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Abstract

Algebraic linear codes J/I C Fy[X1,...X,,]/I that are finite dimen-
sion quotients of multivariate polynomial rings, have been studied in-
tensively; in particular m-dimensional cyclic codes where the ideal I is
(X7 —1,..., X —1). Recently this notion has been extended to two
dimensional skew cyclic codes using multivariate skew polynomial rings
over fields [12, 16, 18] and even over rings [15]. In this paper we use a
Grobner basis approach in order to generalize algebraic linear codes and
m-dimensional cyclic codes to the skew polynomial rings setting. The
approach encompass all previous results on m-dimensional (consta-)cyclic
codes and allows for many generalizations.

1 Introduction

Definition 1 A code C of length n € N over a field F is a nonempty subset of
F™. The elements of C are called codewords. The code C is a linear code if it
is an F-subspace of ™. If F is a finite field F,, then a linear code of length n
and dimension k is a k-dimensional subspace of Fy. A code C of length n € N
over a finite field Fy is a nonempty subset of Fy. The elements of C are called
codewords. The code C is a linear code if it is a k-dimensional F,-subspace
of ¥y. The Hamming distance between two vectors of Fy is defined as the
number of coordinates at which the two vectors differ. The minimal distance
d of a k-dimensional linear code C C Fy is defined to be the minimum Hamming
distance between two distinct codewords of C. In this case we say that C is a
code with parameters [n,k,d|,.
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Definition 2 An F,-code of length nins - - - ny, is an m-dimensional consta-
cylic code if for any code word, viewed as a particular m-dimensional matriz
of size My X ng X + -+ X Ny, 18 tnvariant under application of a cyclic shift in the
dimension i and multiplication of the resulting first entry by A\; € Fy.

Example 1 A length niny code over Fy is a 2-dimensional constacylic code if
there is a basis of Fy*"? arranged in an ny x ng array such that for any code
word

A0,ny—1 @lnps—1 -+ Anj—1mo—1
aO,n272 al,n272 A anlfl,n272
(1)
ap,1 a1.1 cen An;—1,1
0,0 a1,0 e Apy—1,0
both
Alanlfl,ngfl GJO}’I’Lz*l ce an172,n271
AMCny—1mp—2 QOng—2 -+ COny—1my—2
M@, —1,1 ao,1 R
AMQp,—1,0 ap,0 ... Qp,—20
and
aO,’I’LQ*Q al,n272 AR anlfl,n272
ap,1 a1 cee An;—1,1
ap,o ai.o cee An;—1,0
A2@0ny—1  A201ng—1 -+ A20p,—1,ny—1

belong to the code for some A1, Ay € F,. Here the firt shift is to the right and
the second shift is upwards for reasons that are connected to the representation
of standard monomials and that will soon become apparent.

Let Fy be a field and R = Fy[X;,...X,,] the polynomial ring in n > 1
variables. We refer to [3] for the definition of an admissible ordering < on N™.
A admissible ordering induces an admissible ordering < on the set of monomials
M={X%=XPX5? - X2 |a; € N} in Fy[X71,... X,] via X® < XP if and
only if & < 8. For any expression f = Y ym ca X € Fy[Xy,..., X,,] where
only finitely many ¢, are nonzero, the monomial X? = max{X%|c, # 0} is
the leading monomial of f and ¢, is the leading coefficient of f, denoted
respectively by Im(f) and lc(f). The monomial X® € M is divisible by X7 if
X =Im(X*“X#) for some X¥ € M and the least common multiple of X and
X7 is defined as lem(X®, X?) = X7 where v; = max(a;, 3;)-

A basis G = {g1,...,9m} of and ideal I C R is a Grébner basis if and only
if {LM(g1),...,LM(gm)} generates the ideal LM(I) = {LM(f)|f € I} of leading

monomials of I. If G = {g¢1,...,gm} is a Grobner Basis, then the reduction fG
of f by G is unique. The standard monomsials of I are the set of monomials



that do not belong to LM(/). The quotient R/I is a finite dimensional k-vector
space if and only if G contains a polynomial with leading monomial X" for
each i € {1,...,m}. In this case the standard monomials form a basis of the
k-vector space R/I (see [3]).

Example 2 If for I C F,[X,Y] we have dimy, (F,[X,Y])/I) < oo, then the
standard monomials X'Y7 can always be represented as a staircase of ® points
(i,74) in the upper half plane of the form

For two ideals I C J C R the correspondance of ideals shows that J/I
is a submodule of R/I. The ideal J/I C R/I is F,-subspace of R/I. The
isomorphism (R/I)/(J/I) = R/J shows that the quotient of the vector spaces
(R/I)/(J/I) is isomorphic to R/J. The ideal I is a zero dimensional if the
F,-vector space R/I of finite dimension n. In this case image n(J) = J/I
under 7 : R —: R/I is a linear code of length n = dimg, (R/I) and dimension
k = n — dimg, (R/J) (see [4]). Since I C J, the standard monomials of J (a
basis of R/J) are contained in the set of standard monomials of I (a basis of
R/I). The above isomorphisms show that standard monomials of R/I which
are not standard monomials of R/.J form a basis of code 7(J). We denote w”
the reduction of w € R with a Grébner basis of J. From ([4], Theorem 3.9) we
get that the information position are the standard monomials of I that are not
standard monomials of J and that F(w) = w — @’ (which is always an element
of J) is an encoding of any linear combination w € J/I of information positions.

Definition 3 (see [4]) Consider the ring R = Fy[Xy,...X,,] and two zero-
dimensional ideals I C J C R. We call the submodule J/I of R/I a quo-
tient ideal code of Fy[X1,...X,,]. The parameters [n,k| of this code are
n =dim(R/I) and k = dim(R/J).

For the basis G = {X{"* — A1,..., X2 — A, } all S-polynomial (see [3])
S(fi ) = XJ7(XT" = X) = XX =)
= X - X
reduce to S(fi,fj)G = X\iAj — A\jA; = 0 (see [3]). Therefore the basis G is a
Grobner basis of I C F,[X71,... X, (see [3]).
Example 3 The F,[X1, Xo]-module

J/(XTT = A1, X52 — o) C Fy[ X1, Xo] /(X — A, X32 — A)



corresponds to 2-dimensional constacyclic code. In order to see this we consider
the following Fy-basis of Fg[X1, Xo] /(X7 —1,X52 —1) -

D CCEEIED €D ¢CEEINNEED CLEED ¢l
. . . i1 (2)
X5 X1 Xy ... XX,
1 X, Xt

and represent the code word ZZL;O_l Z;ﬁgl a;j XiX} as in (1). This basis re-
flects the staircases of the standard monomials of I represented by o and e which

contains the standard monomials of J represented by e. For example

n2:3

(0,0) ny =3

By construction the code is an Fq[ X1, Xo]-module. We now show that is also a
2-dimensional constacyclic code. Multiplication by X1 of the first ny—1 columns
results in a shift of of those columns to the right. Since Xlanl,lijfl_ng =
am_Lijng 18 reduced to )\a7,,1_17jX§ by the Grobner basis, we see that mul-
tiplication by Xy of the last column results in a shift to the first column and a
multiplication by A\y. The action on the rows results from multiplication by Xs.

The example shows that all Fy[X;, Xs, ..., X,,]-modules of the form J/I C
F,[X1,Xo, ..., Xm]/I where I = (X7 —Aq,..., X2 —\,,) are m-dimensional
constacyclic code. The m-dimensional cyclic code J/I C Fy[X1, Xo, ..., X,,]/T
where I = (X" —1,...,X» — 1) have been extensively studied [10, 9].

For any zero-dimensional ideal I C R the ideal J = (f1,---, fs) + I deter-
mines a quotient ideal code J/I C R/I, but the parameters [n, k| of the code
can only be determined using a Grobner basis for I and J and therefore cannot
be prescribed in the construction of [4], Chapter 9 or [14]). In the next section
we will show how to prescribe the parameter [n, k] during the construction of
the code.

2 The variety of quotient ideal codes of given
length and dimension
The following Grobner basis approach allows to compute all finite dimensional

ideals I C J C Fy[X, ... X,,] with prescribed staircases. In the following we fixe
a monomial ordering and two staircases of two finite dimensional ideals I C J,



such that the staircase of I is contained in the staircase of J. For example

®e € O O
®e @€ O O

We need to prescribe the leading monomials, denoted by * below, of the
ideal of leading monomials in both cases:

for I: * - and for J:

® € O O %
®e @€ O O
® O O *
® ® X O
® ¢ O O

*

This gives the following algorithm:

1.

(a) Choice of J: For each prescribed leading monomial X" --- X"

of a generator of J we must have an element in the Grobner basis
of J of the form gn, = X[ X0t 4+ 5 g X, 0 X
(we put all possible lower monomials with unknown coefficients) for
J. Since the leading monomials of the basis B = (¢1,...,9s) of J
have unitary leading coefficients, we can reduce all S-polynomials
S(9i,9;) modulo B. This will lead to polynomials in Xi,...,X,,
with polynomial coefficients in the unknown ay ;. Setting them to 0
gives a polynomial system S; for the unknown ay; whose solutions

are all possible J with this prescribed staircase.

(b) Choice of I:

i. We can either fix the generators of I, for example of the form
X" — 1 in order to obtain m-dimensional cyclic codes

ii. or proceed as above: For each prescribed leading monomial
X?lvﬂ e X;L%myp

of a generator of I we must have an element in the Grobner basis
of J of the form a

fp — X{h,p .. X:rllm,p + Zﬁp,inl,ﬁp,i . X:’Im,ﬁp,i

(we put all possible lower monomials with unknown coefficients)
for generators of I. Since the leading monomials of the basis
B = (f1,..., ft) of I has unitary leading coefficients, we can
reduce all S-polynomials S(f;, f;) modulo B’. This will lead to
polynomials in Xi,..., X, with polynomial coefficients in the
unknown 3, ;. Setting them to 0 gives a polynomial system S»
for the unknown f, ; whose solutions are all possible I with this
prescribed staircase.



2. Imposing I C J: Since the leading monomials of the basis B = (g1, ..., 9s)
of J has unitary leading coefficients, we can reduce all generator polyno-
mials f; of I in the above basis for I modulo B. Since f; € J if and only
if the reduction of f; by a Grobner basis of J is zero, this will lead to
polynomials in X1,...,X,, with polynomial coefficients in the unknown
ay; and B,;. Putting them to 0 gives a polynomial system Sz for the
unknown ap; and 8, ;.

3. The solutions of the polynomial system S; US2US3 gives all possible ideals
I CJCFy[Xy,...Xy] for the prescribed staircases.

Example 4 Consider Fy = Fo[w]/ (w? + w+1). Then G = {X{ +w, X3 +w}
is a Grobner basis which generates an ideal I C TF4[X1, Xo] whose standard
monomials belong to a quadratic staircase of length 2. We now look for an ideal
J containing I. The code J/I C Fy4[Xy,X5]/I has dimension 2 if and only
if J has 2 standard monomials. There are exactly 2 possible staircases for a
2-dimensional cyclic code with parameters [4,2]4:

For the first staircase we found one ideal J C F4[X1, Xo] containing I; it de-
fines a [4,2,2]-code. For the second staircase we found four ideals, two of them
produce a [4,2,2]-code, both are equivalent to the one already found. The two
remaining ideals produce two equivalent [4,2,3]-codes. An example of a [4,2,3]-
code is given by J = (X2 + w?X1 +1, X? + w).

Example 5 Consider Fo; = Fs[w]/ (w® —w +1). Then G = {X} —1,X5 -1}
is a Grobner basis which generates an ideal I C For[X1, Xo] whose standard
monomials belong to a quadratic staircase of length 3. We now look for an ideal
J containing I. The code has dimension 4 = 9—5 if and only if J has 5 standard
monomials. There are exactly 3 possible staircases for a 2-dimensional cyclic
code with parameters [9,5]a7:

[ ] [ ] [¢] . [ [ ] ° . [ [ ]

where the staircases of I are represented by e and o and those of J by e.
In the following discussion we say that two codes are equivalent if they have
the same weight enumerator. For the first staircase we found 1 ideal

J=(X5+2, X1X5 +2X5 + X1 Xo +2X5 + X1 +2, X{+ X1 +1)

and the parameters of the code J/I C For[Xy, Xs] are [9,4,3]27. For the sec-
ond staircase we found 27 ideals, they give 3 (equivalent) [9,4,4]-codes and 24
(equivalent) [9, 4, 5]-codes. An example of a [9,4,5]-code is given by

J=(X5+2, XiXo+2Xo +wX; +w’X; + v, X{ +2).



The third staircase produced T29 left ideals; 3 of them produced (9,4, 3]-codes,
equivalent to the one already found, 3 of them produced [9, 4, 4]-codes, equivalent
to the one already found, 219 of them produced [9,4,4]-codes, and extend the
[9,4, 5]-codes to three not equivalent codes. The 504 remailing ideals produced
[9,4, 6]-codes, all of them are equivalent. An example of a [9,4,6]-code is given

by
J = (X3 4+ X1 Xo +w?Xo + wX] + 0w Xy + b,
X3Xo+ X1 X + Xo +2X7 +2X; +2, X} +2).

Up to equivalence, we have found 6 different codes.

3 Skew left quotient ideal code

We first recall some basic fact concerning skew polynomial rings. Let A be a
ring with an automorphism 6, then a 6-derivation is a map § : A — A such
that for all @ and b in A: §(a + b) = §(a) + 6(b) and d(ab) = §(a)b + 0(a)d(b).
Starting from A, an automorphism 6 of A and a 6-derivation on A, we define a
ring structure on the set:

R=A[X;0,0] = {an X"+ ...+ a1 X +ap|a; € Fy and n € N}.

The addition in R is defined to be the usual addition of polynomials and the
multiplication is defined by the basic rule X a = 6(a) X + 6(a) (a € F,) and
extended to all elements of R by associativity and distributivity. According to
[13] R is a ring called Ore ring or skew polynomial ring. The classical commu-
tative polynomial ring corresponds to A commutative, § = id and ¢ : a — O.
For a finite field F, and an automorphism 6 € Aut(F,) the univariate skew
polynomial ring F,[X; 6] is a left and right euclidean ring (see [13]). By repeat-
ing this construction we obtain the iterated skew polynomsial ring in ¢ non
commutative variables over A:

Rm = ( .. ((A[Xl, 91, (51])[X2; 92,62]) .. .)[Xm; 9m7 §m] (3)

where Ry = A, 0; is an automorphism of R;_q and J; is a 6;-derivation of R;_1.
The following is a generalization of Definition 3 and Section 5 of [2]:

Definition 4 Let A =F, and R, be definied as in (3). For two zero-dimensional
left ideals T C J C Ry, we call the left submodule J/I of Rm/Z a skew
left quotient ideal code of R,,. The parameters [n,k] of this code are n =
dim(R,/Z) and k = dim(R,/T).

In [7, 8] a theory of Grobuner basis is presented for a large class of skew
polynomial rings, making the above definition effective for all such rings. As in
the commutative case we obtain that the information positions are the standard
monomials of the left ideal Z that are not standard monomials of the left ideal
J and that E(w) = w — @Y (which is always an element of 7) is an encoding



of any linear combination w € J/Z of information positions. We can compute
the variety of m-dimension skew left quotient ideal codes of a given dimension
using the approach of Section 2.

In order to obtain examples of codes we will construct families of skew poly-
nomial rings satisfying the criteria given in [7, 8] for the existence of a Grébner
basis.

As in the commutative case, a monomial ordering induces an ordering <
on the set of monomials M = {X* = X{"X3?..- X% |a; € N} (because
of the non commutativity, the variables need to be in this precise order) via
X < X7 if and only if a < 3. For any expression f = 3 aenm CaX @ where only
finitely many constants ¢, are nonzero, the monomial X7 = max{X®%|c,, # 0}
is the leading monomial of f and ¢, is the leading coefficient of f, denoted
respectively by Im(f) and lc(f). Then the least common multiple of X and X#
is defined as lem(X®, X?) = X7 where ; = max(a;, 3;). We will be interested
in left ideals I of R,,. From [7, 8] we obtain that Grobner base of left ideals
exist for the following type of rings (sometimes called o-PBW Extensions):

Definition 5 Let R, = A[X1;61,01] - [Xin; Om, 0] be an iterative skew poly-
nomial ring with m € N as defined above. We call the ring R, left-lex-
solvable, for the lexicographical order 1 < X1 < ... < X, if

1. for any a € A and any i € {1,...,m}, X;a = bX,; + p; o whereb € A and
Dia € Ri—1;

2. forall j <iin{l,...,m}, X;X; = bX;X; + p;; where b € A and all
monomials in p; ; are < X;X;.

We follow the definition of an S-polynomial given in ([19], Definition 2.5).
If LM(f) = X%, LM(g) = X?, X7 =lem(X*, X?), t; = X7~ % and t, = X777,
then
lc(tf )
le(tgg)

A Grébner basis is now constructed the usual way using the classical Buchberger
algorithm.

SPoly(f,g) =ty f — ctyg, where ¢ =

4 m~dimensional skew cyclic codes with com-
muting variables

Recently several authors generalized 2-D (consta-)cyclic codes to skew polyno-
mial rings R[z, y; p, 0] whose variables « and y commute [12, 16, 18, 15]. In those
papers the authors use a canonical form of an element of an ideal without using
the theory of Grobner basis. In this section we give a unified Grébner basis
approach, a generalization of the approach in [2], that encompass all previous
results and allows for many generalizations.



Definition 6 A code overFy of length ning is a 2-dimensional skew constacylic
code if there is a basis of Fj*"2, non zero elements A1, A2 in Fy and automor-
phisms 01 and 02 of F, such that for any code word

ao,nz—l al,nz—l e an1—1,n2—1
ap,1 a1l cen An,—1,1 7
0,0 a1,0 e Gpy—1,0
both
MO1(an,—1np-1) 01(@0me—1) - 61(@ny—2m5-1)
)\191(an1—1,1) 91(610,1) cee 91(an1—2,1)
A101(any—1,0) 01(apo) ...  O1(an,—20)
and
92(a0,n2—2) 92(a1,n2—2) cee 92(an1—1,n2—2)
62(ao,0) 02(a1,0) . 02(an,—1,0)
/\292(a0,n2—1) /\292(a1,n2—1) ce. )\292(an1—1,n2—1)

belong to the code. The generalization to m-dimensional skew constacylic code
18 straigthforward.

Lemma 1 (cf. [2]) In a finite field B, of order g we consider the automorphisms
0; € Aut(F,) where i € {1,...,m}. There exists a skew polynomial ring

RO = (o (Fy (X5 01))[ X3 03]) - -+ [Xon: Oum]) (4)

whose elements are the finite sums of the form > a;, i, X' X2? --- Xim where
the addition in R is the usual addition of multivariate polynomials and the mul-
tiplication is defined by the rules X;a = 0,(a)X; and X;X; = X; X, and extended
to Ry, by distributivity.

PrROOF. We proceed by induction on m. Since the automorphism 6#; and 6o
commute in Aut(F,), we can extend 6 by X; — X; to an automorphisms of
F,[X1;6:] ([17], Theorem 2.2) and define 8% = (F,[X1;01])[X2; 62]. Suppose
that £, — 1%-%~1 has been defined. Using again ([17], Theorem 2.2) we can

extend 6, by X1 — X1,...,Xys_1 —, X,_1 to an automorphism of ﬁgl_"l“’e“l
and therefore define Rzl’”"a’f’l’el . The result follows by induction. =

The ring R91>-0m is left-lex-solvable (definition 5). Therefore, using lex order,
we can define a left Grobner basis for any left ideal.

Theorem 1 We keep the notation of the previous Lemma 1 to define the ring
ﬁ%"“’am whose variables X; commute X; X; = X;X;. For A\, Aa,..., Ay in Fy
such that 07 (\j)Ai = 077 (\i) the set G = { X" — X1, X532 = Xg, ..., XJom — A}
1s a left Grobner basis of the left ideal T that it generates. For any left ideal



J containing T we obtain an m-dimensional constacyclic code C = J/T C
RI0-9n /T over By of length ning -+ npm. The encoding E(w) = w —w’ € J
of the standard monomials of K919 /T which are not standard monomials of
RI09m | T form a basis of code C.

PROOF. In the ring &% the S-polynomial S(fi, f;) = X;Ij fi— X" f; of
fi=X" =X and f; = X;-” —Ajis 0 (Nj) X" — 9;” ()\i)X;lj. The reduction
of S(fi, f;) by the G is obtained by substracting

0; (i) fi = 077 (N) 5 = 07 (M) N = 057 (M)A

and is zero according to the assumption in the lemma. This shows that G is a
left Grébner basis of the left ideal Z € &%1+%m generated by G.

m
For the remainder of the proof we assume for simplicity that m = 2. We

consider the F,-basis of 8% /(X — 1, XJ'* — 1) given by :

Xyt x o xpemt o xpotxget
X, X1 X, ... XX,
1 X, xmt

and represent the code word 7" Zyial a; jXiX} as in definition 6. The
code C = J/I C 85-% /T is a left R5%-module.
Multiplication of a; ; X{ X7 on the left by X leads to

Xa;; X1X3 = 01(a; ;) X X3

and therefore to an application of §; and a right shift for ¢ < n; — 1. For

Xya; j X771 X5 = 01 (a; ;) X" X} we must reduce the expression using the basis

G by substracting 6, (a; ;) X3 (X — A1) which gives 6;(a; j)X3. We obtain the

first property of skew constacyclic codes stated in the above definition.
Multiplication of a; ; X{XJ on the left by X, leads to

Xoa;; X1 X3 = 01(a; ;) X X5

and therefore to an application of fy and a upward shift for j < ny — 1. For
XgamX{'X;”_l = 0s(a;, ;) X} X5? we must reduce the expression using the basis
G by substracting 62(a; ;) X{(X5? — X2) which gives 0(a; j)Xi. We obtain the
second property of skew constacyclic codes stated in the above definition. m

Example 6 Consider Fig = Fa[w]/ (w* +w + 1), the automorphisms 61 (w) =
w?, 0o(w) = wt. In the skew polynomial ring ﬁglﬂ? we have X1Xs = XX,
Xiw = 01 (w) X1 = w?X; and Xow = Os(w)Xo = wtXs. The previous theorem
shows that G = {X? + w3, X3 + w'?} is a left Grébner basis of the left ideal T
that G generates in ﬁgl’ez. The standard monomials of T belong to a rectangular

2 x 3-staircase. our goal is to construct a 2-dim skew constacyclic code J /T C

10



ﬁgl’ez/l for the parameters [6,3]. The left ideal J we are looking for must
contain 3 standard monomials, which leads to the staircase

We found 12 left ideals J. Six of these left ideals gave a [6,3, 3]-code, the other

siz an optimal [6,3,4]-code. One of the optimal codes is given by
J = (X5 +wXo + 0 X; +0°, X1 X +w'Xo +w0X; + 0", XT 4+ w?).

The algorithm presented in Section 2, applied to left ideals, allows to com-
pute all m-dimensional skew constacyclic codes of any given length and dimen-
sion.

5 m dimensional skew constacyclic codes with
non commuting variables

In the following we will introduce relations of the form X;X; = 3; ;X;X;, in
order to be able to use more values of A; such that {X7" — Aq,..., X — A}
is a Grobner basis and to use more iterated skew polynomial rings. This will
lead to many more codes. The discussion in this section show that many more
generalizations of this type are possible.

Definition 7 A length niny code over Fy is a 2-dimensional scaled skew
constacylic code if there exist \1 and Ao in Fy\ {0} such that any code word,
viewed as a particular m-dimensional matriz of size ning, is invariant under
the following two operations

1. application of

(a) a cyclic shift in the columns
(b) application of the automorphism 01 to all entries of the code word

(c) multiplication of j-th entry of the resulting first column by

63”7 (A1)

220l T IR, 05005 (B 2))

2. application of

(a) a cyclic shift in the rows

(b) applying the automorphism O to all entries of the code word
(¢) multiply the entries of the j-th column by (ch;% 9{“(,8172)).

11



(d) multiplication of the new bottom row by Ay € F7, and the j-th column
by ( fc;% 9’f(ﬂ172)) for some 12 € Fy and j € {2,...,n1}.

We denote such a code Cpy, 0,8, ,-

An nino-dimensional code over F, is a 2-dimensional skew scaled cyclic code
over IF, if there is a basis of ;"2 and fixed automorphism 6#; and 6 of F; such
that for any code word

ao,nz—l alﬂlz—l e an1—1,n2—1
! )
ap,1 ai.1 An,—1,1
ap,o aio . Apy—1,0

both (here we shift in the columns to the right)

—1
052" (A1)
(no—1)—1ny;—1

IT TI 62065 (812)
k=0

£=0

6l(aﬂnlfl,ngfl) Gl(ao,n2f1) .. 01(0471472,71271)

201 (an, 1) O1(a01) ... Oi(an-2.)
11 07(812)
k=0
A161(an,-1,0) 01(ao,0) .. 01(an,—2,0)
and (here we shift upwards in the rows)
ny—2
92(a0,n2—2) 51,292(a1,n2—2) s ( H 9?(51,2)) 92(an1—1,n2—2)
k=0
: : s :
02(a0,0) B1,203(a1,0) (H e’f(ﬂl,z)>92<aml,o)
e'rtl—lk:?7'172
X202(@0my—1) A9 B1202(a1my—1) ... At < 11 9%(51,2)> 02(an, ~1,ny-1)
k=0

belong to the code.

Definition 8 ([6], page 1887, relation 2.18) Consider 01, 65 two automorphisms
of Fq and B12 € Fy an invertible element. The automorphism 0z extends to an
automorphism Os of Fy[X1,01] by 02(X1) = B12X1. This allows to define an
iterated skew polynomial ring Q5% = F [X1,61][Xs,0,). In Q5772 we
have Xla = Gl(a)Xl, XQCL = ag(a)Xg and X2X1 = 6172X1X2.

01,02, .
In Q57712 we obtain

i1
XoX| = (Br2X1P1,2X1 -+ B12X1) X2 = <H 9’16(51,2)>X{‘X2 (5)

k=0
%
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from which we decuce the following relation (x)
ni—1
Xzt (H 9?(51,2)> X1 Xo
k=0
np—1
03 (H 9'1“(51,2)) X3 XX
k=0

77,1—1
< 11 932_1(9’1“(61,2))) X3 X X

k=0

<ﬁ ﬁ 9%(9?(5172))>X1"1X§2 (%)

{=0 k=0

no ni
X2 Xl

01,

Theorem 2 Consider the skew polynomial ring Q. 62612 defined above. For

any A1, Az, B1,2 in Fy satisfying the relation

05" (M) 1T o0 o7 (A2)

N H H 05(07(B1,2)) T (6)
(=0 k=0

the set G = {X7' — A, X3? — Ao} is a left Grébner basis of the ideal T it

generates in Del’ez”ﬁl 2. For any left ideal J of Q91,92,B1.2 that contains T,

the code J /I C 291’92’61 2 /T is a 2-dimensional scaled skew constacylic code

Co,,05,8,., over Fy of length niny. The encoding E(w) = w —w’ € J of

the standard monomials of 991’02”61‘2/1 which are not standard monomials of

le 62,81, /T form a basis of Cy, 9,3, ,-

PROOF. In order to show that G is a Grobner basis we compute the reduction
of the polynomial SPoly(X7" — A1, X352 — A2)

no—1ni—1
= XpP(X7 =) - <H 1T 95(9’1“(51,2))))({“(?@2 —A2)

(=0 k=0

no—1ln;—1
(H I1 %wi“(ﬂl,g))))q“x;z — X3

=0 k=0

nag—1ni—1 ng—1ny—1
(H Hez (B1,2)) )X{LIX;LQ-i-(H H9€ (B1,2)) ) HEDPS
=0 k=0 =0 k=0

ng—1ny—1

=057 (M) X3® + (H I1 95(9’1“(51,2))) oyt (A2) X7

{=0 k=0

01 () s — (ﬂ I eé(@’f(m,»))@?luz»l

{=0 k=0

Therefore, if the relation (6) holds, then SPoly(X{*' — A1, X352 — A2) reduces
to 0, showing that (X7 — A1, X532 — A\g) is a Grobner basis.

13



For a 2-dimensional skew constacyclic code
T/ = M, X5 = o) € Q5772 /(X = Ay, X52 = o)

we consider again the F,-basis (2 )

X327t o xpxpet oL xpoixget

X, X1 X, S XTIX,

1 X, D ¢
of 53.31’02’51’2/(X1"1 — A1, X5 —\y) and represent the code word again in the basis
(1). By definition the code is an 931’92’ﬁ1’2-m0dule. The entry a; ; corresponds

to the monomial am-Xf*ngfl.
1) Multiplication on the left by X; results in

Xiai; Xi1X5 T = 0y (ai )XV X!

and therefore, for ¢ — 1 < n; — 1 in a cyclic shift and application of #; in the
first row, and in a shift and application of 8y of the ny — 1 first elements of all
other rows. In order to compute the affect on the last entry of the j 4 1-th row,
we need to reduce the expression 61 (a,—1,j—1)X " X3 using the Grobner basis
(X7 = A1, X5% — A\g). The calculations in relation (*) can be adapted to

j—1ni—1
XjX{" = (H II 95(9’1“(51,2))) X Xj
(=0 k=0
Therefore, to reduce the expression 6 (a7,_17j_1)X{L1X§, we have to substract
. j—1ni—1 B
01(an—1,j-1)X7" X3 — O1(an—1,-1) (H 1T 95(%(&,2))) X5 (X7 = M)
=0 k=0

which leads to
-1

j—1ny—1 A ‘
= (H 11 95(9’1“(61,2))) 05 (A1)01 (an-1,5-1) X3

£=0 k=0
showing that the first entries of the j 4+ 1-th row is
63(\1)
—1 yni—1
[Ti=o IT5Zo 05(01(B12))
2) Multiplication on the left by X5 results in

O1(an—1,j-1)-

Xoa:; X' X3 = Oa(ai;) Xo X XS
(i—1)—1

= 92(ai,j) H elf(ﬂLg) X{nilX%‘
k=0
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When j = nga we need to reduce the expression using X452 — Ag. For that
we have to substract to the above 02(a; 5,-1) ( 2;20 9?(5172)) XTl (X72 — \y)
which leads to

1—2
(H 9]16(51,2)> 017 (M2)Ba(ai, 1) X7
k=0

This shows that C' corresponds to the 2-dimensional scaled skew constacylic
code 091732,g1’2 | |

Example 7 Consider For = F3[w]/ (w® — w + 1), the automorphisms 6 (w) =
w3, O2(w) = w® and the element Bi2 = w® € Foy. The previous theorem shows
that G = {X} + 1, X3 + 1} is a Grébner basis of the ring 921’02’51'2 which
generates a left ideal T whose standard monomials belong to a quadratic staircase
of length 3. We now look for a left ideal J containing Z. The staircases of T
are represented by e and o and those of J by e:

Using the algorithm of Section 2 we found 1365 left ideals J C 931’92"31’2 con-
taining L. An example of such a code is given by:

J = (X?+1, X7 +w''X1 Xy + w0 Xo + 0P X7 + 0 X + w*,

X7Xo +w X1 Xo + w'B X + 0P X7 + 0B X + w)

This scaled skew consta-cylic code Cy, g, 8, , is an optimal [9,4,6] code over Far.

Note that the leading monomials correspond to three upper corners of the
staircase of J. In order to compute a basis of the corresponding scaled skew
consta-cylic code Cy, g, 5, , we encode the 4 standard monomials eg 2 = X3,€19 =
X3X1,e00 = X3X}, 691 = XoX? of I that are not standard monomials of J by
computing E(e; ;) = e; j —€;2 € J. We obtain the 4 code words that generate
the code:

Eleo,2) X3 +w' X1 Xs + 0 Xo + 0w X7 + 0 Xq + 0w
Ele12) = X1X3+wX1Xo+wXe+w'X? +w?X; +w?
Elesn) = XiX5+w?X1Xo+wXs +w? X7+ 00X +w”
E(ez1) X12X2—|—w7X1X2 +wB Xy + wXE + X +w

which can be represented as matrices using the corresponding basis form (2)

1 0 0 0 1 0
My = w? w® 0 , Myo = w wd® 0 ,
w2 wl® w22 wt w? w?
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0 0 1 0 0 O
M272 = 11)3 U}2 0 y M271 = U)lg w7 1

w? wlﬁ w21 w ’U)S U}3

Multiplication of any codeword by X, from the left results in a codeword.
For E(eo2) we get:

X1 E(ep2) = X1 X2 + w2 X7 Xo + 0 X1 Xo + w X7 + w’ X7 + w3 X,
Reducing with the Grobner Basis G of T we obtain
el P
X1E(eos) = X1X2 +w®2X?Xo + 0 X1 Xo + w®X? + w3 X, + w.

When we represent this code word as matrices using the corresponding basis (2),
we get

0 1 0
0 w20 w22
w w? W

This matriz can also be constructed using the first rule shown after Definition 7.

Multiplication of any codeword by Xo from the left results in a codeword.
For E(eg2) we get:

XoE(ep2) = X3+ w?X; X3 + 0w X3 + w2 X7 Xo + w X1 X + w3 X,
Reducing with the Grobner Basis G of T we obtain

XoE(ena) = w2 X1 X2 + w®X2 + w2X2 X, + w X Xp + wP X + 2

and in matrixz representation

w2 w? 0
w2 wll w2
2 0 0

This matrix can also be constructed using the second rule shown after Defini-
tion 7.

Example 8 Consider F15 = Fa[w]/ (w* +w + 1), the automorphisms 6 (w) =
w?, 0a(w) = w* and the element By o = w € Fi5. The set

G ={X} +w* X3 +w'?}
is a Grobner basis of the ring le’%”@” which generates a left ideal T whose
standard monomials belong to a quadratic 2 X 3-staircase. We now look for a left
ideal J containing I containing 3 standard monomials. There are two possible
staircases :

and
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For the first staircase, we found 3 left ideals J C 921’92’51’2 containing L, using

the algorithm of Section 2. Fach of these left ideals gave a [6, 3, 2]-code, all three
codes are equivalent. An example of such a code is given by:

J = (X§’+w127 X1+w)

For the second staircase, we found 12 left ideals. Six of these left ideals gave a
[6, 3, 3]-code, the other siz an optimal [6,3,4]-code. The codes in both sets are
equivalent codes. An example of an optimal code is given by:

J = (X3 +uiXo + w'X; +1, X1 X + 0’ Xs + w' Xy +w’, X7 +w?).

This approach extends to the case of m-variables where we need to consider
m automorphism 61, ... ,0,, of F, and extend recursively §; to an automorphism
éi of Fq[Xl,Hl] e [Xl,él} by él(Xj) = 6j,in where Bj,i € F;; ([6}, page 1887,
relation 2.18). In the polynomial ring F,[X1,6:]...[X,,0,] we have X;a =
0;(a)X; and X;X; = 3;,X;X,; for j <. In this ring we can choose (ZL) values
Bj.i- In order to test if {X7"* — Aq,..., X — A} is a Grébner basis we need
to check (7)) relations of the form (6), but we can also freely choose the (%)
invertible constants 5; ; (1 < i < j < n;).

6 Conclusion

In [8] we showed that a Grobner basis for left ideals can be defined for various
iterated skew polynomials that satisfy the requirements of definition 5, including
iterated skew polynomials with derivations or over chain rings. This allows many
generalizations.
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