected. We have divided this case in several lemmas
that look very similar (proofs seem redundant). We have not been able to factorize them while
keeping a reasonable readability of this part. In particular, we hope that the division in different
lemmas will be helpful to convince that all cases are actually considered.

Lemma 4 Let G = (V,E) be a simple connected outerplanar graph and let x = y ∈ Eout ∪ V
such that G \ x is not connected.

Let C be any connected component of G \ x, let D1 be an optimal {x, x}-path-decomposition
of G[C ∪ x] and let D2 be an optimal {x, x}-path-decomposition of G \C. Then, D1 �D2 is an
optimal {x, y}-path-decomposition of G.

Proof. Let D be an optimal {x, x}-path-decomposition of G. Then, since C ∪ {x} and G \ C
are isometric subgraphs of G and by Claim 2, D ∩ (C ∪ {x}) is a {x, x}-path-decomposition of
G[C ∪ x] of length at most `(D) and D \C is a {x, x}-path-decomposition of G \C of length at
most `(D).

Reciprocally, by the last statement of Claim 2, if D1 and D2 are defined as in the statement
of the lemma, then D1�D2 is an {x, y}-path-decomposition of G of length max{`(D1), `(D2)} ≤
`(D) = p`(G, x, y). �

Therefore, in the remaining part of this subsubsection (i.e., the case where G \ x is not
connected), we may moreover assume that x 6= y.

In the next four lemmas, we consider the cases when x = {u, v} ∈ Eout, G\x is not connected
and x 6= y (y ∈ V ∪ Eout). Note that, because x = {u, v} is not an internal edge, the fact that
G \ x is not connected implies that one (or both) vertex of {u, v} is a cut-vertex.

Precisely, w.l.o.g., we assume that G \ u is not connected, and: in Lemmas 5 and 6, we
assume that x ∩ y = {u}, and in Lemmas 7 and 8, we consider the cases when u /∈ x ∩ y.

Lemma 5 Let G = (V,E) be a simple connected outerplanar graph and let x = {u, v} ∈ Eout
such that G \ u is not connected and {u} = x ∩ y. Let C be the connected component of G \ u
that contains v and assume that y does not intersect C.

Let D1 be an optimal {x, u}-path-decomposition of G[C ∪ x] and D2 be an optimal {u, y}-
path-decomposition of G \ C, then D1 �D2 is an optimal {x, y}-path-decomposition of G.

Proof. Let D be an optimal {x, y}-path-decomposition of G (note that u belongs to all bags
of D). By first item of Claim 2 and because C ∪ x and G \ C are isometric subgraph of G,

7

D1 = D ∩ (C ∪ x) is a {x, u}-path-decomposition of G[C ∪ x] of length at most p`(G, x, y) and
D2 = D \ C is a {u, y}-path-decomposition of G \ C of length at most p`(G, x, y).

Reciprocally, by the last statement of Claim 2, if D1 and D2 are defined as in the statement
of the lemma, then clearly, D1 � D2 is an {x, y}-path-decomposition of G of length at most
max{`(D1), `(D2)} ≤ `(D) = p`(G, x, y). �

Lemma 6 Let G = (V,E) be a simple connected outerplanar graph and let x = {u, v} ∈ Eout
such that G \ u is not connected and {u} = x ∩ y. Assume that y intersects the connected
component C ′ of G \u that contains v and let C be any connected component of G \u that does
not contain v.

Let D1 be an optimal {x, x}-path-decomposition of G[C ∪ x] and D2 be an optimal {x, y}-
path-decomposition of G \ C, then D1 �D2 is an optimal {x, y}-path-decomposition of G.

Proof. Let D be an optimal {x, y}-path-decomposition of G (note that u belongs to all bags of
D). By Claim 2 and because C∪u and G\C are isometric subgraph of G, D1 = (D∩(C∪u))∪v
is a {x, x}-path-decomposition of G[C ∪ x] of length at most p`(G, x, y) (we can add v since all
bags of D contain a vertex of C ′, i.e., a vertex between v and y ∩ C ′) and D2 = D \ C is a
{x, y}-path-decomposition of G \ C of length at most p`(G, x, y).

Reciprocally, by the last statement of Claim 2, if D1 and D2 are defined as in the statement
of the lemma, then clearly, D1 � D2 is an {x, y}-path-decomposition of G of length at most
max{`(D1), `(D2)} ≤ `(D) = p`(G, x, y). �

Lemma 7 Let G = (V,E) be a simple connected outerplanar graph and let x = {u, v} ∈ Eout
such that G \ u is not connected and u /∈ x ∩ y. Let C be the component of G \ u that contains
v and assume that C does not intersect y.

Let D1 be an optimal {x, u}-path-decomposition of G[C ∪ x] and D2 be an optimal {u, y}-
path-decomposition of G \ C, then D1 �D2 is an optimal {x, y}-path-decomposition of G.

Proof. Let D be an optimal {x, y}-path-decomposition of G. Then, by Claim 2 and because
C∪u and G\C are isometric subgraph of G, D1 = (D∩(C∪u))∪u is a {x, u}-path-decomposition
of G[C ∪ x] of length at most p`(G, x, y) (this holds since every bag of D contains u or a vertex
of the component of G \ u that contains y) and D2 = D \ C is a {u, y}-path-decomposition of
G \ C of length at most p`(G, x, y).

Reciprocally, by the last statement of Claim 2, if D1 and D2 are defined as in the statement
of the lemma, then clearly, D1 � D2 is an {x, y}-path-decomposition of G of length at most
max{`(D1), `(D2)} ≤ `(D) = p`(G, x, y). �

Lemma 8 Let G = (V,E) be a simple connected outerplanar graph and let x = {u, v} ∈ Eout
such that G\u is not connected and u /∈ x∩ y. Assume that y is contained in the component C ′

of G \ u that contains v. Let C be any connected component of G \ u that does not contain y.
Let D1 be an optimal {x, x}-path-decomposition of G[C ∪ x] and D2 be an optimal {x, y}-

path-decomposition of G \ C, then D1 �D2 is an optimal {x, y}-path-decomposition of G.

Proof. Let D be an optimal {x, y}-path-decomposition of G. Then, by Claim 2 and because
C∪u and G\C are isometric subgraph of G, D1 = (D∩(C∪u))∪x is a {x, x}-path-decomposition
of G[C ∪ x] of length at most p`(G, x, y) (this holds since every bag of D contains a vertex of
C ′ between v and y ∩ C ′ and a vertex of C ′ between u and y ∩ C ′) and D2 = D \ C is a
{x, y}-path-decomposition of G \ C of length at most p`(G, x, y).

8

Reciprocally, by the last statement of Claim 2, if D1 and D2 are defined as in the statement
of the lemma, then clearly, D1 � D2 is an {x, y}-path-decomposition of G of length at most
max{`(D1), `(D2)} ≤ `(D) = p`(G, x, y). �

The case when x ∈ V , y ∈ Eout and x ∈ y can be dealt similarly by reversing the path-
decomposition (Claim 3).

It only remains the case when x, y ∈ V , x 6= y and G \ x is not connected.

Lemma 9 Let G = (V,E) be a simple connected outerplanar graph and let x, y ∈ V such that
G \ x is not connected and y 6= x. Let C be any connected component of G \ x that does not
contain y.

Let D1 be an optimal {x, x}-path-decomposition of G[C ∪ x] and D2 be an optimal {x, y}-
path-decomposition of G \ C, then D1 �D2 is an optimal {x, y}-path-decomposition of G.

Proof. Let D be an optimal {x, y}-path-decomposition of G. Then, by Claim 2 and because
C∪x and G\C are isometric subgraphs of G, D1 = D∩(C∪x)∪x is a {x, x}-path-decomposition
of G[C ∪ x] of length at most p`(G, x, y) (this holds since every bag of D contains x or a vertex
in V \ C since y is in the last bag) and D2 = D \ C is a {x, y}-path-decomposition of G \ C of
length at most p`(G, x, y).

Reciprocally, by the last statement of Claim 2, if D1 and D2 are defined as in the statement
of the lemma, then clearly, D1 � D2 is an {x, y}-path-decomposition of G of length at most
max{`(D1), `(D2)} ≤ `(D) = p`(G, x, y). �

From now on, we may assume that G\x is connected. For the same reasons and by Claim 3
(and the sentence preceding this claim), we may also assume that, G \ y is connected.

4.1.2 Case when x and y are “separated”

Let G = (V,E) be a connected simple outerplanar graph and x, y ∈ Eout ∪ V . In this section,
we always assume that G \ x and G \ y are connected. We say that x and y are separated in G
if there exists z ∈ V ∪ E such that x′ = x \ z 6= ∅, y′ = y \ z 6= ∅ and all paths from x′ to y′

intersect z. Note that this requires that x 6= y and neither x ∈ y nor y ∈ x, but x and y may
intersect (in which case, z is or contains x∩y). Note also that, if z ∈ E and is inclusion-minimal
for the property of separating x and y (i.e., no end of z separates x and y), then z ∈ Eint.

Lemma 10 Let G = (V,E) be a connected simple outerplanar graph and x, y ∈ Eout ∪ V such
that G \ x and G \ y are connected, and such that x and y are separated by z ∈ V ∪ Eint.

Let Cx be the connected component of G\z containing (or intersecting) x and let Cy = V \Cx.
Let D1 be an optimal {x, z}-path-decomposition of G[Cx ∪ z] and D2 be an optimal {z, y}-

path-decomposition of G[Cy]. Then, D1 �D2 is an optimal {x, y}-path-decomposition of G.

Proof. Let D = (X1, · · · , Xp) be an optimal {x, y}-path-decomposition of G. Let 1 ≤ i ≤ p be
the smallest integer such that z ∈ Xi (resp., such that z ⊆ Xi if z is an edge) and let i ≤ j ≤ p
be the largest integer such that z ∈ Xj (resp., such that z ⊆ Xj if z is an edge). Then, let
D1 = (X1 ∩ (Cx ∪ z), · · · , Xj ∩ (Cx ∪ z), (Xj+1 ∩ (Cx ∪ z))∪ z, · · · , (Xp ∩ (Cx ∪ z))∪ z). Clearly,
D1 is a {x, z}-path-decomposition of G[Cx ∪ z]. Moreover, because y ∈ Xp, then all bags Xq

(for j < q ≤ p) must contain some vertex in the connected component of G \ z containing y.
Therefore, by Claim 2, `(D1) ≤ `(D). Similarly, let D2 = ((X1 \C)∪ z, · · · , (Xi−1 \C)∪ z,Xi \
C, · · · , Xp \ C).Then, D2 is a {z, y}-path-decomposition of G \ Cx. Moreover, because x ∈ X1,
then all bags Xq (for 1 ≤ q < i) must contain some vertex in Cx. Therefore, by Claim 2,
`(D2) ≤ `(D).

9

Reciprocally, by last statement of Claim 2, if D1 and D2 are defined as in the statement
of the lemma, then clearly, D1 � D2 is an {x, y}-path-decomposition of G of length at most
max{`(D1), `(D2)} ≤ `(D) = p`(G, x, y). �

4.1.3 Case when x = y or x ∈ y or y ∈ x: greedy algorithm

In the case of this section, we show that an optimal {x, y}-path-decomposition can be computed
in linear time. We first define a recursive process to build a particular {x, x}-path-decomposition
when x ∈ Eout ∪ V .

Let G = (V,E) be a n-node connected simple outerplanar graph and x ∈ Eout such that
neither u nor v is a cut-vertex, or x ∈ V and is not a cut-vertex. A greedy path-decomposition
P of G based on x is any path-decomposition of G that can be obtained recursively (on |V |) as
follows.

Recursive algorithm Greedy.

• If G is a cycle (v1, . . . , vn) (w.l.o.g., x = {v1, vn} or x = v1), D = (X1, . . . , Xn−1) with,
for every 1 ≤ i ≤ n− 1, Xi = x ∪ {vi, vi+1}. The second basic case is when G is an edge
{u, v} and x = u, in which case, D = ({u, v}).

• Else, if x is a vertex of degree one in G, let w be its neighbor and D′ be a greedy
path-decomposition of G \ x based on w. Then, D = ({x,w}) � (D′ ∪ x) is a greedy
path-decomposition of G based on x.

• Else, if x is a cut-vertex that belongs to no internal face of G, let C be any connected
component of G \ x. Let D1 be any greedy path-decomposition of G[C ∪ x] based on x
and let D2 be any greedy path-decomposition of G \ C based on x. Then, D = D1 �D2

is a greedy path-decomposition of G based on x.

• Else, let (v1, . . . , vq) be any internal face containing x such that x = {v1, vq} (resp. x = v1,
if x is a vertex).

– If there exists a cut-vertex vj for some 2 ≤ j < q (resp. 2 ≤ j ≤ q), let C be
a connected component of G \ vj that does not contain x. Let G1 = G[C ∪ vj]
and G2 = G[V \ C]. Let D1 be a greedy path-decomposition of G1 based on vj ,
let D2 = (X1, · · · , Xp) be a greedy path-decomposition of G2 based on x and let
1 ≤ h ≤ p be the largest integer such that {vj−1, vj} ⊆ Xh (if vj = v2, let 1 ≤ h ≤ p
be the largest integer such that {vj−1, vj} ⊆ Xh minus 1). Then, D = (X1, · · · , Xh)�
(D1 ∪ (Xh ∩Xh+1))� (Xh+1, · · · , Xp) is a greedy path-decomposition of G based on
x.

– Otherwise, there exists 1 ≤ j < q (resp., 1 ≤ j ≤ q) such that f = {vj , vj+1} ∈ Eint
with neither vj nor vj+1 is a cut-vertex. First, if 1 ≤ j < q − 1 (resp., 1 ≤ j < q)
(case j = q − 1 when x is an edge and case j = q when x is a vertex are treated
after), let C and C ′ be the two connected components of G \ f and, w.l.o.g., C
intersects x. Let D1 be a greedy path-decomposition of G[C ′ ∪ f] based on f and
let D2 = (X1, · · · , Xp) be a greedy path-decomposition of G[C ∪ f] based on x and
let 1 ≤ h ≤ p be the smallest integer such that f ⊆ Xh. Then, D = (X1, · · · , Xh)�
(D1 ∪ (Xh ∩Xh+1))� (Xh+1, · · · , Xp) is a greedy path-decomposition of G based on
x. Hence, it remains the case where j = q − 1 (resp., j = q). Let C and C ′ be the
two connected components of G \ f (resp., G \ {vq, v1}) and, w.l.o.g., C intersects

10

x. Let D1 = (X ′1, . . . , X
′
p′) be a greedy path-decomposition of G[C ′ ∪ f] based on f

and let D2 = (X1, · · · , Xp) be a greedy path-decomposition of G[C ∪ f] based on x.
Note that Xp−1 and Xp contain f and x by construction.

Then, D = (X1, · · · , Xp−1)� (X ′1 ∪ (Xp−1 ∩Xp), . . . , Xp′ ∪ (Xp−1 ∩Xp))� (Xp) is a
greedy path-decomposition of G based on x.

Note that, there is not a unique decomposition resulting from the above process. However,
it is easy to show by induction (in particular, each edge is considered at most twice) that:

Claim 5 Any sequence D = (X1, · · · , Xp) returned by Algorithm Greedy is a {x, x}-path-
decomposition of G. Moreover, Algorithm Greedy proceeds in linear time.

Moreover, for all 1 < i ≤ p, |Xi \ Xi−1| ≤ 1 and, if Xi \ Xi−1 = {u}, then Xi is a subset
of the set that consists of u, of one of its neighbors u′ (with {u, u′} an outer-edge), the vertices
of the internal edges x belong to and of all the vertices of each internal edge or vertex that
separates u from x.

Proof. The fact that the algorithm returns a path-decomposition holds by induction. It clearly
holds if G is a cycle. If x has degree one (with neighbor w), then by induction, D′ is a path-
decomposition containing w in every bag and so D = ({x,w})�(D′∪x) is a path-decomposition.
If x is a cut-vertex, D1 and D2 are path-decompositions containing x in all their bags and, since
(C ∪ {x}) ∩ (V \ C) = {x}, then D1 � D2 is a path-decomposition based on x. Now, let us
consider the case when x is an outer-edge {v1, vq} (the case when x is a vertex is similar). If
there exists a cut-vertex vj (2 ≤ j ≤ q) then, by induction, D1 is a path-decomposition of G1

(every vertex and edge of G1 appears in some bag of D1) and D2 = (X1, · · · , Xp) is a path-
decomposition of G2 (every vertex and edge of G2 appears in some bag of D2). Then, since
vj ∈ Xh, (X1, · · · , Xh) � (D1 ∪ (Xh ∩ Xh+1)) � (Xh+1, · · · , Xp) is a path-decomposition of G
(the third property being ensured since we added Xh ∩Xh+1 to all bags of D1). The last case
can be proved similarly.

The proof of the second statement is by induction. We moreover prove that X1 \ x consists
of at most one vertex. If G is a cycle, then the result holds trivially. If x is a vertex with a
unique neighbor w, then recall that D = ({x,w}) � (D′ ∪ x) = (X1, · · · , Xp). By induction,
D′ satisfies the statement and the first bag of D′ contains at most one vertex in addition to w.
Hence, |Xi \Xi−1| ≤ 1 for all 1 < i ≤ p. Moreover, if Xi \Xi−1 = {u}, since every edge of vertex
that separates u from w also separates u from x, the statement holds. If x is a cut-vertex, then
the statement holds by induction for D1 and D2 and so for D1 � D2. Let us finally consider
the last case when x = {v1, vq} (or similarly, x is a vertex) and f = {vj , vj+1} is a cut-edge
(the case when vj is a cut-vertex is similar). Let D = (X ′1, · · · , X ′p′) = (X1, · · · , Xh) � (D1 ∪
(Xh ∩Xh+1))� (Xh+1, · · · , Xp) as defined in the algorithm and note that D1 is based on f and
satisfies the statement by induction. Then, the fact that |X ′i \X ′i−1| ≤ 1 for all 1 < i ≤ p′ clearly
holds since f ⊆ Xh (and the first bag of D1 contains at most one vertex in addition to f). Let
us consider the case when Xi \Xi−1 = {u} and u ∈ C ′. Since the result holds by induction for
D2, then Xh ∩Xh+1 contains f and all vertices of each internal edge or vertex that separate f
from x. Since, moreover, every edge or vertex that separates u from f also separates u from x,
the statement holds. Finally, if Xi \Xi−1 = {u} and u ∈ C, the result holds since D2 satisfies
the requirement by induction. �

Another way to see the above path-decomposition is as follows. Let x = {v1, vn} (or x = v1

if x is a vertex) (v1, · · · , vn) be a DFS ordering of V obtained by starting from v1, following the
outer-face of G and finishing in vn (or going back to v1 if x is a vertex). That is, the vertices are
ordered in the order they are met along the outer-face. Note that, up to reversal, this order is

11

unique if G is 2-connected. Then, consider the path-decomposition D = (X1, · · · , Xp) built as
follows. Let X1 = x. Assume that D has been built until some bag Xi (and not all vertices have
been added yet) and Xi \Xi−1 = {vj} (j = 1 if i = 1). Let {vj1 , · · · , vjq} be the set of neighbors
of vj such that j < j1 < · · · < jq and {vj , vjh) is an internal-edge for all 1 ≤ h ≤ q. Then, let
X ′i ⊆ Xi be the set of vertices vs that have no neighbors in {vj , · · · , vn}. Then, we extend D
with the bags (Xi \X ′i)∪{vjq}, (Xi \X ′i)∪{vjq , vjq−1}, · · · , (Xi \X ′i)∪{vj1 , · · · , vjq}, (Xi \X ′i)∪
{vj1 , · · · , vjq , vj+1}.

Theorem 3 Let G = (V,E) be a connected simple outerplanar graph and x, y ∈ Eout ∪ V such
that G \ x and G \ y are connected and either x = y or y ∈ x or x ∈ y.

An optimal {x, y}-path-decomposition of G can be computed in linear time (in O(|E|)).

Proof. Let us first consider the case when x = y. Note that, since x belongs to every bag of
every {x, x}-path-decomposition of G, then p`(G, x, x) ≥ maxw∈V dist(w, x) (if x = {u, v} ∈ E,
dist(w, x) = max{dist(w, u), dist(w, v)}).

Let D = (X1, · · · , Xp) be a result of Algorithm Greedy. By Claim 5, D is a {x, x}-path-
decomposition of G computed in linear time. Let 1 < i ≤ p such that |Xi \Xi−1| > 0.

Let us suppose by contradiction that there is two vertices v and v′ in Xi \ x such that
d(v′, v) ≥ maxw∈V dist(w, x). Note that, v and v′ cannot be both in the same edge separator
of u and x, and that they cannot be both in Xi ∩ N(u), because in this case, d(v, v′) = 1 ≤
maxw∈V dist(w, x). For the moment, let us suppose that x is an edge. Hence, by Claim 5
and w.l.o.g., we can suppose that v ∈ S1, a separator of x and u (resp., S1 = N(u)), and
v′ ∈ S2, a separator of x \ S2 and u such that v is not in the connected component of G \ S2

that contains x. Therefore, if S2 is a cut vertex, then every (v, x)-path contains v′ and so
d(v, v′) ≤ d(v, x), a contradiction. Otherwise, S2 is an edge-separator (i.e. S2 in Eint). Let
us denote by vx the vertex from x such that d(v, x) is maximized. If v′ ∈ (v, vx)-path, then
d(v, v′) ≤ d(v, vx), a contradiction. Otherwise, the only vertex v∗ in S2 \ v′ is in every (v, vx)-
path and so d(v, v′) ≤ d(v, v∗) + 1 ≤ d(v, vx) (even if v∗ ∈ x), a contradiction. Note that it
remains the case where x is a vertex. Note that if we can suppose that v ∈ S1, a separator of
x and u (resp., S1 = N(u)), and v′ ∈ S2, a separator of x \ S2 and u such that v is not in the
connected component of G \S2 that contains x, then the same argument as before holds, which
implies a contradiction. Otherwise, v′ and x are adjacent and G \ {v′, x} disconnect the graph.
Let us denote by Cv′ the set of connected component of G \ v′ not containing x (if there is such
component). Let C1 and C2 be the two connected component G \ ({x, v′}

⋃
C∈Cv′

V (C). Note

that, by construction, however which face has been chosen, v′ = vq. Moreover, for any bag X
containing v′, X ∩ C1 = NC1(v′), X ∩ C2 = NC2(v′). Hence it implies that v ∈ C ∈ Cv′ . Note
that every (v, x)-path contains v′, which implies that d(v, v′) ≤ d(v, x), a contradiction.

Therefore, the diameter maxu,v∈Xi distG(u, v) of Xi is at most maxv∈V (G) dist(v, x). Hence,
D is an optimal {x, x}-path-decomposition of G.

Now, let us assume that x = {u, v} and y = v (the case when x ∈ y is symmetric). Note
that, since v belongs to every bag of every {x, y}-path-decomposition of G, then p`(G, x, y) ≥
maxw∈V dist(w, v). Let F be the internal face containing x (such a face exists and is unique
since G \x and G \ y are connected, u ∈ Eout and G 6= x) and let w 6= v be the second neighbor
of u in F . Let C be the connected component of G \ {u,w} that does not contain v and such
that N(C) = {u,w} (possibly C = ∅). Note that, for every h ∈ C, distG(h, u) ≤ distG(h, v).
Let D′ = (X1, · · · , Xp) be a result of Algorithm Greedy and let 1 ≤ i ≤ p be the smallest
integer such that w ∈ Xi. Let D = (X1, · · · , Xi, Xi+1 \ {u}, · · · , Xp \ {u}). Then, D is a
{x, y}-path-decomposition of G of length at most maxw∈V dist(w, v). �

Proof. Let us first consider the case when x = y. Note that, since x belongs to every bag of

12

every {x, x}-path-decomposition of G, then p`(G, x, x) ≥ maxw∈V dist(w, x) (if x = {u, v} ∈ E,
dist(w, x) = max{dist(w, u), dist(w, v)}).

Let D = (X1, · · · , Xp) be a result of Algorithm Greedy. By Claim 5, D is a {x, x}-path-
decomposition of G computed in linear time. For any 1 < i ≤ p such that |Xi \Xi−1| > 0, let
us suppose by contradiction that there is two vertices v and v′ in Xi \ x such that d(v′, v) ≥
maxw∈V dist(w, x). Note that since v /∈ x, we have that maxw∈V dist(w, x) > d(v, x) > 1.
Hence, v and v′ cannot be adjacent (v and v′ cannot be both in the same edge separator of u
and x, and that they cannot be u and u′).

For the moment, let us suppose that x is an edge. Hence, by Claim 5 and w.l.o.g., we can
suppose that v ∈ S1, a separator of x and u (resp., or v ∈ {u, u′}), and v′ ∈ S2, a separator
of x \ S2 and u such that v is not in the connected component of G \ S2 that contains x \ S2.
Therefore, if S2 is a cut vertex, then every (v, x)-path contains v′ and so d(v, v′) ≤ d(v, x), a
contradiction. Otherwise, S2 is an edge-separator (i.e. S2 in Eint). Let us denote by vx the
vertex from x such that d(v, x) is maximized. If v′ ∈ (v, vx)-path, then d(v, v′) ≤ d(v, vx), a
contradiction. Otherwise, the only vertex v∗ in S2 \ v′ is in every (v, vx)-path and so d(v, v′) ≤
d(v, v∗) + 1 ≤ d(v, vx) (even if v∗ ∈ x), a contradiction. Note that it remains the case where x
is a vertex. Note that if we can suppose that v ∈ S1, a separator of x and u (resp., S1 = N(u)),
and v′ ∈ S2, a separator of x and u such that v is not in the connected component of G \ S2

that contains x, then the same argument as before holds (because mins∈S2d(s, x) > 1), which
implies a contradiction. Otherwise, v′ and x are adjacent and G \ {v′, x} disconnect the graph
(i.e., {v′, x} ∈ Eint). Let us denote by Cv′ the set of connected component of G \ v′ not
containing x (if there is such component). Let C1 and C2 be the two connected component
G \ ({x, v′}

⋃
C∈Cv′

V (C)). W.l.o.g., let us assume that {v1 . . . , vq} ⊆ C1 ∪ {v′, x} such that

x = v1 and v′ = vq. Let us suppose that d(v, v′) = k > maxw∈V dist(w, x). Since {v′, x} ∈ Eint
and d(v, v′) > d(v, x), we have that d(v, x) = k − 1.

Therefore, the diameter maxu,v∈Xi distG(u, v) of Xi is at most maxv∈V (G) dist(v, x). Hence,
D is an optimal {x, x}-path-decomposition of G.

Now, let us assume that x = {u, v} and y = v (the case when x ∈ y is symmetric). Note
that, since v belongs to every bag of every {x, y}-path-decomposition of G, then p`(G, x, y) ≥
maxw∈V dist(w, v). Let F be the internal face containing x (such a face exists and is unique
since G \x and G \ y are connected, u ∈ Eout and G 6= x) and let w 6= v be the second neighbor
of u in F . Let C be the connected component of G \ {u,w} that does not contain v and such
that N(C) = {u,w} (possibly C = ∅). Note that, for every h ∈ C, distG(h, u) ≤ distG(h, v).
Let D′ = (X1, · · · , Xp) be a result of Algorithm Greedy and let 1 ≤ i ≤ p be the smallest
integer such that w ∈ Xi. Let D = (X1, · · · , Xi, Xi+1 \ {u}, · · · , Xp \ {u}). Then, D is a
{x, y}-path-decomposition of G of length at most maxw∈V dist(w, v). �

Note that, in the case where y ∈ x, an optimal {x, y} path-decomposition can be computed
as a {x, x} path-decomposition (X1, . . . , Xq) such that, at the end of the construction, we remove
x \ y from Xi+1, . . . Xq where Xi is the first bag such that N(x) ⊆

⋃
1≤j≤iXj . Note that by

claim 3, the case x ∈ y is similar.

4.2 Case when x and y are “around” a same face

In this section, we consider the last remaining case which is much more technical than previous
ones. Namely, let G = (V,E) be a n-node connected simple outerplanar graph and x, y ∈
Eout ∪ V such that G \ x and G \ y are connected, x 6= y, x /∈ y, y /∈ x and x and y lie on the
same internal face F of G (i.e., they are not separated by an edge or a vertex).

In this setting, we first show that there always exists an almost optimal {x, y}-path-decomposition

13

satisfying specific properties (first, contiguous, then g-contiguous (Section 4.2.2) and finally LtR
g-contiguous (Section 4.2.3), see formal definitions below). Then, a dynamic programming algo-
rithm to compute such an optimal {x, y}-path-decomposition is presented (Section 4.2.4). We
first need further notation presented in Section 4.2.1.

4.2.1 Notation

Let x = {x1, x2} and y = {y1, y2} (to simplify the presentation, we assume that x, y ∈ Eout. If
x ∈ V (resp., y ∈ V), it is sufficient to set x1 = x2 (resp., y1 = y2)). Let F (the internal face
containing x and y) consists of two internally disjoint paths Pup between x1 and y1 and Pdown
between x2 and y2 (if x and y are edges, they may share one vertex, in which case, we assume
that x2 = y2 and Pdown is reduced to x2).

Let C be the set of connected components of G \ F . Let Cup (resp., Cdown) be the set of
connected components C of G \ F such that N(C) ⊆ V (Pup) (resp., N(C) ⊆ V (Pdown)). For
every C ∈ Cup ∪ Cdown, let C̄ = C ∪ N(C) and let sC = N(C). Note that, since G is an
outerplanar graph and F is a face, then sC is either an edge or one vertex of F (abusing the
notation, sC will be either an edge or a vertex of F).

Lemma 11 Let G = (V,E) be a connected simple outerplanar graph and x, y ∈ Eout ∪ V such
that G \ x and G \ y are connected, x 6= y, x /∈ y, y /∈ x and x and y lie on the same internal
face F of G.

If p`(G, x, y) ≤ k, then there exists an {x, y}-path-decomposition D′ = (X1, · · · , Xp) of G
with length at most k such that, for every C ∈ C, if Xi ∩ C 6= ∅, then sC ∈ Xi (or sC ⊆ Xi if
sC is an edge).

Proof. Consider an {x, y}-path-decomposition D′ = (X1, · · · , Xp) of G with length at most k
that maximizes the number of components of C ∈ C that satisfy the property that if Xi∩C 6= ∅,
then sC ∈ Xi.

For purpose of contradiction, let us assume that there exists C ∈ C that does not satisfy
this property. W.l.o.g., assume that C ∈ Cup. Let 1 ≤ i ≤ j ≤ p be the smallest (largest
respectively) integer such that C ∩Xi 6= ∅ (C ∩Xj 6= ∅, resp.). Note that, for every i ≤ h ≤ j,
Xh ∩ V (Pdown) 6= ∅, and, moreover, for every vertices u ∈ sC , v ∈ C and w ∈ V (Pdown),
dist(u,w) ≤ dist(v, w) and d(v, u) ≤ d(v, w).

Then, (X1, · · · , Xi−1, Xi ∪ sC , · · · , Xj ∪ sC , Xj+1, · · · , Xp) is an {x, y}-path-decomposition
D′ = (X1, · · · , Xp) of G with length at most k, contradicting the maximality of D′. �

Let C be a component of G \ F .

• If sC is a vertex, let dC = maxv∈C∪sC dist(v, sC) and let h∗C be any vertex such that
dist(h∗C , sC) = dC .

• If sC is an edge, let sC = {lC , rC} and let dC = maxv∈C∪sC max{dist(v, rC), dist(v, lC)}
and let MC = {v ∈ C ∪ sC | max{dist(v, rC), dist(v, lC)} = dC}. Note that, for every
v ∈ C ∪ sC , dist(v, lC) − 1 ≤ dist(v, rC) ≤ dist(v, lC) + 1. If there exists v ∈ MC such
that dist(v, rC) = dist(v, lC) = dC , then let h∗C be such a vertex. Otherwise, let h∗C be
any vertex of MC .

If sC is a vertex or if there exists a vertex v ∈ C ∪ sC with dist(v, rC) = dist(v, lC) = dC ,
we say that C is a convenient component.

Claim 6 Let C be a connected component of G \ F and let v ∈ C and u ∈ G \ C. If C is
convenient or v /∈MC , then dist(v, u) ≤ dist(h∗C , u). Otherwise, dist(v, u) ≤ dist(h∗C , u) + 1.

14

4.2.2 Toward g-contiguous decompositions

Let D = (X1, · · · , Xp) be any {x, y}-path-decomposition of G and let C ∈ C. The component
C is said to be contiguous (with respect to D) if there exist 1 ≤ aC ≤ bC ≤ p such that (1)
C ∩ Xi = ∅ if and only if i /∈ {aC , · · · , bC}, and sC ⊆ Xj for all aC ≤ j ≤ bC , and (2) there
exists RC ⊆ V (F) such that Xi \ C = RC for every aC ≤ i ≤ bC . Intuitively, C is contiguous
w.r.t. D if, once a vertex of C has been introduced in D, no vertex of G \C can be introduced
in D before all vertices of C have been introduced.

A path-decomposition D is contiguous if every component of G \ F is contiguous w.r.t. D.

In what follows, we show that there always exists an optimal (or almost optimal) {x, y}-
path-decomposition of G which is contiguous. Let us start with the following constrained (we
assume that all components of G \ F are convenient) but more favorable case (and easier to
prove).

Theorem 4 Let G = (V,E) be a connected simple outerplanar graph and x, y ∈ Eout ∪ V such
that G \ x and G \ y are connected, x 6= y, x /∈ y, y /∈ x and x and y lie on the same internal
face F of G. Moreover, let us assume that all components of G \ F are convenient.

If p`(G, x, y) ≤ k, then there exists a contiguous {x, y}-path-decomposition D′ of G with
length at most k.

Proof. Given any {x, y}-path-decomposition D = (X1, · · · , Xp) of G with length at most k,
let Q(D) ⊆ C be a set of components C of C such that there exist 1 ≤ aC ≤ bC ≤ p such that:

1. C ∩Xi 6= ∅ if and only if aC ≤ i ≤ bC , and sC ∈ Xj for all aC ≤ j ≤ bC , and

2. there exists RC ⊆ F ∪
⋃
C′ /∈Q(D)C

′ such that, for every aC ≤ i ≤ bC , Xi \ C = RC .

Let D be an {x, y}-path-decomposition of G with length k. Then, such a set Q(D) is well
defined (possibly, Q(D) is empty).

Let us consider an {x, y}-path-decomposition D′ = (X1, · · · , Xp) of G with length at most
k, and that maximizes |Q(D′)|. If Q(D′) = C, then D′ is the desired path-decomposition.

For purpose of contradiction, let us assume that C \ Q(D′) 6= ∅. Let C ∈ C \ Q(D′) and let
1 ≤ i ≤ p be the smallest integer such that h∗C ∈ Xi. Note that, by Lemma 11, sC ∈ Xi. Note
also that, there is no C ′ ∈ Q(D′) such that aC′ < i ≤ bC′ by the second property above.

Let Y = (D′ ∩C)∪ (sC ∪ (Xi−1 ∩Xi) \C) (Recall the definition of D ∩X and D ∪X, when
D is a path-decomposition of G and X ⊆ V (G), as defined in Section 2. Recall also that an
edge is a set of two vertices). by Claim 6, and the fact that C is convenient, `(Y) ≤ k.

Therefore, D′′ = (X1 \ C, · · · , Xi−1 \ C) � Y � (Xi \ C, · · · , Xp \ C) is an {x, y}-path-
decomposition of G, with length at most k, and such that Q(D′) ∪ {C} ⊆ Q(D′′). This
contradicts the maximality of |Q(D′)|. �

Next, we include the cases when not all components of G \F are convenient. We show that
it may imply an increase of +1 of the length of the path-decompositions. Later, we show that
this increase cannot be avoided.

Theorem 5 Let G = (V,E) be a connected simple outerplanar graph and x, y ∈ Eout ∪ V such
that G \ x and G \ y are connected, x 6= y, x /∈ y, y /∈ x and x and y lie on the same internal
face F of G.

If p`(G, x, y) ≤ k, then there exists a contiguous {x, y}-path-decomposition D′ of G with
length at most k + 1.

15

Proof. Let D = (X1, · · · , Xp) be any {x, y}-path-decomposition of G with length at most
k + 1, such that, for every 1 ≤ i ≤ p, every C ∈ C and every u, v ∈ C ∩ Xi, we have that
dist(u, v) ≤ k (Property (∗)).

Let Q(D) ⊆ C be a set of components C of C such that there exist 1 ≤ aC ≤ bC ≤ p such
that:

1. C ∩Xi 6= ∅ if and only if aC ≤ i ≤ bC , and sC ∈ Xj for all aC ≤ j ≤ bC , and

2. there exists RC ⊆ F ∪
⋃
C′ /∈Q(D)C

′ such that, for every aC ≤ i ≤ bC , Xi \ C = RC , and

3. for every 1 ≤ j ≤ p such that there exists no C ∈ Q(D) with aC ≤ j ≤ bC , then `(Xj) ≤ k.
Moreover, if there exist C,C ′ ∈ Q(D) with bC = j = aC′ − 1, then `(Xj ∩Xj+1) ≤ k.

Let D be an {x, y}-path-decomposition of G with length k. In particular, note that D
trivially satisfies Property (∗). Then, such a set Q(D) is well defined (possibly, Q(D) is empty).

Let us consider an {x, y}-path-decomposition D′ = (X1, · · · , Xp) of G with length at most
k + 1 and satisfying Property (∗), and that maximizes |Q(D′)|. If Q(D′) = C, then D′ satisfies
the requirements of the theorem.

For purpose of contradiction, let us assume that C \ Q(D′) 6= ∅. Let C ∈ C \ Q(D′) and
let 1 ≤ i ≤ p be the smallest integer such that h∗C ∈ Xi. Note that, by Lemma 11, sC ∈ Xi.
Note also that, there is no C ′ ∈ Q(D′) such that aC′ < i ≤ bC′ by the second property of the
definition of Q(D′).

Let Y = (D′ ∩ C) ∪ (sC ∪ (Xi−1 ∩Xi) \ C). By Property (∗) and Claim 6 and third item
above, `(Y) ≤ k + 1 (if C is convenient, we even have `(Y) ≤ k).

Therefore, D′′ = (X1 \ C, · · · , Xi−1 \ C) � Y � (Xi \ C, · · · , Xp \ C) is an {x, y}-path-
decomposition of G, with length at most k + 1 and satisfying Property (∗), and such that
Q(D′) ∪ {C} ⊆ Q(D′′). This contradicts the maximality of |Q(D′)|. �

Unfortunatelly, the previous theorem cannot be improved since there are 2-connected out-
erplanar graphs G and x, y ∈ Eout, such that every contiguous {x, y}-path-decomposition has
length at least p`(G, x, y) + 1.

Lemma 12 There exists 2-connected outerplanar graphs G and x, y ∈ Eout such that every
contiguous {x, y}-path-decomposition of G has length at least p`(G, x, y) + 1.

Proof. Let G be the graph depict in Figure 2. Let C be the unique component of G \ F .
Let us denote the vertices of sC by lC and rC as depicted in Figure 2. Let us first describe a
{x, y}-path-decomposition D of G with length 10. Let X1 = {x}, X2 = Cl ∪ Cm ∪ L where L
is the (x2, rc)-path in F not containing y1 and y2. Let X3 = Cm ∪ down where down is the
(x2, y2)-path in F not containing x1 and y1. Let X4 = Cm ∪Cr ∪R where R is the (y2, lc)-path
in F not containing x1 and x2. Finally, let X5 = {y}. Note that D = (X1, . . . , X5) is a {x, y}-
path-decomposition of length 10. Moreover, D is not contiguous since for X2 and X4 contains
both vertices from C but X2\V (C) 6= X4\V (C).

Let us apply lemma 5 to D. Note that the contiguous {x, y}-path-decomposition D′ ob-
tained, has every vertex from V (C) either contained with L or with R. Hence, either l and y2

are both in a bag, or r and x2 are both in a bag. In every case, there is a bag containing two
vertices at distance 11. �

A contiguous {x, y}-path-decomposition D = (X1, · · · , Xp) of G is said to be g-contiguous
if, for every C ∈ C, (DaC ∩ (C̄), · · · , DbC ∩ (C̄))1 is an optimal greedy path-decomposition of
G[C̄] = G[C ∪ sC] based on sC (see Section 4.1.3).

1Recall the definition of aC and bC from the fact that D is contiguous.

16

11

3 3

6

66

6

Figure 2: Example of a graph G and x, y ∈ Eout such that every contiguous {x, y}-path-
decomposition of G has length at least p`(G, x, y) + 1. Weight on edges represent the length of
a path between the two endpoints of the edges.

Theorem 6 Let G = (V,E) be a connected simple outerplanar graph and x, y ∈ Eout ∪ V such
that G \ x and G \ y are connected, x 6= y, x /∈ y, y /∈ x and x and y lie on the same internal
face F of G.

If p`(G, x, y) ≤ k, then there exists a g-contiguous {x, y}-path-decomposition D = (X1, · · · , Xp)
of G with length at most k+ 1. Moreover, for every C ∈ C and aC ≤ i ≤ bC , `(Xi) = k+ 1 only
if h∗C ∈ Xi for some h∗C ∈MC .

Proof. By Theorem 5, there exists a contiguous {x, y}-path-decomposition D′ = (X1, · · · , Xp)
of G with length at most k + 1.

Iteratively, for every component C ∈ C, replace D′ with (X1, · · · , XaC−1)�G(C)∪ (XaC−1∩
XbC+1) � (XbC+1, · · · , Xp) where G(C) is an optimal greedy path-decomposition of G[C̄] =
G[C ∪ sC] based on sC . This remains a contiguous {x, y}-path-decomposition of G since, for
every aC ≤ i ≤ bC , sC ∈ Xi and Xi \ C ⊆ V (F).

Moreover, by construction of D′ (see the proof of Theorem 5), two vertices u and v in a bag
Xi (aC ≤ i ≤ bC for some C ∈ C) may be at distance k+1 only if u ∈ C and v ∈ V (F). Therefore,
the result holds (including the last statement) by definition of greedy path-decomposition and
by Claim 6. �

4.2.3 Toward left-to-right g-contiguous decompositions

Recall that we are considering a n-node connected simple outerplanar graph G = (V,E) and
x, y ∈ Eout ∪ V such that G \ x and G \ y are connected, x 6= y, x /∈ y, y /∈ x and x and y lie on
the same internal face F of G.

Let x = {x1, x2} if x is an edge (or x = x1 = x2 if x is a vertex) and let y1, y2 ∈ V be
defined similarly for y. Let Pup = (x1 = u1, · · · , ut = y1) and Pdown = (x2 = d1, · · · , ds = y2)
be the two internally disjoint paths that consist of all vertices of the face F . Note that, it may
be possible that x1 = y1 or x2 = y2 but not both (in what follows, we assume that x1 6= y1).

For every C ∈ Cup (i.e., such that sC ∈ V (Pup) or sC ⊆ V (Pup)), let lC (resp., rC) be the
vertex of sC that is closest (resp., furthest) to x1 in Pup (or lC = rC = sC if sC is a vertex).
Similarly, for every C ∈ Cdown (i.e., such that sC ∈ V (Pdown) or sC ⊆ V (Pdown)), let lC (resp.,
rC) be the vertex of sC that is closest (resp., furthest) to x2 in Pdown (or lC = rC = sC if sC is
a vertex).

An edge e ∈ E(F) \ {x, y} is said to be trivial if there does not exist C ∈ C such that
e = sC (note that an end of e may be a cut vertex, but there is no C ∈ C with N(C) = e).
While trivial edges are not related to any component of G \ F , we need to include them in

17

the analysis that follows. To unify the notation, let C̄ = {C̄ = C ∪ sC | C ∈ C} ∪ {e ∈
E(F) \ {x, y} | e is a trivial edge}. Intuitively, every trivial edge e ∈ E(F) \ {x, y} may be seen
as e = sC for some dummy empty component C = ∅. Similarly, let C̄up = {C̄ = C ∪ sC |
C ∈ Cup} ∪ {e ∈ E(Pup) | e is a trivial edge} and C̄down = {C̄ = C ∪ sC | C ∈ Cdown} ∪ {e ∈
E(Pdown) | e is a trivial edge}. Note that C̄ = C̄up ∪ C̄down.

Let Oup = (Cu1 , · · · , Cus′) be any ordering of C̄up such that, if lCui is strictly closer to x1

in Pup than lCuj and/or if rCui is strictly closer to x1 in Pup than rCuj , then i < j. Similarly,

let Odown = (Cd1 , · · · , Cds′) be any ordering of C̄down such that, if lCui is strictly closer to x2 in
Pdown than lCuj and/or if rCui is strictly closer to x1 in Pup than rCuj , then i < j. Intuitively, we

order the components of Cup and the trivial edges of Pup from x1 to y1 (resp., of Cdown and the
trivial edges of Pdown from x2 to y2), from “left to right” (“from x to y”). Note that for every
two components C,C ′ ∈ C such that sC = sC′ ∈ V , the relative order between C and C ′ in
Oup (resp., in Odown if sC ∈ V (Pdown)) is not relevant (but all connected components C ′ with
sC = sC′ are consecutive in Oup (resp., in Odown)).

In this section, we only consider g-contiguous {x, y}-path-decompositions D = (X1, · · · , Xp)
of G. That is, for every C ∈ C, there exist 1 ≤ aC ≤ bC ≤ p, and an interval IC = [aC , bC] such
that Xi ∩ C 6= ∅ if and only if i ∈ IC , sC ∈ Xi for all i ∈ IC and Xi \ C ⊆ F for all i ∈ IC . In
particular, IC ∩ IC′ = ∅ for all distinct C,C ′ ∈ C. We say that C appears in D in the bag XaC .
Moreover, (XaC ∩ C̄, · · · , XbC ∩ C̄) is a greedy path-decomposition of G[C̄] based on sC . Recall
also that we may assume that the property of the last statement in Theorem 6 holds.

By definition, D induces a total order OD = (C̄1, · · · , C̄b) on C̄ such that, for any 1 ≤ i <
j ≤ b, C̄i appears in D before C̄j (i.e., bCi < aCj). We aim at considering such g-contiguous
{x, y}-path-decompositions D such that the total orders OD they induce satisfy some extra
property defined below.

Let H = H1 ∪ H2 be a ground set with H1 ∩ H2 = ∅. Let O = (H1, · · · , Hq) be a total
ordering on H, and let Oi be a total ordering of H i for i ∈ {1, 2}. A prefix P = (H1, · · · , Hq′)
(q′ ≤ q) of H is compatible with Oi if P ∩H i is a prefix of Oi for i ∈ {1, 2}. If q′ = q, then O is
said to be compatible with O1 and O2.

Roughly, a contiguous {x, y}-path-decompositions D of G is said to be LtR (letf to right) if
OD is compatible with Oup and Odown. More precisely,

Definition 1 A contiguous {x, y}-path-decompositions D = (X1, · · · , Xp) of G is LtR if and
only if (1), for every Cui , C

u
j ∈ Oup (resp., Cdi , C

d
j ∈ Odown) with i < j, bCui < aCuj (resp.,

with bCdi
< aCdj

) and, moreover, (2), for every C ∈ C̄up (resp., C̄down), and i ∈ IC , Xi ∩ F =

{lC , rC , fC} where fC is one vertex of V (Pdown) (resp., of V (Pup)).

In what follows, we will iteratively transform a given g-contiguous {x, y}-path-decomposition
of G into different path-decompositions. While, during these transformations, the obtained
path-decomposition will always remain a g-contiguous {x, y}-path-decomposition ofG, its length
may be increased temporarily. To deal with this difficulty, let us define the weak length, denoted
by w`(D), of an {x, y}-path-decomposition D = (X1, · · · , Xp) of an outerplanar graph G (where
x and y are outer edges of a same face of G). The weak length, denoted by w`(Xi), of a bag
Xi (1 ≤ i ≤ p) is maxu∈Xi,v∈Xi∩Y dist(u, v) where Y = V (Pup) (resp., Y = V (Pdown)) if
aC ≤ i ≤ bC for a component C̄ ∈ C̄down (resp., C ∈ C̄up). Then, w`(D) = maxi≤pw`(Xi).

Lemma 13 Let D be a LtR g-contiguous {x, y}-path-decomposition of G, satisfying the last
statement of Theorem 6, and of weak length k. Then, `(D) ≤ k.

Proof. This holds by definition of LtR and by the last statement of Theorem 6. �

18

The next theorem roughly says that, from a g-contiguous {x, y}-path-decomposition, we can
add the property that it is LtR without increasing the length.

Theorem 7 Let G = (V,E) be a connected simple outerplanar graph and x, y ∈ Eout ∪ V such
that G \ x and G \ y are connected, x 6= y, x /∈ y, y /∈ x and x and y lie on the same internal
face F of G.

Let us assume that there exists a g-contiguous {x, y}-path-decomposition D = (X1, · · · , Xp)
of G with length k and such that, for every C ∈ C and aC ≤ i ≤ bC , `(Xi) = k only if h∗C ∈ Xi

for some h∗C ∈MC .
Then, there exists a LtR g-contiguous {x, y}-path-decomposition of G with length at most

k.

Proof. Let D = (X1, · · · , Xp) be a g-contiguous {x, y}-path-decomposition of G with weak
length k. We say that D satisfies Property (∗) if, for every C ∈ C and aC ≤ i ≤ bC , w`(Xi) = k
only if h∗C ∈ Xi for some h∗C ∈MC .

Recall that Oup (resp., Odown) are not uniquely defined in the sense that the order between
two components C,C ′ ∈ Cup (resp., C,C ′ ∈ Cdown) with sC = SC′ ∈ V is arbitrary (but all such
components are consecutive in Oup (resp., Odown)).

Let D = (X1, · · · , Xp) be g-contiguous {x, y}-path-decomposition of G with weak length
at most k satisfying Property (∗) and let Oup and Odown be orderings of C̄up and C̄down (as
defined previously) that maximize 1 ≤ h ≤ p such that (X1, · · · , Xh) is compatible with Oup
and Odown. Note that, if h = p, then D is the desired path-decomposition. Hence, for purpose
of contradiction, let us assume that h < p.

Note that, because D is a contiguous {x, y}-path-decomposition and because (X1, · · · , Xh)
is compatible with Oup and Odown, there exist 1 ≤ i ≤ s and 1 ≤ j ≤ t (recall that t and s are
the number of vertices of Pup and Pdown respectively) such that Xh ∩Xh+1 = {ui, dj}.

Let OD = O�(C1, · · · , Cq) where O is the prefix of OD that corresponds to the components
appearing in (X1, · · · , Xh). W.l.o.g., let us assume that C1 ∈ C̄up. Let Oup = O′� (C ′1, · · · , C ′q′)
where O′ = O∩C̄up. By maximality of h, C1 6= C ′1. More precisely, C1 = C ′z for some 1 < z ≤ q′.
There are two cases to be considered.

• First, let us assume that, for every 1 ≤ α < z and for all h∗C ∈ MC , dist(h∗C′α , dj) ≤ k.
Let

D′ = (X1, · · · , Xh)� ((XaC′1
, · · · , XbC′1

) ∩ C̄ ′1) ∪ {dj} � ((XaC′2
, · · · , XbC′2

) ∩ C̄ ′2) ∪ {dj}�

· · · � ((XaC′z−1
, · · · , XbC′z−1

) ∩ C̄ ′z−1) ∪ {dj} � ((Xh+1, · · · , Xp) \ ((
⋃

1≤α<z
C̄ ′α) \ {lC′z})).

Intuitively, all components that are between (in Oup) the last component of O and C1 are
“moved” just before C1 in the decomposition (in D all these components were appearing
after C1).

Because D is g-contiguous and satisfies Property (∗), then D′ is a g-contiguous {x, y}-
path-decomposition of G satisfying Property (∗). Moreover, its weak length is at most k.
In particular, for every bag B of ((XaC′α

, · · · , XbC′α
)∩ C̄ ′α)∪{dj} for 1 ≤ α < z, w`(B) ≤ k

because D satisfies Property (∗) and because, by assumption, dist(h∗C′α , dj) ≤ k.

To conclude this case, D′ is g-contiguous {x, y}-path-decomposition of G with weak length
at most k satisfying Property (∗) and with a larger prefix than D that is compatible with
Oup and Odown, contradicting the maximality of h.

19

• Else, for every decomposition D defined as above and maximizing h (where z := z(D),
defined as above, depends on D), there exists an integer 1 ≤ α < z(D) and a vertex
h∗C′α ∈ MC′α such that dist(h∗C′α , dj) > k (otherwise, we are back to the previous case).

Let α(D) be the smallest such integer α for the decomposition D.

Let 1 < α∗(D) ≤ q be such that C ′α(D) = Cα∗(D).

Consider such a decomposition D (still maximizing h) that minimizes α∗(D). From now
on, we denote the integer α(D) (for this particular decomposition D) by α and α∗(D) is
denoted by α∗.

Let α < β ≤ z ≤ γ ≤ q′ be defined such that [β, γ] is the inclusion-maximal interval
(containing z) such that every component C ′m with m ∈ [β, γ] appears before Cα∗ in OD
(i.e., for every m ∈ [β, γ], setting m′ such that C ′m = Cm′ , then 1 ≤ m′ < α∗). Let ClC′

β

denote the set of component C from C such that lC′β ∈ sC , C /∈ I and C ≤D α∗, i.e. the

component C that appears before Cα∗ in D, which will not be moved, and that contains
lC′β (note that we cannot remove lC′β from the bags of the component in ClC′

β

without

breaking a property of path-decomposition). Note that Cα∗ can be in ClC′
β

. Let CrC′γ
denote the set of component C from C such that rC′γ ∈ sC , C /∈ I and C ≤D α∗.

– First, let us assume that, ClC′
β

= CrC′
β

= ∅. Let

D′ = (X1, · · · , Xh)� ((Xh+1, · · · , XaCα∗−1) \ (
⋃

β≤m≤γ
C̄ ′m))� (XaCα∗

, · · · , XbCα∗
)�

((Xh+1 · · · , XaCα∗−1) ∩
⋃

β≤m≤γ
C̄ ′m) ∪ (XbCα∗

∩ V (Pdown))� (XbCα∗+1, · · · , Xp).

Intuitively, all components C ′β, · · · , C ′γ (and in particular, C1 = C ′z) that were ap-
pearing before Cα∗ in D (but that are greater than Cα∗ in Oup) are “moved” after
Cα∗ in D.

Because D is g-contiguous and satisfies Property (∗), then D′ is a g-contiguous
{x, y}-path-decomposition of G satisfying Property (∗). In particular, each edge of
G belongs to some bag because we have ensured that all components intersecting⋃
β≤m≤γ C̄

′
m do not appear in (Xh+1, · · · , XaCα∗−1). It remains to prove that its

weak length is at most k.

We will prove that every bag in ((Xh+1 · · · , Xq)∩
⋃
β≤m≤γ C̄

′
m)∪ (XbCα∗

∩V (Pdown))

has weak length at most k (that are the only bags where some vertices may be added
compared with the bags of D). Since we are considering the weak length, we actually
need to prove that, for every v ∈

⋃
β≤m≤γ C̄

′
m and every w ∈ XbCα∗

∩ V (Pdown),

dist(v, w) ≤ k. Actually, we will show that dist(v, w) ≤ dist(h∗C′α , w) (note that

dist(h∗C′α , w) ≤ k since w belongs to every bag in XaC′α
, · · · , XbC′α

).

Note that, because D is a path-decomposition, Xh ∩ Xh+1 ∩ V (Pdown) = {dj} and
y2 ∈ Xp, then w is between dj and y2 in Pdown. Moreover, since dist(h∗C′α , dj) > k

and dist(h∗C′α , w) ≤ k, then the shortest path between w and h∗C′α goes through y2.

Let β ≤ m ≤ γ such that v ∈ C̄ ′m and let 1 ≤ δ < aC′α be such that v ∈ Xδ (in D).
Because D is a path-decomposition and dj ∈ Xh and w ∈ XaC′α

, there must be a

20

vertex w′ ∈ Xδ which is between dj and w in Pdown, and so dist(v, w′) ≤ k since D
has weak length at most k. If the shortest path between v and w′ goes through y2,
we get that dist(v, w) ≤ dist(v, w′) ≤ k and we are done. Otherwise, w is strictly
between w′ and y2 (in particular w 6= w′) (because the shortest path between h∗C′α
and w goes through y2, the one between v and w′ goes through x2 and sC′α is closer
to x2 than sC′m). Note also that w′ belongs to every bag in XaC′m

, · · · , XbC′m
and, in

particular, one of these bags contains a vertex h∗C′m , and so dist(h∗C′m , w
′) ≤ k.

To sum up, dist(w′, lC′m) + dist(lC′m , h
∗
C′m

) = dist(h∗C′m , w
′) ≤ k < dist(h∗C′α , dj) =

≤dist(w′, lC′α) + dist(lC′α , h
∗
C′α

). Because lC′α is between x2 and lC′m in Pup and the

shortest path between lC′m and w′ goes through x2, we get that dist(w′, lC′m) ≥
dist(w′, lC′α) and so dist(lC′m , h

∗
C′m

) < dist(lC′α , h
∗
C′α

). Finally, k ≥ dist(h∗C′α , w) =

dist(h∗C′α , rC
′
α
) + dist(rC′α , w) ≥ dist(rC′m , h

∗
C′m

) + dist(rC′m , w) = dist(h∗C′m , w). The
last inequality comes from the fact that rC′m is between y1 and rC′α in Pup and
the shortest path between lC′α and w goes through y1 and y2. Hence, we get that
dist(h∗C′m , w) ≤ k and so, dist(v, w) ≤ k by Property (∗).
It remains to show that D′ contradicts the minimality of α∗. Let C be the component
that appears in D′ just after Xh.

∗ First, let us assume that C ∈ Cup.
If C ≤ C ′α in Oup, then by definition of α, D′ corresponds to the first case of the
proof of the Theorem, i.e., C and all components smaller than C in Oup can be
moved just after Xh in D′ (recall that all these components can be added with
dj by definition of α).
Otherwise, by definition of α (and of dj), we have that α(D′) = α(D) = α
and, then Cα∗(D′) = Cα∗(D). Since Cα∗(D) is “closer” from Xh in D′ than in D
(since D′ is obtained from D by moving at least C1 after Cα∗(D)), we get that
α∗(D′) < α∗(D), contradicting the minimality of α∗(D).

∗ If C ∈ Cdown, then we repeat the process. Either we fall in the first case,
which contradicts the maximality of h, or we have to repeat the transformation
of the second case. This leads to a new decomposition D′′ with same prefix
(X1, · · · , Xh) and a component C ′ that appears just after this prefix in D′′. If
C ′ ∈ Cdown, then applying the above paragraph with D′ and D′′ instead of D
and D′ leads to a contradiction. Otherwise, since the prefix (and so dj) is the
same, then applying the paragraph above for C ′ also contradicts the minimality
of α∗(D) (i.e., α∗(D′′) < α∗(D)).

– Second, let us assume that rC′α = lC′β and that there exists a component C /∈
{C ′β, · · · , C ′γ} such that rC = lC′β that appears before C ′α in D (because C /∈
{C ′β, · · · , C ′γ}, this implies that C < C ′α in Oup). Let 1 ≤ δ < α be the smallest
integer such that C ′δ is such a component C, and let h + 1 ≤ δ′ < aC′α be such that
δ′ = aC′δ . Then, let

D′ = (X1, · · · , Xh)� ((Xh+1, · · · , XbC′
δ

) \ (
⋃

β≤m≤γ
C̄ ′m))�

(((XbC′
δ
+1, · · · , XaCα∗−1) \ (

⋃
β≤m≤γ

C̄ ′m)) ∪ {lC′β})� (XaCα∗
, · · · , XbCα∗

)�

((Xh+1 · · · , XaCα∗−1 ∩
⋃

β≤m≤γ
C̄ ′m) ∪ (XbCα∗

∩ V (Pdown))� (XbCα∗+1, · · · , Xp).

21

With similar arguments as in the previous case, D′ contradicts the minimality of α.

– Second, let us assume that ClC′
β

6= ∅, and that CrC′
β

= ∅ (note that the case when

ClC′
β

= ∅, and CrC′
β

6= ∅ is symmetric). Let us denote by C ′γ the first component in

D that is also in ClC′
β

. Then, let

D′ = (X1, · · · , Xh)� ((Xh+1, · · · , XbC′
δ

) \ (
⋃

β≤m≤γ
C̄ ′m))�

(((XbC′
δ
+1, · · · , XaCα∗−1) \ (

⋃
β≤m≤γ

C̄ ′m)) ∪ {lC′β})� (XaCα∗
, · · · , XbCα∗

)�

((Xh+1 · · · , XaCα∗−1 ∩
⋃

β≤m≤γ
C̄ ′m) ∪ (XbCα∗

∩ V (Pdown))� (XbCα∗+1, · · · , Xp).

With similar arguments as in the previous case, D′ contradicts the minimality of α.

– Third, let us assume that ClC′
β

6= ∅, and that CrC′
β

6= ∅. Let us denote by C lγ the

first component in D that is also in ClC′
β

. Let us denote by Crγ the first component

in D that is also in ClC′
β

. W.l.o.g., let us assume that C lγ appears before Crγ in D.

D′ = (X1, · · · , Xh)� ((Xh+1, · · · , XbC′
δ

) \ (
⋃

β≤m≤γ
C̄ ′m))�

(((Xb
Cl
δ

, · · · , XbCr
δ
−1) \ (

⋃
β≤m≤γ

C̄ ′m)) ∪ {lC′β})�

(((XbCr
δ
, · · · , XaCα∗−1) \ (

⋃
β≤m≤γ

C̄ ′m)) ∪ {lC′β , rC′γ})� (XaCα∗
, · · · , XbCα∗

)�

((Xh+1 · · · , XaCα∗−1 ∩
⋃

β≤m≤γ
C̄ ′m) ∪ (XbCα∗

∩ V (Pdown))� (XbCα∗+1, · · · , Xp).

With similar arguments as in the previous case, D′ contradicts the minimality of α.

�

4.2.4 Compute optimal left-to-right g-contiguous decompositions in polynomial-
time

Finally, we show that LtR g-contiguous {x, y}-path-decompositions can be computed efficiently.

Theorem 8 Let G = (V,E) be a connected simple outerplanar n-node graph and x, y ∈ Eout∪V
such that G \ x and G \ y are connected, x 6= y, x /∈ y, y /∈ x and x and y lie on the same
internal face F of G. Let us assume that p`(G, x, y) ≤ k.

Then, an LtR g-contiguous {x, y}-path-decomposition of G with length at most k can be
computed in time O(n+ k2).

22

Proof. First, the connected components C (and C̄ = C ∪ sC) of G \ F can be computed in
linear-time. Note that these components are pairwise edge-disjoint. By Theorem 3, in global
time O(|E|), an optimal greedy path-decomposition DC based on sC can be computed for each
such a component C̄.

For each cut vertex v ∈ V (F), let Cv be the set of the connected components of G \ v that
do not contain x (nor y) and let Cv ∈ Cv (note that v = sCv) be a component that maximizes
dist(h∗Cv , v). Let G′ be obtained from G by removing, for every cut-vertex v ∈ V (F), all
components of Cv but Cv. That is, for every cut-vertex v of F , there is a single component of
G′ \ v not containing x nor y.

We first compute a path-decomposition for G′ that we then extend to a path-decomposition
of G.

Let (C̄u1 , · · · , C̄uq) be the components C such that sC ∈ Pup ordered from “left to right”

(from x1 to y1 as in previous section), and let (C̄d1 , · · · , C̄dq′) be the components C such that
sC ∈ Pdown ordered from x2 to y2 (we use the same notation as in Section 4.2.3).

Note that F induces an isometric subgraph of G (and of G′) and so, by Lemma 1 and The-
orem 2, |F | = O(k). Therefore, since every cut-vertex of G′ corresponds to a single component,
it follows that q, q = O(k).

For every 0 ≤ i ≤ q, 0 ≤ j ≤ q′, let G[i, j] be the subgraph of G induced by x = {x1, x2}
and every component C̄ui′), 1 ≤ i′ ≤ i and every component C̄dj′), 1 ≤ j′ ≤ j and adding
a new edge ei,j between rC̄ui

and rC̄dj
of length distG(rC̄ui

, rC̄dj
) (this artificial edge is used to

keep the same distances as in G and G′). Let D[i, j] denote an optimal LtR g-contiguous
{x, ei,j}-path-decomposition of G[i, j].

Let D1 = D[i−1, j]�DCui
∪{rCdj } and let D2 = D[i, j−1]�DCdj

∪{rCui }. Let D′ ∈ {D1, D2}
then, by definition of LtR g-contiguous path-decomposition, D′ is an optimal LtR g-contiguous
{x, ei,j}-path-decomposition of G[i, j]. Therefore, for every 0 ≤ i ≤ q, 0 ≤ j ≤ q′, D[i, j] can be
computed in constant time from D[i− 1, j] and D[i, j− 1]. Indeed, computing the length of D1

(resp., D2) from the one of D[i− 1, j] (resp., of D[i, j − 1]) only relies on the distance between
h∗
Cdj

and rCui (resp., between h∗Cui
and rCdj

) and these distances can be pre-computed in linear

global time (for each component C, a single BFS from sC is sufficient to determine h∗C and its
distance to sC).

Hence, once the linear time pre-processings (computation of the greedy decompositions and
of the distances) have done, an {x, y}-path-decomposition D[q, q′] of G′ with length at most k
can be computed in time O(k2) by dynamic programming.

To conclude, to obtain the desired decomposition for G from D[q, q′], it is sufficient, for every
cut-vertex v ∈ V (F) and every component C ∈ Cv \ {Cv}, to insert the greedy decomposition
DC ∪ xv just after the one of DCv in D[q, q′] where xv 6= v is the (unique) vertex of F not in
C̄v that appears in the same bags as C̄v in D[q, q′] (by maximality of dist(h∗Cv , v) when defining
Cv, this does not increase the path-length). �

4.3 Polynomial-time +1 approximation for computing the pathlength of out-
erplanar graphs

We are finally ready to prove our main theorem.

Theorem 9 There exists an algorithm that, for every n-node connected outerplanar graph G =
(V,E), decides in time O(n3(n+ k2)) whether p`(G) > k or returns a path-decomposition of G
with length at most k + 1.

23

Proof. For every x, y ∈ Eout ∪ V (possibly x = y), the algorithm computes decides whether
p`(G, x, y) > k or computes an {x, y}-path-decomposition of G length at most k + 1. By
Lemma 3, such a decomposition with minimum length will be a path-decomposition of G with
length at most k + 1. (We need to also consider the cases when x and y are vertices for the
recursion below).

Let us fix x, y ∈ Eout ∪ V and let us assume that p`(G, x, y) ≤ k, we present an algorithm
that computes an {x, y}-path-decomposition of G length at most k + 1 in time O(n(n+ k2)).

If x = y, the Algorithm Greedy (see Section 4.1.3) computes an optimal {x, y}-path-
decomposition of G in linear time by Theorem 3 and we are done. So let us assume that
x 6= y.

First, in linear time, the cut-vertices and internal edges separating x and y are computed
(this can be done, e.g., using SPQR trees [10]). Let {e0 = x, e1, · · · , eq−1, eq = y} where
ei ∈ Eint ∪ V for every 0 < i < q be the set of those separators in order they are met when
going from x to y. For every 0 ≤ i < q, ei 6= ei+1 (they may intersect) and either ei and ei+1

share a same internal face Fi or, ei and ei+1 are vertices and {ei, ei+1} ∈ E. Let C be the
set of connected components of G \ ei for some 0 ≤ i ≤ q that contain neither x nor y. That
is, for every C ∈ C, there exists 0 ≤ i ≤ q and v ∈ ei (or v = ei if ei is a vertex) such that
N(C) = {v}. Note that this decomposition into several connected components is done once for
all at the beginning of the execution of the algorithm. In particular, it is not done anymore
in the recursive calls described below and therefore it counts only for a linear time in the time
complexity.

Assume first that e1 6= y. Let C ′ be the connected component of G \ e1 containing (or
intersecting if e1 ∩ x 6= ∅) x. Let Gy = G[V \ C ′], let Cx ⊆ C be the set of the connected
components of G \ x that do not contain y (they already have been computed above) and let
Gx = G[(C ∪ e1)] and let G′x = Gx \

⋃
C∈Cx] be the subgraph induced by the vertices in C ∪ e1

that are not in some component of Cx.
Our algorithm first recursively computes a {e1, y}-path-decomposition Dy of Gy with length

at most k+1 in time O(|V (Gy)|(|V (Gy)|+k2)). Then, note that G′x\x and G′x\e1 are connected
and e1 6= x share a same face F0.

• If x ∈ e1 or e1 ∈ x, let D′x be an optimal greedy {x, e1}-path-decomposition of G′x in time
O(|E(G′x)|) (see Section 4.1.3).

• Otherwise, the conditions of Theorem 8 are fulfilled and an {x, e1}-path-decomposition
D′x of G′x with length at most k + 1 can be computed in time O(|V (G′x)|+ k2).

Then, for every C ∈ Cx with N(C) = {v}, our algorithm computes an optimal greedy path-
decomposition Dc of C̄ based on v. Using several times (one time per component of Cx) some
of the Lemmas 5-9 (depending on whether x and e1 are edges or not, whether they intersect
or not, and whether N(C) intersects e1 or not), an {x, e1}-path-decomposition Dx of Gx with
length at most k+1 can be computed in time |Cx| from D′x and the decompositions DC , C ∈ Cx.
Finally, from Lemma 10, the desired {x, y}-path-decomposition of G with length at most k+ 1
is obtained from Dx and Dy. So in total, in time O(|V (Gy)|(|V (Gy)|+k2))+O(|V (G′x)|+k2) =
O(n3(n+ k2)).

The last case is when e1 = y. In that case, let G′x be obtained from G by removing the
component of G \ x that do not contain y and also removing the components of G \ y that do
not contain x. An {x, y}-path-decomposition D′x of G′x of length at most k+ 1 is obtained as in
the two items above. And then, using Lemmas 5-9, the components of G \G′x can be added to
it as above to obtain the desired {x, y}-path-decomposition of G with length at most k + 1. �

24

5 Further work

The next step would be to design a polynomial time exact algorithm (if it exists) to compute
the pathlength of Outerplanar graphs. Note that the increase of the length (+1) in our approx-
imation algorithm comes from the contiguous property. The Example of Figure 2 shows that
we cannot avoid this increase if we keep the contiguous property. Moreover, the LtR property
has been prove from a contiguous path-decomposition. Therefore, this proof needs also to be
adapted for the exact case. An other question would be to know whether our algorithm for
trees can be adapted to chordal graphs. Moreover, the complexity of computing the pathlength
(or treelength) of planar graphs is still open.

References

[1] R. Belmonte, F. V. Fomin, P. A. Golovach, and M. S. Ramanujan. Metric dimension of
bounded tree-length graphs. SIAM J. Discret. Math., 31(2):1217–1243, 2017.

[2] Achim Blumensath and Bruno Courcelle. Monadic second-order definable graph orderings.
Log. Methods Comput. Sci., 10(1), 2014.

[3] H. L. Bodlaender and F. V. Fomin. Approximation of pathwidth of outerplanar graphs. J.
Alg., 43(2):190–200, 2002.

[4] D. Coudert, F. Huc, and J.-S. Sereni. Pathwidth of outerplanar graphs. J. Graph Theory,
55(1):27–41, 2007.

[5] Y. Dourisboure and C. Gavoille. Tree-decompositions with bags of small diameter. Discret.
Math., 307(16):2008–2029, 2007.

[6] F. F. Dragan, E. Köhler, and A. Leitert. Line-distortion, bandwidth and path-length of a
graph. Algorithmica, 77(3):686–713, 2017.

[7] Feodor F. Dragan and Arne Leitert. Minimum eccentricity shortest paths in some struc-
tured graph classes. J. Graph Algorithms Appl., 20(2):299–322, 2016.

[8] G. Ducoffe, S. Legay, and N. Nisse. On the complexity of computing treebreadth. Algo-
rithmica, 82(6):1574–1600, 2020.

[9] Maurice Herlihy, Fabian Kuhn, Srikanta Tirthapura, and Roger Wattenhofer. Dynamic
analysis of the arrow distributed protocol. Theory Comput. Syst., 39(6):875–901, 2006.

[10] John E. Hopcroft and Robert Endre Tarjan. Dividing a graph into triconnected compo-
nents. SIAM J. Comput., 2(3):135–158, 1973.

[11] Piotr Indyk. Algorithmic applications of low-distortion geometric embeddings. In 42nd
Annual Symposium on Foundations of Computer Science, FOCS, pages 10–33. IEEE, 2001.

[12] Adrian Kosowski, Bi Li, Nicolas Nisse, and Karol Suchan. k-chordal graphs: From cops
and robber to compact routing via treewidth. Algorithmica, 72(3):758–777, 2015.

[13] R. Krauthgamer and J. R. Lee. Algorithms on negatively curved spaces. In 47th Annual
IEEE Symp. on Foundations of Computer Science (FOCS 2006), pages 119–132, 2006.

[14] Burkhard Monien and Ivan Hal Sudborough. Min cut is NP-complete for edge weighted
trees. Theor. Comput. Sci., 58:209–229, 1988.

25

[15] J. B. Tenenbaum, Vin de Silva, and John C. Langford. A global geometric framework for
nonlinear dimensionality reduction. Science, 290(5500):2319–2323, 2000.

26

	Introduction
	Preliminaries
	Pathlength of trees and cycles
	Outerplanar graphs
	Cases (depending on x and y) when recursion or greedy algorithm are possible
	Case when G x is not connected
	Case when x and y are ``separated"
	Case when x=y or x y or y x: greedy algorithm

	Case when x and y are ``around" a same face
	Notation
	Toward g-contiguous decompositions
	Toward left-to-right g-contiguous decompositions
	Compute optimal left-to-right g-contiguous decompositions in polynomial-time

	Polynomial-time +1 approximation for computing the pathlength of outerplanar graphs

	Further work

