
HAL Id: hal-03895122
https://hal.science/hal-03895122

Submitted on 12 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cautious weighted random forests
Haifei Zhang, Benjamin Quost, Marie-Hélène Masson

To cite this version:
Haifei Zhang, Benjamin Quost, Marie-Hélène Masson. Cautious weighted random forests. Expert Sys-
tems with Applications, 2023, 213 (Part A), pp.118883. �10.1016/j.eswa.2022.118883�. �hal-03895122�

https://hal.science/hal-03895122
https://hal.archives-ouvertes.fr


Cautious Weighted Random Forests
Haifei Zhanga,b,∗, Benjamin Quosta,b and Marie-Hélène Massona,c

aUMR CNRS 7253 Heudiasyc, Université de Technologie de Compiègne, Compiègne, 60200, France
bDepartment of Computer Science, Université de Technologie de Compiègne, Compiègne, 60200, France
cUniversité de Picardie Jules Verne, IUT de l’Oise, Beauvais, 60000, France

A R T I C L E I N F O
Keywords:
Cautious classification
Imprecise classification
Imprecise Dirichlet Model
Belief functions

A B S T R A C T
Random forest is an efficient and accurate classification model, which makes decisions by aggregating
a set of trees, either by voting or by averaging class posterior probability estimates. However,
tree outputs may be unreliable in presence of scarce data. The imprecise Dirichlet model (IDM)
provides workaround, by replacing point probability estimates with interval-valued ones. This paper
investigates a new tree aggregation method based on the theory of belief functions to combine such
probability intervals, resulting in a cautious random forest classifier. In particular, we propose a
strategy for computing tree weights based on the minimization of a convex cost function, which takes
both determinacy and accuracy into account and makes it possible to adjust the level of cautiousness
of the model. The proposed model is evaluated on 25 UCI datasets and is demonstrated to be more
adaptive to the noise in training data and to achieve a better compromise between informativeness and
cautiousness.

1. Introduction
Setting

Nowadays, machine learning algorithms have been ap-
plied to various fields with remarkable success, such as e.g.
loan approval (Baesens et al., 2003; Ambika & Biradar,
2021), medical diagnosis (Foster et al., 2014), recommenda-
tion systems (Isinkaye et al., 2015), and autonomous driv-
ing (Maurer et al., 2016). Among the numerous machine
learning approaches, ensemble learning is prominent be-
cause of its ability to combine numerous learners so as to
improve classification accuracy. Ensemble learning can be
divided into two categories, based on the classifiers being
trained independently from each other or not. Independent
approaches notably include bagging (Breiman, 1996) and
random forests (Breiman, 2001). Dependent methods in-
clude stacking (Wolpert, 1992) and a variety of boosting
algorithms (Freund et al., 1999), such as AdaBoost (Freund
& Schapire, 1997), XGBoost (Chen & Guestrin, 2016), etc.

Random forest, as a variant of bagging, consists in train-
ing a large number of unpruned decision trees and aggre-
gating them to make a decision. Training diverse individual
classifiers, and combining them in an appropriate fashion,
makes it possible to limit the influence of outliers and thus
to achieve a high classification accuracy (Grandvalet, 2004).
In addition to their very good classification performances,
random forests inherit a number of properties of decision
trees, and in particular their versatility (i.e., ability to han-
dle quantitative as well as qualitative predictors, outside
of any distributional assumption), and their compatibility

∗Corresponding author
haifei.zhang@hds.utc.fr (H. Zhang); benjamin.quost@hds.utc.fr

(B. Quost); mylene.masson@hds.utc.fr (M. Masson)
https://www.hds.utc.fr/~zhanghai/ (H. Zhang);

www.hds.utc.fr/~quostben/ (B. Quost); www.hds.utc.fr/~massomar/ (M.
Masson)

ORCID(s): 0000-0003-4488-1631 (H. Zhang)

with explanation strategies, as illustrated by recent works
(Haddouchi & Berrado, 2019).

When training a random forest, one of the keys is to
choose the appropriate combination strategy. There are two
main aggregation approaches: voting schemes, such as ma-
jority voting or weighted voting; and averaging class prob-
abilities across trees and picking the most probable class
(Shaik & Srinivasan, 2019). The difference between these
two families of approaches has been discussed in (Sage
et al., 2020). Note that both approaches can be made more
elaborate by assigning weights to trees. In (Li et al., 2010),
the normalized accuracy of each tree estimated on out-of-
bag instances is used as a weight. In (Kim et al., 2011),
weights are assigned by an iterative approach that takes
both the capacity of the classifiers and the difficulty of the
examples into account. Forward step-wise model selection
is considered in (Caruana et al., 2004) as an implicit weight
assignment strategy. Finally, in (Utkin et al., 2020, 2019),
the weights are determined by optimizing a criterion based
on the accuracy of the forest.
Imprecise classification

Traditionally, classification models make precise deci-
sions, in the form of a single class (or a point prediction
in regression). However, enforcing the assignment of the
instance to a single class is questionable when the available
information from which the decision is made is scarce. As
well, in ensemble learning, a large conflict between the out-
puts of individual learners should lead to avoiding reaching
a definitive conclusion. Therefore, in some critical systems
where wrong decisions may have serious consequences, one
alternative is to produce imprecise predictions such as sub-
sets of plausible classes (or intervals in regression), to ensure
that the model will avoid taking chances when excessive
uncertainty occurs. Following Provost & Fawcett (2001),
when imprecise predictions are allowed to be made, we will
refer to the corresponding model as a cautious classifier.
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Walley’s imprecise Dirichlet model (IDM) (Walley,
1996) is a simple yet powerful approach to propagate epis-
temic uncertainty, i.e. arising from a data sample being
small. Assuming that we have a set of instances falling
into the same leaf of a decision tree, classical inference is
based on the estimated (multinomial) posterior probability
distribution over the classes. In a Bayesian setting, a prior
may be considered — a typical choice would be the Dirichlet
distribution, being conjugate to the multinomial. The IDM
rather makes use of a set of Dirichlet distributions as a prior,
thus resulting in a set of posterior Dirichlet distributions after
updating (Bernard, 2005). These class posterior probability
intervals are as large as the amount of available data in the
leaf is small.

Extensive previous research has shown the interest of
applying the IDM to decision trees, in order to increase
robustness or to make cautious decisions by applying an
appropriate decision strategy (Troffaes, 2007). For instance,
in Mantas & Abellán (2014), a minimax approach is used to
determine robust splits by minimizing the highest entropy
obtained over the distributions compatible with the IDM;
the tree outputs are however single probability distributions,
and the decision is therefore precise (it results in a single
class). In Abellán & Masegosa (2012), probability intervals
are obtained for each leaf node, and then used to compute
the set of non-dominated classes according to a dominance
criterion: the decision is therefore imprecise, as it may result
in a subset of plausible classes.
Combining imprecise trees

Several works have considered combining imprecise de-
cision trees, in order to take advantage of both the accuracy
of tree ensembles and the robustness of cautious classifica-
tion. For some approaches, imprecision is only considered
during tree growth, as a way of increasing robustness to noise
or missing data. For instance, Abellán & Masegosa (2010a)
used the IDM in order to define a new split criterion; the
trees are pooled using simple and weighted majority voting,
resulting in precise predictions. In Abellán & Masegosa
(2010b); Abellán (2013), a stacking procedure is used to
select a set of trees specifically for each test instance to be
classified, and class frequencies are computed over these
selected trees: therefore, the tree outputs, as well as the final
decision, are also precise.

Other works propose to exploit the imprecision, either
by propagating it using a suitable aggregation operator, re-
sulting in (possibly indeterminate) decisions or in imprecise
probabilistic aggregates from which such decisions should
then be made; or exploiting it in the aggregation procedure,
for instance in order to compute tree weights (e.g. so as to
alleviate the weight of uncertain trees in the combination
step).

The voting strategy can be directly adapted to combining
probability intervals, by first obtaining a cautious predic-
tion for each tree (for example using interval dominance
(Troffaes, 2007)) and then making a final decision by sim-
ple or weighted majority voting or minimum-against-voting

(Moral-García et al., 2020). Another possibility consists in
directly merging all associated probability intervals, either
using disjunction or conjunction (De Campos et al., 1994),
or by averaging (Murphy, 2000; Fink, 2012); a decision can
then be made based on the resulting probability interval.
Note that using a classical or weighted voting approach
generally results in precise predictions, whereas disjunction
and averaging often turn out to be inconclusive. Even worse,
using conjunction very frequently results in empty predic-
tions due to conflict.

More recently, Utkin et al. (2019) proposed to compute
sets of probability distributions for each tree using the impre-
cise pari mutuel model, and to use the resulting uncertainty
in order to compute tree weights using an optimization
procedure. In Utkin et al. (2020), sets of distributions are
obtained using the IDM, and tree weights are learned via a
maximin strategy so as to make the random forest estimates
more robust. We stress out that both of these tree aggregation
techniques provide precise predictions, i.e. instances are
classified into a single class.
Focus of our work

We address the problem of constructing a cautious
random forest by combining imprecise-probabilistic trees
trained on a binary classification problem. In order to
improve the effectiveness of the forest, we address both the
aggregation and weight assignment strategies. We adopt the
theoretical framework of belief functions (Dempster, 1967;
Shafer, 1976). When evaluating a test instance, the trees are
assumed to provide pieces of evidence about its actual class
in the form of closed random intervals defined on [0, 1].
These intervals of posterior probabilities can be aggregated
into belief and plausibility degrees that one of the two classes
is strictly preferable to the other, degrees that can then be
used in a cautious decision-making process.
Contributions of this paper

This paper builds upon preliminary work (Zhang et al.,
2021), in which we described how these degrees can be
calculated, a resulting tree combination strategy akin to
voting was proposed, and several simple and non-adaptive
weighting strategies were investigated. In the present paper,
we refine this combination strategy, by proposing a specific
cost function so as to automatically learn tree weights. This
leads to a better compromise between the proneness of
the classification system to make precise decisions and its
ability to avoid making wrong decisions. To this extent, our
approach can be be seen as a way of directly optimizing an
utility-discounted accuracy measure (Zaffalon et al., 2012)
such as 𝑢65. Our strategy is also adaptive, in that its level
of cautiousness can be adjusted by tuning a hyper-parameter
(which corresponds to the utility of making indeterminate
predictions). The cost function being difficult to optimize,
we propose an upper bound, for which we provide the
gradient and Hessian, and which we consequently prove to
be convex. This paper finally includes a thorough experi-
mental study which establishes the validity of our whole
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approach, from the tree aggregation procedure to the weight
assignment strategy. The numerous experiments realized on
25 datasets show the interest of aggregating cautious trees
with our approach, particularly when the data at hand are
pervaded with noise.

The paper is structured as follows. Section 2 recalls
the setting and provides basic knowledge of the theoretical
frameworks and the models used throughout the paper. We
describe our new aggregation strategy for an ensemble of
imprecise decision trees, which can be regarded as an exten-
sion of weighted voting in the imprecise classification case,
in Section 3. Section 4 details our weighting strategy which
aims at optimizing a compromise between determinacy and
accuracy. Sections 5 presents the experiments realized on
several classical datasets, noisy labeled data (aleatory uncer-
tainty), and data with a limited training set size (epistemic
uncertainty), and then discusses the results, which illustrate
that our model is competitive and more adaptive to these two
kinds of uncertainty compared to the baselines. Finally, a
conclusion is drawn in Section 6.

2. Preliminaries
2.1. Random forests

A random forest is an ensemble learning technique based
on combining decision trees; this approach is very popu-
lar due to its capability to reach excellent generalization
performances and avoid overfitting issues, compared to a
single decision tree. Each decision tree in a random forest
is trained without pruning on a bootstrap replicate of the
original training set. Training samples that are not selected
for training a specific tree are called out-of-bag samples for
that tree. Trees are classically grown, i.e. by determining
the split which achieves the highest homogeneity (using,
e.g., information gain for ID3 (Quinlan, 1986), information
gain ratio for C4.5 (Quinlan, 1993), or the Gini index for
CART (Breiman et al., 1984)). The main difference of a
tree in a random forest, with respect to a classical tree,
is that the candidate features for each split are randomly
selected among all features. If a node cannot be split (i.e.
homogeneity cannot be improved, the maximum depth has
been reached, or the minimum node size is attained), it will
be regarded as a terminal node or a leaf and used to classify
test samples.

The number of candidate features for each split thus
directly impacts the diversity in the tree ensemble. Besides,
the minimal size of terminal nodes, or alternatively the
maximal depth of the tree, make it possible to control the tree
complexity and therefore its ability to fit training data (low
bias). In a random forest, trees are constructed so as to have
very low bias, and are consequently generally not pruned.
The total number 𝑇 of trees in the forest influences the
variance of predictions (the larger the forest, the more stable
the predictions). Combining a large number of decision trees
makes it possible to exploit the diversity granted by both
feature and sample randomness, and helps limiting the detri-
mental influence of outliers (Grandvalet, 2004), ultimately
improving generalization performances.

As we mentioned above, the aggregation of the tree
predictions is key in ensuring good performances of the
ensemble. Given a test instance 𝑥, P(𝑌 = 𝑦𝑗|𝑋 = 𝑥), should
be estimated, for 𝑦𝑗 ∈ Ω = {𝑦1, 𝑦2,… , 𝑦𝐾}, by

P̂(𝑌 = 𝑦𝑗|𝑋 = 𝑥) =
∑𝑇

𝑡=1𝑤𝑡ℎ𝑡(𝑥, 𝑦𝑗)
∑𝑇

𝑡=1𝑤𝑡
, (1)

where ℎ𝑡(𝑥, 𝑦𝑗) is either the decision regarding class 𝑦𝑗 , or
a probability estimate for class 𝑦𝑗 , provided by the 𝑡th tree,
and 𝑤𝑡 is the weight assigned to the tree: in simple voting or
averaging, 𝑤𝑡 is set to 1∕𝑇 for all 𝑡 = 1,… , 𝑇 . Let 𝑛𝑡(𝑥, 𝑦𝑗)denote the number of training samples from class 𝑦𝑗 that fall
into the same leaf as 𝑥 for tree 𝑡: the probability estimates
provided by the tree are

ℎ𝑡(𝑥, 𝑦𝑗) =
𝑛𝑡(𝑥, 𝑦𝑗)

∑𝐾
𝑗′=1 𝑛𝑡(𝑥, 𝑦𝑗′ )

. (2)

The decisions used for voting can be seen as a crude, rounded
version of these probability estimates:

ℎ𝑡(𝑥, 𝑦𝑗) = 𝟙(𝑛𝑡(𝑥, 𝑦𝑗) > 𝑛𝑡(𝑥, 𝑦𝑗′ ),∀𝑦𝑗′ ≠ 𝑦𝑗). (3)
In averaging, once the averaged probability has been com-
puted using Equation (1), the decision can be made by pick-
ing the class with highest estimated posterior probability.
2.2. Imprecise Dirichlet model

Let Ω = {𝑦1, 𝑦2,… , 𝑦𝐾} be the aforementioned set
of 𝐾 ≥ 2 classes, or more generally mutually exclusive
categories, and let 𝜋𝑗 = P(𝑦𝑗), with 𝜋𝑗 ≥ 0 and ∑𝐾

𝑗=1 𝜋𝑗 = 1,
for 𝑗 = 1,… , 𝐾 . Assume that 𝑁 iid observations have
been sampled from a unknown multinomial distribution
(𝑁 ;𝜋1,… , 𝜋𝐾 ): let 𝑛𝑗 denote the corresponding number
of occurrences of 𝑦𝑗 , with∑𝐾

𝑗=1 𝑛𝑗 = 𝑁 . For the sake of sim-
plicity, we write 𝒏 = {𝑛1,… , 𝑛𝐾} and 𝝅 = {𝜋1,… , 𝜋𝐾}.
The likelihood of the parameter vector writes as

𝐿(𝝅|𝒏) ∝
𝐾
∏

𝑗=1
𝜋
𝑛𝑗
𝑗 . (4)

In a standard Bayesian setting, prior knowledge over
the probabilities 𝜋𝑗 can be specified using the conjugate
Dirichlet distribution 𝐷𝑖𝑟(𝑠,𝜶), with 𝜶 = (𝛼1,… , 𝛼𝐾 ) and
∑𝐾

𝑗=1 𝛼𝑗 = 𝑠:

Pr(𝝅|𝜶) ∝
𝐾
∏

𝑗=1
𝜋
𝛼𝑗−1
𝑗 ; (5)

Note that each parameter can be decomposed into 𝛼𝑗 = 𝑠 𝑡𝑗 ,with 𝑠 ≥ 0, 0 ≤ 𝑡𝑗 ≤ 1, and ∑

𝑗 𝑡𝑗 = 1: then, the parameters
𝑡𝑗s are the prior frequencies, with 𝔼(𝜋𝑗) = 𝑡𝑗 ; whereas
𝑠 corresponds to the prior’s global strength. The posterior
distribution then writes as

Pr(𝝅|𝒏,𝜶) ∝
𝐾
∏

𝑗=1
𝜋
𝑛𝑗+𝑠𝑡𝑗−1
𝑗 , (6)
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which is a Dirichlet distribution due to conjugacy.
In standard Bayesian inference, the parameters 𝑠 and 𝒕

are determined in advance, which results in point estimates
for the 𝜋𝑗 . However, in the imprecise Dirichlet model (IDM)
(Walley, 1996), a set of Dirichlet distributions is defined by
considering all vectors 𝒕 satisfying the constraints 0 ≤ 𝑡𝑗 ≤ 1
and ∑𝐾

𝑗=1 𝑡𝑗 = 1. Taking this set as a prior amounts to
making as few assumptions as possible regarding 𝝅, i.e.
the prior is near-ignorance (Mangili & Benavoli, 2015).
As a result, the posterior information is no longer a single
distribution, but a set of distributions, from which we can
now deduce lower and upper bounds on the probabilities
(𝝅|𝒏, 𝑠), reached respectively for 𝑡𝑗 → 0 and 𝑡𝑗 → 1:

E(𝜋𝑗|𝑛) =
𝑛𝑗

𝑁 + 𝑠
, E(𝜋𝑗|𝑛) =

𝑛𝑗 + 𝑠
𝑁 + 𝑠

. (7)
Note that the parameter 𝑠 remains to be chosen in advance:
it can be interpreted as the number of virtual instances
with unknown class information. Although several studies
have been conducted with regard to choosing an appropriate
value (Abellán et al., 2006), this problem remains open. In
practice, values of 𝑠 = 1 or 𝑠 = 2 are often picked, following
Walley (1996).
2.3. Theory of belief functions

The theory of belief functions also referred to as the
theory of evidence or Dempster–Shafer theory (Demp-
ster, 1967; Shafer, 1976), provides a general framework
for modeling and reasoning with uncertainty. Let Ω =
{𝑦1, 𝑦2,… , 𝑦𝐾} be a finite set that contains all the possible,
mutually exclusive values for a variable 𝑌 of interest,
referred to as the frame of discernment. A mass function
is a mapping 𝑚 ∶ 2Ω → [0, 1], such that ∑𝐴⊆Ω 𝑚(𝐴) = 1.
The value 𝑚(𝐴) measures the degree of evidence supporting
𝑌 ∈ 𝐴 only, but nothing else. The constraint𝑚(∅) = 0 is also
often required. A subset 𝐴 of Ω is called a focal element if
𝑚(𝐴) > 0. If there is only one such subset 𝐴 ⊆ Ω, then 𝑚 is
said to be logical; and if furthermore 𝐴 = Ω, 𝑚 is vacuous
(it represents total ignorance). A mass function is Bayesian
if |𝐴| = 1 for all 𝐴 such that 𝑚(𝐴) > 0. This framework
can therefore be seen as an extension of both sets theory and
classical probability theory.

Belief and plausibility functions can be computed from
the mass function 𝑚: they are respectively defined as

𝐵𝑒𝑙(𝐴) =
∑

𝐵⊆𝐴
𝑚(𝐵), 𝑃 𝑙(𝐴) =

∑

𝐵∩𝐴≠∅
𝑚(𝐵), (8)

for all 𝐴 ⊆ Ω. Then, 𝐵𝑒𝑙(𝐴) measures the total degree of
support to 𝐴, and 𝑃 𝑙(𝐴) measures the degree of support that
could be transferred to 𝐴, provided that further evidence
supporting this transfer became available. These functions
are dual since 𝐵𝑒𝑙(𝐴) = 1 − 𝑃 𝑙(𝐴), with 𝐴 the complement
of 𝐴. It should be noted that mass, belief, and plausibility
functions are equivalent as they can be retrieved from each
other.

The theory of belief functions can also be extended to
infinite frames of discernment (Denœux, 2009). Let 𝑈 and

𝑉 be two random variables such that 𝑈 ≤ 𝑉 ; they may be
viewed as determining a random interval [𝑈, 𝑉 ] defining a
belief and plausibility function on ℝ:

𝐵𝑒𝑙(𝐴) = Pr([𝑈, 𝑉 ] ⊆ 𝐴),
𝑃 𝑙(𝐴) = Pr([𝑈, 𝑉 ] ∩ 𝐴 ≠ ∅),

(9)

for any element 𝐴 of the Borel sigma-algebra (ℝ) of the
real line. Let 𝐼𝑖 = [𝑢𝑖, 𝑣𝑖], 𝑖 = 1,… , 𝑛 be a collection of
𝑁 intervals, and let 𝑚 ∶  → [0, 1] be a mass function
defined on the set  of closed real intervals of [0, 1] such
that 𝑚(𝐼𝑖) = 𝑚𝑖 with 𝑖 = 1,… , 𝑛 and ∑𝑛

𝑖=1 𝑚𝑖 = 1. Under
this setting, the belief and plausibility functions of an event
𝐴 are

𝐵𝑒𝑙(𝐴) =
∑

𝐼𝑖⊆𝐴
𝑚𝑖, 𝑃 𝑙(𝐴) =

∑

𝐼𝑖∩𝐴≠∅
𝑚𝑖. (10)

The intervals 𝐼𝑖 are called focal intervals of 𝑚 (Denœux,
2009). In the case of a random forest, this definition provides
a basis for pooling pieces of information regarding the class
posterior probabilities provided by the trees.

3. Cautious Random Forests
We now present our strategy for aggregating imprecise

probabilistic tree outputs. Our approach is akin to that pro-
posed by Abellán & Masegosa (2012), except that out aggre-
gation operator can be seen as a kind of voting. In this paper,
we focus on binary classification problems. We consider a
training set composed of 𝑁 pairs of examples (𝑥𝑖, 𝑦𝑖) with
class labels 𝑦𝑖 ∈ {0, 1}, where 𝑖 = 1,… , 𝑁 . The probability
that instance 𝑥𝑖 belongs to category 1 (respectively, 0) is
written 𝑝1(𝑥𝑖) (resp., 𝑝0(𝑥𝑖)).The cautious random forest is composed of 𝑇 decision
trees 𝑓1,… , 𝑓𝑡,… , 𝑓𝑇 , trained here using the CART algo-
rithm without pruning. Each tree divides the feature space
into regions associated with its leaves. A sample 𝑥 is thus
associated with a set of regions 𝑅1(𝑥),… , 𝑅𝑡(𝑥),… , 𝑅𝑇 (𝑥),with 𝑅𝑡(𝑥) the region into which 𝑥 falls for tree 𝑓𝑡. This
region contains 𝑛0𝑡 (𝑥) and 𝑛1𝑡 (𝑥) training instances from
classes 0 and 1, respectively: in a classical setting, these
numbers are used to estimate the class posterior probabilities
defined by Equation (1), using either (2) or (3), before a
decision is made. Note that this approach degenerates into
simple averaging or majority voting whenever 𝑤𝑡 = 1∕𝑇 for
all 𝑡 = 1,… , 𝑇 . Obviously, the reliability of an individual
estimate (or decision) provided by a tree strongly depends
on the sample size 𝑁𝑡(𝑥) = 𝑛0𝑡 (𝑥)+𝑛1𝑡 (𝑥) in the leaf attained
by 𝑥, and might therefore differ from the actual probability
for some small leaves (e.g. with only one or two samples).

In order to reflect epistemic uncertainty (i.e., the lack
or information at the tree leaf level), the IDM can be used
to produce interval-valued probability estimates, the size
of which will decrease according to the amount 𝑁𝑡(𝑥) of
training instances in 𝑅𝑡(𝑥): for the positive class,

𝐼𝑡(𝑥) =
[

𝑝1
𝑡
(𝑥), 𝑝1𝑡 (𝑥)

]

=

[

𝑛1𝑡 (𝑥)
𝑁𝑡(𝑥) + 𝑠

,
𝑛1𝑡 (𝑥) + 𝑠
𝑁𝑡(𝑥) + 𝑠

]

, (11)
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with 𝑝1
𝑡
(𝑥) and 𝑝1𝑡 (𝑥) the lower and upper bounds of 𝑝1𝑡 (𝑥)

(their counterparts for the alternative class can be retrieved
by duality). In order to aggregate these probability intervals
(i.e., at the forest level), we propose to calculate the belief
and plausibility of the event “𝑝1(𝑥) ∈ [0.5, 1]”, which
quantify the available evidence regarding the proposition
that instance 𝑥 belongs to class 1. Using Equation (10),

𝑏𝑒𝑙1(𝑥) = 𝑏𝑒𝑙(𝑝1(𝑥) ∈ [0.5, 1])

=
𝑇
∑

𝑡=1
𝑤𝑡𝟙(𝑝1𝑡 (𝑥) ≥ 0.5), (12)

and
𝑝𝑙1(𝑥) = 𝑝𝑙(𝑝1(𝑥) ∈]0.5, 1])

=
𝑇
∑

𝑡=1
𝑤𝑡𝟙(𝑝

1
𝑡 (𝑥) > 0.5); (13)

here, the weight of the tree in the aggregation process (fol-
lowing the notation in Equation (1)) actually corresponds to
the degree of support𝑚(𝐼𝑡(𝑥)) to each interval 𝐼𝑡(𝑥) provided
by the tree (which is regarded as a focal element on the unit
interval [0, 1]).

The proposed tree aggregation approach can thus be
seen as a generalized voting mechanism: instead of voting
for point probabilities, each tree votes for probability inter-
vals and also produces interval-valued probability estimates,
which can in turn be used to make imprecise predictions.
A natural choice is 𝑚(𝐼𝑡(𝑥)) = 1∕𝑇 , for all 𝑡 = 1,… , 𝑇 .
Several other mass assignment methods on the leaf level
were studied in (Zhang et al., 2021), for instance based on
the level of epistemic uncertainty in leaves.

We remark that by duality, 𝑏𝑒𝑙0(𝑥) = 1 − 𝑝𝑙1(𝑥)
and 𝑝𝑙0(𝑥) = 1 − 𝑏𝑒𝑙1(𝑥). Based on the final interval
[𝑏𝑒𝑙1(𝑥), 𝑝𝑙1(𝑥)], the interval dominance decision rule can
be applied to make a decision:

𝑦̂ =

⎧

⎪

⎨

⎪

⎩

1, if 𝑏𝑒𝑙1(𝑥) ≥ 0.5,

0, if 𝑝𝑙1(𝑥) < 0.5;
{0, 1}, otherwise.

(14)

Algorithm 1 describes the inference process of our cau-
tious random forest strategy.

4. Learning tree weights
In this section, we investigate assigning weights to trees

in our combination scheme. As in Utkin et al. (2019, 2020),
we propose to automatically learn the tree weights 𝑤𝑡 so
as to optimize the tree ensemble performances. However, to
our knowledge, all existing approaches (Li et al., 2010; Kim
et al., 2011; Caruana et al., 2004; Utkin et al., 2019, 2020) are
based on tree accuracy, and are therefore not well-suited to
our imprecise classification setting, since they would amount
to give indeterminate predictions the same status as faults.
We propose here to make use of a cautious criterion, which

Algorithm 1: Cautious random forest predictions
Input: random forest RF, tree weights 𝑤𝑡, IDM

parameter 𝑠, set of test instances 𝑋
Output: predictions 𝑌 for test instances

1 𝑌 ← {}
2 for 𝑥𝑖 ∈ 𝑋 do
3 for 𝑓𝑡 ∈ RF do
4 Compute 𝐼𝑡(𝑥𝑖) via Eq. (11)
5 Calculate 𝑏𝑒𝑙1𝑖 via Eq. (12)
6 Calculate 𝑝𝑙1𝑖 via Eq. (13)
7 if 𝑏𝑒𝑙1𝑖 ≥ 0.5 then
8 𝑦̂𝑖 ← 1
9 else if 𝑝𝑙1𝑖 < 0.5 then

10 𝑦̂𝑖 ← 0
11 else
12 𝑦̂𝑖 ← {0, 1}

13 𝑌 ← 𝑌 ∪ 𝑦̂𝑖

rewards both the cautiousness (associated with indetermi-
nate predictions) and the accuracy (associated with accurate
determinate predictions) of the ensemble. In spirit, optimiz-
ing this criterion so as to determine tree weights amounts to
replacing the classically optimized accuracy measure with a
utility-discounted accuracy metric.

Let us define
𝒘 =

(

𝑤1…𝑤𝑇
)⊤ ,

𝜹(𝑥) =
(

𝟙(𝑝1
1
(𝑥) ≥ 0.5)… 𝟙(𝑝1

𝑇
(𝑥) ≥ 0.5)

)⊤
,

𝜹(𝑥) =
(

𝟙(𝑝11(𝑥) > 0.5)… 𝟙(𝑝1𝑇 (𝑥) > 0.5)
)⊤

.

Here,𝒘, 𝜹(𝑥) and 𝜹(𝑥) are all column vectors of 𝑇 elements,
with 𝒘 the vector of variables to be identified. Using these
notations, Equations (12) and (13) can be rewritten as

𝑏𝑒𝑙1(𝑥) = 𝒘⊤ 𝜹(𝑥), 𝑝𝑙1(𝑥) = 𝒘⊤ 𝜹(𝑥). (15)

Note that the vectors 𝜹(𝑥) and 𝜹(𝑥) of binary values are
constant once the random forest has been trained. Remark
also that the duality property holds: 𝑏𝑒𝑙0(𝑥) = 1 − 𝑝𝑙1(𝑥),
and 𝑝𝑙0(𝑥) = 1 − 𝑏𝑒𝑙1(𝑥). In the following, for the sake of
simplicity, we will write 𝑏𝑒𝑙1𝑖 = 𝑏𝑒𝑙1(𝑥𝑖), 𝑝𝑙1𝑖 = 𝑝𝑙1(𝑥𝑖),
𝜹
𝑖
= 𝜹(𝑥𝑖) and 𝜹𝑖 = 𝜹(𝑥𝑖), for any training instance 𝑥𝑖.We may naturally define an optimization criterion based

on the log-loss:

𝐽 (𝒘) = − 1
𝑁

𝑁
∑

𝑖=1

{

𝑦𝑖 ln(𝑏𝑒𝑙1𝑖 ) + (1 − 𝑦𝑖) ln(𝑏𝑒𝑙0𝑖 )
}

+ 𝜆 ∥ 𝒘 ∥22,

𝑠.𝑡.
𝑇
∑

𝑡=1
𝑤𝑡 = 1, 𝑤𝑡 ≥ 0, ∀𝑡 = 1,… , 𝑇 .

(16)
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Note that a similar cost function was introduced in (Utkin
et al., 2019) as

𝐽 (𝒘) = − 1
𝑁

𝑁
∑

𝑖=1

{

𝑦𝑖 𝑏𝑒𝑙
1
𝑖 + (1 − 𝑦𝑖) 𝑏𝑒𝑙0𝑖

}

+ 𝜆 ∥ 𝒘 ∥22

𝑠.𝑡.
𝑇
∑

𝑡=1
𝑤𝑡 = 1, 1 − 𝜖

𝑇
≤ 𝑤𝑡 ≤

1 − 𝜖
𝑇

+ 𝜖, ∀𝑡.

(17)

While (16) is akin to a cross-entropy loss, (17) can be
regarded as a kind of hinge loss; both are convex. However,
both methods tend to produce determinate predictions, since
indeterminate predictions are penalized as errors. In a cau-
tious setting, the cost of an indeterminate prediction should
be lower than that of a determinate, erroneous one.

We therefore propose to optimize a cost function which
considers both determinate and indeterminate predictions:

𝐽 (𝒘) = 1
𝑁

𝑁
∑

𝑖=1

{

𝑦𝑖𝐻(0.5 − 𝑏𝑒𝑙1𝑖 ) + (1 − 𝑦𝑖)𝐻(𝑝𝑙1𝑖 − 0.5)

−𝛾𝐻((0.5 − 𝑏𝑙1𝑖 )(𝑝𝑙
1
𝑖 − 0.5))

}

,
(18)

where 𝐻(⋅) is the Heaviside function. Using this cost func-
tion, determinate predictions cost nothing if they are correct,
and are penalized (cost 1) if they are wrong; all indeterminate
predictions cost 1−𝛾 . Optimizing this cost function amounts
to look for a compromise between making precise predic-
tions and avoiding mistakes. To this extent, the criterion
in Eq. (18) can be seen as a utility-discounted accuracy
measure (Zaffalon et al., 2012). The parameter 𝛾 can be
considered as the utility of being indeterminate, which can
be tuned to adjust the cautiousness of the model (the larger
the value of gamma, the more cautious the model). For
example, consider an instance 𝑥𝑖 with actual label 𝑦𝑖 = 1:
should the model return 𝑏𝑒𝑙1𝑖 = 0.1 and 𝑝𝑙1𝑖 = 0.2, the
prediction would be 𝑦̂𝑖 = 0 (wrong), with a cost equal to
1; conversely, with 𝑏𝑒𝑙1𝑖 = 0.8 and 𝑝𝑙1𝑖 = 0.9, the prediction
would be 1 (correct) and cost 0. Eventually, with 𝑏𝑒𝑙1𝑖 = 0.4
and 𝑝𝑙1𝑖 = 0.6, the indeterminate prediction 𝑦̂𝑖 = {0, 1}
would cost 1 − 𝛾 .

Since the Heaviside function is neither continuous nor
differentiable, we propose to use the sigmoid function as an
approximation:

𝐻(𝑥) ≈ 𝑈 (𝑥) = 1
1 + exp(−𝛼𝑥)

; (19)

the approximation is reasonable if 𝛼 is large enough. The sig-
moid function being nonconvex, this cost function is prone to
local minima. A solution to this issue consists in minimizing
a surrogate (upper bound) 𝐽sup(𝒘) for 𝐽 (𝒘) (Dmochowski
et al., 2010). Using the inequality 𝑧 ≤ − ln(1 − 𝑧), ∀𝑧 < 1,
the equality 𝑈 (−𝑥) = 1 − 𝑈 (𝑥) and 𝑈 (𝑥) < 1, ∀𝑥 ∈ ℝ, we
have

𝑈 (0.5 − 𝑏𝑒𝑙1𝑖 ) ≤ − ln(𝑈 (𝑏𝑒𝑙1𝑖 − 0.5)),

𝑈 (𝑝𝑙1𝑖 − 0.5) ≤ − ln(1 − 𝑈 (𝑝𝑙1𝑖 − 0.5)),

and

− 𝑈
(

(0.5 − 𝑏𝑙1𝑖 )(𝑝𝑙
1
𝑖 − 0.5)

)

≤

− ln
(

1 − 𝑈
(

(𝑏𝑒𝑙1𝑖 − 0.5)(𝑝𝑙1𝑖 − 0.5)
))

− 1.

Remarking that a regularization term should be taken into
account in the cost function, so as to avoid overfitting, we
finally obtain the following regularized upper bound:

𝐽sup(𝒘) = − 1
𝑁

𝑁
∑

𝑖=1

{

𝑦𝑖 ln
(

𝑈 (𝒘⊤ 𝜹
𝑖
− 0.5)

)

+ (1 − 𝑦𝑖) ln
(

1 − 𝑈 (𝒘⊤ 𝜹𝑖 − 0.5)
)

+𝛾 ln
(

1 − 𝑈 ((𝒘⊤ 𝜹
𝑖
− 0.5)(𝒘⊤ 𝜹𝑖 − 0.5))

)}

+ 1
2
𝜆 ∥ 𝒘 ∥22

𝑠.𝑡.
𝑇
∑

𝑡=1
𝑤𝑡 = 1, 𝑤𝑡 ≥ 0, ∀𝑡 = 1,… , 𝑇 . (20)

In Eq. (20), the first and the second terms within the summa-
tion correspond to the penalty incurred for not assigning an
instance to the right class; however, should the classification
fail because of an indeterminate decision, this penalty would
be compensated by the third term of the summation (gener-
ally partially, depending on the 𝛾 value). The last term out of
the summation is a regularization term to avoid overfitting.
The error criterion defined by Eq. (20) is continuous and
convex, as shown in Appendices A and B. It can therefore
be easily minimized using any convex optimization solver.

5. Experiments
In this section, we detail the experiments conducted to

show the interest of our proposed approach. The experiments
were conducted on 25 public datasets from the UCI reposi-
tory (Bache & Lichman, 2013), of which Table 1 provides a
summary. They all correspond to binary classification prob-
lems, and cover a large range of sample sizes and number
of features. Section 5.1 introduces the performance criteria
used to assess the quality of the imprecise classification
results, and the tests applied to compare multiple models
over multiple datasets. Then, experiments are reported in
two steps:

• in Section 5.2, the different tree aggregation strategies
providing cautious predictions are compared on nor-
mal data, noisy data and small training data;

• Section 5.3 illustrates the advantage of our proposed
strategy for learning tree weights compared to other
weight assignment methods, and studies the influence
of the hyper-parameter tuning the compromise be-
tween informativeness and cautiousness.
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Table 1
Datasets used in the experiments, with abbreviation ABB,
numbers of instances (N) and of features (nominal/numerical).

Dataset ABB N Feat Nom Num

adult ADT 45222 11 0 11
banknote BKT 1372 4 0 4
biodeg BID 1053 41 0 41
breast-cancer BRC 568 30 0 30
cardiac CAD 889 12 0 12
compas COP 2652 6 0 6
credit CRD 690 15 9 6
diabetes DIB 768 8 0 8
german GER 1000 24 0 24
heart HRT 303 13 0 13
heloc HLC 10459 23 0 23
ionosphere INS 351 34 0 34
liver LIV 345 6 0 6
magic MGC 2300 57 0 57
mammographic MMG 830 5 0 5
occupancy OCP 2665 6 1 5
phishing PHS 11054 30 0 30
pima PMA 768 8 0 8
post-operative POP 88 8 7 1
ringnorm RNO 7400 20 0 20
seismic SSC 2584 18 4 14
sonar SNR 208 60 0 60
spam SPM 4594 57 0 57
vote VTE 435 16 16 0
wine WNE 1599 11 0 11

5.1. Performance measures
Measuring the performance of a cautious (imprecise)

classification system should reward both its accuracy and its
determinacy, between which the imprecise classifier should
achieve a reasonable compromise. When making precise de-
cisions is paramount, errors being acceptable and/or human
interventions being too expensive, determinacy primes over
accuracy; the reverse corresponds to scenarios where errors
should be avoided by all means, such as e.g. in medical
diagnosis or autonomous driving.

Discounted accuracy is frequently used as a global
evaluation metric for imprecise classifiers. Let 𝑈 (𝑥) stand
for the set of classes predicted for instance 𝑥. In a nutshell,
discounted accuracy rewards a cautious prediction with
1∕|𝑈 (𝑥)| iff 𝑈 (𝑥) ∋ 𝑦. Set accuracy rather measures
the proportion of instances for which the prediction (be
it indeterminate) contains the actual class. Therefore, in
the binary case, whereas discounted accuracy rewards each
indeterminate prediction with 1∕2 (which statistically cor-
responds to choosing at random between the two classes),
set accuracy rewards them with 1 (as for a correct precise
prediction).

As emphasized by Zaffalon et al. (2012), both are there-
fore not appropriate when it comes to evaluate cautious pre-
dictions in a binary setting; this problem may be overcome
by using utility-discounted predictive accuracy measures,

the two most popular of which are 𝑢65 and 𝑢80:
𝑢65(𝑧) = −0.6𝑧2 + 1.6𝑧,

𝑢80(𝑧) = −1.2𝑧2 + 2.2𝑧,
(21)

with 𝑧 = 1∕|𝑈 (𝑥)|.
In binary classification, 𝑢65 rewards an indeterminate

prediction with 0.65, and 𝑢80 with 0.80. Note that using this
notation, discounted accuracy corresponds to 𝑢50, and set
accuracy to 𝑢100. Since utility-discounted accuracy makes an
assumption regarding the cost of indeterminate predictions,
we will also consider in our experiments cautiousness (cau)
and single-set accuracy (ssa) as performance evaluation met-
rics, in addition to 𝑢65 and 𝑢80. Whereas the latter measures
the proportion of instances correctly classified among those
precisely classified, the former indicates the proportion of
indeterminate predictions. These four indicators thus give
a rather complete overview of the properties of the binary
cautious classifiers evaluated.

In order to compare multiple models over multiple
datasets, we followed the recommendation of Demšar (2006).
First, the Friedman test (Friedman, 1940) is performed to de-
termine whether all of the algorithms are equivalent or not;
this non-parametric test scores the algorithms independently
for each data set. The top performing algorithm receives a
rank of 1, the second best algorithm receives a rank of 2, and
so on. If the null hypothesis (all algorithms are equivalent)
is rejected, a Nemenyi test (Nemenyi, 1963) can be used in
a second step to identify significant differences.
5.2. Phase 1: tree aggregation procedure
Models compared

In this first phase of experiments, we benchmark dif-
ferent tree aggregation strategies in random forests, all tree
weights being considered as equal. The methods compared
are:

• AVE: AVErage, where, following Murphy (2000) and
Fink (2012), we average the lower and upper proba-
bilities provided by the trees at hand, i.e. 𝑏𝑒𝑙1(𝑥) =
1
𝑇
∑𝑇

𝑡=1 𝑝
1
𝑡
(𝑥) and 𝑝𝑙1(𝑥) = 1

𝑇
∑𝑇

𝑡=1 𝑝
1
𝑡 (𝑥), before ap-

plying interval dominance (14);
• MV: Majority Voting is adapted to our imprecise clas-

sification setting, by applying interval dominance to
each tree, and considering indeterminate predictions
{0, 1} as a possible outcome when counting the votes
(Fink, 2012);

• MVTH: in Majority Voting with THresholding, we
first estimate the probability 𝑝1(𝑥) of class 1 as the
number of trees providing a probability 𝑝1𝑡 (𝑥) ≥ 0.5,
and we predict class 1 whenever 𝑝1(𝑥) > 0.5+𝜃, class
0whenever 𝑝1(𝑥) < 0.5−𝜃, and {0, 1} otherwise (with
𝜃 being chosen arbitrarily);

• MVA: Minimum Vote Against counts the number
of classifiers that predict a class as dominated (vote
against), the final non-dominated set of classes being
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Table 2
Comparison of aggregation strategies: metrics evaluated on each dataset (without label noise), and counts for each strategy giving
the highest and lowest scores.

(a) Cautiousness
Data AVE MV MVTH MVA CRF

ADT 13.43 15.79 4.82 0.26 18.66
BKT 0.40 0.03 0.37 0.02 0.26
BID 8.69 0.93 5.64 0.25 10.32
BRC 2.36 0.05 1.88 0.07 1.51
CAD 3.98 8.73 1.62 0.18 8.05
COP 35.58 31.03 8.91 0.72 37.40
CRD 10.67 8.15 4.48 0.17 13.32
DIB 18.30 2.59 9.74 0.50 20.88
GER 27.32 15.47 11.82 0.56 33.13
HRT 16.31 4.98 7.60 0.56 20.07
HLC 19.61 1.41 11.45 0.46 21.90
INS 2.45 0.23 1.77 0.00 3.42
LIV 27.36 0.46 13.50 0.58 17.56
MGC 3.98 0.28 2.39 0.13 2.95
MMG 14.65 27.28 3.40 0.24 25.03
OCP 0.58 0.67 0.30 0.02 0.94
PHS 6.18 1.86 2.42 0.14 5.63
PMA 18.59 2.40 10.29 0.48 21.08
POP 29.53 39.14 6.25 0.35 29.04
RNO 4.99 0.32 4.70 0.22 5.41
SSC 1.98 0.06 1.13 0.01 1.29
SNR 18.48 0.77 14.47 0.67 11.64
SPM 3.71 0.20 2.48 0.05 2.61
VTE 3.95 1.20 1.42 0.09 3.70
WNE 14.42 0.61 8.30 0.37 10.01

Average 12.30 6.59 5.65 0.28 13.03
#Highest 10 3 0 0 12
#Lowest 0 2 0 23 0

(b) Single-set accuracy
Data AVE MV MVTH MVA RF CRF

ADT 87.79 88.93 84.63 84.18 83.60 89.73
BKT 99.42 99.29 99.46 99.36 99.63 99.37
BID 90.10 87.36 89.19 87.02 87.04 90.94
BRC 97.03 95.90 96.87 96.04 96.02 96.93
CAD 78.98 79.75 78.42 77.90 77.82 79.94
COP 64.57 61.77 60.61 59.66 60.11 64.64
CRD 91.18 90.01 89.22 87.18 87.51 92.15
DIB 81.24 77.25 79.14 76.77 76.36 82.26
GER 83.51 79.47 79.63 76.26 77.28 84.78
HRT 87.30 84.11 84.67 82.75 82.66 88.47
HLC 74.59 71.01 72.75 70.87 70.75 75.15
INS 94.47 93.56 94.27 93.53 93.34 94.81
LIV 78.65 73.74 76.37 74.22 73.68 77.05
MGC 95.92 94.48 95.57 93.35 94.62 95.89
MMG 84.94 88.00 80.24 81.30 79.89 87.49
OCP 98.78 98.88 98.61 98.62 99.09 98.97
PHS 96.39 94.59 95.19 94.28 94.84 96.11
PMA 81.02 76.94 79.06 76.48 76.24 81.79
POP 67.24 62.98 65.14 65.00 65.05 67.91
RNO 95.16 93.13 95.09 93.27 93.72 95.03
SSC 93.87 93.25 93.64 93.25 93.76 93.73
SNR 89.00 83.27 88.26 83.40 84.69 87.58
SPM 95.82 94.49 95.43 94.42 95.00 95.37
VTE 97.53 96.40 96.40 96.27 95.86 97.68
WNE 86.05 82.32 84.88 82.25 82.43 85.17

Average 87.62 85.64 86.11 84.71 84.84 87.96
#Highest 9 1 0 0 2 13
#Lowest 0 6 1 9 10 0

(c) 𝑢65 score
Data AVE MV MVTH MVA CRF

ADT 84.72 85.13 83.67 84.13 85.09
BKT 99.29 99.28 99.33 99.35 99.29
BID 87.93 87.14 87.82 86.96 88.26
BRC 96.27 95.88 96.26 96.02 96.44
CAD 78.38 78.43 78.18 77.88 78.72
COP 64.70 62.72 61.00 59.70 64.74
CRD 88.43 88.00 88.16 87.14 88.57
DIB 78.23 76.91 77.73 76.71 78.62
GER 78.38 77.18 77.86 76.19 78.14
HRT 83.66 83.16 83.21 82.64 83.75
HLC 72.69 70.93 71.85 70.85 72.92
INS 93.73 93.48 93.74 93.53 93.77
LIV 74.89 73.70 74.73 74.14 74.87
MGC 94.68 94.40 94.83 93.31 94.98
MMG 82.00 81.72 79.71 81.27 81.86
OCP 98.58 98.65 98.51 98.62 98.65
PHS 94.44 94.03 94.46 94.23 94.34
PMA 78.00 76.66 77.60 76.42 78.22
POP 65.86 63.02 65.11 65.02 66.17
RNO 93.65 93.04 93.67 93.21 93.40
SSC 93.30 93.24 93.31 93.25 93.36
SNR 84.53 83.12 84.86 83.28 84.90
SPM 94.67 94.43 94.67 94.41 94.57
VTE 96.25 96.02 95.96 96.24 96.48
WNE 83.01 82.21 83.22 82.19 83.15

Average 85.61 84.90 85.18 84.67 85.73
#Highest 4 2 4 1 16
#Lowest 0 9 4 12 0

(d) 𝑢80 score
Data AVE MV MVTH MVA CRF

DT 86.74 87.50 84.40 84.17 87.89
BKT 99.35 99.29 99.38 99.35 99.32
BID 89.23 87.28 88.66 87.00 89.81
BRC 96.62 95.89 96.54 96.03 96.67
CAD 78.98 79.74 78.43 77.91 79.93
COP 70.04 67.38 62.34 59.81 70.35
CRD 90.03 89.23 88.83 87.17 90.57
DIB 80.97 77.30 79.19 76.78 81.76
GER 82.48 79.50 79.64 76.28 83.11
HRT 86.11 83.91 84.35 82.73 86.76
HLC 75.63 71.15 73.57 70.92 76.21
INS 94.10 93.52 94.01 93.53 94.28
LIV 78.99 73.77 76.75 74.23 77.51
MGC 95.28 94.44 95.19 93.33 95.42
MMG 84.20 85.81 80.22 81.30 85.61
OCP 98.67 98.75 98.56 98.62 98.79
PHS 95.37 94.31 94.83 94.26 95.19
PMA 80.79 77.02 79.14 76.49 81.38
POP 70.29 68.89 66.04 65.07 70.52
RNO 94.40 93.09 94.38 93.24 94.21
SSC 93.60 93.25 93.48 93.25 93.55
SNR 87.30 83.23 87.03 83.38 86.64
SPM 95.23 94.46 95.05 94.42 94.96
VTE 96.84 96.20 96.18 96.25 97.03
WNE 85.17 82.30 84.47 82.24 84.65

Average 87.46 85.89 86.03 84.71 87.68
#Highest 7 1 1 0 16
#Lowest 0 7 3 16 0
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Table 3
Phase 1 (noise-free data): Friedman statistic and p-value (left), Nemenyi p-values for pairwise model comparison (right).

(a) Friedman rank and test
AVE MV MVTH MVA CRF p-value

cau 1.96 3.08 3.48 4.48 1.64 5.21E-08
ssa 2.08 3.08 3.84 4.44 1.56 7.99E-09
u65 2.36 2.96 3.80 4.12 1.76 1.74E-07
u80 2.16 3.28 3.68 4.40 1.48 9.01E-09

(b) Nemenyi test
CRF vs. AVE vs. MV vs. MVTH vs. MVA

cau 0.90 0.001 0.007 0.001
ssa 0.90 0.001 0.005 0.001
u65 0.49 0.001 0.020 0.001
u80 0.90 0.001 0.002 0.001

(a) Cautiousness (b) Single-set Accuracy

(c) 𝑢65 score (d) 𝑢80 score

Figure 1: Average cautiousness, single-set accuracy, 𝑢65, and 𝑢80 scores computed over all datasets, as a function of label noise.

made of the classes with the lowest amount of votes
against (Moral-García et al., 2020);

• CRF: our proposed cautious random forest strategy,
where we first pool the trees by computing the belief
and plausibility degrees according to Equations (12)-
(13) (with equal tree weights), before applying inter-
val dominance (14).

Experimental setting and protocol
The experiments were realized using the Random Forest

classifier from the Scikit-Learn (Pedregosa et al., 2011)
Python library. Each tree in the ensemble is trained to its
full depth, i.e. the minimum number of training samples
allowed in a leaf is one. Since the library made it possible to
handle numeric features only, all categorical features were

converted by one-hot encoding. The forest consists of 𝑇 =
100 trees.

We implemented the following protocol to compare the
aggregation strategies. For each dataset, for our method
(CRF) we selected by cross-validation the value of the IDM
parameter 𝑠 which maximizes 𝑢65 score; we used the same
𝑠 for the MV strategy. For AVE, the value was fixed to
𝑠 = 1, following the recommendations in (Walley, 1996).
For MVTH, the threshold was set to 𝜃 = 0.05 for all datasets.

Tests have been carried out in three directions. First,
we applied our protocol to the standard UCI datasets. In
a second step, we introduced noise in the training data by
flipping a fixed proportion of labels drawn at random. In
the experiments, we considered various levels of label noise
(0%, 5%, 10%, 15%, 20%). Average cautiousness, single-set
accuracy, 𝑢65 and 𝑢80 values were computed by averaging the
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(a) Cautiousness (b) Single-set Accuracy

(c) 𝑢65 score (d) 𝑢80 score

Figure 2: Average cautiousness, single-set accuracy, 𝑢65 and 𝑢80 scores computed over all datasets, as a function of training set
size.

measures made on ten repetitions of 10-fold cross-validation
according to the selected parameters. Last, we studied the
effect of the training set size on the results. For different
sizes of the training set (𝑁 ∈ {20, 30, 50, 100, 150, 200}),
each metric was computed by averaging 100 independent
repetitions according to the selected parameters. The train-
ing samples were randomly selected from the whole dataset
and the remaining ones were used as test set.
Results and discussion

First, we discuss on the results obtained by applying the
methods on standard datasets, which are reported in Tables
2(a) to 2(d). As can be seen from Table 2(a), CRF appears
to be the most cautious of all models and yields very similar
results to AVE. MVA is the least cautious on all datasets,
reaching cautiousness less than 1%.

All cautious classifiers outperform the precise random
forest (RF) — often by a significant amount — in terms
of single-set accuracy, thanks to their ability to classify
some difficult samples as indeterminate. However, accord-
ing to the results in Table 2(b), CRF is able to achieve
the highest single-set accuracy, which indicates that it is
the most reliable model when determinate predictions are
made. Tables 2(c) and 2(d) show that in terms of utility-
discounted accuracy (both 𝑢65 and 𝑢80), which measures a
trade-off between cautiousness and single-set accuracy, CRF

outperforms all other baselines in the great majority of cases.
This is confirmed by using the Friedman test and Nemenyi
test in Table 3(a) and 3(b). CRF outperforms significantly all
other models (with a p-value less than 0.05) except AVE, for
which the differences are not significant. This first round of
experiments thus shows that our combination and decision
strategy based on the theory of belief functions provides an
interesting way of making cautious and reliable decisions.

We now move onto the second part of this first phase
of experiments, designed to study the robustness of CRF
against noisy data. The ability to adapt to noisy data is
an important feature of a good classifier. In our case, the
classifier is expected to become more cautious when faced
with low-quality data. In these experiments, we investigate
the impact of label noise on model performance, by intro-
ducing a given percentage of erroneous labels in the training
samples. Figures 1(a) to 1(d) display the behavior of the four
evaluation metrics for the compared models, averaged over
all datasets, as a function of label noise.

As expected, the cautiousness of all models increases as
the noise level increases. However, the effect is strongest
for CRF and AVE: with 20% of noisy labels, cautiousness
is increased by about 15%, which indicates that CRF and
AVE perform better in presence of noise compared to MV,
MVTH and MVA. For MV and MVTH, cautiousness is
only increased by about 5%. Even worse, MVA seems to
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be insensitive to noise and always maintains cautiousness
around 0.5%. It should be noted that CRF is even more
cautious than AVE for very high levels of label noise. From
0% to 20%, the single-set accuracy of the traditional random
forest dropped by 5%, and by 3% for MV, MVTH and MVA,
whereas the results of CRF and AVE suffered a decrease of
about 1% only. Note also that CRF always keeps a slight
advantage over AVE. The same can also be noticed with the
𝑢65 and 𝑢80 metrics.

These results show that CRF performs well in case of
high aleatoric uncertainty in the data. Another crucial type of
uncertainty is epistemic uncertainty, which is mainly caused
by a lack of training data (Hüllermeier & Waegeman, 2021).
In general, a cautious classifier faced to a high epistemic
uncertainty should maintain a high degree of cautiousness to
reduce the risk of making incorrect decisions. As the training
set size increases (i.e., more data are collected), cautiousness
should decrease and converge to a constant level caused
by aleatoric uncertainty. Thus we have carried out some
experiments so as to study this point. Figure 2(a) presents
average cautiousness computed over all datasets for the four
methods, when varying the size of the training set. It can be
seen that all models tend to be more cautious as the size of
the training set gets smaller, but CRF and AVE are far more
sensitive to this parameter. This makes it possible for CRF
and AVE to reach a higher single-set accuracy, so as to gain
also a higher 𝑢65 and 𝑢80, regardless of the size of the training
data, as shown in Figures 2(b) to 2(d).
5.3. Phase 2: tree weight assignment strategy
Models compared

The second phase of experiments evaluates the interest
of learning tree weights by optimizing the proposed cost
function (20). For this purpose, the aggregation strategy used
for all models is the one defined by Equations (12)-(14).
Different weighting strategies are compared to each other:

• EW: the Equal Weight strategy assigns a weight 1∕𝑇
to each tree;

• OOBACC: the Out-Of-Bag ACCuracy approach as-
signs a weight to each tree according to its accuracy,
estimated using out-of-bag samples;

• OOBU65: this approach is similar to OOBACC, ex-
cept that the performance of each tree is determined
using the 𝑢65 criterion (see Section 5.1);

• IRF: tree weights are learnt using the cost function
proposed by Utkin et al. (2019), which corresponds
to Equation (17);

• AW: our proposed tree weight allocation strategy,
where weights are obtained so as to minimize Equa-
tion (20).

Experimental setting and protocol
In order to evaluate the various tree-weighting strategies,

we used the following protocol. For all weight assignment

strategies, we used the same values of 𝑠 as in the first phase of
experiments. The parameter 𝜆 was set to 0.5 for all datasets
in the experiments.

For CRF with AW, and for each dataset, we selected the
value for the parameter 𝛾 in (20) that maximizes the 𝑢65 score
and fix the parameter 𝜆 to 10 for all datasets. Regarding
the IRF approach, Utkin et al. (2019) proposed to avoid
overfitting by grouping the trees, and computing a weight for
each group instead of each tree. We followed the procedure
described and performed grid search cross-validation so as
to select the best combination of the two hyperparameters
𝜖 ∈ {0.25, 0.5, 0.75} and 𝐺 ∈ {5, 10, 20, 25, 100}; however,
we maximized the 𝑢65 score instead of accuracy, since we
compare here cautious classification strategies.

Cautiousness, single-set accuracy, 𝑢65 and 𝑢80 were eval-
uated by averaging the results obtained on 10 repetitions for
each of the weight assignment methods compared, after the
parameters were selected (in each repetition) using 10-fold
cross-validation.
Results and discussion

In this section, the results obtained for various tree
weight assignments in a cautious random forest are presented
and analyzed. The influence of the parameter 𝛾 in the learn-
ing process is also discussed.

Tables 4(a) to 4(d) report the performances of CRF
with different weight assignment methods. Thanks to the
introduction of a specific utility value for indeterminate
predictions, CRF with automatically-learnt weights (AW)
always makes it possible to reach a good compromise be-
tween single-set accuracy and cautiousness: for all datasets,
it yields the highest cautiousness degree, and at the same
time the highest single-set accuracy, 𝑢65 and 𝑢80 values.
The differences are significant (all p-values being less than
0.05), which is confirmed by the Friedman and Nemenyi
tests reported in Tables 5(a) and 5(b).

It is noteworthy that the three weight assignment meth-
ods EW, OOBACC and OOBU65 achieve almost identical
performances. This may be due to the fact that the dif-
ferences between the trees are not significant enough to
result in different decisions being made after normalization,
especially since a voting mechanism is used. By contrast, the
proposed weight assignment strategy better fits the decision
trees in the forest, which results in higher accuracy scores.
Remember that as illustrated by Utkin et al. (2020), the cost
function in IRF is advantageous for precise classification
problems: in an imprecise classification setting, considering
only accuracy leads to designing classifiers that are not cau-
tious enough, hence resulting in lower single-set accuracy,
𝑢65 and 𝑢80 values.

Our last experiment focuses on the influence of param-
eter 𝛾 , which was fixed using cross-validation in previous
experiments. As explained above, this parameter has been
introduced in the cost function to adjust the level of cau-
tiousness in the model, so as to choose a specific behavior
according to the user’s needs: in general, the larger the value
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Table 4
Comparison of wight assignment methods: metrics evaluated on each dataset, and counts for each strategy giving the highest
and lowest scores.

(a) Cautiousness
Data EW OOBACC OOBU65 IRF AW

ADT 18.66 18.84 18.90 17.75 20.27
BKT 0.26 0.18 0.17 0.14 0.27
BID 10.32 10.13 10.20 9.97 10.54
BRC 1.51 1.65 1.63 1.69 1.83
CAD 8.05 8.03 8.02 7.94 10.00
COP 37.40 37.07 37.18 35.61 38.77
CRD 13.32 12.91 13.01 12.78 13.17
DIB 20.88 20.37 20.50 19.20 20.90
GER 33.13 33.20 33.28 32.95 33.49
HRT 20.07 20.00 20.07 18.65 19.84
HLC 21.90 21.72 21.79 21.33 22.06
INS 3.42 3.65 3.68 3.33 3.73
LIV 17.56 16.93 17.10 16.55 18.76
MGC 2.95 3.01 3.01 2.88 3.17
MMG 25.03 25.21 25.21 22.93 25.25
OCP 0.94 0.95 0.95 0.95 1.26
PHS 5.63 5.37 5.38 5.37 5.63
PMA 21.08 21.08 21.12 20.30 21.84
POP 29.04 28.25 28.37 23.36 30.03
RNO 5.41 5.51 5.51 5.43 5.69
SSC 1.29 1.17 1.15 1.26 1.37
SNR 11.64 11.70 11.65 10.67 13.11
SPM 2.61 2.53 2.51 2.41 2.78
VTE 3.70 3.54 3.54 3.13 3.95
WNE 10.01 9.49 9.55 9.58 9.85

Average 13.03 12.90 12.94 12.25 13.50
#Highest 4 0 1 0 22
#Lowest 3 2 1 20 0

(b) Single-set accuracy
Data EW OOBACC OOBU65 IRF AW

ADT 89.73 90.28 90.27 89.60 91.69
BKT 99.37 99.35 99.34 99.21 99.34
BID 90.94 90.88 90.89 90.50 92.08
BRC 96.93 97.20 97.16 96.91 98.34
CAD 79.94 80.03 80.05 79.68 81.95
COP 64.64 65.01 64.93 64.46 66.67
CRD 92.16 92.19 92.18 91.89 93.45
DIB 82.26 81.74 81.89 81.17 83.08
GER 84.78 84.81 84.83 84.37 86.04
HRT 88.47 88.64 88.65 87.80 89.64
HLC 75.15 75.14 75.21 74.77 76.27
INS 94.81 94.92 94.93 94.71 96.00
LIV 77.05 76.90 76.89 76.38 78.71
MGC 95.89 94.74 94.74 94.39 95.90
MMG 87.49 87.71 87.72 87.30 88.84
OCP 98.97 99.18 99.16 98.95 99.31
PHS 96.11 96.46 96.44 96.17 97.67
PMA 81.79 81.97 81.97 81.58 83.35
POP 67.91 65.84 66.23 65.39 68.30
RNO 95.03 95.41 95.46 95.14 96.71
SSC 93.73 94.05 94.07 93.77 95.23
SNR 87.58 86.95 86.82 86.26 88.61
SPM 95.37 95.53 95.56 95.21 96.75
VTE 97.68 97.76 97.75 97.37 99.00
WNE 85.17 85.02 85.05 84.75 86.26

Average 87.96 87.91 87.93 87.51 89.17
#Highest 1 0 0 0 24
#Lowest 3 0 0 22 0

(c) 𝑢65 score
Data EW OOBACC OOBU65 IRF AW

ADT 85.09 85.50 85.48 85.22 86.26
BKT 99.29 99.29 99.28 99.16 99.25
BID 88.26 88.25 88.25 87.94 89.22
BRC 96.44 96.67 96.63 96.37 97.73
CAD 78.72 78.81 78.84 78.51 80.26
COP 64.74 64.96 64.91 64.62 65.99
CRD 88.57 88.68 88.65 88.45 89.71
DIB 78.62 78.32 78.40 78.02 79.28
GER 78.14 78.20 78.20 77.96 78.96
HRT 83.75 83.92 83.89 83.54 84.77
HLC 72.92 72.92 72.97 72.67 73.76
INS 93.77 93.82 93.82 93.71 94.82
LIV 74.87 74.79 74.75 74.42 76.08
MGC 94.98 93.85 93.85 93.54 94.92
MMG 81.86 81.95 81.96 82.16 82.79
OCP 98.65 98.92 98.89 98.63 99.07
PHS 94.34 94.76 94.74 94.49 95.82
PMA 78.22 78.36 78.36 78.20 79.31
POP 66.17 65.62 65.81 65.44 67.26
RNO 93.40 93.74 93.78 93.51 94.91
SSC 93.36 93.70 93.73 93.40 94.81
SNR 84.90 84.35 84.27 84.07 85.51
SPM 94.57 94.76 94.79 94.47 95.87
VTE 96.48 96.60 96.59 96.36 97.66
WNE 83.15 83.11 83.13 82.86 84.16

Average 85.73 85.75 85.76 85.51 86.73
#Highest 2 1 0 0 23
#Lowest 5 0 0 20 0

(d) 𝑢80 score
Data EW OOBACC OOBU65 IRF AW

ADT 87.89 88.32 88.32 87.88 89.30
BKT 99.32 99.31 99.31 99.18 99.29
BID 89.81 89.77 89.78 89.44 90.80
BRC 96.67 96.92 96.88 96.62 98.00
CAD 79.93 80.02 80.04 79.70 81.76
COP 70.35 70.52 70.49 69.96 71.81
CRD 90.57 90.62 90.60 90.37 91.68
DIB 81.76 81.37 81.48 80.90 82.42
GER 83.11 83.18 83.19 82.90 83.98
HRT 86.76 86.92 86.90 86.33 87.75
HLC 76.21 76.18 76.23 75.87 77.07
INS 94.28 94.36 94.37 94.21 95.39
LIV 77.51 77.33 77.32 76.90 78.89
MGC 95.42 94.30 94.30 93.98 95.40
MMG 85.61 85.73 85.74 85.60 86.58
OCP 98.79 99.04 99.02 98.77 99.07
PHS 95.19 95.56 95.54 95.29 96.66
PMA 81.38 81.52 81.53 81.24 82.58
POP 70.52 69.86 70.06 68.94 71.76
RNO 94.21 94.56 94.60 94.32 95.76
SSC 93.55 93.88 93.90 93.59 95.02
SNR 86.64 86.11 86.02 85.67 87.48
SPM 94.96 95.13 95.17 94.84 96.29
VTE 97.03 97.13 97.12 96.83 98.25
WNE 84.65 84.53 84.56 84.29 85.64

Average 87.68 87.69 87.70 87.34 88.75
#Highest 2 0 0 0 23
#Lowest 3 0 0 22 0
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Table 5
Phase 2: Friedman statistic and p-value (left), Nemenyi p-values for pairwise model comparison.

(a) Friedman rank and test
EW OOBACC OOBU65 IRF AW p-value

cau 2.64 3.64 3.08 4.52 1.12 5.85E-08
ssa 3.08 3.36 2.88 4.64 1.04 3.89E-09
u65 2.96 3.60 2.96 4.40 1.08 1.32E-08
u80 3.04 3.48 2.76 4.64 1.08 2.20E-08

(b) Nemenyi test
AW vs. EW vs. OOBACC vs. OOBU65 vs. IRF

cau 0.004 0.001 0.001 0.001
ssa 0.001 0.001 0.002 0.001
u65 0.001 0.003 0.001 0.001
u80 0.001 0.001 0.005 0.001

(a) Determinacy and single-set accuracy

(b) 𝑢65 and 𝑢80

Figure 3: Average metrics computed over the 25 datasets, as
a function of 𝛾.

of 𝛾 , the more cautious the model, i.e. the lower the determi-
nacy. Ideally, for each dataset, picking an appropriate value
of 𝛾 would make it possible to reach the best compromise
between determinacy and single-set accuracy.

Figures 3(a) and 3(b) illustrate the influence of 𝛾 on aver-
age determinacy, single-set accuracy, 𝑢65 and 𝑢80, computed
over all datasets. These metrics behave as expected: deter-
minacy appears to be a decreasing function of 𝛾 , whereas
single-set accuracy is increasing. When the value of 𝛾 is too
large (for example for 𝛾 = 100), single-set accuracy slightly
decreases; an explanation to this behavior would be that the
cost function then highly favors indeterminate predictions:
turning determinate, correct predictions into indeterminate
ones then leads to a decrease in accuracy. The 𝑢65 and 𝑢80both present an optimum, obviously attained for different

values of 𝛾 , which could be determined for instance by cross-
validation.

6. Conclusion
In this paper, we have proposed a new aggregation

method to construct a cautious random forest in an imprecise
classification setting. The method is based on a pre-trained
random forest. Each tree in the forest provides intervals of
probabilities obtained via the imprecise Dirichlet model,
rather than point estimates.

Our strategy consists in aggregating the tree outputs
using an extension of the weighted voting mechanism: all
probability intervals generated for a test instance are used
to compute the belief and plausibility of the event that
the probability of class 1 belongs to the interval [0.5,1].
Finally, the interval dominance principle is applied, which
may lead to making indeterminate decisions. We have also
proposed a strategy for assigning weights to trees, based on
a cost function which takes both determinacy and single-set
accuracy into account. Optimizing this cost function thus
allows to reach a compromise between cautiousness and
accuracy.

Our experiments on 25 classical datasets showed that our
aggregation method compares favorably to other aggregation
operators leading to cautious decisions, such as averaging,
majority voting (with indeterminate predictions), and ma-
jority voting with threshold. Experiments also show that our
approach is robust to label noise and to scarcity of training
data. Overall, in the very large majority of cases, our strategy
performs better than averaging in terms of all evaluation
metrics considered. Second, it is reasonably more cautious
than majority voting (with or without threshold), but also
more accurate on determinate predictions, which results in
a lower risk for the model. Therefore, it seems a good
candidate in classification problems where cautiousness is
paramount, or when data are scarce or of a low quality.

Through a second series of experiments, we showed
that our strategy for learning tree weights results in a more
cautious model compared to the other four baselines, and
achieves the best performances in terms of single-set ac-
curacy, as well as 𝑢65 and 𝑢80 measures. In a nutshell,
our strategy makes it possible to reach a good compromise
between informativeness and cautiousness, by avoiding mis-
takes when the tree outputs appear to be too conflicting or too
indeterminate.
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Our model also has some limitations. First, as for previ-
ous strategies involving the IDM, we have no principled way
for automatically choosing the value of the parameter 𝑠: as
a consequence, without any preliminary tests, the resulting
classifier may be over-cautious — note however that our
strategy was shown to better resist to high 𝑠 values than
the other aggregation schemes (Zhang et al., 2021). Second,
the cost function optimized (20) is only a surrogate for the
criterion akin to the 𝑢𝛼 score (18). The experimental results
nevertheless suggest that our optimization procedure effec-
tively leads to reach a good compromise between accuracy
and cautiousness.

In future works, we plan to extend the aggregation strat-
egy to multi-class problems. We will also work on providing
explanations for the model, based on our aggregation strat-
egy and the weights obtained in the optimization procedure,
for questions such as why a particular sample is predicted
imprecisely or what would be the minimal changes to bring
to an instance to enable it to be precisely classified.

Appendix
A. Gradient of the cost function

In this section, we provide the expression for the gradient
of the proposed cost function. Considering the sigmoid
function 𝑈 (𝑥) defined by Equation (19), it should be noted
that

𝑈 ′(𝑥) = 𝛼𝑈 (𝑥)(1 − 𝑈 (𝑥)).

If we write
𝑢𝑖 = 𝑈 (𝒘⊤ 𝜹

𝑖
− 0.5), 𝑢𝑖 = 𝑈 (𝒘⊤ 𝜹𝑖 − 0.5),

𝑢𝑖 = 𝑈 (𝒘⊤ 𝜹
𝑖
− 0.5)(𝒘⊤ 𝜹𝑖 − 0.5),

the cost function (20) can be rewritten as:

𝐽 (𝒘) = − 1
𝑁

𝑁
∑

𝑖=1

{

𝑦𝑖 ln(𝑢𝑖) + (1 − 𝑦𝑖) ln(1 − 𝑢𝑖)

+𝛾 ln(1 − 𝑢𝑖)
}

+ 1
2
𝜆||𝒘||

2
2. (22)

Obviously, we have
∇𝒘𝑦𝑖 ln(𝑢𝑖) = 𝛼𝑦𝑖 (1 − 𝑢𝑖)𝜹𝑖,

∇𝒘(1 − 𝑦𝑖) ln(1 − 𝑢𝑖) = −𝛼(1 − 𝑦𝑖) 𝑢𝑖𝜹𝑖,

and
∇𝒘 ln(1−𝑢𝑖) = −𝛼𝑢𝑖

[

(𝜹
𝑖
𝜹
⊤
𝑖 + 𝜹𝑖 𝜹⊤𝑖 )𝒘 − 0.5(𝜹

𝑖
+ 𝜹𝑖)

]

.

If we write 𝜹𝑖 = (𝜹
𝑖
𝜹
⊤
𝑖 +𝜹𝑖 𝜹⊤𝑖 )𝒘−0.5(𝜹

𝑖
+𝜹𝑖), the gradient

for the cost function writes as

∇𝒘𝐽 (𝒘) = − 𝛼
𝑁

𝑁
∑

𝑖=1

{

𝑦𝑖(1 − 𝑢𝑖)𝜹𝑖 − (1 − 𝑦𝑖)𝑢𝑖𝜹𝑖

−𝛾𝑢𝑖𝜹𝑖
}

+ 𝜆𝒘. (23)

B. Hessian and convexity
In this section, we provide the Hessian matrix of the cost

function 20 and the proof that it is positive semi-definite,
so as to prove the convexity of the cost function. First, the
Hessian matrix can be calculated separately for each part of
the cost function:

𝐻(𝑦𝑖 ln(𝑢𝑖)) = −𝛼2𝑦𝑖𝑢𝑖(1 − 𝑢𝑖)𝜹𝑖 𝜹
⊤
𝑖
,

𝐻((1 − 𝑦𝑖) ln(1 − 𝑢𝑖)) = −𝛼2(1 − 𝑦𝑖)𝑢𝑖(1 − 𝑢𝑖)𝜹𝑖 𝜹
⊤
𝑖 ,

𝐻(1
2
𝜆||𝒘||

2
2) = 𝜆𝐼,

and
𝐻(𝛾 ln(1−𝑢𝑖)) = −𝛼2𝛾𝑢𝑖(1−𝑢𝑖)𝜹𝑖 𝜹⊤𝑖 −𝛼𝛾𝑢𝑖(𝜹𝑖 𝜹

⊤
𝑖 +𝜹𝑖 𝜹

⊤
𝑖
).

Consequently, the complete Hessian matrix writes as:

𝐻(𝐽 (𝒘)) =𝛼2

𝑁

𝑁
∑

𝑖=1

{

𝑦𝑖𝑢𝑖(1 − 𝑢𝑖)𝜹𝑖 𝜹
⊤
𝑖

+ (1 − 𝑦𝑖)𝑢𝑖(1 − 𝑢𝑖)𝜹𝑖 𝜹
⊤
𝑖

+ 𝛾𝑢𝑖(1 − 𝑢𝑖)𝜹𝑖 𝜹⊤𝑖

+1
𝛼
𝛾𝑢𝑖(𝜹𝑖 𝜹

⊤
𝑖 + 𝜹𝑖 𝜹⊤𝑖 )

}

+ 𝜆𝐼.

All the matrices of the form 𝜉𝒂𝒂⊤, where 𝜉 is a non-negative
real number and 𝒂 is a vector, are symmetric positive semi-
definite. Moreover, 𝜆𝐼 is obviously symmetric positive def-
inite. According to the theorem stating that the sum of two
symmetric positive semi-definite matrices is also symmetric
positive semi-definite, a sufficient and necessary condition
for 𝐻(𝐽 (𝒘)) to be a symmetric positive semi-definite matrix
is that the last term in the sum be symmetric positive semi-
definite as well.

Since (𝜹
𝑖
𝜹
⊤
𝑖 + 𝜹𝑖 𝜹⊤𝑖 )

⊤ = 𝜹
𝑖
𝜹
⊤
𝑖 + 𝜹𝑖 𝜹⊤𝑖 , it is symmetric.

Suppose we have two non-zero vectors 𝒂, 𝒃 ∈ ℝ𝑛, and let
𝐴 = 𝒂 𝒃⊤. All rows of 𝐴 are linearly dependent. Therefore,
det 𝐴 = 0, and rank 𝐴 = 1. Since the rank of a matrix is
equal to the number of non-zero eigenvalues and its trace is
equal to the sum of its eigenvalues, matrix 𝐴 has only one
non-zero eigenvalue and its value is equal to its trace, which
is tr 𝐴 = 𝒂⊤𝒃.

It should be noted that all elements of 𝜹
𝑖
and 𝜹𝑖 are either

0 or 1. Therefore, whenever both of these vectors are non-
zero, 𝜹

𝑖
𝜹
⊤
𝑖 and 𝜹𝑖 𝜹⊤𝑖 each have only one positive eigenvalue

and the other eigenvalues are zeros. If at least one of them is
zero, all eigenvalues will be zero.

In conclusion, 𝜹
𝑖
𝜹
⊤
𝑖 and 𝜹𝑖 𝜹⊤𝑖 have non- negative eigen-

values, and their sum is semi-positive definite, which com-
pletes the proof that the Hessian matrix is positive semi-
definite and that the cost function is therefore convex.
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