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Abstract. Information spread on networks can be efficiently modeled by
considering three features: documents’ content, time of publication rela-
tive to other publications, and position of the spreader in the network.
Most previous works model up to two of those jointly, or rely on heav-
ily parametric approaches. Building on recent Dirichlet-Point processes
literature, we introduce the Houston (Hidden Online User-Topic Net-
work) model, that jointly considers all those features in a non-parametric
unsupervised framework. It infers dynamic topic-dependent underlying
diffusion networks in a continuous-time setting along with said topics.
It is unsupervised; it considers an unlabeled stream of triplets shaped
as (time of publication, information’s content, spreading entity) as input
data. Online inference is conducted using a sequential Monte-Carlo al-
gorithm that scales linearly with the size of the dataset. Our approach
yields consequent improvements over existing baselines on both cluster
recovery and subnetworks inference tasks.

Keywords: Spreading process · Network Inference · Clustering · Bayesian
Nonparametrics

1 Introduction

1.1 Overview of the contribution

Over the last decades, information spread patterns have become more and more
complicated. The volume of data that flows on social networks keeps increasing
every day that passes, and results in complex diffusion processes that can be
described by many factors. However, recent advances suggest that documents
complex diffusion processes can be efficiently modeled considering only three
variables: their publication date (when), the publisher (who) and their semantic
content (what). The idea of considering these three factors is not novel. However,
most of the models that tackle diffusion problems tend to consider up to two of
these, but seldom the three parameters.
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We introduce the Houston model, that tackles the problem by jointly inferring
clusters of textual documents spreading online and the subnetworks they spread
on. Our method builds on recent Dirichlet-Point processes advances [9, 18, 23,
24]. To the best of our knowledge, it is the first model that considers semantic
content, publication dynamics and the network of spreading documents in an
online, non-parametric and unsupervised way.

Fig. 1. From a stream of textual documents, we model the underlying topic-dependent
diffusion subnetworks. Inference is unsupervised, non-parametric and conducted online,
meaning data is processed sequentially. Results in the bottom row come from the
application of our method to the Memetracker dataset [17]. Nodes colors represent
traditional medias (red) and blog (blue).

1.2 Related works

It has been underlined on several occasions that efficiently modeling informa-
tion diffusion involves accounting for the network’s structure [16, 22], publica-
tion times [8, 12] and documents’ content [10, 15]. Some approaches consider
sequentially all three factors. Typically, they first infer topics based on doc-
uments content, and only then they use this information to infer the latent
diffusion subnetworks [7, 10, 15, 26, 28, 29]. The work the closest to ours [4] is, to
our knowledge, the only one that jointly models documents’ content, dynamics
and structure. It develops an unsupervised topic-dependent network inference
method. The approach breaks down the topic-aware diffusion into two factors:
each node is assumed to have a given sensitivity to a topic, and a certain au-
thority on them. Given this assumption, the authors develop a parametric prior
on the probability for a diffusion cascade to belong to a given topic. The textual
content (or side information) is then accounted for using a homogeneous Poisson
textual model [19], combined with the above prior. The model is optimized using
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an EM algorithm. However, the optimization algorithm is not designed for on-
line optimization –data cannot be added sequentially–, and topics optimization
is parametric –the number of topics must be provided.

2 Model

2.1 Background

To answer these limitations, we build a Dirichlet-Survival process that can be
used as a non-parametric Bayesian prior for online inference. The Dirichlet-
Survival prior is created by merging Dirichlet processes with Point processes.
The method has been explored by combining Hawkes processes to several vari-
ants of Dirichlet processes (hierarchical [18], mixed membership [27], powered
[23], multivariate [24]). However, no work considered the combination with other
point processes than the Hawkes process. Our approach using Survival analysis
explores this new connection; it allows us to design an optimization algorithm
(Sequential Monte Carlo) for online non-parametric topics-aware diffusion sub-
networks inference (the number of topics/subnetworks does not have to be chosen
in advance).

In [14], the authors show that a large part of the literature on underlying
diffusion network inference [8, 12–14, 21, 28] can be expressed as special cases of a
counting point process. The method allows to infer dynamic underlying diffusion
networks using convex optimization tools.

2.2 Dirichlet process and Survival analysis

Dirichlet process The Dirichlet process is used as a non-parametric prior
distribution over clusters in many clustering algorithms. It can be written as
follows:

P (si = k|{sm}m=1,...,n−1, α0) =

{
Nk

α0+
∑K

k Nk
if k = 1, ..., K

α0

α0+
∑K

k Nk
if k = K+1

(1)

where si is a variable that represents the cluster of the ith observation, Nk =
|{si|si = k}i=1,...,n−1| the population of cluster k, K the total number of non-
empty clusters and α0 a concentration hyper-parameter. The choice of K + 1
means a new cluster is opened and K in increased by 1. Note that references
[23, 24] use the powered version of this process [25].

Network inference model The edges of topic-dependent networks are inferred
using the NetRate model [12], which is part of a broad literature on underlying
spreading networks inference [10, 12–14, 28]. In particular in [14], the authors
demonstrate that all these models can be expressed as special cases of a counting
point process. These processes take a collection of independent timestamped
diffusion cascades c⃗ = {(uc

i , t
c
i )}i as input, where uc

i is the node on which the
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ith event occurred and tci the time at which it happened in cascade c. The
process is entirely characterized by a hazard function H(tci |tcj , αuc

j ,u
c
i
), which is

the instantaneous infection rate of uc
i at time tci by uc

j previously infected at time
tcj , given it infection did not happen before ti. In this paper, we express the hazard
function as a constant H(t|ti, α) = α, implying by definition that the probability
of an event non happening before a time t given ti decays exponentially as
e−α(t−ti). The associated convex likelihood of α can be found in [12] (Eq.7).

2.3 Dirichlet-Survival process

In [9] the authors define the Dirichlet-Hawkes process by replacing the integer
counts in Eq.1 by the intensity of a Hawkes process. It can be interpreted as
replacing integers counts in Dirichlet Processes by non-integer time-dependent
counts, encoded by the intensity of the point process. Here, we consider the
hazard rate of the NetRate model instead to account for networks structure. Each
node is associated to its own temporal point process, and counts are replaced by
the number of times any neighbour has been infected, weighted according to time
and to edges strength. Using the methodology introduced in [9] and substituting
the Hawkes process by the hazard rate of a survival model [14], we make a yet
unexplored bridge between Dirichlet processes and Survival analysis. We remind
that [14] reformulates the work of [8, 12, 13, 28] in terms of Survival analysis and
associated counting processes; we settled on using NetRate here, but any of these
models would fit as well in our approach. The point process nature of survival
analysis discussed in [14] makes this extension sound with respect to previous
works on Dirichlet-Point processes [9, 18, 23, 27].

Let A(k) be the adjacency matrix of the subnetwork associated to cluster k,

whose entries are α
(k)
i,j . We define (uc

j , t
c
j)

(k) as an event of cascade c observed

on node uj at tj attributed to subnetwork A(k). We write the history of events

in cascade c attributed to the subnetwork k as H(k)
i,c = {(uc

j , t
c
j)

(k)}j:tj<ti . We

note Hi,c = {H(k)
i,c }k and A = {A(k)}k. We consider a new event from cascade c

observed on node uc
i at time tci . At this point, the new event is not yet associated

to any subnetwork. We write the Dirichlet-Survival prior probability for the new
event to belong to subnetwork k:

P (si = k|Hi,c,A, λ0) =


λ
(k)
0 +

∑
H(k)

i,c

H(tci |t
c
j ,α

(k)
uj,ui

)
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(K+1)
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k λ

(k)
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∑
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H(tci |tcj ,α
(k)
uj,ui

)
if k = 1, ..., K

λ
(K+1)
0

λ
(K+1)
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∑K
k λ

(k)
0 +

∑
H(k)

i,c

H(tci |tcj ,α
(k)
uj,ui

)
if k = K+1

(2)

We introduced a new parameter λ0 = {λ(k)
0 }k=1,...,K+1, which translates the

probability for a new observation not to have been triggered by any neighbour.
It represents the probability that an event of cluster k is exogenous [15, 20].

The Dirichlet-Survival prior is coupled to a sequential language model. For
simplicity, we consider the bag-of-words Dirichlet-Multinomial model, as in [9,
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18, 23]; note that more refined sequential language models are also fit to our
approach (Dynamic Topic Model [6], online LDA [3], online PLSA [5], etc.).

The input data is a stream of events. Each event takes the form of a triplet
(uc

i , t
c
i , v

c
i ), where c is the cascade an event has been observed in, uc

i is the node
corresponding to the event, tci is its publication time, and vci represents its textual
content (e.G. words in a tweet or in a news article). By combining the Dirichlet-
Survival prior to the textual likelihood, we get the posterior distribution of the
ith observation belonging to cluster (or subnetwork) k as:

P (si|vci ,N,Hi,c,A, θ0, λ0) ∝ P (vci |si,N, θ0)︸ ︷︷ ︸
Dirichlet-Multinomial

× P (si|Hi,c,A, λ0)︸ ︷︷ ︸
Dirichlet-Survival prior (Eq.2)

(3)

where N⃗ contains the words counts within each cluster, vci contains the words
count in document i, and θ0 the concentration parameter of the model.

Finally, inference is conducted using a Sequential Monte Carlo algorithm
similar to [9, 18, 23]. We perform several parallel runs on the same data stream.
Within each run, each new observation in the stream is assigned to a cluster
according to Eq. 3. The adjacency matrix A is then updated by optimizing
the convex likelihood associated to the NetRate point process (Eq. 7 in [12]).
Finally, we compute the likelihood of the language model for each run; runs that
have a likelihood lesser than a threshold are discarded and replaced by more
likely ones. The process is repeated until the end of the data stream. According
to this algorithm, Eq. 1, and introducing a cutoff on the exponential hazard
function (observations older than a time told are ignored), the optimization runs
in O(NobsNruns(Nnodes +K)) where Npart is the number of particles, Nnodes is
the maximum network size and K the number of clusters (typically Nruns ≪
K ≪ Nnodes). Inference hence scales linearly with the size of the dataset.

We point out that the Dirichlet-Survival process is not about refining com-
plex diffusion models such as [4, 7, 26]. Instead, it introduces a different angle for
tackling content-aware diffusion problems. This new angle allows for unsuper-
vised, non-parametric and online inference.

3 Experiments

3.1 Data and experimental setup

All data, codes and results are available in open access 1. We consider 3 different
network types of 500 nodes each: power-law (PL) [2], random Erdös-Renye (ER)
[11] and a real network of hyperlinks between political blogs (Blogs) [1]. From
each network, we sample 5 subnetworks of 250 nodes and assign random weights
α between 0 and 1 to their edges. Each of the generated subnetworks is used to
propagate one given cluster of information. We then simulate infection cascades
on each subnetwork according to the exponential NetRate model. Finally, we
associate 5 words drawn from a vocabulary of size 100 to each so-generated

1 https://github.com/GaelPouxMedard/HOUsToN
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event according to its associated subnetwork (or cluster). We generate a total of
55,000 events {(uc

i , t
c
i , v

c
i )}i,c for each network.

Our hyperparameters are θ0 = 0.1 and λ
(k)
0 = 0.001 ∀k. The SMC algorithm

considers 4 parallel runs. We consider a constant hazard rateH(ti|tj , αj,i) = αj,i,
so the probability of a new event not happening decays exponentially with time.

Table 1. Results on clusters (NMI, ARI) and edges (AUC-ROC, F1, MAE) retrieval.

Houston NRxDM DHP NetRate

P
L

NMI 0.809 0.669 0.449 -
ARI 0.688 0.330 0.063 -

AUC-ROC 0.807 0.719 - 0.731
F1 0.199 0.106 - 0.005

MAE 0.267 0.338 - 0.460

E
R

NMI 0.787 0.711 0.638 -
ARI 0.631 0.488 0.411 -

AUC-ROC 0.849 0.800 - 0.659
F1 0.263 0.176 - 0.005

MAE 0.229 0.278 - 0.481

B
lo
g
s

NMI 0.750 0.668 0.372 -
ARI 0.609 0.365 0.023 -

AUC-ROC 0.701 0.613 - 0.710
F1 0.168 0.087 - 0.005

MAE 0.374 0.444 - 0.499

3.2 Results

We compare to 3 similar baselines used as ablation tests: Dirichlet-Hawkes
process (DHP) [9] clusters textual data by using temporal dynamics, and
does not consider structure; NetRate [12] infers a dynamic network based on
observed cascades without considering their content; NetRate x Dirichlet-
Multinomial (NRxDM) first uses textual information to infer clusters, and
only then infers the underlying subnetwork for each cluster, in the same fashion
as [10, 15]. When applicable, we evaluate on a classification task (scores NMI
and ARI with respect to the clusters used for data generation) and a network
inference task (AUC-ROC, F1 and MAE on the true edges, same metrics as in
[12]).

We see in Table 1 that Houston consistently outperforms methods that do not
consider jointly text, time and structure of the network. To summarize, NRxDM
only considers textual information to build clusters, making the network infer-
ence miss a great deal of temporal and structural information. DHP considers
textual information and temporal dynamics, but misses the structural informa-
tion. NetRate does not consider textual data and infers the network based on
temporal dynamics only. Houston bridges the gap between these models, by
making a joint use of textual, temporal and structural information.
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As an illustration of what Dirichlet-Processes can yield on real-world data,
we draft its application to the Memetracker dataset [17] in Fig. 1 (bottom). We
retrieve the diffusion network associated to meme clusters and observe diverse
spreading dynamics. Topics spread in distinct parts of the global network, and
mostly do so through a reduced set of densely connected nodes, as shown in [13].

4 Conclusion

In this paper, we propose the Dirichlet-Survival process as an alternative way
to jointly model textual, temporal and structural information in spreading pro-
cesses. Ablation tests demonstrate the relevance of the proposed approach. As
a prior, the Dirichlet-Survival process can add a dynamic network dimension to
any sequential Bayesian model; it could be coupled to models that account for
any type of clustering (e.g. images, time series, labels), or simply more refined
language models. Its introduction opens new perspectives on traditional machine
learning problems, including topic-dependent spreading processes on networks.
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