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Information spread on networks can be efficiently modeled by considering three features: documents' content, time of publication relative to other publications, and position of the spreader in the network. Most previous works model up to two of those jointly, or rely on heavily parametric approaches. Building on recent Dirichlet-Point processes literature, we introduce the Houston (Hidden Online User-Topic Network) model, that jointly considers all those features in a non-parametric unsupervised framework. It infers dynamic topic-dependent underlying diffusion networks in a continuous-time setting along with said topics. It is unsupervised; it considers an unlabeled stream of triplets shaped as (time of publication, information's content, spreading entity) as input data. Online inference is conducted using a sequential Monte-Carlo algorithm that scales linearly with the size of the dataset. Our approach yields consequent improvements over existing baselines on both cluster recovery and subnetworks inference tasks.

Introduction

Overview of the contribution

Over the last decades, information spread patterns have become more and more complicated. The volume of data that flows on social networks keeps increasing every day that passes, and results in complex diffusion processes that can be described by many factors. However, recent advances suggest that documents complex diffusion processes can be efficiently modeled considering only three variables: their publication date (when), the publisher (who) and their semantic content (what). The idea of considering these three factors is not novel. However, most of the models that tackle diffusion problems tend to consider up to two of these, but seldom the three parameters.

We introduce the Houston model, that tackles the problem by jointly inferring clusters of textual documents spreading online and the subnetworks they spread on. Our method builds on recent Dirichlet-Point processes advances [START_REF] Du | Dirichlet-hawkes processes with applications to clustering continuous-time document streams[END_REF][START_REF] Mavroforakis | Modeling the dynamics of learning activity on the web[END_REF][START_REF] Poux-Médard | Powered hawkes-dirichlet process: Challenging textual clustering using a flexible temporal prior[END_REF][START_REF] Poux-Médard | Multivariate powered dirichlet-hawkes process[END_REF]. To the best of our knowledge, it is the first model that considers semantic content, publication dynamics and the network of spreading documents in an online, non-parametric and unsupervised way.

Fig. 1. From a stream of textual documents, we model the underlying topic-dependent diffusion subnetworks. Inference is unsupervised, non-parametric and conducted online, meaning data is processed sequentially. Results in the bottom row come from the application of our method to the Memetracker dataset [START_REF] Leskovec | Meme-tracking and the dynamics of the news cycle[END_REF]. Nodes colors represent traditional medias (red) and blog (blue).

Related works

It has been underlined on several occasions that efficiently modeling information diffusion involves accounting for the network's structure [START_REF] Larremore | Statistical properties of avalanches in networks[END_REF][START_REF] Poux-Médard | Influential spreaders for recurrent epidemics on networks[END_REF], publication times [START_REF] Du | Learning networks of heterogeneous influence[END_REF][START_REF] Gomez-Rodriguez | Uncovering the temporal dynamics of diffusion networks[END_REF] and documents' content [START_REF] Du | Uncover topic-sensitive information diffusion networks[END_REF][START_REF] He | Hawkestopic: A joint model for network inference and topic modeling from text-based cascades[END_REF]. Some approaches consider sequentially all three factors. Typically, they first infer topics based on documents content, and only then they use this information to infer the latent diffusion subnetworks [START_REF] Choudhari | Discovering topical interactions in text-based cascades using hidden markov hawkes processes[END_REF][START_REF] Du | Uncover topic-sensitive information diffusion networks[END_REF][START_REF] He | Hawkestopic: A joint model for network inference and topic modeling from text-based cascades[END_REF][START_REF] Suny | Inferring multiplex diffusion network via multivariate marked hawkes process[END_REF][START_REF] Wang | Feature-enhanced probabilistic models for diffusion network inference[END_REF][START_REF] Yang | Mixture of mutually exciting processes for viral diffusion[END_REF]. The work the closest to ours [START_REF] Barbieri | Survival factorization on diffusion networks[END_REF] is, to our knowledge, the only one that jointly models documents' content, dynamics and structure. It develops an unsupervised topic-dependent network inference method. The approach breaks down the topic-aware diffusion into two factors: each node is assumed to have a given sensitivity to a topic, and a certain authority on them. Given this assumption, the authors develop a parametric prior on the probability for a diffusion cascade to belong to a given topic. The textual content (or side information) is then accounted for using a homogeneous Poisson textual model [START_REF] Mei | A study of poisson query generation model for information retrieval p[END_REF], combined with the above prior. The model is optimized using an EM algorithm. However, the optimization algorithm is not designed for online optimization -data cannot be added sequentially-, and topics optimization is parametric -the number of topics must be provided.

Model

Background

To answer these limitations, we build a Dirichlet-Survival process that can be used as a non-parametric Bayesian prior for online inference. The Dirichlet-Survival prior is created by merging Dirichlet processes with Point processes. The method has been explored by combining Hawkes processes to several variants of Dirichlet processes (hierarchical [START_REF] Mavroforakis | Modeling the dynamics of learning activity on the web[END_REF], mixed membership [START_REF] Tan | The indian buffet hawkes process to model evolving latent influences[END_REF], powered [START_REF] Poux-Médard | Powered hawkes-dirichlet process: Challenging textual clustering using a flexible temporal prior[END_REF], multivariate [START_REF] Poux-Médard | Multivariate powered dirichlet-hawkes process[END_REF]). However, no work considered the combination with other point processes than the Hawkes process. Our approach using Survival analysis explores this new connection; it allows us to design an optimization algorithm (Sequential Monte Carlo) for online non-parametric topics-aware diffusion subnetworks inference (the number of topics/subnetworks does not have to be chosen in advance).

In [START_REF] Gomez-Rodriguez | Modeling information propagation with survival theory[END_REF], the authors show that a large part of the literature on underlying diffusion network inference [8, 12-14, 21, 28] can be expressed as special cases of a counting point process. The method allows to infer dynamic underlying diffusion networks using convex optimization tools.

Dirichlet process and Survival analysis

Dirichlet process The Dirichlet process is used as a non-parametric prior distribution over clusters in many clustering algorithms. It can be written as follows:

P (s i = k|{s m } m=1,...,n-1 , α 0 ) = N k α0+ K k N k if k = 1, ..., K α0 α0+ K k N k if k = K+1 (1) 
where s i is a variable that represents the cluster of the i th observation, N k = |{s i |s i = k} i=1,...,n-1 | the population of cluster k, K the total number of nonempty clusters and α 0 a concentration hyper-parameter. The choice of K + 1 means a new cluster is opened and K in increased by 1. Note that references [START_REF] Poux-Médard | Powered hawkes-dirichlet process: Challenging textual clustering using a flexible temporal prior[END_REF][START_REF] Poux-Médard | Multivariate powered dirichlet-hawkes process[END_REF] use the powered version of this process [START_REF] Poux-Médard | Powered dirichlet process for controlling the importance of "rich-get-richer" prior assumptions in bayesian clustering[END_REF].

Network inference model

The edges of topic-dependent networks are inferred using the NetRate model [START_REF] Gomez-Rodriguez | Uncovering the temporal dynamics of diffusion networks[END_REF], which is part of a broad literature on underlying spreading networks inference [START_REF] Du | Uncover topic-sensitive information diffusion networks[END_REF][START_REF] Gomez-Rodriguez | Uncovering the temporal dynamics of diffusion networks[END_REF][START_REF] Gomez-Rodriguez | Structure and dynamics of information pathways in online media[END_REF][START_REF] Gomez-Rodriguez | Modeling information propagation with survival theory[END_REF][START_REF] Wang | Feature-enhanced probabilistic models for diffusion network inference[END_REF]. In particular in [START_REF] Gomez-Rodriguez | Modeling information propagation with survival theory[END_REF], the authors demonstrate that all these models can be expressed as special cases of a counting point process. These processes take a collection of independent timestamped diffusion cascades ⃗ c = {(u c i , t c i )} i as input, where u c i is the node on which the i th event occurred and t c i the time at which it happened in cascade c. The process is entirely characterized by a hazard function H(t c i |t c j , α u c j ,u c i ), which is the instantaneous infection rate of u c i at time t c i by u c j previously infected at time t c j , given it infection did not happen before t i . In this paper, we express the hazard function as a constant H(t|t i , α) = α, implying by definition that the probability of an event non happening before a time t given t i decays exponentially as e -α(t-ti) . The associated convex likelihood of α can be found in [START_REF] Gomez-Rodriguez | Uncovering the temporal dynamics of diffusion networks[END_REF] (Eq.7).

Dirichlet-Survival process

In [START_REF] Du | Dirichlet-hawkes processes with applications to clustering continuous-time document streams[END_REF] the authors define the Dirichlet-Hawkes process by replacing the integer counts in Eq.1 by the intensity of a Hawkes process. It can be interpreted as replacing integers counts in Dirichlet Processes by non-integer time-dependent counts, encoded by the intensity of the point process. Here, we consider the hazard rate of the NetRate model instead to account for networks structure. Each node is associated to its own temporal point process, and counts are replaced by the number of times any neighbour has been infected, weighted according to time and to edges strength. Using the methodology introduced in [START_REF] Du | Dirichlet-hawkes processes with applications to clustering continuous-time document streams[END_REF] and substituting the Hawkes process by the hazard rate of a survival model [START_REF] Gomez-Rodriguez | Modeling information propagation with survival theory[END_REF], we make a yet unexplored bridge between Dirichlet processes and Survival analysis. We remind that [START_REF] Gomez-Rodriguez | Modeling information propagation with survival theory[END_REF] reformulates the work of [START_REF] Du | Learning networks of heterogeneous influence[END_REF][START_REF] Gomez-Rodriguez | Uncovering the temporal dynamics of diffusion networks[END_REF][START_REF] Gomez-Rodriguez | Structure and dynamics of information pathways in online media[END_REF][START_REF] Wang | Feature-enhanced probabilistic models for diffusion network inference[END_REF] in terms of Survival analysis and associated counting processes; we settled on using NetRate here, but any of these models would fit as well in our approach. The point process nature of survival analysis discussed in [START_REF] Gomez-Rodriguez | Modeling information propagation with survival theory[END_REF] makes this extension sound with respect to previous works on Dirichlet-Point processes [START_REF] Du | Dirichlet-hawkes processes with applications to clustering continuous-time document streams[END_REF][START_REF] Mavroforakis | Modeling the dynamics of learning activity on the web[END_REF][START_REF] Poux-Médard | Powered hawkes-dirichlet process: Challenging textual clustering using a flexible temporal prior[END_REF][START_REF] Tan | The indian buffet hawkes process to model evolving latent influences[END_REF]. Let A (k) be the adjacency matrix of the subnetwork associated to cluster k, whose entries are α (k) i,j . We define (u c j , t c j ) (k) as an event of cascade c observed on node u j at t j attributed to subnetwork A (k) . We write the history of events in cascade c attributed to the subnetwork k as

H (k) i,c = {(u c j , t c j ) (k) } j:tj <ti . We note H i,c = {H (k) i,c } k and A = {A (k) } k .
We consider a new event from cascade c observed on node u c i at time t c i . At this point, the new event is not yet associated to any subnetwork. We write the Dirichlet-Survival prior probability for the new event to belong to subnetwork k:

P (s i = k|H i,c , A, λ 0 ) =          λ (k) 0 + H (k) i,c H(t c i |t c j ,α (k) u j ,u i ) λ (K+1) 0 + K k λ (k) 0 + H (k) i,c H(t c i |t c j ,α (k) u j ,u i ) if k = 1, ..., K λ (K+1) 0 λ (K+1) 0 + K k λ (k) 0 + H (k) i,c H(t c i |t c j ,α (k) u j ,u i ) if k = K+1
(2) We introduced a new parameter λ 0 = {λ (k) 0 } k=1,...,K+1 , which translates the probability for a new observation not to have been triggered by any neighbour. It represents the probability that an event of cluster k is exogenous [START_REF] He | Hawkestopic: A joint model for network inference and topic modeling from text-based cascades[END_REF][START_REF] Myers | Information diffusion and external influence in networks[END_REF].

The Dirichlet-Survival prior is coupled to a sequential language model. For simplicity, we consider the bag-of-words Dirichlet-Multinomial model, as in [START_REF] Du | Dirichlet-hawkes processes with applications to clustering continuous-time document streams[END_REF][START_REF] Mavroforakis | Modeling the dynamics of learning activity on the web[END_REF][START_REF] Poux-Médard | Powered hawkes-dirichlet process: Challenging textual clustering using a flexible temporal prior[END_REF]; note that more refined sequential language models are also fit to our approach (Dynamic Topic Model [START_REF] Blei | Dynamic topic models[END_REF], online LDA [START_REF] Alsumait | On-line lda: Adaptive topic models for mining text streams with applications to topic detection and tracking[END_REF], online PLSA [START_REF] Bassiou | Online plsa: Batch updating techniques including out-of-vocabulary words[END_REF], etc.).

The input data is a stream of events. Each event takes the form of a triplet (u c i , t c i , v c i ), where c is the cascade an event has been observed in, u c i is the node corresponding to the event, t c i is its publication time, and v c i represents its textual content (e.G. words in a tweet or in a news article). By combining the Dirichlet-Survival prior to the textual likelihood, we get the posterior distribution of the i th observation belonging to cluster (or subnetwork) k as:

P (s i |v c i , N, H i,c , A, θ 0 , λ 0 ) ∝ P (v c i |s i , N, θ 0 ) Dirichlet-Multinomial × P (s i |H i,c , A, λ 0 )
Dirichlet-Survival prior (Eq.2)

(3

)
where ⃗ N contains the words counts within each cluster, v c i contains the words count in document i, and θ 0 the concentration parameter of the model.

Finally, inference is conducted using a Sequential Monte Carlo algorithm similar to [START_REF] Du | Dirichlet-hawkes processes with applications to clustering continuous-time document streams[END_REF][START_REF] Mavroforakis | Modeling the dynamics of learning activity on the web[END_REF][START_REF] Poux-Médard | Powered hawkes-dirichlet process: Challenging textual clustering using a flexible temporal prior[END_REF]. We perform several parallel runs on the same data stream. Within each run, each new observation in the stream is assigned to a cluster according to Eq. 3. The adjacency matrix A is then updated by optimizing the convex likelihood associated to the NetRate point process (Eq. 7 in [START_REF] Gomez-Rodriguez | Uncovering the temporal dynamics of diffusion networks[END_REF]). Finally, we compute the likelihood of the language model for each run; runs that have a likelihood lesser than a threshold are discarded and replaced by more likely ones. The process is repeated until the end of the data stream. According to this algorithm, Eq. 1, and introducing a cutoff on the exponential hazard function (observations older than a time t old are ignored), the optimization runs in O(N obs N runs (N nodes + K)) where N part is the number of particles, N nodes is the maximum network size and K the number of clusters (typically N runs ≪ K ≪ N nodes ). Inference hence scales linearly with the size of the dataset.

We point out that the Dirichlet-Survival process is not about refining complex diffusion models such as [START_REF] Barbieri | Survival factorization on diffusion networks[END_REF][START_REF] Choudhari | Discovering topical interactions in text-based cascades using hidden markov hawkes processes[END_REF][START_REF] Suny | Inferring multiplex diffusion network via multivariate marked hawkes process[END_REF]. Instead, it introduces a different angle for tackling content-aware diffusion problems. This new angle allows for unsupervised, non-parametric and online inference.

Experiments

Data and experimental setup

All data, codes and results are available in open access1 . We consider 3 different network types of 500 nodes each: power-law (PL) [START_REF] Albert | Statistical mechanics of complex networks[END_REF], random Erdös-Renye (ER) [START_REF] Erdős | On the evolution of random graphs[END_REF] and a real network of hyperlinks between political blogs (Blogs) [START_REF] Adamic | The political blogosphere and the 2004 u.s. election: Divided they blog[END_REF]. From each network, we sample 5 subnetworks of 250 nodes and assign random weights α between 0 and 1 to their edges. Each of the generated subnetworks is used to propagate one given cluster of information. We then simulate infection cascades on each subnetwork according to the exponential NetRate model. Finally, we associate 5 words drawn from a vocabulary of size 100 to each so-generated event according to its associated subnetwork (or cluster). We generate a total of 55,000 events {(u c i , t c i , v c i )} i,c for each network. Our hyperparameters are θ 0 = 0.1 and λ (k) 0 = 0.001 ∀k. The SMC algorithm considers 4 parallel runs. We consider a constant hazard rate H(t i |t j , α j,i ) = α j,i , so the probability of a new event not happening decays exponentially with time. 

Results

We compare to 3 similar baselines used as ablation tests: Dirichlet-Hawkes process (DHP) [START_REF] Du | Dirichlet-hawkes processes with applications to clustering continuous-time document streams[END_REF] clusters textual data by using temporal dynamics, and does not consider structure; NetRate [START_REF] Gomez-Rodriguez | Uncovering the temporal dynamics of diffusion networks[END_REF] infers a dynamic network based on observed cascades without considering their content; NetRate x Dirichlet-Multinomial (NRxDM) first uses textual information to infer clusters, and only then infers the underlying subnetwork for each cluster, in the same fashion as [START_REF] Du | Uncover topic-sensitive information diffusion networks[END_REF][START_REF] He | Hawkestopic: A joint model for network inference and topic modeling from text-based cascades[END_REF]. When applicable, we evaluate on a classification task (scores NMI and ARI with respect to the clusters used for data generation) and a network inference task (AUC-ROC, F1 and MAE on the true edges, same metrics as in [START_REF] Gomez-Rodriguez | Uncovering the temporal dynamics of diffusion networks[END_REF]). We see in Table 1 that Houston consistently outperforms methods that do not consider jointly text, time and structure of the network. To summarize, NRxDM only considers textual information to build clusters, making the network inference miss a great deal of temporal and structural information. DHP considers textual information and temporal dynamics, but misses the structural information. NetRate does not consider textual data and infers the network based on temporal dynamics only. Houston bridges the gap between these models, by making a joint use of textual, temporal and structural information.

As an illustration of what Dirichlet-Processes can yield on real-world data, we draft its application to the Memetracker dataset [START_REF] Leskovec | Meme-tracking and the dynamics of the news cycle[END_REF] in Fig. 1 (bottom). We retrieve the diffusion network associated to meme clusters and observe diverse spreading dynamics. Topics spread in distinct parts of the global network, and mostly do so through a reduced set of densely connected nodes, as shown in [START_REF] Gomez-Rodriguez | Structure and dynamics of information pathways in online media[END_REF].

Conclusion

In this paper, we propose the Dirichlet-Survival process as an alternative way to jointly model textual, temporal and structural information in spreading processes. Ablation tests demonstrate the relevance of the proposed approach. As a prior, the Dirichlet-Survival process can add a dynamic network dimension to any sequential Bayesian model; it could be coupled to models that account for any type of clustering (e.g. images, time series, labels), or simply more refined language models. Its introduction opens new perspectives on traditional machine learning problems, including topic-dependent spreading processes on networks.

  

Table 1 .

 1 Results on clusters (NMI, ARI) and edges (AUC-ROC, F1, MAE) retrieval.

			Houston	NRxDM	DHP	NetRate
		NMI	0.809	0.669	0.449	-
		ARI	0.688	0.330	0.063	-
	PL	AUC-ROC	0.807	0.719	-	0.731
		F1	0.199	0.106	-	0.005
		MAE	0.267	0.338	-	0.460
		NMI	0.787	0.711	0.638	-
		ARI	0.631	0.488	0.411	-
	ER	AUC-ROC	0.849	0.800	-	0.659
		F1	0.263	0.176	-	0.005
		MAE	0.229	0.278	-	0.481
		NMI	0.750	0.668	0.372	-
	Blogs	ARI AUC-ROC F1	0.609 0.701 0.168	0.365 0.613 0.087	0.023 --	-0.710 0.005
		MAE	0.374	0.444	-	0.499

https://github.com/GaelPouxMedard/HOUsToN