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ABSTRACT

Functional Magnetic Resonance Imaging (fMRI) data provides deep
insight on brain activity, but high-resolution (e.g. 1mm isotropic)
fMRI suffers from low signal-to-noise ratio (SNR). Recently sev-
eral denoising methods have been proposed to boost the SNR of
high-resolution fMRI images. In this work we carry out a prospec-
tive benchmark of local low-rank denoising methods by quanti-
fying their performances on a retinotopy experimental paradigm
that was submitted to six healthy volunteers during a 7Tesla,
1mm isotropic fMRI acquisition protocol. Out of the five tested
approaches (NORDIC, MP-PCA, Hybrid-PCA, Optimal Thresh-
old (OT) and Hybrid-OT), the OT approach outperforms its com-
petitors in terms of statistical sensitivity and specificity both at the
subject- and group-level. Additionally, by testing these denoising
methods in different configurations of preprocessing pipelines, we
demonstrate first that on average it is beneficial to denoise fMRI
images prior to performing realignment (i.e. motion correction),
and second that the OT approach performs better when applied to
complex-valued fMRI images instead of magnitude-only ones. We
also provide an open source implementation to promote a broader
use of denoising methods in fMRI and enable reliable statistical data
analysis at high spatial resolution.

Index Terms— functional MRI, patch denoising, singular value
thresholding

1. INTRODUCTION

Functional Magnetic Resonance Imaging (fMRI) uses the blood oxy-
genation level dependent (BOLD) contrast as a proxy to study lo-
cal neuronal activity [1], and remains one of the preferred imaging
techniques to study brain function in healthy and pathological con-
dition [2]. In this extend fMRI seeks to maximize the BOLD con-
trast between brain states (activation vs baseline), hence, the avail-
able temporal SNR, resulting from a compromise between a targeted
spatio-temporal resolution and physical acquisition constraints. Us-
ing current state-of-the-art accelerated imaging techniques such as
Parallel Imaging[3] and Compressed Sensing (CS) [4] as well as ul-
tra high magnetic field system (7Tesla,7T) [5], it is now feasible to
collect fMRI data at submillimetric resolution with reasonable volu-
mic repetition time (TR ≃ 1 2s).

However with such settings, the fMRI data is heavily spoiled by
surrounding noise sources: Firstly the thermal noise emanating from
the acquisition process contaminates the fMRI signal as a complex
independent Gaussian source with spatially varying variance [6].
Secondly the physiological noise, i.e. patient-induced signal vari-
ations that are acquired along with the signal of interest but do not
reflect significant brain activity (breathing, heart beat, head motion,
etc.) [7] (3D-EPI sequences are more sensible to physiological noise
than the classical 2D EPI scheme).

Overall, these noise sources limit the reliability of fMRI data and
constrain neuroscientists to collect multiple runs in each individual
to boost the statistical sensitivity.

To increase the statistical significance of an fMRI experiment,
the sequence of fMRI images is usually pre-processed using state-
of-the-art toolboxes such as FSL [3] and SPM [8]. Recently fM-
RIprep [9], leveraging the Python based Nipype package [10] has
been proposed as a unified and standardized workflow.

Concomitantly denoising methods have been introduced for
fMRI (or other dynamical imaging such as DWI) [11]–[19] and all
assume gaussian distributed noise. Yet, their integration in the pro-
cessing pipeline has hardly been considered, at most the denoising
step is performed prior to any processing, or simply tested on syn-
thetic data. Moreover, only the recent contribution of NORDIC [14],
which rooted the interest for this work, considered complex-valued
data, which preserve the gaussian distributed noise hypotheses, in-
stead of using magnitude only images, where the noise is rician [20].

This paper aims at benchmarking denoising methods for fMRI,
by quantifying the gain they provided in the downstream statistical
analysis. In particular we evaluated 5 methods based on the local
low-rank property of fMRI images (presented in Section 2) and test-
ing how they can be optimally integrated with data preprocessing. To
this end, we acquired 3D-EPI scans in six healthy volunteers under-
going a retinotopic mapping experiment (cf. Section 3), and applied
a denoising step either on complex-valued or magnitude-only fMRI
images. In Section 4 the results of standard statistical analysis are
summarized over the six individuals. Conclusions are drawn in Sec-
tion 5.

2. DENOISING METHODS USING PATCH BASED PCA

2.1. From global to local low rank assumption.

Let Y be the complex-valued fMRI scans obtained after reconstruc-
tion and combination of multi-coil data: Y = [y1...yt...yNt ] ∈
CNxNyNz×Nt , where NxNyNz is the number of voxels and Nt the
number of scans. Along with the fMRI data, we can also retrieve a
noise variance map Σ ∈ RNxNyNz

+ .
FMRI scans are inherently low rank as we observe small varia-

tions of the BOLD signal over a constant background. Hence, tem-
poral frames are highly correlated. Furthermore, the periodic be-
havior of the physiological activities and the presence of repeated
stimuli strengthen this effect. In such settings, the data at hand can
be considered as a noisy observation of a low rank matrix Yij =
Xij +Nij where the noise components are independent and Gaus-
sian Nij ∼ N (0,Σ2). The low rank matrix is the solution of the
problem [21]:

X̂ = argmin
X

1

2
∥Y −X∥2F + λ∥X∥∗ (1)



where ∥X∥∗ =
∑n

k=0 σk(X) denotes the nuclear norm of X .
The analytical solution of (1) consists in applying a soft thresh-

olding operator to the singular values of Y . However, this global
low rank modeling suffers in practice from the high dimensionality
of the problem:
(i) In the case of 3D fMRI acquisitions, we typically have NxNyNz ∼

105Nt and the limited amount of degrees of freedom on the SVD
will reduce the effectiveness of a rank constraint.

(ii) The spatial noise level is heterogeneous in the context acceler-
ated imaging due to multi-coil interactions [22].

To alleviate those challenges, problem (1) can be solved locally on
small 3D+time patches extracted from the whole 4D fMRI sequence.
The patch size and their overlap become hyperparameters for the
problem.

2.2. Local low rank formalism

The patch extraction operator Pu(Y ) basically extracts a K =
kx × ky × kz dimensional patch centered in voxel u across all
fMRI scans in Y , yielding a K × Nt so-called Casorati ma-
trix (see Fig. 1). Y[u] = Pu(Y ) is a low rank matrix containing
background (e.g. a T ∗

2 -w version of brain anatomy) information
polluted by a zero-mean Gaussian noise of local variance σ2

[u]:
Y[u] = X[u] +N(σ2

[u]).
Retrieving a low rank approximation of the patch typically con-

sists in applying a singular value decomposition (SVD) of Y[u] =

USV T , and then thresholding it to retain the largest n[u] singular
values related to the signal of interest and yield the low rank ap-
proximation X̂[u] = US∗V T , cf. Fig. 1. Once the noise has been
discarded, the patches are recombined with a weighting mechanism
in case of overlapping patches as originally proposed in [11]. Each
voxel at position i in the final denoised fMRI sequence, is computed
from the P patches containing it as follows:

X̂(i) =

∑P
j=1 wjX̂[uj ](i)∑P

j=1 wj

, wj =
1

1 + n[uj ]

(2)

Fig. 1: General procedure for LLR denoising. Without loss of gen-
erality a 2D case is presented. The sequential data is processed into
patches, that are (1.) extracted, (2.) SVD decomposed and thresh-
olded, and then recombined (3.) using a weighted average in case of
overlap.

2.3. Comparison of local low-rank methods

Several local low rank (LLR) denoising methods [11]–[19] have
been proposed in the literature. We selected four out of them (cf.

Table 1) given their impact in the recent literature and their diversity
to address the thresholding problem. When available, we directly
used the original authors’ implementation. Each method proposed
a thresholding function η over the singular values λ1 . . . λNt of the
patch Y[u]. For instance, the optimal threshold (OT) with respect to
the Frobenius norm [17] is defined as follows:

η(λ) =
Ntσ

2

λ

√(
λ2

Ntσ2
− β − 1

)2

− 4β 1 λ√
Ntσ

≥1+
√

β (3)

with β = Nt/K, if a noise map Σ is available, then σ̂ is the av-
erage of Σ[u] (referred as Hybrid-OT hereafter), else we resort to
the robust estimator σ̂ = medλ/

√
Ntµβ , and µβ is the median

of the Marcenko-Pastur’s law [23], which describes the asymptotic
distribution of the singular values of a normally distributed random
matrix of aspect ratio β. This distribution is thus at the heart of the
selected methods. Noticeably the adaptive thresholding technique
proposed in [18] was not considered in the benchmark as its compu-
tational time was two order of magnitude larger than its LLR com-
petitors. We also discarded Non-Local-Mean (NLM) based methods
[24], [25], as they do not fit in the LLR framework. In Table 1,
Hybrid-PCA and Hybrid-OT are variations of MP-PCA and OT ap-
proaches, respectively, in which a noise map (i.e. a covariance ma-
trix Σ) estimate was provided.
Table 1: LLR methods under study. Defining the threshold for each
patch in Hybrid-PCA requires an external noise variance map, not
required by MP-PCA. NORDIC uses a global threshold, and normal-
izes the noise variance of each patch to apply it. Optimal-Threshold
is described in more detail in text, cf Eq. (3).

Name Thresholding η(λ) Extra Data used

Nordic [14] max(0, λ− θglobal) None

MP-PCA [12] max(0, λ− θ[u]) None

Hybrid-PCA [13] max(0, λ− θ[u]) Σ

OT [17] Eq. (3) None

Hybrid-OT [17] Eq. (3) Σ

For ease of comparison, we settle a patch size of 11 × 11 × 11
voxels with an overlap of 5 voxels in each direction. Adding overlap
reduces boundary effects, at the cost of larger processing time. In
order to mitigate this effect, we only computed patches that shared
at least 10% of their voxels with the brain mask, halving roughly the
computational time.

3. MATERIAL AND METHODS

3.1. Acquisition

Six healthy volunteers were scanned on a Siemens Magnetom
7T (Siemens-Healthineers, Erlangen, Germany) and a 1Tx-32Rx
head coil (Nova Medical, Wilmington, CO, USA) using a 3D EPI
sequence (1mm− iso TE=20ms, volumetric TR=2.4 s, 120 reps).
Task-based fMRI data was collected along two consecutive runs
during a retinotopic mapping paradigm, implemented in 1, with
a rotating wedge (clockwise and anti-clockwise) with a period of
32 s [26]. This paradigm promotes well localized BOLD signal in

1https://github.com/hbp-brain-charting/public_
protocols
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the visual areas, however the spatial and temporal resolution con-
sidered were challenging in regard to the temporal SNR. The LLR
denoising methods should thus bring significant benefit to the down-
stream task of fMRI data analysis in order to detect evoked brain
activity and reconstruct the retinotopic phase maps.

3.2. Preprocessing

To quantify the potential benefit of each denoising method we tested
4 distinct preprocessing pipelines that consist in applying the de-
noising step either on the complex-valued (CD) or magnitude-only
(MD) fMRI images and then in interchanging its position in the
workflow (i.e. before or after image realignment (R) for motion cor-
rection). In case of complex denoising after realignment (i.e. R+CD
scenario) the motion correction estimated from the magnitude im-
ages was applied to the real and imaginary parts before denoising. in
the opposite scenario (CD+R), we computed the magnitude of fMRI
images prior to performing motion correction.

Additionally, a denoise-only scenario was tested, but it under-
performed compared to the standard workflow that embeds realign-
ment. In every case the fMRI images are corrected for B0 field inho-
mogeneities afterwards. To favor reproducible research, we provide
open sourced implementations of the LLR denoising methods2 and
of the preprocessing workflow 3.

3.3. Statistical Analysis

After testing the different configurations of the preprocessing
pipeline, the fMRI images data were analyzed using the Nilearn
package [27]. First, a general linear model (GLM) that em-
bodies the two runs associated with the retinotopic experimental
paradigm (clockwise and counter-clockwise) was built up. It in-
cludes 2 paradigm-related regressors (parametric, continuous and
sinusoidal), 6 rigid motion regressors, a drift regressor and the base-
line. The global effect of interest was determined using a statistical
F -test over the two sinusoidal regressors (H0 : α2

1,i + α2
2,i = 0),

providing a z-score in each voxel i. To detect evoked brain activity
we then thresholded the z-score map at p < 0.05, to correct for
multiple comparisons using the false discovery rate (FDR).

4. RESULTS

4.1. Single subject analysis

In Fig. 2, we compare the z-score distributions related to the global
effect of interest associated with the original and denoised fMRI
images for a single subject. LLR desnoising methods (color-coded)
reach higher z-scores compared to the noisy baseline (in gray)
whatever the type of fMRI images processed (magnitude-only or
complex-valued). We selected this subject as that showing the best
improvement between the baseline and the denoised versions.

It is worth noting that the type of input fMRI images slightly
impacts the tail of the z-score histograms (see Fig. 2) as the noise
statistics becomes Rician for magnitude-only images.

Moreover, the order of preprocessing steps (R: realign, D: de-
noising) matters when applied to complex-valued fMRI images: In
that context, denoising must precede realignment as this combina-
tion provides the largest gain in statistical sensitivity. In contrast,
for this subject the best order of preprocessing steps applied to
magnitude-only fMRI images is less clear. Hence, to obtain more

2https://github.com/paquiteau/patch-denoising
3https://github.com/paquiteau/retino-pypeline

reliable results, we performed the same analysis on the 6 partici-
pants. However, prior to analyzing the results at the group level (cf.
Section 4.2), we pay attention to the spatial effect of denoising on
the statistical z-score maps for this subject.
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Fig. 2: Non-zero Z-score probability distribution (ν) for a single par-
ticipant (subject-3). Top vs Bottom: Analysis of magnitude-only vs
complex-valued fMRI images. The distribution has been smoothed
with a Gaussian kernel for visualization purposes.

In Fig. 3 we show the denoised z-score maps yielded by the 20
tested pipelines as well as the noisy baseline. Since we only report
surviving voxels to thresholding, we bring evidence that NORDIC,
MP-PCA and Hybrid-PCA produced more false positives as they
retrieve activations in the white matter on top of the expected ones in
the visual cortex. Indeed the retinotipic paradigm is known to elicit
evoked activity only in the occipital cortex.

Hence, OT-based approaches are more specific as their activa-
tions remain located in the gray matter. At the same time, the OT
approach yields the highest z-scores with the largest spatial extent in
the occipital region (cf Fig. 4), notably when the denoising is per-
formed prior to realignment (scenario OT/MD+R). In this subject,
we noticed that the behavior of Hybrid-PCA and MP-PCA is simi-
lar, and those approaches underperform compared to NORDIC and
OT-based methods.

In Fig. 4 we actually zoomed in the occipital cortex and show
first that all LLR denoising methods increase the spatial extent and
significance of z-scores, hence confirming the whole brain results de-
picted in Fig. 2. Further, we demonstrate that the OT approach pro-
vides the best sensitivity/specificity trade-off even though we cannot
access to the ground truth as we are not in a simulated framework.

4.2. “Group-level” analysis

In Table 2 we report the average gain across subjects for all tested
denoising pipelines as a multiplicative factor MFs obtained by di-
viding for each subject s the number of activating voxels associ-
ated with each LLR method over the count of activating voxels for
the baseline (no denoising). Then we averaged these factors across
subjects to get MF = 1/6

∑6
s=1 MFs. We computed this mul-

tiplicative factor first over the whole brain but only for the voxels

https://github.com/paquiteau/patch-denoising
https://github.com/paquiteau/retino-pypeline


Fig. 3: Z-score activation maps (axial slices) for the same participant
as in Fig. 2. Only non-zero values are displayed.

surviving to FDR-corrected thresholding and then within a region of
interest (ROI) located in the occipital cortex.

When comparing columns in Table 2, we can see that in almost
every case, performing the denoising step prior to realignment is
the most beneficial whether this treatment is applied to magnitude-
only (MD+R) or to complex-valued (CD+R) fMRI images. This
result is particularly significant when focusing on the occipital ROI.

Even though the realignment step aims at producing lower-rank
fMRI images notably by removing part of the physiological noise,
this step also resamples the images, thus potentially affecting the
noise behavior and making it no longer additive. This could explain
why the denoising step is less efficient when performed after motion
correction, i.e. in R+MD vs MD+R or in R+CD vs CD+R.

In contrast to the claims done in [14], [15], our benchmark sum-
marized in Table 2 shows that NORDIC on average possesses the
smallest gain in activation (smallest MF value) compared to the
baseline and its competitors. This is notably true when the denois-

Fig. 4: Zoom in the occipital cortex of z-score activation maps (axial
slices) for the same participant as in Fig. 2, thresholded at p < 0.05
using FDR correction for multiple comparisons.

Table 2: Average gain (multiplicative factor) MF of activated vox-
els using denoising methods compared to baseline. Over 6 subjects
and test cases, the highest gain is achieved by OT (x8.03) in the
R+CD configuration. Whole brain vs ROI-based MF are reported
as top/bottom numbers in each cell of the table.

Denoiser NORDIC MP-PCA Hybrid-PCA OT Hybrid-OT

R+MD ×3.52 ×6.02 ×6.09 ×3.73 ×0.91
×3.64 ×4.92 ×4.93 ×4.33 ×1.00

R+CD ×0.57 ×2.98 ×3.27 ×8.03 ×5.29
×0.55 ×2.70 ×2.91 ×5.04 ×4.01

MD+R ×3.36 ×6.32 ×7.55 ×3.10 ×1.22
×3.48 ×4.77 ×6.10 ×3.19 ×4.90

CD+R ×2.57 ×5.53 ×4.97 ×7.91 ×5.45
×2.59 ×4.39 ×4.27 ×6.26 ×5.00

ing step is applied to complex-valued fMRI images. However, when
considering magnitude-only images as input parameters to denois-
ing, Hybrid-PCA on average is the best performer, whether we look
at the whole brain or ROI-restricted statistical analysis. This demon-
strates that the behavior of this approach reported for subject 3 in
Section 4.1 is not fully representative of the 6 participants.

4.3. Noise map estimation

MP-PCA and Hybrid-PCA give access to an a posteriori estimate of
the noise variance map (not shown). Firstly, this extra information
can be used by NORDIC [15], which takes as optional input param-
eter a g-factor map. The latter is usually cumbersome to compute as
it necessitates to collect additional noise-only data. However, once
computed, this map can be used to perform a spatial normalization.

Secondly, when considering MP-PCA or OT approaches that do
not rely on this extra knowledge by default, this noise map could
be further used in the statistical model for fMRI data analysis to
solve a weighted ordinary least squares (OLS) when fitting the GLM
parameters instead of a single OLS.

5. CONCLUSION

In this study, we tested multiple LLR denoising methods as an ad-
ditional step of high resolution fMRI images preprocessing. We
demonstrated the added value of injecting this step as early as possi-
ble in the workflow in terms of gain in statistical sensitivity. Among
the 5 tested methods, we found that the Optimal Threshold approach
provides the best sensitivity-specificity trade-off as it does not re-
trieve false positives in the white matter while boosting the statistical
significance in the visual cortex. Further we also realized there is not
a one size fits all solutions: While the OT method yields the best re-
sults when performing the denoising step on complex-valued fMRI
images (which are not always available), Hybrid-PCA is the most
promising when denoising magnitude-only images. This prelimi-
nary study on task-based fMRI calls for a broader validation, both on
a larger cohort and in other use cases, notably in resting-state fMRI.
Importantly, the use of extra data such as a noise map in Hybrid-
PCA and Hybrid-OT is not mandatory to already obtain a signifi-
cant improvement: Sometimes it helps (Hybrid-PCA vs MP-PCA),
sometimes it does not (Hybrid-OT vs OT). Future work also involves
analyzing the impact of hyperparameters of denoising methods (e.g.
the patch size and their overlap) on the downstream task.



6. COMPLIANCE WITH ETHICAL STANDARDS
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of non-Cartesian 3D-SPARKLING encoding for functional
MRI: A preliminary case: Study for retinotopic mapping,”
Proceedings of the 30’th Scientific Meeting of the Interna-
tional Society for Magnetic Resonance in Medicine, 2022.

[5] M. Barth and B. A. Poser, “Advances in High-Field BOLD
fMRI,” Materials, vol. 4, no. 11, pp. 1941–1955, Nov. 2,
2011.

[6] C. Triantafyllou, J. R. Polimeni, and L. L. Wald, “Physio-
logical noise and signal-to-noise ratio in fMRI with multi-
channel array coils,” NeuroImage, vol. 55, no. 2, pp. 597–
606, Mar. 15, 2011.

[7] T. T. Liu, “Noise contributions to the fMRI signal: An
overview,” NeuroImage, vol. 143, pp. 141–151, Dec. 1,
2016.

[8] K. J. Friston, Ed., Statistical Parametric Mapping: The Anal-
ysis of Funtional Brain Images, 1st ed. Amsterdam ; Boston:
Elsevier/Academic Press, 2007, 647 pp.

[9] O. Esteban, C. J. Markiewicz, R. W. Blair, et al., “fMRIPrep:
A robust preprocessing pipeline for functional MRI,” Nature
Methods, vol. 16, no. 1, pp. 111–116, 1 Jan. 2019.

[10] K. Gorgolewski, C. Burns, C. Madison, et al., “Nipype: A
Flexible, Lightweight and Extensible Neuroimaging Data
Processing Framework in Python,” Frontiers in Neuroinfor-
matics, vol. 5, 2011.
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