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BOUNDEDNESS OF SCHRÖDINGER OPERATOR IN ENERGY SPACE.

GILLES CARRON AND MAËL LANSADE

ABSTRACT. On a complete weighted Riemannian manifold (Mn, g, µ) satisfying the
doubling condition and the Poincaré inequalities, we characterize the class of function
V such that the Schrödinger operator ∆ − V maps the homogeneous Sobolev space
o

W1,2(M) to its dual space. On Euclidean space, this result is due to Maz’ya and Ver-
bitsky. In the proof of our result, we investigate the weighted L2-boundedness of the
Hodge projector.

1. INTRODUCTION

Our main result is a generalization of this result of Maz’ya and Verbitsky [MV02]:

Theorem 1.1. Let V be a distribution on R
n, n ≥ 3, then the following properties are

equivalent:

(1) there is a positive constant A such that

∀ϕ ∈ C∞
c (Rn) :

∣

∣〈V, ϕ2〉
∣

∣ ≤ A

ˆ

Rn

|dϕ|2 dx, (1)

(2) there exists a 1−form θ =
∑

j θjdxj ∈ L2
loc solving d∗θ = V and a positive

constant B:

∀ϕ ∈ C∞
c (Rn) :

ˆ

Rn

|θ|2ϕ2dx ≤ B

ˆ

Rn

|dϕ|2 dx.

Moreover one can chose θ = d∆−1V and the constants A and
√

B are mutually controlled
in the sense where if 2) holds with constant B then 1) holds with A = 2

√
B and there is

a positive constant cn depending only on n such that if 1) holds with constant A then 2)
holds with B = cnA

2.

An equivalent formulation of the condition (1) is that

∀ϕ, φ ∈ C∞
c (Rn) : |〈V, ϕφ〉| ≤ A‖dϕ‖L2 ‖dφ‖L2 .

When (Mn, g, µ) is a complete weighted Riemannian manifold where dµ = efdvolg is
a smooth measure, we would like to characterize the distributions V on M for which there
exists a positive constant A such that:

∀ϕ, φ ∈ C∞
c (M) : |〈V, ϕφ〉| ≤ A‖dϕ‖L2

µ
‖dφ‖L2

µ
; (2)

where for ϕ ∈ C∞
c (M), we define

‖dϕ‖2L2
µ
=

ˆ

M

|dϕ|2g dµ.

A first limitation is that (Mn, g, µ) must be non-parabolic:

Definition 1.2. A complete weighted Riemannian manifold (Mn, g, µ) is said to be para-
bolic if there is a sequence χℓ ∈ C∞

c (M) such that










0 ≤ χℓ ≤ 1 every where on M

limℓ→+∞ χℓ = 1 uniformly on compact set

limℓ→+∞
´

M
|dχℓ|2g dµ = 0.

1
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A complete weighted Riemannian manifold that is not parabolic is said to be non-parabolic.

It is well-known that the Euclidean space R
n is non-parabolic if and only if n ≥ 3. If

V is a distribution satisfying (2) on a complete parabolic weighted Riemannian manifold,
then testing (2), with ϕ and φ = χℓ (given by Definition 1.2), we get that 〈V, ϕ〉 = 0;
hence the zero distribution is the only one verifying (2).

If (Mn, g, µ) is complete weighted Riemannian manifold, we define its Laplacian ∆
through the Green formula:

∀ϕ, φ ∈ C∞
c (M) :

ˆ

M

〈dϕ, dφ〉g dµ =

ˆ

M

ϕ∆φdµ,

so that our convention is that on the Euclidean space ∆ = −∑j ∂
2/∂x2j . We will also note

∆ to be the unique self-adjoint extension associated to the symmetric operator

∆: C∞
c (M) → L2

µ(M).

Moreover (Mn, g, µ) is non-parabolic then one can define the homogeneous Sobolev space
o

W1,2(M) to be the completion of C∞
c (M) for the normϕ 7→ ‖dϕ‖L2

µ
and there is a natural

injection
o

W1,2(M) →֒ W1,2
loc(M). The Green formula implies that ∆ extends as a bounded

operator between
o

W1,2(M) and its dual

(

o

W1,2(M)

)′
, and a distribution V satisfies (2) if

and only if the Schrödinger operator ∆+ V extends to a bounded operator:

∆+ V :
o

W1,2(M) →
(

o

W1,2(M)

)′
.

In order to be able to show a generalization of Theorem 1.1, we will assume that
(Mn, g, µ) satisfies the doubling condition and the Poincaré inequalities.

Definition 1.3. A complete weighted Riemannian manifold (Mn, g, µ) is said to satisfy
the doubling condition if there are positive constants κ,ν such that for any x ∈ M and
any 0 < r ≤ R :

µ (B(x,R)) ≤ κ

(

R

r

)ν

µ (B(x, r)) . (Dκ,ν)

Remark 1.4. It is well know that if (Mn, g, µ) is non-parabolic and satisfy the doubling
condition (Dκ,ν) then ν > 2.

Definition 1.5. A complete weighted Riemannian manifold (Mn, g, µ) is said to satisfy
the Poincaré inequalities if there is a positive constant λ such that for any geodesic ball B
of radius r:

∀ϕ ∈ C1(B) :

ˆ

B

|ϕ− ϕB|2 dµ ≤ λ r2
ˆ

B

|dϕ|2 dµ, (Pλ)

where ϕB =
ffl

B ϕdµ.

If the Ricci curvature of (Mn, g) is non negative, then (Mn, g, volg) satisfies these two
conditions. We know that there is a smooth positive function (the heat kernel)P : (0,+∞)×
M ×M → R such that for any f ∈ L2

c(M) :

(

e−t∆f
)

(x) =

ˆ

M

P (t, x, y)f(y) dµ(y).

According to [Gri91, SC92], the conjonction of doubling condition (Dκ,ν) and of the
Poincaré inequalities (Pλ) is equivalent to uniform upper and lower Gaussian estimate of
the heat kernel:

∀x, y ∈M, ∀t > 0:
c

µ
(

B(x,
√
t)
)e−

d2(x,y)
ct ≤ P (t, x, y) ≤ C

µ
(

B(x,
√
t)
)e−

d2(x,y)
5t .

Our main result is then the following:
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Theorem A. Let (M, g, µ) be a complete non-parabolic weighted Riemannian manifold
satisfying the the doubling condition (Dκ,ν) and the Poincaré inequalities (Pλ). A distribu-
tion V satisfies the inequality (2) if and only of there is a 1−form θ ∈ L2

loc(T
∗M) solving

d∗µθ = V and such that

∀ϕ ∈ C∞
c (M) :

ˆ

M

|θ|2ϕ2 dµ ≤ B

ˆ

M

|dϕ|2g dx. (3)

Moreover the constants A and
√

B are mutually controlled: if (3) holds with constant B

then (2) holds with A = 2
√

B and there is a positive constant c depending only of κ,ν, λ
such that if (2) holds with constant A then (3) holds with θ = d∆−1V and B = cA2.

We recall that the equation d∗µθ = V is equivalent to the fact that

∀ϕ ∈ C∞
c (M) :

ˆ

M

〈θ, dϕ〉g dµ = 〈V, ϕ〉.

Our proof follows the original arguments of Maz’ya and Verbitsky but for this pur-
pose, we prove some new results about the Hodge projector. To describe this operator let
(M, g, µ) be a complete non-parabolic weighted Riemannian manifold, it has a positive
Green kernel defined for x 6= y by:

G(x, y) =

ˆ +∞

0

P (t, x, y)dt.

When β ∈ C∞
c (T ∗M) is a smooth compactly supported 1−form, one defines Πβ by

Πβ = dϕ where ϕ(x) =
ˆ

M

G(x, y)d∗µβ(y) dµ(y).

The operator Π extends to a bounded operator on L2
µ(T

∗M) and this extension, which is
also noted Π, is the orthogonal projection on the closure of dC∞

c (M) ⊂ L2
µ(T

∗M). The
operator Π = d∆−1d∗µ is called the Hodge projector.

When ρ is a non negative and non trivial Radon measure with compact supported then
the function hρ defined by

hρ(x) =

ˆ

M

G(x, y)dρ(y) (4)

is a positive superharmonic function. A crucial result for proving Theorem A is the fol-
lowing

Theorem B. Let (M, g, µ) be a complete non-parabolic weighted Riemannian manifold,
then for any δ ∈ (−1, 1) and any non negative Radon measure with compact supported ρ
and associated superharmonic function hρ defined by (4):

∀β ∈ C∞
c (T ∗M) :

ˆ

M

|Π(β)|2 hδρdµ ≤
(

1 + |δ|
1− |δ|

)2 ˆ

M

|β|2 hδρdµ.

Moreover if (M, g, µ) satisfies the doubling condition (Dκ,ν) and the Poincaré inequalities
(Pλ) then there are some δ+ > 1 and C > 0 depending only on κ,ν, λ such that for any
non negative Radon measure with compact supported ρ and associated superhamronic
function hρ defined by (4):

∀β ∈ C∞
c (T ∗M) :

ˆ

M

|Π(β)|2 hδ+ρ dµ ≤ C

ˆ

M

|β|2 hδ+ρ dµ.

Classical result on singular integral implies that on R
n, the second conclusion of The-

orem B holds with δ+ being any real number strictly less than n/(n− 2); this was an im-
portant argument in the proof of Maz’ya-Verbitsky (see [MV02, page 284]). The study of
the boundedness of the Hodge operator on Lp spaces in relationship with the boundedness
of the Riesz transform on Lp spaces is a well developed subject (see for instance [AC05,
subsection 2.3]); the question of the boundedness of the Hodge operator on weighted Lp
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spaces has been extensively studied by Auscher and Martell [AM07, AM08]. These results
do not imply directly the second assertion of B. The starting point is the universal bound-
edness of the Hodge projector on L2

hδµ(T
∗M) for δ ∈ (−1, 1) and we apply a result of

Auscher-Martell [AM07] on the weighted Riemannian manifold (M, g, hδµ); in order to
be in position of using this result, we have to prove that those functions hδρ are A1−weights.

Our universal boundedness of the Hodge projector on some weighted L2 space could
be a first step toward a more general investigation of the Lp-weighted boundedness of the
Hodge operator .

Another important result for proving Theorem A is a a decay estimate on Π(β) when
β ∈ C∞

c (T ∗M), more precisely, we show that there is some p > 1 such that
ˆ

M\B(o,1)

G−p(o, x)|Π(β)|2(x) dµ(x) <∞.

The next section is devoted to the proof of the first conclusion of Theorem B and we
will recall and prove some useful results about Green kernel and superharmonic functions;
in section 3, we present various equivalent conditions for an estimate of the type

∀ϕ ∈ C∞
c (M) :

ˆ

M

qϕ2 dµ ≤ C

ˆ

M

|dϕ|2g dx,

when q is a non-negative locally integrable function. One of the first results in the Eu-
clidean case is due to Fefferman-Phong [FP82] and there were then many works deal-
ing with this questions in Euclidean spaces or on homogeneous space (see for instance
[Fef83, KS86, Maz64, MV95, PW03, SW92, SWZ96, Sch88]; the Riemannian setting was
adressed recently in [Lan20]. The second conclusion of Theorem B is proven in section
4 and Theorem A is proven in section 5. In an appendix, we explain how an elegant Eu-
clidean argument of Verbitksy [Ver08] gives trace inequalities on doubling metric measure
spaces.
Acknowledgments: We are partially supported by the ANR grants ANR-18-CE40-0012:
RAGE. and ANR-17-CE40-0034: CCEM and we thank the Centre Henri Lebesgue ANR-
11-LABX-0020-01 for creating an attractive mathematical environment.

SOME NOTATIONS

When (M, g, µ) is a weighted complete Riemannian manifold then for any Borel set
B ⊂ M , we will note 1B the characteristic function of B; if moreover µ(B) 6= 0 and if ϕ
is an integrable function on B, the mean of ϕ on B will be noted by

 

B
ϕ =

 

B
ϕdµ =

1

µ(B)

ˆ

B
ϕdµ;

the subscript c will indicate a space made of compactly support functions or forms, for
instance L2

c(M), C∞
c (M), C∞

c (T ∗M); and the space of locally L2 fonction (resp. locally
W 1,2 functions) is noted L2

loc(M) (resp. W 1,2
loc ).

When B = B(x, r) is a geodesic ball and θ > 0 we will define θB := B(x, θr). For
each x ∈M and β ∈ T ∗

xM the norm of β is

|β| = |β|g = sup
ξ∈TxM,gx(ξ,ξ)=1

β(ξ)

and it induces on T ∗
xM a scalar product that will be noted 〈·, ·〉g or 〈·, ·〉, from now we will

omit the g subscript, this induces a scalar product on 1−forms

β1, β2 ∈ C∞
c (T ∗M) : 〈β1, β2〉 =

ˆ

M

〈 β1(x), β2(x)〉g dµ(x).

The associate Hilbert space collecting all square integrable measurable section of T ∗M
will be noted L2

µ(T
∗M). If U ⊂ M is a bounded open subset W1,2

o (U) is a the closure of
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C∞
c (U) in W1,2

loc(M), it is also the completion of C∞
c (U) for the topology induced by the

norm ϕ 7→
√

‖ϕ‖2L2
µ
+ ‖dϕ‖2L2

µ
.

2. WEIGHTED INEQUALITIES GIVEN BY EQUILIBRIUM POTENTIALS

In this section, we collect some well-known facts and others useful technical results that
leads to a very general weighted boundedness result for the Hodge projector. Thorough all
this section, (M, g, µ) is a weighted complete Riemannian manifold that is assumed to be
non parabolic.

2.1. Capacity and equilibrium potential. The non parabolicity implies the following
properties [Anc90, Gri99]:

Proposition 2.1. a) For each bounded open set U ⊂ M , there is a positive constant CU
such that:

∀ϕ ∈ C∞
c (M) :

ˆ

U
ϕ2dµ ≤ CU

ˆ

M

|dϕ|2dµ.

b) (M, g, µ) admits a positive minimal Green kernel G : M ×M → R+ ∪ {+∞} such
that for any f ∈ C∞

c (M), a solution of the equation ∆u = f is given by

u(x) =

ˆ

M

G(x, y)f(y)dµ(y). (5)

c) For any bounded open subset V ⊂M , the Green kernel of the Dirichlet-Laplace oper-
ator on V is noted GV : V × V → R+ ∪ {+∞}. Then we have that

G(x, y) = lim
V→M

GV(x, y) = sup
V
GV(x, y).

The function Go(y) = G(o, y) is called the Green function with pole at o ∈ M ; it is a

smooth positive harmonic function onM \{o}. Proposition 2.1-a) implies that if
o

W1,2(M)
is the completion of C∞

c (M) for the norm ϕ 7→ ‖dϕ‖L2
µ

then the injection C∞
c (M) →֒

W1,2
loc(M) extends continuous and provides a natural injection

o

W1,2(M) →֒ W1,2
loc(M).

Moreover for any f ∈ L2
µ with compact support there is a unique u ∈

o

W1,2(M) solving
the equation ∆u = f and u is given by the formula (5).

It also implies that for any non empty bounded open subset U ⊂M , its capacity

cap(U) = inf

{
ˆ

M

|dϕ|2dµ, such that ϕ ∈ C∞
c (M) and ϕ = 1 on U

}

(6)

is strictly positive and there is a unique h ∈
o

W1,2(M) such that

cap(U) =
ˆ

M

|dh|2dµ and h = 1 on U ;

moreover 0 < h ≤ 1. This function h is called the equilibrium potential of U , it is
a superharmonic function and there is a positive Radon measure (called the equilibrium
measure) νU supported in U such that

∀x ∈M : h(x) =

ˆ

M

G(x, y)dνU (y);

the equilibrium measure of U is also given by the equality (in the distributional sense)

dνU = ∆h.

For instance if U has smooth boundary and if ~n: ∂U → TM is the inward unit normal
vector fields and σ the induced measure on ∂U then the equilibrium measure of U is given
by

νU (K) =

ˆ

∂U∩K

∂h

∂~n
dσ.
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We recall:

Definition 2.2. A function f : M → R is said to be superharmonic if for any non negative
ϕ ∈ C∞

c (M) :
ˆ

M

f∆ϕdµ ≥ 0.

Notice that for any bounded f : M → R and ϕ ∈ C∞
c (M) we have that

ˆ

M

f∆ϕdµ = lim
t→0

ˆ

M

f
ϕ− e−t∆ϕ

t
dµ = lim

t→0

ˆ

M

f − e−t∆f

t
ϕ dµ.

Hence

Lemma 2.3. A positive bounded function f : M → R is superharmonic if and only if for
any t > 0:

e−t∆f ≤ f.

Notice that the result still holds if we assume that

∀t > 0, ∀x ∈M :

ˆ

M

P (t, x, y)f(y) dµ(y) < +∞.

2.2. Some properties of equilibrium potentials.

Proposition 2.4. a) For any o ∈ M and any τ > 1/2, the Green function with pole at o

satisfies min (Gτ
o , 1) ∈

o

W1,2(M).
b) For any τ > 1/2 and any bounded open set U ⊂ M with equilibrium potential h, we

have hτ ∈
o

W1,2(M) moreover
ˆ

M

|dhτ |2 dµ ≤ τ2

2τ − 1
cap(U).

Proof. Let Ωℓ an increasing sequence of bounded open subset with smooth boundary ex-
hausting M . For large enough ℓ, we have that o ∈ Ωℓ and let gℓ = GΩℓ(o, ·). It is enough
to show that there is a constant C, independant of ℓ, such that

ˆ

{gℓ<1}
|dgτℓ |2 dµ ≤ C.

Using the coaera formula, we get that
ˆ

{gℓ<1}
|dgτℓ |2 dµ = τ2

ˆ

{gℓ<1}
g2τ−2
ℓ |dgℓ|2 dµ

= τ2
ˆ 1

0

x2τ−2

(
ˆ

gℓ=x

|dgℓ| dσx
)

dx

But for any regular value x of gℓ, the Green formula indicates that the integral
´

gℓ=x |dgℓ| dσx
does not depends on x:

0 =

ˆ

y<gℓ<x

∆gℓdµ =

ˆ

gℓ=y

|dgℓ| dσy −
ˆ

gℓ=x

|dgℓ| dσx.

Letting x→ +∞ and using the asymptotics of the Green kernel around o, we find that
ˆ

gℓ=y

|dgℓ| dσy = 1.

Hence for any τ > 1/2:
ˆ

{gℓ<1}
|dgτℓ |2 dµ = τ2

ˆ 1

0

x2τ−2dx =
τ2

2τ − 1
.
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The proof concerning an equilibrium potential is exactly the same. For ℓ large enough,
Ū ⊂ Ωℓ and we introduce hℓ ∈ W1,2

o (Ωℓ), the equilibrium potential relative to Ωℓ, it is
characterized by

ˆ

M

|dhℓ|2dµ = inf

{
ˆ

M

|dϕ|2dµ, such that ϕ ∈ C∞
c (Ωℓ) and ϕ = 1 on U

}

.

Then hℓ is harmonic on Ωℓ \ Ū and Ωℓ \ Ū = h−1
ℓ ((0, 1)). Similarly for every regular

value x ∈ (0, 1) of hℓ, the integral
´

hℓ=x
|dhℓ| dσx does not depend on x and

ˆ

M

|dhℓ|2dµ =

ˆ 1

0

(
ˆ

hℓ=x

|dhℓ| dσx
)

dx.

So that for a.e. x ∈ (0, 1):
ˆ

hℓ=x

|dhℓ| dσx =

ˆ

M

|dhℓ|2dµ.

and if τ > 1/2 then

ˆ

M

|dhτℓ |2dµ = τ2
ˆ 1

0

x2τ−2

(
ˆ

hℓ=x

|dhℓ| dσx
)

dx =
τ2

2τ − 1

ˆ

M

|dhℓ|2dµ.

It is easy to show that the sequence (hℓ)ℓ converges to h in
o

W1,2(M) and this estimate

implies that for τ > 1/2, hτℓ converges weakly to hτ in
o

W1,2(M); hence the result. �

Proposition 2.5. For any τ ∈ [0, 1] and any o ∈ M ; Gτ
o is superharmonic. Similarly

for any τ ∈ [0, 1] and any bounded open subset U with equilibrium potential h, hτ is
superharmonic.

Proof. We know that Go(x) =
´∞
0 P (τ, o, x)dτ hence for any t > 0:

(

e−t∆Go

)

(x) =

ˆ ∞

t

P (τ, o, x)dτ ≤ Go(x).

Hence Go is superharmonic then using Hölder inequality and that e−t∆
1M ≤ 1M , we

have for any τ ∈ [0, 1] :

e−t∆Gτ
o ≤

(

e−t∆Go

)τ ≤ Gτ
0 .

Hence Gτ
o is also superharmonic. The proof of the second assertion is identical. �

Remark 2.6. Using Jensen inequality, we can show that for any superharmonic function
h and any concave function Φ, then Φ(h) is superharmonic.

2.3. Weighted Hardy type inequalities. The next result is a consequence of the argu-
mentation presented in [Car97].

Proposition 2.7. If h : M → R+ is the equilibrium potential of some bounded open set,
then for any δ < 1 then the following general Hardy type inequality holds:

∀ϕ ∈ C∞
c (M) :

(

δ − 1

2

)2 ˆ

M

|dh|2
h2

ϕ2 hδdµ ≤
ˆ

M

|dϕ|2 hδdµ. (7)

Proof. Let φ ∈ C∞
c (M) and define ϕ = h

1−δ
2 φ, we compute:

|dϕ|2 = h1−δ|dφ|2 +
(

δ − 1

2

)2 |dh|2
h2

ϕ2 + (1− δ)〈dh, dφ〉 h−δφ.

Then we get
ˆ

M

|dϕ|2 hδdµ ≥
(

δ − 1

2

)2 ˆ

M

|dh|2
h2

ϕ2hδdµ+
1− δ

2

ˆ

M

〈dh, dφ2〉 dµ.
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But h is superharmonic hence if δ < 1 we get that
ˆ

M

|dϕ|2 hδdµ ≥
(

δ − 1

2

)2 ˆ

M

|dh|2
h2

ϕ2hδdµ.

Then by approximation, we get that this weighted Hardy inequality is valid for any ϕ ∈
W1,2

loc(M) with compact support. �

2.4. Weighted L2-boundedness of the Hodge projector. Recall that the space of L2

1−forms has the following Hodge orthogonal decomposition:

L2
µ(T

∗M) = H1(M,µ)⊕ dC∞
c (M)⊕ d∗µC∞

c (Λ2T ∗M),

where the closure are taken with respect to the L2
µ topology; the operator

d∗µ : C∞
c (Λ2T ∗M) → C∞

c (T ∗M)

is the formal adjoint of exterior differential operator d : C∞
c (T ∗M) → C∞

c (Λ2T ∗M) :

∀α ∈ C∞
c (T ∗M), β ∈ C∞

c (Λ2T ∗M) :

ˆ

M

〈dα, β〉 dµ =

ˆ

M

〈α, d∗µβ〉 dµ;

and
H1(M,µ) =

{

α ∈ L2
µ(T

∗M), dα = 0 and d∗µα = 0
}

.

The Hodge projector Π: L2
µ(T

∗M) → L2
µ(T

∗M) is the L2
µ-projector on dC∞

c (M). As
we assumed that (M, g, µ) is non parabolic for any α ∈ C∞

c (T ∗M), we have

Πα = dϕ

where ϕ solves the equation ∆ϕ = d∗µα that is to say:

ϕ(x) =

ˆ

M

G(x, y)d∗µα(y)dµ(y) =

ˆ

M

〈dyG(x, y), α(y)〉 dµ(y).

Theorem 2.8. If h : M → R+ is an equilibrium potential and δ ∈ (−1, 1) then for any
β ∈ C∞

c (T ∗M) :
ˆ

M

|Π(β)|2 hδdµ ≤
(

1 + |δ|
1− |δ|

)2 ˆ

M

|β|2 hδdµ.

In particular Π: C∞
c (T ∗M) → L2

hδµ(T
∗M) has a bounded extension Π: L2

hδµ(T
∗M) →

L2
hδµ(T

∗M).

Proof. As Π is bounded and selfadjoint on L2
µ(T

∗M), by duality it is enough to show the

result for δ ∈ (0, 1). So let δ ∈ (0, 1) and β ∈ C∞
c (T ∗M) and let ϕ ∈

o

W1,2(M) be the
solution of the equation ∆ϕ = d∗µβ. We first show that

ˆ

M

|dϕ|2 hδdµ ≤
ˆ

M

ϕ∆ϕhδdµ. (8)

Consider a sequence (ϕℓ) made of smooth compactly supported functions that con-

verges toward ϕ in
o

W1,2(M). Because hδ is superharmonic, we get that for all ℓ
ˆ

M

hδ∆ϕ2
ℓ dµ ≥ 0.

But 1
2∆ϕ

2
ℓ = ϕℓ∆ϕℓ − |dϕℓ|2 hence

ˆ

M

|dϕℓ|2 hδdµ ≤
ˆ

M

ϕℓ∆ϕℓ h
δdµ. (9)

As hδ is a bounded positive function, we get that
ˆ

M

|dϕ|2 hδdµ = lim
ℓ

ˆ

M

|dϕℓ|2 hδdµ. (10)
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Using

i) d
(

ϕℓh
δ
)

= hδdϕℓ + δ
dh

h
ϕℓh

δ;

ii) the Hardy inequality (7):

∀φ ∈ C∞
c (M) :

ˆ

M

|dh|2
h2

φ2 dµ ≤ 4

ˆ

M

|dφ|2 dµ;

iii) h is a positive function and takes value in (0, 1],

we deduce that for any ℓ, k:
∥

∥d
(

ϕℓh
δ − ϕkh

δ
)∥

∥

2

L2
µ

≤ (8δ + 2) ‖d (ϕℓ − ϕk)‖2L2
µ
.

hence hδϕ ∈
o

W1,2(M) and

lim
ℓ→+∞

∥

∥d
(

ϕℓh
δ − ϕhδ

)∥

∥

L2
µ

= 0.

So that we get:

lim
ℓ

ˆ

M

ϕℓ∆ϕℓ h
δdµ = lim

ℓ

ˆ

M

〈dϕℓ, d
(

ϕℓ h
δ
)

〉dµ =

ˆ

M

〈dϕ, d
(

ϕhδ
)

〉dµ.

But by definition we know that

∀φ ∈
o

W1,2(M) :

ˆ

M

〈dϕ, dφ〉 dµ =

ˆ

M

d∗µβ φdµ.

Hence

lim
ℓ

ˆ

M

ϕℓ∆ϕℓ h
δdµ =

ˆ

M

d∗µβ
(

ϕhδ
)

dµ =

ˆ

M

∆ϕ
(

ϕhδ
)

dµ. (11)

The inequalities (9), (10) (11) implies the inequalities (8). And using ∆ϕ = d∗µβ, we
deduce that

ˆ

M

|dϕ|2 hδdµ ≤
ˆ

M

d∗µβ ϕh
δdµ.

Integrating by parts, we get that
ˆ

M

d∗µβ ϕh
δdµ =

ˆ

M

〈β, dϕ〉hδdµ+ δ

ˆ

M

〈β, dh〉ϕhδ−1 dµ.

Using the Cauchy-Schwartz inequality, we obtain
∣

∣

∣

∣

ˆ

M

〈β, dϕ〉hδdµ
∣

∣

∣

∣

≤
(
ˆ

M

|β|2 hδdµ
)

1
2
(
ˆ

M

|dϕ|2 hδdµ
)

1
2

.

And the weighted Hardy inequality (7) implies that

∣

∣

∣

∣

ˆ

M

〈β, dh〉ϕhδ−1 dµ

∣

∣

∣

∣

≤
(
ˆ

M

|β|2 hδdµ
)

1
2
(
ˆ

M

|dh|2
h2

|ϕ|2 hδdµ
)

1
2

≤ 2

1− δ

(
ˆ

M

|β|2 hδdµ
)

1
2
(
ˆ

M

|dϕ|2 hδdµ
)

1
2

.

So that we eventually obtain

ˆ

M

|dϕ|2 hδdµ ≤
(

1 +
2δ

1− δ

)(
ˆ

M

|β|2 hδdµ
)

1
2
(
ˆ

M

|dϕ|2 hδdµ
)

1
2

.

�
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3. TRACE TYPE INEQUALITIES

3.1. In this section, we collect some general facts about the validity of trace inequality of
the type

∀ϕ ∈ C∞
c (M) :

ˆ

M

qϕ2 dµ ≤ C1

ˆ

M

|dϕ|2 dµ, (12)

where q is a non negative locally integrable function. In order to have the existence of at
least one non trivial potential q such that (12) holds, we must suppose that (M, g, µ) is non
parabolic and in this case using equality :

∀ϕ ∈ C∞
c (M) :

ˆ

M

|dϕ|2 dµ = 〈ϕ,∆ϕ〉L2
µ
=

ˆ

M

|∆ 1
2ϕ|2 dµ

we know that the operator ∆
1
2 defined with the spectral theorem extends to an isometry

∆
1
2 :

o

W1,2(M) → L2
µ(M),

with inverse ∆− 1
2 : L2

µ(M) →
o

W1,2(M). Hence the above condition (12) is equivalent

to the fact that
√
q∆− 1

2 (or its adjoint ∆− 1
2
√
q) has a bounded extension on L2

µ(M) with
operator norm satisfying

∥

∥

∥

√
q∆− 1

2

∥

∥

∥

2

≤ C1.

3.2. A general result. The following result is well known in the Euclidean setting and is
mostly due to Maz’ya and Vertbisky [Maz64, MV95], however it is folklore that the proofs
can be easily adapted in a much more general setting.

Theorem 3.1. Let (M, g, µ) be a complete non-parabolic weighted Riemannian mani-
fold and q be a non negative, locally integrable function then the following properties are
equivalents

i) there is a constant C1 such that (12) holds;
ii) the operator

√
q∆− 1

2 has a bounded extension
√
q∆− 1

2 : L2
µ(M) → L2

µ(M);
iii) there is a constant C3 such that for any bounded open set U ⊂M :

ˆ

U
qdµ ≤ C3 cap(U); (13)

iv) there is a constant C4 such that for any bounded open set U ⊂M :
ˆ

M

∣

∣

∣
∆− 1

2 (q 1U )
∣

∣

∣

2

dµ ≤ C4

ˆ

U
q dµ; (14)

v) there is a constant C5 such that for any bounded open set U ⊂M :
ˆ

M

∣

∣

∣
∆− 1

2 (q 1U )
∣

∣

∣

2

dµ ≤ C2
5 cap(U). (15)

Moreover
∥

∥

∥

√
q∆− 1

2

∥

∥

∥

2

and C1, C3, C4, C5 are mutually controlled.

Proof. We have already explained that i)⇔ ii).

Proof of ii)⇒ iv). Testing the L2
µ-boundedness of ∆− 1

2
√
q =

(√
q∆− 1

2

)∗
= T ∗ with

f =
√
q 1U , we get

ˆ

M

∣

∣

∣
∆− 1

2 (q 1U )
∣

∣

∣

2

dµ ≤ ‖T ‖2
ˆ

M

(
√
q 1U)

2
dµ,

Hence we get that that iv) holds with C4 =
∥

∥

∥

√
q∆− 1

2

∥

∥

∥

2

.
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Proof of iv)⇒ v). We notice that (14) is equivalent to

∀U , ∀f ∈ L2
µ : 〈(q 1U) ,∆

− 1
2 f〉L2

µ
= 〈∆− 1

2 (q 1U ) , f〉L2
µ
≤
√

C4

√

ˆ

U
qdµ ‖f‖L2

µ
.

That is to say that

∀U , ∀ϕ ∈
o

W1,2(M) : 〈q 1U , ϕ〉L2
µ
≤
√

C4

√

ˆ

U
qdµ ‖dϕ‖L2

µ
.

Then using the definition of the capacity we get that
√

ˆ

U
qdµ ≤

√

C4 cap(U)

and reporting this estimate in (14) we obtain the inequality (15) with C5 = C4.
v)⇒ iii) The same argumentation yields that inequality (15) is equivalent to

∀U , ∀ϕ ∈
o

W1,2(M) : 〈q 1U , ϕ〉L2
µ
≤ C5

√

cap(U) ‖dϕ‖L2
µ
.

Hence we obtain the inequality (13) with C3 = C5.
Proof of iii)⇒ i). The argument is the one originally given by Maz’ya. For any ϕ ∈

C∞
c (M) and t > 0 we test (13) on Ut = {ϕ2 > t} and get that

ˆ

Ut

qdµ ≤ C3

ˆ

{ϕ2<t2}

∣

∣dϕ2
∣

∣

2

t2
dµ = 4C3

ˆ

{ϕ2<t2}

ϕ2 |dϕ|2
t2

dµ.

Then integrating with respect to t ∈ (0,+∞) and using the Cavalieri’s formula and the
Fubini theorem, we get that

ˆ

M

qϕ2 dµ =

ˆ ∞

0

(
ˆ

Ut

qdµ

)

dt

≤ 4C3

ˆ

M

ϕ2 |dϕ|2
(
ˆ +∞

ϕ2

dt

t2

)

dµ

= 4C3

ˆ

M

|dϕ|2 dµ.

Hence we obtain the inequality (12) with C1 = 4C3. �

Remark 3.2. The proof show that the constants
∥

∥

∥

√
q∆− 1

2

∥

∥

∥

2

and C1, C3, C4, C5 are mu-

tually controlled in the following way:

• If i) holds with constant C1 then ii) holds with
∥

∥

∥

√
q∆− 1

2

∥

∥

∥

2

≤ C1;

• If ii) then iv) with constant C4 =
∥

∥

∥

√
q∆− 1

2

∥

∥

∥

2

;

• If iv) holds with constant C4 then v) holds with constant C5 = C4;
• If v) holds with constant C5 then iii) holds with constant C3 = C5;
• If iii) holds with constant C3 then i) holds with constant C1 = 4C3.

3.3. With the relative Faber-Krahn inequality. If one assumes moreover some a priori
geometric estimates, we can get other sufficient or necessary conditions for the properties
given in Theorem 3.1. The first set of conditions are the so called relative Faber-Krahn
inequality that has been introduced by Grigor’yan in [Gri94].

Definition 3.3. We say that a complete weighted Riemannian manifold (M, g, µ) satisfies
the relative Faber-Krahn inequality if there are positive constants b,ν such that for any



12 GILLES CARRON AND MAËL LANSADE

geodesic ball B of radius r(B) and any open subset U ⊂ B :

b

r2(B)

(

µ(U)
µ(B)

)− 2
ν

≤ λ1(U), (FKb,ν)

where λ1(U) is the lowest eigenvalue of the Dirichlet Laplacian on U .

According to [Gri94], the relative Faber-Krahn inequality is equivalent to the conjonc-
tion of a doubling property (Dκ,ν) and of the upper Gaussian estimate for the heat kernel

∀x, y ∈M, ∀t > 0: P (t, x, y) ≤ C

µ
(

B(x,
√
t)
)e−

d2(x,y)
5t . (GUE)

Then using the appendix, we can deduce the following:

Theorem 3.4. Let (M, g, µ) be a complete non-parabolic weighted Riemannian manifold
satisfying the relative Faber-Krahn inequality (FKb,ν). There is a constant C(b,ν) de-
pending only on b,ν with the property that if q is non negative locally integrable function
such that for some positive A and for any geodesic ball B ⊂M :

ˆ

B

[

ˆ +∞

0

(

 

B(x,r)

q 1B dµ

)

dr

]2

dµ(x) ≤ A

ˆ

B

qdµ

then

∀ϕ ∈ C∞
c (M) :

ˆ

M

qϕ2 dµ ≤ C(b,ν)A

ˆ

M

|dϕ|2 dµ

Hint on the proof of Theorem 3.4: According to Theorem A.3 iv)⇒i), we get that if K is
the operator whose Schwartz kernel is given by

K(x, y) =

ˆ +∞

d(x,y)

dr

µ (B(x, r))
,

that is to say

(Kf)(x) =
ˆ +∞

0

(

 

B(x,r)

fdµ

)

dr

then the operator K√
q has a bounded extension to L2

µ with

‖K√
q‖2L2

µ→L2
µ
≤ CA.

Proposition A.4 implies that the Schwartz kernel of ∆− 1
2 is dominated by the Schwartz

kernel of K:

∀x 6= y ∈M : ∆− 1
2 (x, y) =

ˆ +∞

0

P (t, x, y)
dt√
π t

≤ C

ˆ +∞

d(x,y)

dr

µ (B(x, r))
= K(x, y).

Hence the operator ∆−1√q has also a bounded extension to L2
µ with

∥

∥∆−1√q
∥

∥

2

L2
µ→L2

µ

≤ CA.

and we conclude with the fact that
∥

∥∆−1√q
∥

∥

L2
µ→L2

µ

=
∥

∥

√
q∆−1

∥

∥

L2
µ→L2

µ

and with Theorem 3.1ii)⇒i). �

3.4. Poincaré inequalities.
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3.4.1. The second set of geometric conditions are the so-called doubling condition and
the Poincaré inequalities (Pλ).

Recall that according to [Gri91, SC92, SC02], the conjonction of doubling condition
(Dκ,ν) and of the Poincaré inequalities (Pλ) is equivalent to the upper and lower Gaussian
estimate of the heat kernel:

∀x, y ∈M, ∀t > 0:
c

µ
(

B(x,
√
t)
)e−

d2(x,y)
ct ≤ P (t, x, y) ≤ C

µ
(

B(x,
√
t)
)e−

d2(x,y)
5t .

(DUE)
Note that the lower bound on the heat kernel and the doubling condition (Dκ,ν) easily
imply

∀o ∈M, ∀t > 0 ∀x, y ∈ B(o,
√
t) :

c′

µ
(

B(o,
√
t)
) ≤ P (t, x, y). (16)

Hence the doubling condition together with the Poincaré inequalities imply the relative
Faber-Krahn inequality but the reciprocal is not true for instance for n ≥ 2, the connected
sum R

n#R
n satisfies the relative Faber-Krahn inequality but not the Poincaré inequalities

(Pλ).

3.4.2. Harnack inequalities for harmonic functions. We also know that the conditions
(Dκ,ν)+(Pλ) are also equivalent to Parabolic Harnack inequalities for positive solution of
the heat equation [Gri91, SC92, SC02], hence they imply the elliptic Harnack inequalities

Proposition 3.5. If (M, g, µ) is a complete weighted Riemannian manifold satisfying the
doubling condition(Dκ,ν) and the Poincaré inequalities (Pλ) then there is a constant C
depending only on κ,ν, λ such that for any geodesic ball B and any positive harmonic
function ψ : 2B → R

∗
+:

sup
B
ψ ≤ C inf

B
ψ.

These Harnack inequalities imply more properties for harmonic functions:

Proposition 3.6. If (M, g, µ) is a complete weighted Riemannian manifold satisfying the
doubling condition (Dκ,ν) and of the Poincaré inequalities (Pλ) then there are constants
C > 0, p+ > 1, α ∈ (0, 1] depending only on κ,ν, λ such that for any geodesic ball B of
radius R and any harmonic function ψ : 3B → R

∗
+:

i) For any y, z ∈ B :

|ψ(y)− ψ(z)| ≤ C

(

d(y, z)

R

)α

sup
x∈2B

|ψ(x)|,

ii) for any 0 < θ1 ≤ θ2 ≤ 2:

θ2−2α
1

 

θ1B

|dψ|2 dµ ≤ Cθ2−2α
2

 

θ2B

|dψ|2 dµ,

iii)

(
 

B

|dψ|p+ dµ

)
2
p+

≤ C

 

2B

|dψ|2 dµ.

The Hölder regularity of harmonic function Proposition 3.6-i), is a classical conse-
quence of the Harnack inequality (see for instance [GT01, Proof of Theorem 8.22]). The
proof of [Car17, Proposition 5.5] implies that Proposition 3.6-ii) holds under Poincaré in-
equalities and the doubling condition. The reverse Hölder property for the gradient of har-
monic functions Proposition 3.6-iii) is proven by Auscher and Coulhon [AC05, Subsection
2.1].
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3.4.3. Another equivalent condition for Theorem 3.1. Similarly to Theorem 3.4, one ob-
tains:

Theorem 3.7. Let (M, g, µ) be a complete non-parabolic weighted Riemannian manifold
satisfying the doubling condition (Dκ,ν) and of the Poincaré inequalities (Pλ) and q be a
non negative, locally integrable function then the following properties are equivalents

i) There is a constant C1 such that (12) holds.
ii) Q = ∆− 1

2 q is finite a.e. and there is a constant Cii such that

∆− 1
2 (Q2) ≤ CiiQ

iii) there is a constant Ciii such that for any geodesic ball B:
ˆ

B

∣

∣

∣
∆− 1

2 (q 1B )
∣

∣

∣

2

(x)dµ(x) ≤ Ciii

ˆ

B

q dµ

iv) Q̃(x) =
´ +∞
0

(

ffl

B(x,r) q dµ
)

dr is finite almost a.e. and there is a constant Civ such

that
ˆ +∞

0

(

 

B(x,r)

Q̃2 dµ

)

dr ≤ CivQ̃(x).

Moreover the constants C1, Cii, Ciii, Civ are mutually controlled.

Hint on the proof of Theorem 3.7: We introduce again the operatorK whose Schwartz ker-
nel is given by

K(x, y) =

ˆ +∞

d(x,y)

dr

µ (B(x, r))
.

Then using the lower and upper Gaussian estimate for the heat kernel (DUE), Proposi-
tion A.4 yields that

∀x 6= y ∈M : cK(x, y) ≤ ∆− 1
2 (x, y) ≤ C K(x, y).

So that if (12) holds with constant C1 then the operator K√
q has a bounded extension to

L2
µ and

∥

∥K√
q
∥

∥

2

L2
µ→L2

µ

≤ C C1. And if the operator K√
q has a bounded extension to L2

µ

then (12) holds with constant C1 = c−1
∥

∥K√
q
∥

∥

2

L2
µ→L2

µ

.

Hence Theorem A.3 iv)⇔i) implies the equivalence iv)⇔i) in Theorem 3.7. The esti-
mates

c Q̃ ≤ Q ≤ C Q̃ and cK(Q̃2) ≤ ∆− 1
2Q2 ≤ C K(Q̃2)

imply the equivalence iv)⇔ii) in Theorem 3.7. Similarly the equivalence iii)⇔iv) in The-
orem 3.7 is a consequence of Theorem A.3 iii)⇔iv).

�

4. A STRONGER L2-WEIGHTED BOUNDEDNESS PROPERTY FOR THE HODGE

PROJECTOR

4.1. Muckenhoupt weight properties of equilibrium potential. We recall:

Definition 4.1. If (X, d, µ) is a measure metric space satisfying the doubling condition
(Dκ,ν), then a positive locally integrable functionω is said to be a A1−weight with constant
C if for any ball B ⊂ X :

 

B

ω dµ ≤ C inf
B
ω.

The following properties of A1−weight are classical [KK11, ST89]:

Proposition 4.2. Let ω be a A1−weight with constant C on some measure metric space
(X, d, µ) satisfying the doubling condition (Dκ,ν). Then there is a constant D depending
only on κ,ν and C such that for any ball B ⊂ X :
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i)
´

2B ωdµ ≤ D
´

B ωdµ,
ii) infB ω ≤

ffl

B
ω dµ ≤ C infB ω,

iii) infB ω ≤ D inf2B ω.

And we also have the following useful criteria for a weight to satisfy a reverse Hölder
inequality

Corollary 4.3. If (X, d, µ) is a measure metric space satisfying the doubling condition
(Dκ,ν) and if for some r > 1, ωr is a A1−weight with constant C then ω is a reverse
Hölder weight meaning that for any ball B ⊂ X :

(
 

B

ωrdµ

)
1
r

≤ C1/r

 

B

ω dµ.

Our result concerning the weight properties of equilibrium potential is the following
generalization of [MV95, Lemma 2.1]:

Proposition 4.4. Let (M, g, µ) be a complete non-parabolic weighted Riemannian mani-
fold satisfying the doubling condition (Dκ,ν) and the Poincaré inequalities (Pλ). Then for
any τ ∈ [0,ν/(ν− 2)), there is a positive constantC depending only on κ,ν, λ and τ such
that for any bounded open set, its equilibrium potential h satisfies that hτ is a A1−weight
with constant C:

∀B ⊂M :

 

B

hτ dµ ≤ C inf
B
hτ .

Note that the non-parabolicity condition forces that ν > 2 (remark 1.4). This proposi-
tion will be consequence of the same properties but only for Green functions.

Lemma 4.5. Under the assumption of Proposition 4.4, for any τ ∈ [0,ν/(ν− 2)), there is
a positive constant C depending only on κ,ν, λ and τ such that for any o ∈ M the Green
function with pole at o satisfies that for any ball B ⊂M :

 

B

Gτ
odµ ≤ C inf

B
Gτ

o .

Proof of Proposition 4.4 assuming Lemma 4.5. It is enough to show the result when τ >
1. Let U be a bounded open subset with equilibrium potential h and equilibrium measure
νU :

h(x) =

ˆ

M

G(x, y)dνU (y).

Let B be a geodesic ball and let f ∈ Lτ∗

(B) with 1
τ + 1

τ∗
= 1 and

ffl

B
|f |τ∗

dµ = 1. Then
∣

∣

∣

∣

 

B

fhdµ

∣

∣

∣

∣

=

∣

∣

∣

∣

ˆ

M

(
 

B

G(x, y)f(x)dµ(x)

)

dνU (y)

∣

∣

∣

∣

≤
ˆ

M

(
 

B

Gτ (x, y)dµ(x)

)
1
τ

dνU (y)

≤ C
1
τ

ˆ

M

(

inf
x∈B

G(x, y)

)

dνU (y)

≤ C
1
τ inf

B
h.

�

Proof of Lemma 4.5. The estimate (DUE) and Proposition A.4 imply the following esti-
mate of the Green kernel:

c

ˆ +∞

d(x,y)

r

µ (B(x, r))
dr ≤ G(x, y) ≤ C

ˆ +∞

d(x,y)

r

µ (B(x, r))
dr. (17)
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Notice that using the doubling condition one easily gets that
ˆ +∞

s

r

µ (B(x, r))
dr ≥

ˆ 2s

s

r

µ (B(x, r))
dr ≥ s2

γµ(B(x, s))
,

so that for any x, y ∈M :

G(x, y) ≥ c
d2(x, y)

µ (B(x, d(x, y)))
. (18)

Moreover if y ∈ B(x, r) then d(x, y) ≤ r and

G(x, y) ≥ c

ˆ +∞

r

r

µ (B(x, r))
dr ≥ c

r2

γµ(B(x, r))
,

hence we deduce that

inf
y∈B(x,r)

G(x, y) ≥ c

ˆ +∞

r

r

µ (B(x, r))
dr ≥ c

r2

γµ(B(x, r))
, (19)

Let τ ∈ [1,ν/(ν− 2)) and o ∈M and B = B(z, r). There are 3 cases to be considered
First case: r ≤ d(o, z)/4. In that case x 7→ Go(x) is a positive harmonic function on 3B
and the desired conclusion is then a direct consequence of the Harnack inequality

sup
B
Go ≤ C inf

B
Go.

Second case: o = z. Let f ∈ Lτ∗

(B) with 1
τ + 1

τ∗
= 1 and

ffl

B |f |τ∗

dµ = 1 then
∣

∣

∣

∣

 

B

fGodµ

∣

∣

∣

∣

≤ C

 

B

(

ˆ +∞

d(o,y)

s

µ (B(o, s))
ds

)

|f |(y)dµ(y) = C (I + II)

with

I =

(
ˆ +∞

r

s

µ (B(o, r))
ds

)
 

B

|f |(y)dµ(y)

and II =

 

B

(

ˆ r

d(o,y)

s

µ (B(o, r))
ds

)

|f |(y)dµ(y).

Using that
ffl

B |f |τ∗

dµ = 1 and (19) one gets that

I ≤ 1

c
inf
B
Go.

For the second term:

II =

 

B

(

ˆ r

d(o,y)

s

µ (B(o, s))
ds

)

|f |(y)dµ(y).

=
1

µ(B)

ˆ r

0

s

(

 

B(o,s)

|f |(y)dy
)

ds

≤ 1

µ(B)

ˆ r

0

s

(

µ (B(o, r))

µ (B(o, s))

)
1
τ∗

ds,

where in the last line we used Hölder inequality and
ffl

B |f |τ∗

dµ = 1. Using the doubling
condition (Dκ,ν) one gets

ˆ r

0

s

(

µ (B(o, r))

µ (B(o, s))

)
1
τ∗

ds ≤ κ
1
τ∗

ˆ r

0

s
(r

s

)
ν

τ∗

ds =
κ

1
τ∗ τ

ν− (ν− 2)τ
r2.

Hence we deduce that
(
 

B

Gτ
odµ

)
1
τ

≤ C

c
inf
B
Go +

Cκ
1
τ∗ τ

ν− (ν− 2)τ

r2

µ(B(o, r))
.
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As (19) yields that r2

µ(B(o,r)) ≤ C infB Go, we get

(
 

B

Gτ
odµ

)
1
τ

≤ C′ inf
B
Go.

Third case: 4r > d(o, z) > 0. In that case, the result follows from B(z, r) ⊂ B(o, 5r):
 

B

Gτ
odµ ≤ γ3

 

B(o,5r)

Gτ
odµ

≤ γ3C inf
B(o,5r)

Gτ
o (using the result obtained in the second case)

≤ γ3C inf
B
Gτ

o .

�

4.2. Reverse Hölder for gradient of harmonic functions.

Lemma 4.6. Let (M, g, µ) be a complete non-parabolic weighted Riemannian manifold
satisfying the doubling condition (Dκ,ν) and the Poincaré inequalities (Pλ). There is some
q > 2 and some positive constant C that depend only on κ,ν, λ such that for any o ∈ M
and any ball B ⊂ M and any harmonic function ψ : 3B → R satisfies the following
reverse Hölder property:

 

B

Go(y)|dψ|qdµ ≤ C inf
B
Go

(
 

2B

|dψ|2dµ
)

q
2

.

Proof. Proceeding as in the proof of Lemma 4.5 and provided q ≤ p+ where p+ is given
Proposition 3.6, it is enough to prove the result for balls centered at o. So assume that
B = B(o, r). Let q > 2 be such that for the constants α ∈ (0, 1] and p+ > 2 given by
Proposition 3.6:

q ≤ p+ and q(1− α) < 2.

Using the Green kernel estimate (17) and proceeding as before, we get for any harmonic
function ψ : 3B → R:

 

B

Go(y)|dψ|qdµ ≤ C inf
B
Go(y)

 

B

|dψ|qdµ+ CII (20)

with

µ(B)II =

ˆ r

0

s

(

 

B(o,s)

|dψ|qdµ
)

ds

≤
ˆ r

0

s

(

 

B(o,2s)

|dψ|2dµ
)

q
2

ds using Proposition 3.6.iii)

≤
ˆ r

0

s
(r

s

)q(1−α)

ds

(

 

B(o,2r)

|dψ|2dµ
)

q
2

using Proposition 3.6.ii)

Hence

II ≤ C
r2

µ(B)

(

 

B(o,2r)

|dψ|2dµ
)

q
2

≤ C inf
B
Go

(

 

B(o,2r)

|dψ|2dµ
)

q
2

, (21)

where we have used (19):
r2

µ(B)
≤ C inf

B
Go.

Hence the inequality (20), the reverse Hölder inequality
 

B

|dψ|qdµ ≤ C

(
 

2B

|dψ|2dµ
)

q
2
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and (21) yields that

 

B

Go(y)|dψ|qdµ ≤ C inf
B
Go(y)

(
 

2B

|dψ|2dµ
)

q
2

. (22)

�

This lemma has the following crucial consequence:

Proposition 4.7. Let (M, g, µ) be a complete non-parabolic weighted Riemannian mani-
fold satisfying the doubling condition (Dκ,ν) and the Poincaré inequalities (Pλ). There is
some q > 2 and some positive constant C that depend only on κ,ν, λ such that for any
equilibrium potential h : M → R, any τ ∈ [0, 1], any ball B ⊂ M and any harmonic
function ψ : 3B → R

1
ffl

B
hτ

 

B

hτ |dψ|qdµ ≤ C

(

1
ffl

2B
hτ

 

2B

hτ |dψ|2dµ
)

q
2

.

Proof. Let h : M → R be the equilibrium potential of some bounded open set U ⊂ M ,
τ ∈ (0, 1], B ⊂M a geodesic ball and let ψ : 3B → R be some harmonic function. Using
Hölder inequality, we get

 

B

hτ |dψ|qdµ ≤
(
 

B

h|dψ|qdµ
)τ ( 

B

|dψ|qdµ
)1−τ

.

If νU is the equilibrium measure associated to U , we have
 

B

h|dψ|qdµ =

ˆ

M

(
 

B

G(x, y)|dψ|q(y)dµ(y)
)

dνU (x)

≤ C

ˆ

M

inf
y∈B

G(x, y)dνU (x)

(
 

2B

|dψ|2dµ
)

q
2

≤ C inf
y∈B

h(y)

(
 

2B

|dψ|2dµ
)

q
2

.

So that
 

B

hτ |dψ|qdµ ≤ C inf
x∈B

hτ (x)

(
 

2B

|dψ|2dµ
)

q
2

≤ C

(

inf
x∈B

hτ (x)

)(

inf
x∈2B

hτ (x)

)− q
2
(
 

2B

hτ |dψ|2dµ
)

q
2

.

Using the fact that h is a A1−weight and Proposition 4.2, we get that

inf
x∈B

hτ (x) ≤
 

B

hτdµ and
 

2B

hτdµ ≤ C inf
x∈2B

hτ (x).

Hence the result. �

4.3. L2-weighted boundedness of the Hodge projector.

Theorem 4.8. Let (M, g, µ) be a complete non-parabolic weighted Riemannian manifold
satisfying the doubling condition (Dκ,ν) and the Poincaré inequalities (Pλ). There are
constants τ+ > 1 and C > 0 both depending only on κ,ν, λ such that for any equilibrium
potential h : M → R,

ˆ

M

|Π(β)|2 hτ+dµ ≤ C

ˆ

M

|β|2 hτ+dµ. (23)
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Proof. Let h : M → R be some equilibrium potential.
According to Auscher and Coulhon [AC05], there are p− < 2 and a constantC both de-

pending only on κ,ν, λ such that for any r ∈ [p−, p∗−], the Hodge projector has a bounded
extension to Lr(T ∗M) with

‖Π‖Lr→Lr ≤ C.

Let δ := q−2
q

1
ν−2 where q is given by Proposition 4.7 and let p < 2 be given by

1

p
=

√

1− δ/2

2
+

1−
√

1− δ/2

p−

and σ ∈ (0, 1) given by

σ = 1− δ

2
=

(

√

1− δ

2

)2

.

Interpolating [Ste56, Theorem 2] between the boundedness

‖Π‖Lp
−→Lp

−
≤ C

and the weighted L2 boundedness given by Theorem 2.8

∀β ∈ C∞
c (T ∗M) :

ˆ

M

|Π(β)|2 h
√
σdµ ≤

(

1 +
√
σ

1−√
σ

)2 ˆ

M

|β|2 h
√
σdµ,

we deduce the weighted Lp boundedness

∀β ∈ C∞
c (T ∗M) :

ˆ

M

|Π(β)|p hσdµ ≤ C1

ˆ

M

|β|p hσdµ.

Notice that Proposition 4.7 yields that for any ball B ⊂ M and any β ∈ L2(T ∗M) with
support in M \ 3B then

(

1
´

B
hσdµ

ˆ

B

|Π(β)|q hσdµ
)

1
q

≤ C2

(

1
´

2B
hσdµ

ˆ

2B

|Π(β)|p hσdµ
)

1
p

.

The measure hσdµ is doubling hence we can use a result of Auscher and Martell [AM07,
Theorem 3.14] and we know that if ω is a positive locally integrable weight satisfying for
some positive constant D:

• ω is a A2−weight on (M,dg, h
σdµ): for any ball B ⊂M then

(

1
´

B h
σ

ˆ

B

ω hσdµ

)(

1
´

B h
σ

ˆ

B

ω−1hσdµ

)

≤ D,

• ω is a reverse Hölder weight of exponent (q/2)∗ = q
q−2 on (M,dg, h

σdµ):

(

1
´

B
hσ

ˆ

B

ω
q

q−2 hσdµ

)1− 2
q

≤ D
1

´

B
hσ

ˆ

B

ω hσdµ,

then for a constant C depending only on κ,ν, C1, C2 and D, we get the weighted L2

boundedness of the Hodge projector:

∀β ∈ C∞
c (T ∗M) :

ˆ

M

|Π(β)|2 ωhσdµ ≤ C

ˆ

M

|β|2 ωhσdµ.

From Corollary 4.3, we know that ω = ha satisfies these conditions when hσ+
q

q−2a is a
A1− weight on (M,dg, µ), hence it is the case when

σ +
q

q − 2
a ≤ ν

ν− 2
.

Considering ω = hδ, then

hσω
q

q−2 = h1+(
1
2+

1
q )

1
ν−2
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is a A1− weight on (M,dg, dµ).Hence the result of Auscher and Martell implies the uni-
form weighted L2 boundedness of the Hodge projector (23) for τ+ = 1 + δ/2. �

5. THE MAZ’YA-VERTBISKY PROBLEM

In this section we will prove Theorem A.

5.1. The direct implication. We start by the easiest implication and according to Maz’ya
and Vertbisky, this idea comes for [CG76, Lemma2.1].

Proposition 5.1. Let (M, g, µ) be a complete non-parabolic weighted Riemannian mani-
fold and θ ∈ L2

loc(T
∗M) such that for some positive constant A:

∀ϕ ∈ C∞
c (M) :

ˆ

M

|θ|2ϕ2 dµ ≤ A
2

ˆ

M

|dϕ|2 dµ

then the distribution V = d∗µθ satisfies

∀ϕ, φ ∈ C∞
c (M) : |〈V, ϕφ〉| ≤ 2A‖dϕ‖L2

µ
‖dφ‖L2

µ
.

Proof. By definition:

〈V, ϕφ〉 =
ˆ

M

〈θ, d(ϕφ)〉 dµ =

ˆ

M

〈θ, φdϕ〉 dµ +

ˆ

M

〈θ, ϕdφ〉 dµ.

And using the Cauchy-Schwartz inequality and the hypothesis, one gets:

|〈V, ϕφ〉| ≤ ‖φθ‖L2
µ
‖dϕ‖L2

µ
+ ‖ϕθ‖L2

µ
‖dφ‖L2

µ

≤ A‖dφ‖L2
µ
‖dϕ‖L2

µ
+ A‖dϕ‖L2

µ
‖dφ‖L2

µ
.

�

5.2. In order to be able to prove a reciprocal, we start by the following notion

Definition 5.2. If (M, g, µ) is a complete weighted Riemannian manifold, a non negative,
locally integrable function ω is said to be a parabolic weight if there is a sequence χℓ ∈
C∞
c (M) such that











0 ≤ χℓ ≤ 1 every where on M

limℓ→+∞ χℓ = 1 uniformly on compact set

limℓ→+∞
´

M
|dχℓ|2 ωdµ = 0

(24)

Remark 5.3. When ω is positive, this is equivalent to the parabolicity of the weighted
Riemannian manifold (M, g, ωµ). It is clear that if ω1 ≤ ω2, then the parabolicity of ω2

implies the parabolicity of ω1.

Our first result is a refinement of [Car19, Proposition 2.27]:

Lemma 5.4. If (M, g, µ) is a complete non-parabolic weighted Riemannian manifold
satisfying the doubling condition (Dκ,ν) and the Poincaré inequalities (Pλ) then for any
o ∈M , min{Go, 1} is a parabolic weight.

Proof. Recall 17:

C−1

ˆ +∞

d(x,o)

r

µ(B(o, r))
dr ≤ Go(x) ≤ C

ˆ +∞

d(x,o)

r

µ(B(o, r))
dr, (25)

hence the non parabolicity implies the finiteness of integral :
ˆ +∞

1

r

µ(B(o, r))
dr < +∞

and that
lim

x→+∞
Go(x) = 0.
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We let u : R → [0, 1] be a smooth function such that










u(t) = 0 if t ≤ 0

u(t) = 1 if t ≥ 1

|u′(t)| ≤ 2 everywhere.

and define

χℓ(x) = u

(

log(Go(x)ℓ
2)

log(ℓ)

)

.

The estimates (25) implies that χℓC∞
c (M) and

lim
ℓ→+∞

χℓ = 1 uniformly on compact set.

We have the following estimations
ˆ

M

|dχℓ|2 min{Go, 1}dµ ≤ 4 log(ℓ)−2

ˆ

{ℓ−2<Go<ℓ−1}

|dGo|2
Go

dµ

≤ 4 log(ℓ)−2

ˆ 1/ℓ

1/ℓ2

(

ˆ

{Go=x}
|dGo|

)

dx

x

≤ 4 log(ℓ)−1,

where we have used that for almost every x
ˆ

{Go=x}
|dGo| = 1.

Hence min{Go, 1} is a parabolic weight. �

We are now in position to finish the proof of our main result.

Proof of the reciprocal in Theorem A:. Let (M, g, µ) be a complete non-parabolic weighted
Riemannian manifold satisfying the the doubling condition (Dκ,ν) and the Poincaré in-
equalities (Pλ). And let V be a distribution such that

∀ϕ, φ ∈ C∞
c (M) : |〈V, ϕφ〉| ≤ A‖dϕ‖L2

µ
‖dφ‖L2

µ
.

We want to define a distribution θ ∈ C−∞(T ∗M) by the following relation: let β ∈
C∞
c (T ∗M) and define ϕβ ∈

o

W1,2(M) to be the solution of the equation

∆ϕβ = d∗µβ

so that Π(β) = dϕβ and let
〈θ, β〉 = 〈V, ϕβ〉.

We need to justify that such definition makes sense.
Let U be a bounded open subset containing the support of β and let h be its equilibrium

potential. Recall that by Proposition 3.6-i), there is some α ∈ (0, 1] such that we get the
uniform Hölder regularity for harmonic functions.
Claim: if τ ∈ [1, 1 + 2α/(ν− 2)], then h−τϕ2

β is a parabolic weight.

Proof of the Claim. Let o ∈ U and R > 0 such that U ⊂ B(o,R). According to the
maximum principle, we have that on M \ U :

1

max∂U Go
Go ≤ h ≤ 1

min∂U Go
Go. (26)

Moreover as
´

M
d∗µβdµ = 0, we have

ϕβ(x) =

ˆ

B(o,R)

(G(x, y) −G(x, o)) d∗µβ(y)dµ(y).
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Now if x 6∈ B(o, 6R) then y 7→ G(x, y) is a harmonic function on B(o, d(o, x)/2)
hence Proposition 3.6 implies that for any y ∈ B(o,R) :

|G(x, y)−G(x, o)| ≤ C

(

R

d(o, x)

)α

sup
z∈B(o,d(o,x)/3)

G(x, z)

≤ C

(

R

d(o, x)

)α

G(x, o), (27)

where in the last inequality, we used the Harnack inequality given by Proposition 3.5 for
the positive harmonic function y ∈ B(o, 2d(o, x)/3) 7→ G(x, y).

Using (18) and the doubling hypothesis, we also know that if x 6∈ B(o, 6R) then

G(o, x) ≥ C
d2(o, x)

µ (B(o, d(o, x)))
≥ C

d2(o, x)

µ (B(o,R)

(

R

d(o, x)

)ν

= C
Rν

µ (B(o,R))

1

dν−2(o, x)
.

(28)
The estimates (27) and (28) yields that outside B(o, 6R) :

|ϕβ(x)| ≤ C

(

µ (B(o,R))

R2

)
α

ν−2

G
1+ α

ν−2
o (x)

and estimates (26) and Lemma 5.4 implies that if τ ∈ [1, 1 + 2α/(ν− 2)], then h−τϕ2
β is

bounded by a parabolic weight, hence it is a parabolic weight. �

Now let τ > 1 be such that τ ≤ τ+ and τ ≤ 1+ 2α
ν−2 ,where τ+ is given by Theorem 4.8.

By interpolation, the Hodge projector extends also continuously on L2(T ∗M,h−τdµ),
hence h−τ/2dϕβ ∈ L2 with

ˆ

M

h−τ |dϕβ |2dµ ≤ C

ˆ

U
|β|2 dµ, (29)

where we use that h = 1 on suppβ. The parabolicity of the weight h−τϕ2
β yields a

sequence of good cut-off function χℓ ∈ C∞
c (M) such that 0 ≤ χℓ ≤ 1, (χℓ) converges to

the function 1 uniformly on compact sets of M and

lim
ℓ→+∞

ˆ

M

|dχℓ|2 h−τϕ2
βdµ = 0.

Using the Hardy inequality (7), we get that

(1 + τ)2

4

ˆ

M

|dh|2
h2

χ2
ℓϕ

2
β h

−τdµ ≤
ˆ

M

|d (χℓϕβ)|2 h−τdµ

≤ 2

ˆ

M

|dχℓ|2 ϕ2
βh

−τdµ+

ˆ

M

χ2
ℓ |dϕβ |2 h−τdµ.

Passing to the limit ℓ→ +∞ and using (29), we get that
ˆ

M

|dh|2
h2

ϕ2
β h

−τdµ ≤ 4

(1 + τ)2
C

ˆ

U
|β|2 dµ (30)

With

d(h−τ/2ϕβ) = h−τ/2dϕβ − τ

2
h−τ/2ϕβ

dh

h
,

we get that d(h−τ/2ϕβ) ∈ L2
µ with

ˆ

M

∣

∣

∣
d(h−τ/2ϕβ)

∣

∣

∣

2

dµ ≤ C

ˆ

U
|β|2 dµ (31)

where C depends only on the doubling and Poincaré constants. Using again the se-

quence of the cut-off function χℓ, we easily obtain that h−τ/2ϕβ ∈
o

W1,2(M) and it is

the
o

W1,2(M)-limit of the sequence
(

χℓh
−τ/2ϕβ

)

ℓ
. Noticed that the assumptions
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∀ϕ, φ ∈ C∞
c (M) : |〈V, ϕφ〉| ≤ A‖dϕ‖L2

µ
‖dφ‖L2

µ
,

implies that the bilinear form

(ϕ, φ) ∈ C∞
c (M)× C∞

c (M) 7→ 〈V, ϕφ〉

extends continuously to a bilinear form on
o

W1,2(M)×
o

W1,2(M). As hτ/2 and h−τ/2ϕβ

are both in
o

W1,2(M), we obtain that

|〈θ, β〉| = |〈V , ϕβ〉|

=
∣

∣

∣
〈V , hτ/2 h−τ/2ϕβ〉

∣

∣

∣

≤ A
∥

∥

∥
dhτ/2

∥

∥

∥

L2
µ

∥

∥

∥
d(h−τ/2ϕβ)

∥

∥

∥

L2
µ

And using (31) together with Proposition 2.4, we deduce that

|〈θ, β〉| ≤ A
τ√

2τ − 1
cap

1
2 (U)

√
C‖β‖L2

µ
.

This inequality being true for any β ∈ C∞
c (T ∗U) and any bounded open subset U , we

deduce that θ is given by a locally square integrable 1−form and that for any bounded
open subset U :

ˆ

U
|θ|2dµ ≤ C′A2 cap(U)

where C′ depends only on the doubling and Poincaré constants. Then the conclusion of
follows from the implication iii)⇒ ii) in Theorem 3.1.

�

APPENDIX A. TRACE INEQUALITIES ON METRIC MEASURE SPACE

A.1. Setting. We consider a metric measure space (X, d, µ) that is doubling i.e. for any
x ∈ X and r < R:

µ (B(x,R)) ≤ κ

(

R

r

)ν

µ (B(x, r)) , (Dκ,ν)

and we will note γ = κ2ν so that for any x ∈ X and r > 0:

µ (B(x, 2r)) ≤ γµ (B(x, r)) .

We introduce the notation:
V (x, r) := µ (B(x, r)) .

It is classical to prove that the doubling condition (Dκ,ν) implies the following control on
the volume of the balls:

∀x, y ∈ X, ∀ r > 0: V (x, r) ≤ κ

(

1 +
d(x, y)

r

)ν

V (y, r).

We also assume that for some x ∈ X :
ˆ +∞

1

dτ

V (x, τ)
< +∞.

In that case, it is easy to check that for any y ∈ X
ˆ +∞

1

dτ

V (y, τ)
< +∞.

And we then introduce the operator

K : L1
c(X,µ) → L1

loc(X,µ)
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defined by

Kf(x) =
ˆ +∞

0

(

 

B(x,τ)

fdµ

)

dτ

and whose Schwartz kernel is

K(x, y) =

ˆ +∞

d(x,y)

dτ

V (x, τ)
.

The dual operator K∗ has Schwartz kernel given by

K∗(x, y) = K(y, x) =

ˆ +∞

d(x,y)

dτ

V (y, τ)
.

The following lemma is a consequence of the doubling hypothesis:

Lemma A.1. For any x, y ∈ X :

γ−1K(y, x) ≤ K(x, y) ≤ γK(y, x).

Moreover we have

K1/2(x, y) =

ˆ +∞

1
2 d(x,y)

dτ

V (x, τ)
≤ γK(x, y).

The next estimate is merely an adaptation of [Ver08, Lemma 2.1]

Lemma A.2. For any non negative f ∈ L1
c(X,µ) and for any x ∈ X:

|Kf |2 (x) ≤ 2γ3 (K (fKf)) (x).

Proof. We start by the formula

|Kf |2 (x) =
ˆ

X×X

K(x, y)K(x, z)f(y)f(z) dµ(y)dµ(z).

We write X ×X = Ux ∪ Vx where

Ux := {(y, z) ∈ X ×X, 2 d(x, z) ≥ d(y, z)} and Vx := {(y, z) ∈ X ×X, 2 d(x, z) < d(y, z)} .

Notice that when (y, z) ∈ Vx then

d(x, y) ≥ d(y, z)− d(z, x) ≥ 1

2
d(y, z),

hence

Vx ⊂ Wx = {(y, z) ∈ X ×X, 2 d(x, y) ≥ d(y, z)} = {(y, z) ∈ X ×X, (z, y) ∈ Ux} .

Using Lemma A.1, one gets that for (y, z) ∈ Ux :

K(x, z) ≤ γK(z, x) ≤ γK 1
2
(z, y) ≤ γ2K(z, y) ≤ γ3K(y, z),

we obtain that:
ˆ

Ux

K(x, y)K(x, z)f(y)f(z) dµ(y)dµ(z) ≤ γ3

ˆ

Ux

K(x, y)K(y, z)f(y)f(z) dµ(y)dµ(z)

≤ γ3 (K (fKf)) (x).

Using the same argument for the integral over Vx ⊂ Wx, we obtain the result. �
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A.2. Equivalent conditions for a Trace inequality. The following theorem is a gener-
alisation of results by Maz’ya and Verbitsky [MV95] and of Kerman-Sawyer [KS86] (see
also [PW03, SW92, SWZ96]) and our proof is inspired by the one provided by Verbitsky
[Ver08]

Theorem A.3. If (X, d, µ) is a metric measure space satisfying the doubling property
(Dκ,ν) and q is a non negative locally integrable function then the following are equivalent

i) The operator K√
q has a continuous extension K√

q : L2(X,µ) → L2(X,µ)
ii) Q := K(q) is finite µ-almost everywhere and the operator KQ has a continuous

extension KQ : L2(X,µ) → L2(X,µ),
iii) Q := K(q) is finite µ-almost everywhere and there is a constant C such that

K(Q2)(x) ≤ CK(q)(x), µ a.e. x ∈ X,

iv) there is a constant C′ such that for any ball B ⊂ X :
ˆ

B

|K(q 1B)|2 dµ ≤ C′
ˆ

B

q dµ.

Moreover
∥

∥K√
q
∥

∥

2

L2→L2 , ‖KQ‖L2→L2 and the constants C, C′ are mutually con-
trolled.

Proof. Proof of i)⇒ iv). We test the L2 boundedness of T = K√
q on f :=

√
q 1B and

get that
ˆ

B

|K(q 1B)|2 dµ ≤
ˆ

X

|K(q 1B)|2 dµ(y) ≤ ‖T ‖2
ˆ

B

q dµ.

Hence iv) holds with C′ = ‖T ‖2.
Proof of ii)⇒ i). We have that for any f ∈ L2(X,µ) :

ˆ

X

q |K(f)|2 dµ ≤ 2γ3

ˆ

X

q (K (|f |K|f |)) dµ

≤ 2γ3 〈K∗(q)K|f |, |f |〉L2
µ

≤ 2γ4 ‖QK|f |‖L2
µ
‖f‖L2

µ

≤ 2γ5 ‖QK∗|f |‖L2
µ
‖f‖L2

µ

≤ 2γ5 ‖QK∗‖L2→L2 ‖f‖2L2
µ

≤ 2γ5 ‖KQ‖L2→L2 ‖f‖2L2
µ
.

Using that
´

X
q |K∗(f)|2 dµ ≤ γ2

´

X
q |K(f)|2 dµ we obtain that

‖K√
q‖2L2→L2 = ‖√qK∗‖2L2→L2 ≤ 2γ7 ‖KQ‖L2→L2 .

Proof of iii)⇒ ii). Assuming that iii) holds and proceeding in the same way, for any
f ∈ L2

c(X,µ), we obtain the inequality
ˆ

X

Q2 |K(f)|2 dµ ≤ 2γ3 〈K∗(Q2)K|f |, |f |〉L2
µ

≤ 2γ4 〈K(Q2)K|f |, |f |〉L2
µ
.

Using the hypothesis K(Q2) ≤ CQ one gets that
ˆ

X

Q2(x) (K|f |)2 (x)dµ(x) ≤ 2γ4C 〈QK|f |, |f |〉L2
µ

≤ 2γ4C ‖Q (K|f |) ‖L2
µ
‖f‖L2

µ
.



26 GILLES CARRON AND MAËL LANSADE

As f ∈ L2
c(X,µ) andQK|f | ∈ L2

loc, the first inequality above implies thatQ (K|f |) ∈ L2
µ.

Hence
‖Q (K|f |)‖L2

µ
≤ 2γ4C‖f‖L2

µ

and
‖KQ‖L2→L2 = ‖QK∗‖L2→L2 ≤ γ ‖QK‖L2→L2 ≤ 2γ5C.

Proof of iv)⇒ iii). This is the most complicated implication. Our goal is therefore to
estimate the quantity:

K(Q2)(o) =

ˆ +∞

0

(

 

B(o,r)

|K(q)|2(x)dµ(x)
)

dr.

We decompose
K(Q2)(o) ≤ 2I + 2II

where

I =

ˆ +∞

0

(

 

B(o,r)

∣

∣K(1B(o,2r) q
)

|2(x)dµ(x)
)

dr

and

II =

ˆ +∞

0

(

 

B(o,r)

∣

∣K(1X\B(o,2r) q
)

|2(x)dµ(x)
)

dr.

Let’s start by the estimation of I, we easily get:
 

B(o,r)

∣

∣K(1B(o,2r) q
)

|2(x)dµ(x) ≤ V (o, 2r)

V (o, r)

 

B(o,2r)

∣

∣K(1B(o,2r) q
)

|2(x)dµ(x)

and using the property iv) one gets that

I ≤ γC′
ˆ +∞

0

(

 

B(o,2r)

q(x)dµ(x)

)

dr =
1

2
γC′ K(q)(o). (32)

For estimation of II, we first need an estimate of
ffl

B q for any ball B = B(y, s). If
z, w ∈ B, then d(w, z) ≤ 2s hence

K(z, w) ≥
ˆ 3s

2s

dτ

V (z, τ)
≥ s

V (z, 3s)
≥ s

γV (y, 3s)
≥ s

γ3V (y, s)
.

Hence the condition iv) yields that

V (y, s)

(

s

γ3V (y, s)

)2(ˆ

B

q dµ

)2

≤ C′
ˆ

B

q dµ

so that
 

B

qdµ ≤ γ6C′ 1

s2
. (33)

If x ∈ B(o, r) and τ ≤ r then B(x, τ) ⊂ B(o, 2r) so that

K
(

1X\B(o,2r) q
)

(x) =

ˆ +∞

r

(

 

B(x,τ)

1X\B(o,2r) q dµ

)

dτ.

Similarly if x ∈ B(o, r) and τ ≥ r then B(x, τ) ⊂ B(o, 2τ) and using V (o, 2τ) ≤
γ2V (x, τ) one gets that

K
(

1X\B(o,2r) q
)

(x) ≤ γ2

ˆ +∞

r

(

ˆ

B(o,2τ)\B(o,2r)

q dµ

)

dτ

V (o, 2τ)
. (34)

We introduce Φ(τ) =
ffl

B(o,2τ) q dµ, Using (33), we gets that

Φ(τ) ≤ γ6C′ 1

τ2
. (35)
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And from (34) we get the following estimates:

II ≤ γ4

ˆ

0≤r≤σ , 0≤r≤τ

Φ(τ)Φ(σ)dτdσdr

≤ 2γ4

ˆ

0≤r≤σ≤τ

Φ(τ)Φ(σ)dτdσdr

≤ 2γ10C′
ˆ

0≤r≤σ

Φ(σ)
1

σ
dσdr

≤ 2γ10C′
ˆ +∞

0

Φ(σ)

(
ˆ σ

0

dr

)

dσ

σ

≤ 2γ10C′
ˆ +∞

0

Φ(σ)dσ

≤ 2γ10C′
ˆ +∞

0

(

 

B(o,2σ)

q dµ

)

dσ

≤ γ10C′ K(q)(o).

And this estimate together with (32) yields that if iv) holds then iii) holds with

C =
(

γ + γ10
)

C′.

�

A.3. The next estimate provides a class of operators whose Schwartz kernels look like
the same as the one of the operator K studied previously.

Proposition A.4. If (X, d, µ) is a metric measure space satisfying the doubling property
(Dκ,ν) then for anyD, s > 0, there are positive constants c, C depending only onD, s and
the doubling constants κ,ν such that for any x, y ∈ X :

c

ˆ ∞

d(x,y)

r2s−1

V (x, r)
dr ≤

ˆ ∞

0

e−
d2(x,y)

Dt

V (x,
√
t)
ts−1dt ≤ C

ˆ ∞

d(x,y)

r2s−1

V (x, r)
dr.

Proof. Firstly, we easily get that

2e−
1
D

ˆ ∞

d(x,y)

r2s−1

V (x, r)
dr ≤

ˆ ∞

d2(x,y)

e−
d2(x,y)

Dt

V (x,
√
t)
ts−1dt ≤ 2

ˆ ∞

d(x,y)

r2s−1

V (x, r)
dr.

Secondly using the doubling assumption, we get

ˆ d2(x,y)

0

e−
d2(x,y)

Dt

V (x,
√
t)
ts−1dt ≤ κ

V (x, 2d(x, y))

ˆ d2(x,y)

0

e−
d2(x,y)

Dt

(

2d(x, y)√
t

)ν

ts−1dt

≤ κ2νd2s(x, y)

V (x, 2d(x, y))

ˆ 1

0

e−
1

Dt ts−ν/2−1dt.

But we also have the lower estimate:
ˆ ∞

d(x,y)

r2s−1

V (x, r)
dr ≥

ˆ 2d(x,y)

d(x,y)

r2s−1

V (x, r)
dr

≥ d2s(x, y)

2V (x, 2d(x, y))
.

Hence the result with

c = 2e−
1
D and C = 2 + κ2ν+1

ˆ 1

0

e−
1

Dt ts−ν/2−1dt.

�
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