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Explaining Cautious Random Forests via
Counterfactuals

Haifei Zhang, Benjamin Quost, Marie-Hélène Masson

Abstract Cautious random forests are designed to make indeterminate de-
cisions when tree outputs are conflicting. Since indeterminacy has a cost, it
seems desirable to highlight why a precise decision could not be made for an
instance, or which minimal modifications can be made to the instance so that
the decision becomes a single class. In this paper, we apply an efficient ex-
tractor to generate determinate counterfactual examples of different classes,
which are used to explain indeterminacy. We evaluate the efficiency of our
strategy on different datasets and we illustrate it on two simple case studies
involving both tabular and image data.

1 Introduction

Machine learning models now achieve high performances in many fields such
as medical diagnosis, recommendation systems, image and speech recogni-
tion. The outputs of these models are traditionally precise: in a classification
problem, they consist in a single class for a given instance. However, when
training data are scarce, or when mistakes have a very high cost, cautious
classifiers can alternatively be used to provide set-valued decisions rather
than single classes and thus control the risk. Cautious random forests (CRF)
(Zhang et al., 2021) are one of those classifiers. A CRF combines the classical
random forest (RF) strategy (Breiman, 2001), the Imprecise Dirichlet Model
(IDM) (Walley, 1996) and the theory of belief functions (Shafer, 1976). The
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major difference with a classical RF is that an indeterminate decision can
be reached in presence of both epistemic uncertainty (when the tree out-
puts are based on scarce information) and aleatoric uncertainty (the conflict
between these outputs is high), which typically happens near decision bound-
aries. Making imprecise predictions has a cost, since indeterminacy must be
resolved via further analysis. Therefore, it seems crucial to understand what
led to an undetermined decision, and what could be done to change it into
a determinate one. Such questions fall under the emerging topic of explain-
able machine learning (Molnar, 2019). In this paper, we address the second
problem using counterfactual explanations (Wachter et al., 2017), which pro-
vide clear and intuitive explanations for turning an original instance 𝑥 into a
modified one 𝑥 ′ in a minimal way, so that 𝑓 (𝑥 ′) corresponds to a desired pre-
diction 𝑦′ ≠ 𝑓 (𝑥). Our approach is inspired by the one proposed by Blanchart
(2021), specifically developed for tree ensembles. Our contributions consist
in improving the efficiency of the procedure, and in exploiting counterfactu-
als for explaining indeterminate CRF outputs. Their benefits for explaining
indeterminacy are illustrated by experimental results, in particular via two
case studies.

The paper is structured as follows. In Section 2, we recall general back-
ground knowledge on cautious random forests and counterfactual explana-
tions. Their application to explaining indeterminacy are discussed in Section
3. Section 4 details the experiments and discusses the results. A short con-
clusion is drawn in Section 5.

2 Background

2.1 Cautious Random Forests

Cautious random forests (CRF) have been proposed as an alternative to
precise random forests, so as to make decisions from scarce data. In a binary
classification problem, for each test instance 𝑥, each tree 𝑡 in the forest provide
pieces of evidence about its actual class 𝑌 ∈ {1, 0} in the form of lower and
upper bounds 𝑝𝑡

1
(𝑥) and 𝑝𝑡1 (𝑥) over the posterior probability Pr(𝑌 = 1|𝑥).

These bounds are obtained using the Imprecise Dirichlet Model, and reflect
the estimation uncertainty due to the lack of training data. These intervals
can be pooled using the theory of belief functions, by computing the belief and
plausibility 𝑏𝑒𝑙 (𝑌 = 1|𝑥) and 𝑝𝑙 (𝑌 = 1|𝑥), which can then be used in a cautious
decision-making process such as interval dominance, possibly resulting in
indeterminate decisions (Zhang et al., 2021).

As can be seen in Fig. 1, imprecision occurs principally around the decision
boundaries, where tree leaves are prone to contain few instances and tree
outputs are often conflicting with each other.
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Fig. 1 Predictions of a CRF with 𝑇 = 100 trees.

2.2 Counterfactual-based explanations

Explainable artificial intelligence is an emerging field of artificial intelligence
that helps humans to understand the outputs of machine learning algorithms.
Counterfactuals (CF) (Wachter et al., 2017) are local and example-based
explanations, which can be seen as minimal alterations of an original query
instance 𝑥 leading to different decisions. Such examples can either be queried
for in the training set, or synthesized. Given a classifier 𝑓 , a query instance
𝑥 ∈ X, and a desired prediction label 𝑦′ ∈ Y, we aim at efficiently computing
𝑥 ′ by solving

𝑥 ′ = argmin
𝑧∈X

dist(𝑥, 𝑧) s.t. 𝑓 (𝑧) = 𝑦′, (1)

where dist is a suitable distance measure (e.g., Euclidean) between instances.
Many methods have been designed to solve (1) exactly or approximately,

such as selecting the most similar sample in the training set, or creating a vir-
tual sample by optimizing a loss function (for differentiable models), searching
CFs by a heuristic strategy, or approximating the model at hand (e.g. by a de-
cision tree) so as to simplify the search of a CF (Guidotti, 2022). Besides the
inherent complexity of counterfactual generation algorithms, additional chal-
lenges make designing an actionable decision process difficult (Verma et al.,
2020), such as protecting some attributes or immutable features (such as
gender, ethnicity, etc), restricting the number of modified features (sparsity),
and generating plausible (or realistic) CFs.

3 Explaining imprecision using counterfactuals

This work proposes to apply CF explanations to cautious binary classifica-
tion: given an instance 𝑥 with indeterminate prediction 𝑓 (𝑥) = {0, 1}, we want
to identify its two minimal modifications 𝑥1 and 𝑥0 such that 𝑓 (𝑥1) = {1} and
𝑓 (𝑥0) = {0}. These two synthetic examples will not only reveal the features
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which should be modified to remove indeterminacy, but also to which extent
they should be modified so as to reach a precise decision.

3.1 Extracting determinate counterfactuals

We propose to extract counterfactuals using the geometrical method of Blan-
chart (2021), which explicitly computes the smallest decision regions of a tree
ensemble model, and generates the closest virtual CF in terms of Euclidean
distance. A random forest separates the input space X into decision regions,
each of which is itself the intersection of 𝑇 decision regions provided by the 𝑇
trees in the forest. Computing the optimal and exact CF with desired class 𝑦′

for an instance 𝑥 requires to explore all decision regions of the forest, the com-
plexity of which is exponential. This exhaustive search is thus intractable for
high-dimensional data or forests with deep trees. Blanchart (2021) proposed
a branch-and-bound strategy to search for CFs only around 𝑥, by ignoring
decision regions 𝑅 such that 𝑑 (𝑥, 𝑅) > 𝑑max, with 𝑑max (initialized to positive
infinity) the distance to the current counterfactual found during the extrac-
tion procedure. We refer the reader to this reference for further information.

3.2 Region filtering and counterfactual initialization

Given the complexity of determining a CF 𝑥 ′ for a given query instance 𝑥 with
indeterminate decision 𝑓 (𝑥) = {1, 0}, we propose two amenities to speed up
the procedure. These preliminary steps make it possible to drastically reduce
the complexity of the search, as will be shown in Section 4.

1. Following a suggestion of Blanchart (2021), in presence of protected fea-
tures, we filter out the regions that do not correspond to the same pro-
tected values as in 𝑥.

2. We use an alternative approach to “initialize” the CF search, i.e. to com-
pute the first CF based upon which the initial distance threshold 𝑑max will
be determined, rather than positive infinity.

Embedding the filtering step mentioned above in any branch-and-bound pro-
cedure is straightforward. The initialization step is critical, since it determines
the threshold 𝑑max and therefore the number of regions to be explored.

The Minimum Observable (MO) approach, which selects the nearest in-
stance 𝑥 ′ with desired class 𝑦′ in the training set, is commonly used for this
purpose. However, in scarce regions of the input space, the distance between
the query point and the closest training CF may be large. Even worse, when
several protected features (PF) are considered, the approach may not give
an initial CF which meets the requirements. Therefore, we propose a new
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strategy to find an initial virtual CF, which we call One-dimensional Change
CounterFactual (OCCF). In a nutshell, for a given 𝑥, OCCF aims at solving
Eq. (1) with the additional constraint that 𝑥 and 𝑧 differ by one feature only.
This problem can be quickly solved using individual conditional expectation
(ICE) plots (Goldstein et al., 2015), which estimate how the probability (or
the decision) 𝑓 (𝑥) of a classifier varies according to a modification in 𝑥 when
all other values are fixed.

Note that in a random forest, for a query instance 𝑥, we need only consider
a finite number of modifications of the value of a mutable feature X𝑑, defined
by the split values for this feature obtained across all trees. However, an
OCCF may still not exist when several features are protected, although the
experiments suggest that this is much less likely than with the MO approach.
In this case, some constraints should be relaxed by “unprotecting” some
immutable features.

4 Experimental results

4.1 Counterfactual extraction efficiency

In this experiment, we evaluate the efficiency of the proposed CF extraction
procedure on four datasets. The number of trees in the ensemble is 50 for all
datasets, and the maximal depth of the trees are respectively 10, 8, 7, and
14. The efficiency is evaluated in three ways: the number of regions to explore
after filtering by different initialization approaches, the distance between the
query point and the initial CF, and the elapsed time to extract all CFs. Note
that Compas and Pima have one and four protected features, respectively,
whereas no protected features were considered for Heloc and Wine.

Table 1 Average number of leaves to explore

Dataset Original PF MO PF+MO OCCF PF+OCCF

Compas 7236 2226.86 849.87 732.54 418.36 305.36
Heloc 8784 5268.12 106.52
Pima 2522 1081.27 1007.43 719.53 133.90 128.77
Wine 8949 3277.05 761.38

Tables 1 and 2 indicate that exploiting the protected features can help
to reduce the amount of regions to explore, since it restricts searching the
CFs to a feature subspace. Our proposed OCCF initialization can generate
initial CFs which are much closer to the query point 𝑥 compared to MO: as
a consequence, we may filter out many more regions, and thus reduce the
amount of time needed to reach the solution.



6 Haifei Zhang, Benjamin Quost, Marie-Hélène Masson

Table 2 Average distance from the query example to the initial counterfactual (left),
and average elapsed time for searching the final counterfactual (right)

Initial CF Distance CF Searching Time (s)

Dataset MO PF+MO OCCF PF+OCCF MO PF+MO OCCF PF+OCCF

Compas 0.078 0.134 0.040 0.058 1.091 0.421 0.580 0.284

Heloc 0.273 0.011 4.570 1.274

Pima 0.215 0.273 0.034 0.041 5.600 4.991 3.589 3.277

Wine 0.192 0.060 5.745 4.667

4.2 Case studies

Case 1: Pima

The Pima dataset can be used to predict whether a patient has diabetes or
not, based on various measurements: Pregnancies (PGs): number of times
pregnant; Glucose; Blood Pressure (BP); Skin Thickness (ST); Insulin: 2-
Hour serum insulin (mu U/ml); BMI: body mass index; Diabetes Pedigree
Function (DPF); Age. The class is 𝑦 = 0 for a non-diabetic, 𝑦 = 1 for a dia-
betic. Here, Age, number of pregnancies, DPF values, and Skin Thickness are
difficult to change (considered as protected features), while Glucose, Insulin,
BMI, and blood pressure are actionable (mutable) features. We chose Pima
as an example because, as a medical dataset, explainability may have a great
practical interest.

Table 3 Examples of counterfactual explanations from Pima dataset.

PGs Glucose BP ST Insulin BMI DPF Age

𝑥1 0 165 90 33 680 52.3 0.427 23
𝑥01 0 154.5↓ 90 33 680 47.7↓ 0.427 23
𝑥11 0 165.5↑ 90 33 680 52.3 0.427 23

𝑥2 1 122 90 51 220 49.7 0.325 31
𝑥02 1 121.5↓ 90 51 128↓ 49.05↓ 0.325 31
𝑥12 1 126.5↑ 90 51 220 49.7 0.325 31

In Table 3, two examples are provided for illustration. The query instance
𝑥1 corresponds to a non-diabetic patient. First, note that 𝑥1 is close to being
classified as diabetic since the CF 𝑥11 of this class is very close. This demon-
strates that the cautious random forest can help managing the uncertainty
arising from scarce data, by detecting instances for which the decision is
uncertain and providing insights about their actual labels. Second, the non-
diabetic CF 𝑥01 suggests a possible way to maintain a healthy condition, i.e
reducing BMI and the Glucose level. The query instance 𝑥2 corresponds to
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a diabetic patient. The indeterminacy comes from the Glucose feature, since
we can get a correct prediction (diabetic) by only modifying its value. On
the other hand, to obtain the non-diabetic CF 𝑥02, an important decrease of
Insulin is needed, which is coherent with the fact that high 2-Hour serum
insulin levels are common for type-II diabetic patients.

Case 2: MNIST

MNIST is a large database of handwritten numbers containing about 60,000
training cases and 10,000 test cases. In our experiment, numbers of 4 and
of 9 were selected and 40 principal components of the original data were
extracted to train a CRF consisting of 50 trees of depth 10. We generated
CFs, which we required to belong to the objective class with a belief of
at least 0.75, so as to ensure that the instance is credible after applying
the inverse PCA transformation. Generating CFs of a query instance helps
understanding which parts of the image are responsible for the indeterminacy
of the decision. This point is illustrated using two instances drawn in Figure 2.
We can see how the two indeterminate examples (center) should be modified
to be determinately classified as a “4” or as “9”, and that these modifications
make sense.

Indeterminate sampleCounterfactual of 4#change=13 Counterfactual of 9 #change=32

Indeterminate sampleCounterfactual of 4#change=45 Counterfactual of 9 #change=47

Fig. 2 Examples of indeterminate numbers (center) and corresponding counterfac-
tuals of class 4 (left) and 9 (right). Left- and right-most images display pixels to be
added (green) and to be deleted (blue) in order to obtain the counterfactual.

5 Conclusion

In this paper, we have proposed a procedure to extract CFs of indeterminate
instances, i.e. for which no precise decision could be made, so as to interpret
and explain the indeterminacy of the classifier. The algorithm presented in
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this paper is specific to cautious random forests. It is based on an algorithm
proposed in the case of precise CF extraction. Our modifications make it pos-
sible to filter the regions of the input space to be explored and to generate
CFs closer to the query instance, thus speeding up the extraction process.
This increased efficiency, as well as the usefulness of our approach for ex-
plaining the indecision of the classifier, has been demonstrated on several
experiments. In future works, we will investigate how CFs can be used to
estimate the importance of features and to identify regions of significant un-
certainty in the feature space. We also plan to use CFs in an active learning
process to reduce the indeterminacy of cautious classifiers.
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