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A Gröbner basis approach to m-dimensional skew (consta-) cyclic codes Dedicated to

. In this paper we use a Gröbner basis approach in order to generalize algebraic linear codes and m-dimensional cyclic codes to the skew polynomial rings setting. The approach encompass all previous results on m-dimensional (consta-)cyclic codes and allows for many generalizations.

Introduction

Definition 1 A code C of length n ∈ N over a field F is a nonempty subset of F n . The elements of C are called codewords. The code C is a linear code if it is an F-subspace of F n . If F is a finite field F q , then a linear code of length n and dimension k is a k-dimensional subspace of F n q . A code C of length n ∈ N over a finite field F q is a nonempty subset of F n q . The elements of C are called codewords. The code C is a linear code if it is a k-dimensional F q -subspace of F n q . The Hamming distance between two vectors of F n q is defined as the number of coordinates at which the two vectors differ. The minimal distance d of a k-dimensional linear code C ⊂ F n q is defined to be the minimum Hamming distance between two distinct codewords of C. In this case we say that C is a code with parameters [n, k, d] q .

Definition 2 An F q -code of length n 1 n 2 • • • n m is an m-dimensional constacylic code if for any code word, viewed as a particular m-dimensional matrix of size n 1 × n 2 × • • • × n m , is invariant under application of a cyclic shift in the dimension i and multiplication of the resulting first entry by λ i ∈ F q .

Example 1 A length n 1 n 2 code over F q is a 2-dimensional constacylic code if there is a basis of F n1n2 q arranged in an n 1 × n 2 array such that for any code word . . . a n1-1,1 a 0,0 a 1,0 . . . a n1-1,0 λ 2 a 0,n2-1 λ 2 a 1,n2-1 . . . λ 2 a n1-1,n2-1

       a 0,n2-1 a 1,n2-1 . . . a n1-1,n2-1 a 0,n2-2 a 1,n2-2 . . . a n1-
      
belong to the code for some λ 1 , λ 2 ∈ F q . Here the firt shift is to the right and the second shift is upwards for reasons that are connected to the representation of standard monomials and that will soon become apparent.

Let F q be a field and R = F q [X 1 , . . . X m ] the polynomial ring in n ≥ 1 variables. We refer to [START_REF] Cox | Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra[END_REF] for the definition of an admissible ordering < on N m . A admissible ordering induces an admissible ordering < on the set of monomials

M = {X α = X α1 1 X α2 2 • • • X αm m | α i ∈ N} in F q [X 1 , . . . X m ] via X α < X β if and only if α < β. For any expression f = α∈N m c α X α ∈ F q [X 1 , . . . , X m ]
where only finitely many c α are nonzero, the monomial X γ = max{X α |c α = 0} is the leading monomial of f and c α is the leading coefficient of f , denoted respectively by lm(f ) and lc(f ). The monomial X α ∈ M is divisible by X β if X α = lm(X ω X β ) for some X ω ∈ M and the least common multiple of X α and X β is defined as lcm(X α , X β ) = X γ where γ i = max(α i , β i ).

A basis G = {g 1 , . . . , g m } of and ideal I ⊂ R is a Gröbner basis if and only if {LM(g 1 ), . . . , LM(g m )} generates the ideal LM(I) = {LM(f )|f ∈ I} of leading monomials of I. If G = {g 1 , . . . , g m } is a Gröbner Basis, then the reduction f G of f by G is unique. The standard monomials of I are the set of monomials that do not belong to LM(I). The quotient R/I is a finite dimensional k-vector space if and only if G contains a polynomial with leading monomial X ni i for each i ∈ {1, . . . , m}. In this case the standard monomials form a basis of the k-vector space R/I (see [START_REF] Cox | Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra[END_REF]).

Example 2 If for I ⊂ F q [X, Y ] we have dim Fq (F q [X, Y ])/I) < ∞, then the standard monomials X i Y j can always be represented as a staircase of • points (i, j) in the upper half plane of the form

• • • • • • • • • • • • • • • • • • • • • • • • •
For two ideals I ⊂ J ⊂ R the correspondance of ideals shows that J/I is a submodule of R/I. The ideal J/I ⊂ R/I is F q -subspace of R/I. The isomorphism (R/I)/(J/I) ∼ = R/J shows that the quotient of the vector spaces (R/I)/(J/I) is isomorphic to R/J. The ideal I is a zero dimensional if the F q -vector space R/I of finite dimension n. In this case image π(J) = J/I under π : R →: R/I is a linear code of length n = dim Fq (R/I) and dimension k = n -dim Fq (R/J) (see [START_REF] Cox | Using Algebraic Geometry[END_REF]). Since I ⊂ J, the standard monomials of J (a basis of R/J) are contained in the set of standard monomials of I (a basis of R/I). The above isomorphisms show that standard monomials of R/I which are not standard monomials of R/J form a basis of code π(J). We denote w J the reduction of w ∈ R with a Gröbner basis of J. From ( [START_REF] Cox | Using Algebraic Geometry[END_REF], Theorem 3.9) we get that the information position are the standard monomials of I that are not standard monomials of J and that E(w) = w -w J (which is always an element of J) is an encoding of any linear combination w ∈ J/I of information positions. Definition 3 (see [START_REF] Cox | Using Algebraic Geometry[END_REF]) Consider the ring R = F q [X 1 , . . . X m ] and two zerodimensional ideals I ⊂ J ⊂ R. We call the submodule J/I of R/I a quotient ideal code of F q [X 1 , . . . X m ]. The parameters [n, k] of this code are n = dim(R/I) and k = dim(R/J).

For the basis G = {X n1 1 -λ 1 , . . . , X nm m -λ m } all S-polynomial (see [START_REF] Cox | Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra[END_REF]) [START_REF] Cox | Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra[END_REF]). Therefore the basis G is a Gröbner basis of I ⊂ F q [X 1 , . . . X m ] (see [START_REF] Cox | Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra[END_REF]).

S(f i , f j ) = X nj j (X ni 1 -λ i ) -X ni i (X nj 1 -λ j ) = X ni i λ j -X nj j λ i reduce to S(f i , f j ) G = λ i λ j -λ j λ i = 0 (see
Example 3 The F q [X 1 , X 2 ]-module J/(X n1 1 -λ 1 , X n2 2 -λ 2 ) ⊂ F q [X 1 , X 2 ]/(X n1 1 -λ 1 , X n2 2 -λ 2 )
corresponds to 2-dimensional constacyclic code. In order to see this we consider the following F q -basis of

F q [X 1 , X 2 ]/(X n1 1 -1, X n2 2 -1) : X n2-1 2 X 1 X n2-1 2 . . . X n1-1 1 X n2-1 2 . . . . . . . . . . . . X 2 X 1 X 2 . . . X n1-1 1 X 2 1 X 1 . . . X n1-1 1 (2)
and represent the code word [START_REF] Boucher | Self-dual skew codes and factorization of skew polynomials[END_REF]. This basis reflects the staircases of the standard monomials of I represented by • and • which contains the standard monomials of J represented by •. For example

n1-1 i=0 n2-1 j=0 a i,j X i 1 X j 2 as in
n 2 = 3 • • • • • • • • • • • • • • • • (0, 0) n 1 = 3
By construction the code is an F q [X 1 , X 2 ]-module. We now show that is also a 2-dimensional constacyclic code. Multiplication by X 1 of the first n 1 -1 columns results in a shift of of those columns to the right. Since

X 1 a n1-1,j X n1-1 1 X j 2 = a n1-1,j X n1
1 X j 2 is reduced to λa n1-1,j X j 2 by the Gröbner basis, we see that multiplication by X 1 of the last column results in a shift to the first column and a multiplication by λ 1 . The action on the rows results from multiplication by X 2 .

The example shows that all F q [X 1 , X 2 , . . . , X m ]-modules of the form J/I ⊂ F q [X 1 , X 2 , . . . , X m ]/I where I = (X n1 1 -λ 1 , . . . , X nm m -λ m ) are m-dimensional constacyclic code. The m-dimensional cyclic code J/I ⊂ F q [X 1 , X 2 , . . . , X m ]/I where I = (X n1

1 -1, . . . , X nm m -1) have been extensively studied [START_REF] Imai | A Theory of Two-Dimensional Cyclic Codes[END_REF][START_REF] Güneri | Multidimensional cyclic codes and Artin-Schreier type hypersurfaces over finite fields[END_REF]. For any zero-dimensional ideal I ⊂ R the ideal J = (f 1 , • • • , f s ) + I determines a quotient ideal code J/I ⊂ R/I, but the parameters [n, k] of the code can only be determined using a Gröbner basis for I and J and therefore cannot be prescribed in the construction of [START_REF] Cox | Using Algebraic Geometry[END_REF], Chapter 9 or [START_REF] Saleemi | Coding Theory via Gröbner Base[END_REF]). In the next section we will show how to prescribe the parameter [n, k] during the construction of the code.

The variety of quotient ideal codes of given length and dimension

The following Gröbner basis approach allows to compute all finite dimensional ideals I ⊂ J ⊂ F q [X 1 , . . . X m ] with prescribed staircases. In the following we fixe a monomial ordering and two staircases of two finite dimensional ideals I ⊂ J, such that the staircase of I is contained in the staircase of J. For example

• • • • • • • • • • • • • • • • • • • • • • • • •
We need to prescribe the leading monomials, denoted by * below, of the ideal of leading monomials in both cases:

for

I: * • • • • • • * • • • • • * • • • • • • • • • • *
and for J:

• • • • • • • • • • * • • • • • • * • • • • • * •
This gives the following algorithm:

1. (a) Choice of J: For each prescribed leading monomial

X n 1, 1 • • • X n m, m
of a generator of J we must have an element in the Gröbner basis of J of the form

g m = X n 1, 1 • • • X n m, m + i α ,i X n1,α ,i 1 • • • X nm,α ,i m
(we put all possible lower monomials with unknown coefficients) for J. Since the leading monomials of the basis B = (g 1 , . . . , g s ) of J have unitary leading coefficients, we can reduce all S-polynomials S(g i , g j ) modulo B. This will lead to polynomials in X 1 , . . . , X m with polynomial coefficients in the unknown α ,i . Setting them to 0 gives a polynomial system S 1 for the unknown α ,i whose solutions are all possible J with this prescribed staircase. (b) Choice of I:

i. We can either fix the generators of I, for example of the form X ni i -1 in order to obtain m-dimensional cyclic codes ii. or proceed as above: For each prescribed leading monomial

X n1,ρ 1 • • • X nm,ρ m
of a generator of I we must have an element in the Gröbner basis of J of the form a

f ρ = X n1,ρ 1 • • • X nm,ρ m + β ρ,i X n 1,β ρ,i 1 • • • X n m,β ρ,i m
(we put all possible lower monomials with unknown coefficients) for generators of I. Since the leading monomials of the basis B = (f 1 , . . . , f t ) of I has unitary leading coefficients, we can reduce all S-polynomials S(f i , f j ) modulo B . This will lead to polynomials in X 1 , . . . , X m with polynomial coefficients in the unknown β ρ,i . Setting them to 0 gives a polynomial system S 2 for the unknown β ρ,i whose solutions are all possible I with this prescribed staircase.

2. Imposing I ⊂ J: Since the leading monomials of the basis B = (g 1 , . . . , g s ) of J has unitary leading coefficients, we can reduce all generator polynomials f i of I in the above basis for I modulo B. Since f i ∈ J if and only if the reduction of f i by a Gröbner basis of J is zero, this will lead to polynomials in X 1 , . . . , X m with polynomial coefficients in the unknown α ,i and β ρ,i . Putting them to 0 gives a polynomial system S 3 for the unknown α ,i and β ρ,i .

3. The solutions of the polynomial system S 1 ∪S 2 ∪S 3 gives all possible ideals I ⊂ J ⊂ F q [X 1 , . . . X m ] for the prescribed staircases.

Example 4 Consider F 4 = F 2 [w]/ w 2 + w + 1 . Then G = {X 2 1 + w, X 2 2
+ w} is a Gröbner basis which generates an ideal I ⊂ F 4 [X 1 , X 2 ] whose standard monomials belong to a quadratic staircase of length 2. We now look for an ideal J containing I. The code J/I ⊂ F 4 [X 1 , X 2 ]/I has dimension 2 if and only if J has 2 standard monomials. There are exactly 2 possible staircases for a 2-dimensional cyclic code with parameters [4, 2] 4 :

• • • • • • • • • • • • • • • • • • For the first staircase we found one ideal J ⊂ F 4 [X 1 , X 2 ] containing I; it de- fines a [4, 2, 2]-code.
For the second staircase we found four ideals, two of them produce a [4, 2, 2]-code, both are equivalent to the one already found. The two remaining ideals produce two equivalent [4, 2, 3]-codes. An example of a [4, 2, 3]code is given by J

= (X 2 + w 2 X 1 + 1, X 2 1 + w). Example 5 Consider F 27 = F 3 [w]/ w 3 -w + 1 . Then G = {X 3 1 -1, X 3 
2 -1} is a Gröbner basis which generates an ideal I ⊂ F 27 [X 1 , X 2 ] whose standard monomials belong to a quadratic staircase of length 3. We now look for an ideal J containing I. The code has dimension 4 = 9-5 if and only if J has 5 standard monomials. There are exactly 3 possible staircases for a 2-dimensional cyclic code with parameters [START_REF] Güneri | Multidimensional cyclic codes and Artin-Schreier type hypersurfaces over finite fields[END_REF][START_REF] Dumas | An introduction to noncommutative polynomial invariants, CIMPA course "Homological methods and representations of noncommutative algebras[END_REF] 27 :

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
where the staircases of I are represented by • and • and those of J by •.

In the following discussion we say that two codes are equivalent if they have the same weight enumerator. For the first staircase we found 1 ideal [START_REF] Güneri | Multidimensional cyclic codes and Artin-Schreier type hypersurfaces over finite fields[END_REF][START_REF] Cox | Using Algebraic Geometry[END_REF][START_REF] Cox | Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra[END_REF] 27 . For the second staircase we found 27 ideals, they give 3 (equivalent) [START_REF] Güneri | Multidimensional cyclic codes and Artin-Schreier type hypersurfaces over finite fields[END_REF][START_REF] Cox | Using Algebraic Geometry[END_REF][START_REF] Cox | Using Algebraic Geometry[END_REF]-codes and 24 (equivalent) [9, 4, 5]-codes. An example of a [9, 4, 5]-code is given by

J = X 3 2 + 2, X 1 X 2 2 + 2X 2 2 + X 1 X 2 + 2X 2 2 + X 1 + 2, X 2 1 + X 1 + 1 and the parameters of the code J/I ⊂ F 27 [X 1 , X 2 ] are
J = X 3 2 + 2, X 1 X 2 + 2X 2 + wX 2 1 + w 3 X 1 + w 9 , X 3 1 + 2 .
The third staircase produced 729 left ideals; 3 of them produced [START_REF] Güneri | Multidimensional cyclic codes and Artin-Schreier type hypersurfaces over finite fields[END_REF][START_REF] Cox | Using Algebraic Geometry[END_REF][START_REF] Cox | Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra[END_REF]-codes, equivalent to the one already found, 3 of them produced [START_REF] Güneri | Multidimensional cyclic codes and Artin-Schreier type hypersurfaces over finite fields[END_REF][START_REF] Cox | Using Algebraic Geometry[END_REF][START_REF] Cox | Using Algebraic Geometry[END_REF]-codes, equivalent to the one already found, 219 of them produced [START_REF] Güneri | Multidimensional cyclic codes and Artin-Schreier type hypersurfaces over finite fields[END_REF][START_REF] Cox | Using Algebraic Geometry[END_REF][START_REF] Cox | Using Algebraic Geometry[END_REF]-codes, and extend the [9, 4, 5]-codes to three not equivalent codes. The 504 remailing ideals produced [START_REF] Güneri | Multidimensional cyclic codes and Artin-Schreier type hypersurfaces over finite fields[END_REF][START_REF] Cox | Using Algebraic Geometry[END_REF][START_REF] Fernando | Automorphisms for Skew PBW Extensions and Skew Quantum Polynomial Rings[END_REF]-codes, all of them are equivalent. An example of a [START_REF] Güneri | Multidimensional cyclic codes and Artin-Schreier type hypersurfaces over finite fields[END_REF][START_REF] Cox | Using Algebraic Geometry[END_REF][START_REF] Fernando | Automorphisms for Skew PBW Extensions and Skew Quantum Polynomial Rings[END_REF]-code is given by

J = X 2 2 + w 2 X 1 X 2 + w 25 X 2 + wX 2 1 + w 17 X 1 + w 6 , X 2 1 X 2 + X 1 X 2 + X 2 + 2X 2 1 + 2X 1 + 2, X 3 1 + 2 .
Up to equivalence, we have found 6 different codes.

Skew left quotient ideal code

We first recall some basic fact concerning skew polynomial rings. Let A be a ring with an automorphism θ, then a θ-derivation is a map δ : Starting from A, an automorphism θ of A and a θ-derivation on A, we define a ring structure on the set:

A → A such that
R = A[X; θ, δ] = {a n X n + . . . + a 1 X + a 0 | a i ∈ F q and n ∈ N} .
The addition in R is defined to be the usual addition of polynomials and the multiplication is defined by the basic rule X a = θ(a) X + δ(a) (a ∈ F q ) and extended to all elements of R by associativity and distributivity. According to [START_REF] Ore | Theory of Non-Commutative Polynomials[END_REF] R is a ring called Ore ring or skew polynomial ring. The classical commutative polynomial ring corresponds to A commutative, θ = id and δ : a → 0. For a finite field F q and an automorphism θ ∈ Aut(F q ) the univariate skew polynomial ring F q [X; θ] is a left and right euclidean ring (see [START_REF] Ore | Theory of Non-Commutative Polynomials[END_REF]). By repeating this construction we obtain the iterated skew polynomial ring in non commutative variables over A:

R m = (. . . ((A[X 1 ; θ 1 , δ 1 ])[X 2 ; θ 2 , δ 2 ]) . . .)[X m ; θ m , δ m ]. (3) 
where

R 0 = A, θ i is an automorphism of R i-1 and δ i is a θ i -derivation of R i-1 .
The following is a generalization of Definition 3 and Section 5 of [START_REF] Chaussade | Codes correcteurs avec les polynômes tordus[END_REF]:

Definition 4 Let A = F q and R m be definied as in [START_REF] Cox | Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra[END_REF]. For two zero-dimensional left ideals I ⊂ J ⊂ R m we call the left submodule

J /I of R m /I a skew left quotient ideal code of R m . The parameters [n, k] of this code are n = dim(R m /I) and k = dim(R m /J ).
In [START_REF] Gallego | Gröbner Bases for Ideals of σ-PBW Extensions[END_REF]8] a theory of Gröbner basis is presented for a large class of skew polynomial rings, making the above definition effective for all such rings. As in the commutative case we obtain that the information positions are the standard monomials of the left ideal I that are not standard monomials of the left ideal J and that E(w) = w -w J (which is always an element of J ) is an encoding of any linear combination w ∈ J /I of information positions. We can compute the variety of m-dimension skew left quotient ideal codes of a given dimension using the approach of Section 2.

In order to obtain examples of codes we will construct families of skew polynomial rings satisfying the criteria given in [START_REF] Gallego | Gröbner Bases for Ideals of σ-PBW Extensions[END_REF]8] for the existence of a Gröbner basis.

As in the commutative case, a monomial ordering induces an ordering ≺ on the set of monomials M

= {X α = X α1 1 X α2 2 • • • X αm m | α i ∈ N} (
because of the non commutativity, the variables need to be in this precise order) via X α ≺ X β if and only if α < β. For any expression f = α∈N m c α X α where only finitely many constants c α are nonzero, the monomial X γ = max{X α |c α = 0} is the leading monomial of f and c α is the leading coefficient of f , denoted respectively by lm(f ) and lc(f ). Then the least common multiple of X α and X β is defined as lcm(X α , X β ) = X γ where γ i = max(α i , β i ). We will be interested in left ideals I of R m . From [START_REF] Gallego | Gröbner Bases for Ideals of σ-PBW Extensions[END_REF]8] we obtain that Gröbner base of left ideals exist for the following type of rings (sometimes called σ-PBW Extensions):

Definition 5 Let R m = A[X 1 ; θ 1 , δ 1 ] • • • [X m ; θ m , δ m ]
be an iterative skew polynomial ring with m ∈ N as defined above. We call the ring R m left-lexsolvable, for the lexicographical order 1 ≺ X 1 ≺ . . . ≺ X m , if 1. for any a ∈ A and any i ∈ {1, . . . , m}, X i a = bX i + p i,a where b ∈ A and p i,a ∈ R i-1 ;

2. for all j < i in {1, . . . , m}, X i X j = bX j X i + p i,j where b ∈ A and all monomials in p i,j are ≺ X i X j .

We follow the definition of an S-polynomial given in ([19], Definition 2.5). If LM(f ) = X α , LM(g) = X β , X γ = lcm(X α , X β ), t f = X γ-α and t g = X γ-β , then SPoly(f, g) = t f f -c t g g, where c = lc(t f f ) lc(t g g) .

A Gröbner basis is now constructed the usual way using the classical Buchberger algorithm.

m-dimensional skew cyclic codes with commuting variables

Recently several authors generalized 2-D (consta-)cyclic codes to skew polynomial rings R[x, y; ρ, θ] whose variables x and y commute [START_REF] Mostafanasab | 2-D skew constacyclic codes over R[x, y; ρ, θ[END_REF][START_REF] Sepasdar | Some notes on the characterization of two dimensional skew cyclic codes[END_REF][START_REF] Xiuli | 2-D skew cyclic codes over F q [x, y; ρ, θ[END_REF][START_REF] Sharma | A class of 2D skew-cyclic codes over F q +uF q[END_REF]. In those papers the authors use a canonical form of an element of an ideal without using the theory of Gröbner basis. In this section we give a unified Gröbner basis approach, a generalization of the approach in [START_REF] Chaussade | Codes correcteurs avec les polynômes tordus[END_REF], that encompass all previous results and allows for many generalizations.

Definition 6 A code over F q of length n 1 n 2 is a 2-dimensional skew constacylic code if there is a basis of F n1n2 q , non zero elements λ 1 , λ 2 in F q and automorphisms θ 1 and θ 2 of F q such that for any code word

     a 0,n2-1 a 1,n2-1 . . . a n1-1,n2-1 . . . . . . . . . . . . a 0,1 a 1,1 . . . a n1-1,1 a 0,0 a 1,0 . . . a n1-1,0      , both      λ 1 θ 1 (a n1-1,n2-1 ) θ 1 (a 0,n2-1 ) . . . θ 1 (a n1-2,n2-1 ) . . . . . . . . . . . . λ 1 θ 1 (a n1-1,1 ) θ 1 (a 0,1 ) . . . θ 1 (a n1-2,1 ) λ 1 θ 1 (a n1-1,0 ) θ 1 (a 0,0 ) . . . θ 1 (a n1-2,0 )      and      θ 2 (a 0,n2-2 ) θ 2 (a 1,n2-2 ) . . . θ 2 (a n1-1,n2-2 ) . . . . . . . . . . . . θ 2 (a 0,0 ) θ 2 (a 1,0 ) . . . θ 2 (a n1-1,0 ) λ 2 θ 2 (a 0,n2-1 ) λ 2 θ 2 (a 1,n2-1 ) . . . λ 2 θ 2 (a n1-1,n2-1 )     
belong to the code. The generalization to m-dimensional skew constacylic code is straigthforward.

Lemma 1 (cf. [START_REF] Chaussade | Codes correcteurs avec les polynômes tordus[END_REF]) In a finite field F q of order q we consider the automorphisms θ i ∈ Aut(F q ) where i ∈ {1, . . . , m}. There exists a skew polynomial ring

K θ1,...,θm m = (• • • ((F q [X 1 ; θ 1 ])[X 2 ; θ 2 ]) • • • [X m ; θ m ]) ( 4 
)
whose elements are the finite sums of the form a i1,...,in X i1 1 X i2 2 • • • X im m where the addition in R is the usual addition of multivariate polynomials and the multiplication is defined by the rules X i a = θ i (a)X i and X i X j = X j X i and extended to K m by distributivity.

Proof. We proceed by induction on m. Since the automorphism θ 1 and θ 2 commute in Aut(F q ), we can extend θ 2 by X 1 → X 1 to an automorphisms of

F q [X 1 ; θ 1 ] ([17], Theorem 2.2) and define K θ1,θ2 2 = (F q [X 1 ; θ 1 ])[X 2 ; θ 2 ]. Suppose that K -1 θ1,...,θ -1 has been defined. Using again ([17], Theorem 2.2) we can extend θ by X 1 → X 1 , . . . , X -1 →, X -1 to an automorphism of K θ1,...,θ -1 -1
and therefore define K θ1,...,θ -1 ,θ . The result follows by induction.

The ring K θ1,...,θm m is left-lex-solvable (definition 5). Therefore, using lex order, we can define a left Gröbner basis for any left ideal.

Theorem 1 We keep the notation of the previous Lemma 1 to define the ring K θ1,...,θm m whose variables X

i commute X i X j = X j X i . For λ 1 , λ 2 , . . . , λ m in F q such that θ ni i (λ j )λ i = θ nj j (λ i ) the set G = {X n1 1 -λ 1 , X n2 2 -λ 2 , .
. . , X nm m -λ m } is a left Gröbner basis of the left ideal I that it generates. For any left ideal J containing I we obtain an m-dimensional constacyclic code C = J /I ⊂ K θ1,...,θm m /I over F q of length n 1 n 2 • • • n m . The encoding E(w) = w -w J ∈ J of the standard monomials of K θ1,...,θm m /I which are not standard monomials of K θ1,...,θm m /J form a basis of code C.

Proof. In the ring K θ1,...,θm m the S-polynomial S(

f i , f j ) = X nj j f i -X ni i f j of f i = X ni i -λ i and f j = X nj j -λ j is θ ni i (λ j )X ni i -θ nj j (λ i )X nj j .
The reduction of S(f i , f j ) by the G is obtained by substracting

θ ni i (λ j )f i -θ nj j (λ i )f j = θ ni i (λ j )λ i -θ nj j (λ i )λ j
and is zero according to the assumption in the lemma. This shows that G is a left Gröbner basis of the left ideal I ⊂ K θ1,...,θm m generated by G. For the remainder of the proof we assume for simplicity that m = 2. We consider the F q -basis of

K θ1,θ2 2 /(X n1 1 -1, X n2 2 -1)
given by :

X n2-1 2 X 1 X n2-1 2 . . . X n1-1 1 X n2-1 2 . . . . . . . . . . . . X 2 X 1 X 2 . . . X n1-1 1 X 2 1 X 1 . . . X n1-1 1
and represent the code word

n1-1 i=0 n2-1 j=0 a i,j X i 1 X j 2 as in definition 6. The code C = J /I ⊂ K θ1,θ2 2 /I is a left K θ1,θ2 2 -module.
Multiplication of a i,j X i 1 X j 2 on the left by X 1 leads to

X 1 a i,j X i 1 X j 2 = θ 1 (a i,j )X i+1 1 X j 2
and therefore to an application of θ 1 and a right shift for i < n 1 -1. For X 1 a i,j X n1-1 1 X j 2 = θ 1 (a i,j )X n1 1 X j 2 we must reduce the expression using the basis G by substracting θ 1 (a i,j )X j 2 (X n1 1 -λ 1 ) which gives θ 1 (a i,j )X j 2 . We obtain the first property of skew constacyclic codes stated in the above definition.

Multiplication of a i,j X i 1 X j 2 on the left by X 2 leads to

X 2 a i,j X i 1 X j 2 = θ 1 (a i,j )X i 1 X j+1 2
and therefore to an application of θ 2 and a upward shift for j < n 2 -1. For

X 2 a i,j X i 1 X n2-1 2 = θ 2 (a i,j )X i 1 X n2
2 we must reduce the expression using the basis G by substracting θ 2 (a i,j )X i 1 (X n2 2 -λ 2 ) which gives θ 2 (a i,j )X i 1 . We obtain the second property of skew constacyclic codes stated in the above definition.

Example 6 Consider F 16 = F 2 [w]/ w 4 + w + 1 , the automorphisms θ 1 (w) = w 2 , θ 2 (w) = w 4 . In the skew polynomial ring K θ1,θ2

2 we have X 1 X 2 = X 2 X 1 , X 1 w = θ 1 (w)X 1 = w 2 X 1 and X 2 w = θ 2 (w)X 2 = w 4 X 2 .
The previous theorem shows that G = {X 2 1 + w 3 , X 3 2 + w 12 } is a left Gröbner basis of the left ideal I that G generates in K θ1,θ2

2

. The standard monomials of I belong to a rectangular 2 × 3-staircase. our goal is to construct a 2-dim skew constacyclic code J /I ⊂ 10 K θ1,θ2 2 /I for the parameters [START_REF] Fernando | Automorphisms for Skew PBW Extensions and Skew Quantum Polynomial Rings[END_REF][START_REF] Cox | Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra[END_REF]. The left ideal J we are looking for must contain 3 standard monomials, which leads to the staircase

• • • • • • • • • • • •
We found 12 left ideals J . Six of these left ideals gave a [START_REF] Fernando | Automorphisms for Skew PBW Extensions and Skew Quantum Polynomial Rings[END_REF][START_REF] Cox | Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra[END_REF][START_REF] Cox | Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra[END_REF]-code, the other six an optimal [6, 3, 4]-code. One of the optimal codes is given by

J = X 2 2 + w 12 X 2 + w 9 X 1 + w 5 , X 1 X 2 + w 4 X 2 + w 6 X 1 + w 7 , X 2 1 + w 3 .
The algorithm presented in Section 2, applied to left ideals, allows to compute all m-dimensional skew constacyclic codes of any given length and dimension.

5

m dimensional skew constacyclic codes with non commuting variables

In the following we will introduce relations of the form X j X i = β i,j X i X j , in order to be able to use more values of λ i such that {X n1 1 -λ 1 , . . . , X nm m -λ m } is a Gröbner basis and to use more iterated skew polynomial rings. This will lead to many more codes. The discussion in this section show that many more generalizations of this type are possible. Definition 7 A length n 1 n 2 code over F q is a 2-dimensional scaled skew constacylic code if there exist λ 1 and λ 2 in F q \ {0} such that any code word, viewed as a particular m-dimensional matrix of size n 1 n 2 , is invariant under the following two operations 1. application of (a) a cyclic shift in the columns (b) application of the automorphism θ 1 to all entries of the code word (c) multiplication of j-th entry of the resulting first column by

θ n2-j 2 (λ 1 ) n2-j-1 =0 n1-1 k=0 θ 2 (θ k 1 (β 1,2 ))
. (d) multiplication of the new bottom row by λ 2 ∈ F * q and the j-th column by j-2 k=0 θ k 1 (β 1,2 ) for some β 1,2 ∈ F * q and j ∈ {2, . . . , n 1 }.

application of

We denote such a code C θ1,θ2,β1,2 .

An n 1 n 2 -dimensional code over F q is a 2-dimensional skew scaled cyclic code over F q if there is a basis of F n1n2 q and fixed automorphism θ 1 and θ 2 of F q such that for any code word

     a 0,n2-1 a 1,n2-1 . . . a n1-1,n2-1 . . . . . . . . . . . . a 0,1 a 1,1 . . . a n1-1,1 a 0,0 a 1,0 . . . a n1-1,0     
, both (here we shift in the columns to the right)

               θ n 2 -1 2 (λ 1 ) (n 2 -1)-1 =0 n 1 -1 k=0 θ 2 (θ k 1 (β1,2)) θ1(an 1 -1,n 2 -1) θ1(a0,n 2 -1) . . . θ1(an 1 -2,n 2 -1) . . . . . . . . . . . . θ 2 (λ 1 ) n 1 -1 k=0 θ k 1 (β1,2) θ1(an 1 -1,1) θ1(a0,1) . . . θ1(an 1 -2,1) λ1θ1(an 1 -1,0) θ1(a0,0) . . . θ1(an 1 -2,0)               
and (here we shift upwards in the rows)

               θ2(a0,n 2 -2) β1,2θ2(a1,n 2 -2) . . . n 1 -2 k=0 θ k 1 (β1,2) θ2(an 1 -1,n 2 -2) . . . . . . . . . . . . θ2(a0,0) β1,2θ2(a1,0) . . . n 1 -2 k=0 θ k 1 (β1,2) θ2(an 1 -1,0) λ2θ2(a0,n 2 -1) λ θ 1 2 β1,2θ2(a1,n 2 -1) . . . λ θ n 1 -1 1 2 n 1 -2 k=0 θ k 1 (β1,2) θ2(an 1 -1,n 2 -1)               
belong to the code.

Definition 8 ([6], page 1887, relation 2.18) Consider θ 1 , θ 2 two automorphisms of F q and β 1,2 ∈ F * q an invertible element. The automorphism θ 2 extends to an automorphism θ2 of F q [X 1 , θ 1 ] by θ2 (X 1 ) = β 1,2 X 1 . This allows to define an iterated skew polynomial ring Q θ1,θ2,β1,2 2

= F q [X 1 , θ 1 ][X 2 , θ2 ]. In Q θ1,θ2,β1,2 2
we have X 1 a = θ 1 (a)X 1 , X 2 a = θ 2 (a)X 2 and X 2 X 1 = β 1,2 X 1 X 2 .

In Q θ1,θ2,β1,2 2 we obtain For E(e 0,2 ) we get:

X 2 X i 1 = (β 1,2 X 1 β 1,2 X 1 • • • β 1,2 X 1 i )X 2 = i-1 k=0 θ k 1 (β 1,2 ) X i 1 X 2 (5) 
X 1 E(e 0,2 ) = X 1 X 2 2 + w 22 X 2 1 X 2 + w 20 X 1 X 2 + w 14 X 3 1 + w 5 X 2 1 + w 23 X 1 . Reducing with the Gröbner Basis G of I we obtain

X 1 E(e 0,2 ) G = X 1 X 2
2 + w 22 X 2 1 X 2 + w 20 X 1 X 2 + w 5 X 2 1 + w 23 X 1 + w. When we represent this code word as matrices using the corresponding basis (2), we get   0 1 0 0 w 20 w 22 w w 23 w 5   This matrix can also be constructed using the first rule shown after Definition 7.

Multiplication of any codeword by X 2 from the left results in a codeword. For E(e 0,2 ) we get:

X 2 E(e 0,2 ) = X 3 2 + w 2 X 1 X 2 2 + w 20 X 2 2 + w 12 X 2 1 X 2 + w 11 X 1 X 2 + w 23 X 2 .
Reducing with the Gröbner Basis G of I we obtain which generates a left ideal I whose standard monomials belong to a quadratic 2×3-staircase. We now look for a left ideal J containing I containing 3 standard monomials. There are two possible staircases :

• • • • • • • • • • • • and • • • • • • • • • • • •

  for all a and b in A: δ(a + b) = δ(a) + δ(b) and δ(ab) = δ(a)b + θ(a)δ(b).

  (a) a cyclic shift in the rows (b) applying the automorphism θ 2 to all entries of the code word (c) multiply the entries of the j-th column by j-2 k=0 θ k 1 (β 1,2 ) .

M 2 w 7 1 w w 8 w 3 

 23 Multiplication of any codeword by X 1 from the left results in a codeword.

X 2 E 7 . 8 G = {X 2 1 + w 3 , X 3 2 + w 12 }

 2781212 (e 0,2 )G = w 2 X 1 X 2 2 + w 20 X 2 2 + w 12 X 2 1 X 2 + w 11 X 1 X 2 + w 23 X 2 +2 and in matrix representationThis matrix can also be constructed using the second rule shown after DefinitionExample Consider F 16 = F 2 [w]/ w 4 + w + 1 , the automorphisms θ 1 (w) = w 2 , θ 2 (w) = w4 and the element β 1,2 = w ∈ F 16 . The set is a Gröbner basis of the ring Q θ1,θ2,β1,2 2
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from which we decuce the following relation ( * )

Theorem 2 Consider the skew polynomial ring Q θ1,θ2,β1,2 2 defined above. For any λ 1 , λ 2 , β 1,2 in F * q satisfying the relation

the set

/I is a 2-dimensional scaled skew constacylic code C θ1,θ2,β1,2 over F q of length n 1 n 2 . The encoding E(w) = w -w J ∈ J of the standard monomials of Q θ1,θ2,β1,2 2 /I which are not standard monomials of Q θ1,θ2,β1,2 2 /J form a basis of C θ1,θ2,β1,2 .

Proof. In order to show that G is a Gröbner basis we compute the reduction of the polynomial SPoly(

Therefore, if the relation (6) holds, then SPoly(

For a 2-dimensional skew constacyclic code

and represent the code word again in the basis [START_REF] Boucher | Self-dual skew codes and factorization of skew polynomials[END_REF]. By definition the code is an Q θ1,θ2,β1,2 2 -module. The entry a i,j corresponds to the monomial a i,j X i-1 1 X j-1 2 . 1) Multiplication on the left by X 1 results in

and therefore, for i -1 < n 1 -1 in a cyclic shift and application of θ 1 in the first row, and in a shift and application of θ 1 of the n 1 -1 first elements of all other rows. In order to compute the affect on the last entry of the j + 1-th row, we need to reduce the expression θ 1 (a n-1,j-1 )X n1 1 X j 2 using the Gröbner basis

The calculations in relation (*) can be adapted to

Therefore, to reduce the expression θ 1 (a n-1,j-1 )X n1 1 X j 2 , we have to substract

which leads to

showing that the first entries of the j + 1-th row is

2) Multiplication on the left by X 2 results in

When j = n 2 we need to reduce the expression using X n2 2 -λ 2 . For that we have to substract to the above θ 2 (a i,n2-1 )

This shows that C corresponds to the 2-dimensional scaled skew constacylic code C θ1,θ2,β1,2

Example 7 Consider F 27 = F 3 [w]/ w 3 -w + 1 , the automorphisms θ 1 (w) = w 3 , θ 2 (w) = w 3 and the element β 1,2 = w 6 ∈ F 27 . The previous theorem shows that

which generates a left ideal I whose standard monomials belong to a quadratic staircase of length 3. We now look for a left ideal J containing I. The staircases of I are represented by • and • and those of J by •:

Using the algorithm of Section 2 we found 1365 left ideals J ⊂ Q θ1,θ2,β1,2 2 containing I. An example of such a code is given by:

w This scaled skew consta-cylic code C θ1,θ2,β1,2 is an optimal [START_REF] Güneri | Multidimensional cyclic codes and Artin-Schreier type hypersurfaces over finite fields[END_REF][START_REF] Cox | Using Algebraic Geometry[END_REF][START_REF] Fernando | Automorphisms for Skew PBW Extensions and Skew Quantum Polynomial Rings[END_REF] code over F 27 .

Note that the leading monomials correspond to three upper corners of the staircase of J . In order to compute a basis of the corresponding scaled skew consta-cylic code C θ1,θ2,β1,2 we encode the 4 standard monomials e

1 of I that are not standard monomials of J by computing E(e i,j ) = e i,j -e i,j J ∈ J . We obtain the 4 code words that generate the code:

which can be represented as matrices using the corresponding basis form (2)

For the first staircase, we found 3 left ideals J ⊂ Q θ1,θ2,β1,2 2 containing I, using the algorithm of Section 2. Each of these left ideals gave a [6, 3, 2]-code, all three codes are equivalent. An example of such a code is given by:

For the second staircase, we found 12 left ideals. Six of these left ideals gave a [6, 3, 3]-code, the other six an optimal [6, 3, 4]-code. The codes in both sets are equivalent codes. An example of an optimal code is given by:

This approach extends to the case of m-variables where we need to consider m automorphism θ 1 , . . . , θ m of F q and extend recursively θ i to an automorphism θi of F q [X 1 , θ 1 ] . . . [X i , θi ] by θi (X j ) = β j,i X j where β j,i ∈ F * q ([6], page 1887, relation 2.18). In the polynomial ring F q [X 1 , θ 1 ] . . . [X n , θn ] we have X i a = θ i (a)X i and X i X j = β j,i X j X i for j < i. In this ring we can choose m 2 values β j,i . In order to test if {X n1 1 -λ 1 , . . . , X nm m -λ m } is a Gröbner basis we need to check m 2 relations of the form ( 6), but we can also freely choose the m 2 invertible constants β i,j (1 ≤ i < j ≤ n j ).

Conclusion

In [8] we showed that a Gröbner basis for left ideals can be defined for various iterated skew polynomials that satisfy the requirements of definition 5, including iterated skew polynomials with derivations or over chain rings. This allows many generalizations.