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Abstract

Bipartite networks are a natural representation of the interactions between entities from
two different types. The organization (or topology) of such networks gives insight to un-
derstand the systems they describe as a whole. Here, we rely on motifs which provide a
meso-scale description of the topology. Moreover, we consider the bipartite expected de-
gree distribution (B-EDD) model which accounts for both the density of the network and
possible imbalances between the degrees of the nodes. Under the B-EDD model, we prove
the asymptotic normality of the count of any given motif, considering sparsity conditions.
We also provide close-form expressions for the mean and the variance of this count. This
allows to avoid computationally prohibitive resampling procedures. Based on these results,
we define a goodness-of-fit test for the B-EDD model and propose a family of tests for net-
work comparisons. We assess the asymptotic normality of the test statistics and the power
of the proposed tests on synthetic experiments and illustrate their use on ecological data
sets.

Keywords: bipartite networks; network motifs; goodness-of-fit; network comparison;
expected degree distribution

1 Introduction
Bipartite interaction networks are used to represent a diverse range of interactions in various
fields such as biology, ecology, sociology or economics. For instance, in ecology, bipartite
graphs depict interactions between two groups of species such as plants and pollinators [see
e.g. Simmons et al., 2019b, Doré et al., 2020] or host and parasites [see e.g. Vacher et al.,
2008, D’Bastiani et al., 2020], in agroethnology, they may involve interactions between
farmers and crop species [see Thomas et al., 2015] and in economics, country-product trades
as signals of the 2007-2008 financial crisis [see Saracco et al., 2016]. Formally, a bipartite
interaction network can be viewed as a bipartite graph, the nodes of which being individuals
pertaining to two different groups, and an edge between two nodes being present if these two
individuals interact. In the sequel, the two types of nodes will be referred to as top nodes
and bottom nodes, respectively. Characterizing the general organization of such a network,
namely its topology, is key to understand the behavior of the system as a whole.

The topology of a network can be studied at various scales. Micro-scale analyses typ-
ically focus on the degree of each node, the betweenness of each edge or on the closeness
between each pair of nodes. On the opposite, macro-scale analysis focus on global proper-
ties of the network such as its density or its modularity. The reader may refer to Newman
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[2003] or Simmons et al. [2019b] for a general discussion. In this paper, we are mostly
interested in the meso-scale description of the network that is provided by the frequency of
motifs [Milo et al., 2002].
A motif is defined as a given subgraph depicting the interactions between a small number
of nodes; the count of a motif consists in the number of occurrences of this subgraph in the
observed network. Figures 7 and 8 display the set of all bipartite motifs involving up to 6 top
or bottom nodes. Counting the occurrences of a motif is a computationally challenging task
[seeMilo et al., 2002, Picard et al., 2008, for simple– i.e. non-bipartite – networks]; efficient
tools have been recently proposed by Simmons et al. [2019a,b] for bipartite networks.

Whatever the description scale, the analysis must account for a series of characteristics
of the network at hand (such as its dimension or its density) to make the results compara-
ble. A convenient way to account for such peculiarities is to define a null model capable
to fit the network characteristics. We consider here a bipartite and exchangeable version of
the expected degree distribution model proposed by Chung and Lu [2002] for simple bi-
nary graphs. The bipartite expected degree distribution (B-EDD) model simply states that
each (top or bottom) node is associated with an expected degree and that a pair of nodes is
connected with a probability that is proportional to the product of their respective expected
degrees.
The B-EDD model can obviously accommodate to the network dimension (number of top
and bottom nodes), for its density but also for some existing imbalances between the de-
grees of the nodes. Such imbalances play an important role in many fields: in ecology they
are related to the opposition between generalist insects (capable of pollinate a large number
of plant species) and specialist insects (interacting with a limited number of plant species)
[Simmons et al., 2019b].
In addition to its interpretation, this model is attractive because we can calculate the ex-
pected frequency of motifs under B-EDD such as their variance.

The distribution of motif counts in simple graphs has been widely studied, especially
for simple motifs like triangles [see e.g. Nowicki and Wierman, 1988, Stark, 2001, Picard
et al., 2008]. In this paper, we prove the asymptotic normality of the count of any given
motif under the B-EDD model, under sparsity conditions. One important feature of the
B-EDD model is that the mean and the variance of the count have close form expressions.
The strategy to derive these moments is related to the one introduced by Picard et al. [2008]
for simple networks.
This property has a major practical impact as the expectation and the variance of a motif
count could not be evaluated via resampling, because of the computational cost of mo-
tif counting event for networks with intermediate size. The knowledge of the asymptotic
distribution of the motif counts opens a series of possible applications, including goodness-
of-fit tests for the B-EDD model and a series of tests for network comparison in the B-EDD
framework.

The paper is organized as follows. Section 2 is devoted to the definition and properties of
motifs in the B-EDD model and Section 3 to tests for bipartite networks. More specifically,
we establish the asymptotic normality of motif frequencies in Section 3.1 and propose a
goodness-of-fit test for the B-EDD model and comparison tests for two bipartite networks
in Section 3.2 and Section 3.3, respectively. The accuracy of the normal approximation
for finite graphs and the power of the proposed tests are assessed via a simulation study in
Section 4. Finally, proofs are given in Section 5.
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2 Motifs in the bipartite expected degree model
We consider a bipartite graph  = ( , ) with N nodes. The set of nodes is  = ( t,b),
where  t = J1, mK (resp. b = J1, nK) stands for the set of top (resp. bottom) nodes, and
the set of edges is  ⊂  t × b, meaning than an edge can only connect a top node with
a bottom node. The total number of nodes is therefore N = n + m. We denote by G the
corresponding m × n incidence matrix where the entry Gij of G is 1 if (i, j) ∈  , and 0
otherwise.

2.1 Bipartite expected degree model
The bipartite expected degree (B-EDD) model is defined as follows:

{Ui}1≤i≤m iid, U1 ∼ [0,1],
{Vj}1≤j≤n iid, V1 ∼ [0,1], (1)

{Gij}1≤i≤m,1≤j≤n indep. |{Ui}1≤i≤m, {Vj}1≤j≤n, Gij|Ui, Vj ∼ 
(

�g(Ui)ℎ(Vj)
)

,

where g, ℎ ∶ [0, 1] → ℝ+, such that ∫ g(u)du = ∫ ℎ(v)dv = 1 and 1 ≤ � ≤ 1.
The parameter � controls the density of the graph (EGij = �) whereas the function g

(resp. ℎ) encodes the heterogeneity of the expected degrees of the top (resp. bottom) nodes.
More specifically, denoting Ki = ∑

1≤j≤nGij the degree of the top node i, we have that
E(Ki ∣ Ui) = n�g(Ui). The symmetric property holds for bottom nodes.
Remark 1. Lovász and Szegedy [2006] and Diaconis and Janson [2008] introduced a
generic model for exchangeable random graphs called the W -graph, which is based on
a graphon function Φ ∶ [0, 1]2 → [0, 1]. The B-EDD model is a natural extension of the
W -graph for bipartite graphs with a product-form graphon function Φ(u, v) = �g(u)ℎ(v).
The B-EDDmodel is obviously exchangeable is the sens that the distribution of the incidence
matrix G is preserved under permutation of the top nodes and/or the bottom nodes.

Remark 2. The B-EDDmodel can also be seen has an exchangeable bipartite version of the
expected degree sequence model studied in Chung and Lu [2002] and of the configuration
model fromNewman [2003]. Under these twomodels, the degree of each node is fixed which
makes them non exchangeable.

2.2 Bipartite motifs in the B-EDD model
Bipartite motifs. We are interested in the distribution of the count of motifs (or sub-
graphs) in bipartite graphs arising from the B-EDD model. A bipartite motif s is defined by
its number of top nodes ps, its number of bottom nodes qs and a ps × qs incidence matrix
As. Figures 7 and 8 display the 44 bipartite motifs involving between two and six nodes,
from which we see that

A2 =
(

1 1
)

, A5 =
(

1 1
0 1

)

, A15 =
(

1 1 0
1 1 1

)

.

An important characteristic of a graph motif s is its number of automorphisms rs [Stark,
2001], that is the number of non-redundant permutations of its incidence matrix (see, e.g.
section 2.4 in Picard et al. [2008]):

rs =
|

|

|

|

|

{

As�t,�b =
(

As�t(u),�b(v)
)

1≤u≤ps,1≤v≤qs
∶ �t ∈ �

(

J1, psK
)

, �b ∈ �
(

J1, qsK
)

}

|

|

|

|

|

. (2)
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Note that, because pairs of permutations (�t, �b) yielding the same matrix As�t,�b are not
counted twice, we obviously have that rs ≤ (ps!) × (qs!). In many cases, rs turns out to
be much smaller: in particular, rs = 1 for star-motifs, which will be defined later. We
further denote by dsu the degree of the top node u (1 ≤ u ≤ ps) within motif s, that
is dsu =

∑

1≤v≤qs A
s
u,v. The degree of the bottom node v within s is defined similarly as

esv =
∑

1≤u≤ps A
s
u,v.

Motif occurrence. Counting the occurrences of motif s in  simply consists in consid-
ering all possible of ps (resp. qs) top (resp. bottom) nodes among the m (resp. n) and check
for each possible automorphism of s if an occurrence is observed. More formally, let us
define the set s of possible positions for motif s as the Cartesian product of the set of the
(m
ps

)( n
qs

) possible locations with the set of the rs (top, bottom) permutations giving rise to
each of the automorphisms of s. So, a position results from the combination of a location
with a permutation. Because the graph is bipartite, any position � from s decomposes as
� = (�t, �b) where �t stands for an ordered list of top nodes and �b for an ordered list of
bottom nodes. The number of positions for motif s in  is precisely

cs ∶= |s| = rs
(

m
ps

)(

n
qs

)

. (3)

Now, for a given position � = (�t, �b) ∈ s, we define Ys(�) as the indicator for motif s to
occur in position �:

Ys(�) =
∏

i∈�t,j∈�b
G
Asij
ij . (4)

Remark 3. Note that the occurrence defined by Equation (4) corresponds to an induced
occurrence, which means that we consider that a motif s is observed at position � as soon
as all the present edges that are specified by its incidence matrix As are observed, even if
additional edges are also observed. In other words, we do not check for the absent edges
specified by As.

Remark 4. As opposed to an induced occurrence, an exact occurrence is observed when
both the presence and the absence of edges are satisfied. The indicator variable corre-
sponding to an exact occurrence writes

∏

i∈�t,j∈�b G
Asij
ij (1 − Gij)

1−Asij . Counting induced
and exact occurrences in a graph is actually equivalent, as these counts are related in a
deterministic manner. For example, each exact occurrence of motif 6 corresponds to two
induced occurrences of motif 5.

Motif probability. The B-EDD model is an exchangeable bipartite graph model in the
sense that, for any pair of permutations (�t ∈ �

(

J1, mK
)

, �b ∈ �
(

J1, nK
)

), we have that
ℙ{G = {gij}1≤i≤m,1≤j≤n} = ℙ{G = {g�t(i)�b(j)}1≤�t(i)≤m,1≤�b(j)≤n} [see e.g. Lovász and
Szegedy, 2006, Diaconis and Janson, 2008, for simple graphs]. For any exchangeable graph
model, we may define �s as the probability for motif s to occur in position � = (�t, �b):

�s ∶= ℙ
(

Ys(�) = 1
)

.

Importantly, because the model is exchangeable, this probability does not depend on �.
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Star motifs. We define a star as a bipartite motif s for which either qs = 1 or ps = 1
(or both). More specifically, we name top stars (resp bottom stars) motifs for which ps = 1
(resp. qs = 1). The top stars in Figures 7 and 8 are motifs 1, 2, 7, 17 and 44, and the bottom
stars are motifs 1, 3, 4, 8 and 18. Observe that rs = 1 for all star motifs, that dsv = 1 for all
v in all top star motifs, and that esu = 1 for all u in all bottom star motifs.
Because they will play a central role in the sequel, we adopt a specific notation for the
probability of star motifs, denoting 
d the occurrence probability of the top star with degree
d and �d for the occurrence probability of the bottom star with degree d. As a consequence,
we have that


1 = �1, 
2 = �2, 
3 = �7 
4 = �17, 
5 = �44, (5)
�1 = �1, �2 = �3, �3 = �4 �4 = �8, �5 = �18.

2.3 Moments of motif counts
Expected count. Let us now denote byNs the count, that is the number of occurrences
of a motif s in a graph . We simply have that

Ns =
∑

�∈s

Ys(�)

As a consequence, the expected count of s in  is E(Ns) = cs�s. We also define the nor-
malized frequency of motif s as

Fs = Ns∕cs,

which is an unbiased estimate of �s.

Illustration. As an illustration, we consider two of the networks studied by Simmons
et al. [2019a], which include both plant-pollinator and seed dispersal networks extracted
from the Web of Life database (www.web-of-life.es). More specifically, we consider
the two largest networks of each type, which were first published by Robertson [1929] and
Silva [2002], respectively. The plant-pollinator network involves 546 plant species and 1044
insects and the seed dispersal network 207 plant species and 110 seed dispersers (birds or
insects). Table 1 gives the counts and the frequency of the star motifs with up to four branch.
For the sake of clarity, we will limit ourselves to motifs up to five nodes in the illustrations.
Observe that both the counts Ns and the number of possible positions cs range over huge
order of magnitudes.

Main property of motif probabilities under B-EDD. The tests we propose rely on
the comparison between the observed count (or normalized frequency) of a motif, with its
theoretical counterpart under a B-EDD model. More specifically, the motif probabilities
have a close form expression under the B-EDD model.
Proposition 1. Under the B-EDD model (1), we have that

�s =
ps
∏

u=1

dsu

qs
∏

v=1
�esv

/

(�1)d
s
+ . (6)

where ds+ ∶=
∑

u d
s
u =

∑

v e
s
v stands for the total number of edges in s.
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plant-pollinator: m = 546, n = 1044 [Robertson, 1929]
edge top stars bottom stars

s 1 2 7 17 3 4 8
cs 4.76 105 2.48 108 8.62 1010 2.24 1013 1.08 108 1.64 1010 1.86 1012
Ns 1.53 104 2.61 105 3.04 106 2.72 107 3.07 105 6.82 106 1.48 108
Fs 3.20 10−2 1.05 10−3 3.52 10−5 1.21 10−6 2.84 10−3 4.16 10−4 7.99 10−5

seed dispersal: m = 207, n = 110 [Silva, 2002]
edge top stars bottom stars

s 1 2 7 17 3 4 8
cs 2.28 104 1.24 106 4.47 107 1.20 109 2.35 106 1.60 108 8.17 109
Ns 1.12 103 6.50 103 4.07 104 2.32 105 1.24 104 1.31 105 1.23 106
Fs 4.92 10−2 5.23 10−3 9.11 10−4 1.94 10−4 5.28 10−3 8.16 10−4 1.50 10−4

Table 1: Coefficients cs, counts Ns and frequency Fs of all star motifs. Top: plant-pollinator
network, bottom: seed dispersal network. The motif number s refers to Figure 7.

Proof. This follows from the fact that, under B-EDD, the edges are independent condition-
ally on the latent coordinatesUi and Vj defined in (1), which are all independent with respect
to one other. Consider an arbitrary position � = (�t, �b); for the sake of clarity, we identify
the elements of �t with J1, psK and the elements of �b with J1, qsK. We have

�s = E(Ui)1≤i≤ps ,(Vj )1≤j≤qs

(

ℙ

{

∏

1≤i≤ps,1≤v≤qs

G
Asij
ij = 1

|

|

|

|

|

|

(Ui)1≤i≤ps , (Vj)1≤j≤qs

})

= E(Ui)1≤i≤ps ,(Vj )1≤j≤qs

⎛

⎜

⎜

⎝

∏

1≤i≤ps,1≤j≤qs∶Asij=1
�g(Ui)ℎ(Vj)

⎞

⎟

⎟

⎠

= E(Ui)1≤i≤ps ,(Vj )1≤j≤qs

(

�d
s
+

∏

1≤i≤ps

g(Ui)d
s
i
∏

1≤j≤qs

ℎ(Vi)
esj

)

= �ds+
∏

1≤i≤ps

(

∫ g(u)d
s
i du

)

∏

1≤j≤qs

(

∫ ℎ(v)e
s
jdv

)

.

The result then results from the fact that


d = �d ∫ g(u)ddu, �d = �d ∫ ℎ(v)ddv, � = �1. (7)

■

An important consequence of Proposition 1 is that, under B-EDD, the motif probability
of any motif can be expressed in terms of probabilities of star motifs. Figure 1 provides an
intuition of this: a motif can be decomposed in terms of top and bottom stars arising from
each of its nodes.

In the sequel, to distinguish the motif probability �s under an arbitrary exchangeable
model from the probability under the B-EDD model, we will denote by �s the probability
of motif s under B-EDD. Figure 7 provides the list of all �s expressions.
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motif top stars bottom stars
15 2 7 3 3 1

⚪ ⚪

◻ ◻ ◻

⚪ ⚪

◻ ◻ ◻

⚪ ⚪

◻ ◻ ◻

⚪ ⚪

◻ ◻ ◻

⚪ ⚪

◻ ◻ ◻

⚪ ⚪

◻ ◻ ◻

Figure 1: Decomposition of motif 15 as an overlap of 2 top stars (motifs 2 and 7) and 3
bottom stars (motifs 3, 3 and 1). Because each edge is accounted for twice, we get �15 =
�2�7�3�3�1∕�51 = �2�7�

2
3∕�

4
1.

Probability estimate under B-EDD. Proposition 1 suggests a natural plug-in estima-
tor for the B-EDD motif probability �s:

F s =

∏ps
u=1 Γdsu

∏qs
v=1 Λesv

F d
s
+

1

, (8)

where Γd (resp Λd) denotes the normalized frequency of the top (resp. bottom) star motif
with degree d. Obviously, Γd (resp Λd) is an unbiased estimated of 
d (resp. �d).

Variance of the count. We now consider the variance of the count, that is
V (Ns) = E(N2

s ) − E(Ns)2,

where N2
s =

∑

�,�∈s

Ys(�)Ys(�) (9)

=
∑

�∈s

Ys(�) +
∑

�,�∈s∶|�∩�|=0
Ys(�)Ys(�) +

∑

�,�∈s∶�≠�,|�∩�|>0
Ys(�)Ys(�).

When positions � and � are equal, the product Ys(�)Ys(�) is simply given by Ys(�), the
indicator of the presence of s at position �. Then, when positions � and � do not overlap
(|�∩�| = 0), the product Ys(�)Ys(�) simply indicates that two occurrences of motif s occur
in position � and �, which are independent under the B-EDD model. When positions � and
� are different and do overlap (|� ∩ �| > 0), the product Ys(�)Ys(�) becomes the indicator
of a super-motif, that is a motif made of two overlapping automorphisms of s. We denote
by 2(s) the set of super-motifs generated by the overlaps of two occurrences of the motif
s; Figure 2 provides some examples of super-motifs.

An expression similar to (9) can be derived for the covariance between two counts:
ℂov(Ns, Nt) = E(NsNt) − E(Ns)E(Nt),

where NsNt =
∑

�∈s,�∈t

Ys(�)Yt(�) (10)

=
∑

�∈s,�∈t∶|�∩�|=0
Ys(�)Yt(�) +

∑

�∈s,�∈t∶�≠�,|�∩�|>0
Ys(�)Yt(�).

Again, the last term corresponds to occurrences of super-motifs resulting from an overlap
between an occurrence of motif s and an occurrence of motif t. We denote by S2(s, t) the
set of these super-motifs. We use the strategy described in Picard et al. [2008] to determine
the sets of super-motifs 2(s) and (s, s′). Observe that these sets do not depend on the
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observed networks, so, to alleviate the computational burden, they can be determined and
stored once for all.

Eq. (9) shows that E(N2
s ) only depends on E(Ys(�)Ys(�)), which is �2s when positions

� and � do not overlap and the probability of the corresponding super-motif when they
overlap. As a consequence, we have that

E(N2
s ) = �m,n,s�s + �

′
m,n,s�

2
s +

∑

S∈2(s)
�′′m,n,s,S�S , (11)

where the �m,n,s, �′m,n,s, �′′m,n,s,S are constants, which depend on the dimensions of the graph,
on the motif s and on the super-motif S. The order of magnitude of �m,n,s,S for large m and
n will be studied in Section 5.1.2.

Because super-motifs are actually motifs, their respective occurrence probability �S
under B-EDD are given by Proposition 1 as well, so the expectation and the variance ofNs
under B-EDD can be expressed as functions of the �s and {�S}S∈2(s). An estimate F S of
each �S can be obtained using Eq. (8) in the same way.
⚪ ⚪ ⚪

◻ ◻

⚪ ⚪ ⚪ ⚫ ⚫ ⚫

◻ ⬔ ◼

⚪ ⚪ ⚪ ⚫ ⚫ ⚫

⬔ ⬔

⚪ ⚪ ◒ ⚫ ⚫

◻ ◻ ◼ ◼

⚪ ⚪ ◒ ⚫ ⚫

◻ ⬔ ◼

|�t ∩ � t| 0 0 1 1
|�b ∩ �b| 1 2 0 1

Figure 2: Some super-motifs from 2(s) for motif s = 9 (top left) with ps = 3 top nodes and
qs = 2 bottom nodes. |�t ∩ � t| (resp. |�b ∩ �b|): number of top (resp. bottom) nodes shared
by the overlapping positions � and �. Black: nodes from �, white: nodes from �, black/white:
nodes from � ∩ �. There are actually |2(9)| = 396 such super-motifs of motif 9.

Remark 5. The estimate defined in (8) is only based on empirical quantities (the counts of
stars motifs) and does not depend on any parameter estimation. Especially, the functions
g and ℎ do not need to be estimated as the frequency of star motifs provides all necessary
information about the degree distributions. As a consequence, we may define plug-in esti-
mates of the occurrence probability, the expected count and the variance of the count of any
motif under B-EDD.

Illustration. Table 2 compares the empirical frequencies Fs of a selection of motifs with
their respective estimated probability F s. The probability estimates are computed according
to Equation 8, using the star motifs frequencies Γd and Λe given in Table 1. Observe that
the difference between the observed frequency Fs and their estimated expectation under the
B-EDD model F s are of the same order of magnitude, if not smaller, than their estimated
standard deviations.

3 Tests for bipartite networks
Asymptotic framework. We consider a sequence of B-EDD random graphs defined as
follows.

{N}N≥2 is a sequence of independent graphs, where N is a B-EDD random graph
with m = ⌊�N⌋ top nodes with � ∈ (0, 1), n = N − m bottom nodes and parameters �N , ℎ

8



plant-pollinator
s 5 6 10 15 16
Fs 9.21 10−5 1.00 10−5 8.12 10−6 3.32 10−7 4.47 10−8
F s 9.29 10−5 8.41 10−6 8.23 10−6 2.82 10−7 2.62 10−8

√

V̂ (Fs) 1.26 10−5 1.61 10−6 1.58 10−6 6.54 10−8 7.60 10−9

seed dispersal
s 5 6 10 15 16
Fs 5.13 10−4 1.15 10−4 5.07 10−5 1.79 10−5 5.96 10−6
F s 5.61 10−4 1.30 10−4 6.02 10−5 2.26 10−5 8.59 10−6

√

V̂ (Fs) 2.25 10−4 7.24 10−5 3.25 10−5 1.59 10−5 7.38 10−6

Table 2: Empirical frequency Fs, estimated probability F s and estimated standard-deviation of
the frequency according to the B-EDDmodel for a selection of motifs. All estimates are derived
from the star motifs frequencies given in Table 1.

and g, where the sequence {�N}N≥2 satisfies �N = Θ(m−an−b) with a, b > 0. All quantities
computed on N should be indexed by N as well but for the sake of clarity, we will drop
that index in the rest of the paper.

3.1 Asymptotic normality of motif frequencies
This section is devoted to the asymptotic normality of motif frequencies under the B-EDD
model. More precisely, our first main result states the asymptotic normality of the following
statisticWs relying on Fs the empirical frequency of a given motif s in :

Ws =
Fs − F s
√

V̂ (Fs)
, (12)

where F s denotes the estimator of �s defined in (8) and V̂ (Fs) the one of V (Fs) obtained
by the plug-in of F S (S being any super-motif generated by two occurrences of s) in the
expressions of V (Ns) given in (9)-(11).
Theorem 1. If a+ b < 2∕ds+, then for all non-star motif s and under the B-EDD model, the
statisticWs is asymptotically normal as m ∼ n→∞:

Ws
D
←→  (0, 1).

The proof is based on three results given hereafter in Proposition 2, Lemma 1 and
Lemma 2.
Sketch of proof. Let first consider the following decomposition of the numerator ofWs :

Fs − F s ∶= Ls + Cs where Ls = Fs − �s and Cs = �s − F s.
Under the null B-EDD model, we show that, (i) Ls∕

√

V (Fs) is asymptotically normal in
Proposition 2, it is the leader term, (ii) Cs∕

√

V (Fs) is negligible in Lemma 1, it is the

9



reminder term. Then, we conclude using Slutsky Theorem Lemma 2 which states that
V̂ (Fs)∕V (Fs)→ 1 in probability. ■

Remark 6. Like F s,Ws is only based on empirical quantities, that is i) the empirical fre-
quency of motif s and ii) the empirical frequencies of the stars motifs forming s. The ex-
pected frequencies of the supermotifs of s involved in V̂ (Fs) also depend only on empirical
star frequencies.

Remark 7. Gao and Lafferty [2017] proved a similar result as Theorem 1 in the EDD
model, for a test statistic which is a linear combination of edges, vees and triangles empirical
frequencies in the case of simple graphs, and under a specific condition on the graph density.
Though their result is not comparable to ours since triangles can not occur in bipartite
graphs andwe do not account for stars motifs. Although they seem similar, a fair comparison
between Theorem 1 and the result from Gao and Lafferty [2017] is not easy (i) because the
model is not the same (we consider bipartite graphs whereas they consider simple graphs)
and (ii) because they only consider vees (which are star-motifs) and triangles (which do not
occur in bipartite graphs).

In the following proposition, the asymptotic normality of the statistic ruling the law of
Ws is stated under the null. This statistic involves the empirical frequency of a given non
star motif s and its theoretical expectation and variance. The proof of its asymptotic nor-
mality mostly relies on tools of martingale theory. We show that we can exhibit conditional
martingale difference sequences relative to a specific filtration. This filtration is generated
by the sequence of graphs N (see a proper definition of the filtration in Section 5.1.1). So,
we could apply the central limit theorem of Hall and Heyde [2014].
Proposition 2. If a + b < 2∕ds+, then for all star motif s and under the B-EDD model, we
have, as m ∼ n→∞,

Fs − �s
√

V (Fs)

D
←→  (0, 1).

The complete proof is given in Section 5.2, it relies especially on Lemma 6 and Lemma
7.
Sketch of proof. We first consider the decomposition Ls = Fs − �s = Ms + Rs with Ms
being the difference between Fs and its expectation conditionally to the considered filtra-
tion and U, V , and Rs the difference between the latter conditional expectation and �s; the
proper definitions are given in Section 5.2.1. Lemma 6 shows that, under the null B-EDD
model, the reminder term Rs∕

√

V (Fs)|U, V → 0 a.s. as m ∼ n → ∞. Lemma 7 shows
that, under the B-EDD model, the leader termMs∕

√

V (Fs)|U, V is asymptotically normal
with variance V (Ns|U, V )∕V (Ns). Slutsky theorem implies the asymptotic normality of
Ls∕

√

V (Fs) conditional on (U, V ). Then, Lemma 4 shows that V (Ns|U, V )∕V (Ns) tends
to 1 in probability for all (U, V ), which allows deconditionning. ■

The two following lemmas combined with Proposition 2 permit to conclude to Theorem
1. Their proofs are given in sections 5.3 and 5.4 respectively.
Lemma 1. If a + b < 2∕ds+, then for all non-star motif s and under the B-EDD model, we
have, as m ∼ n→∞,

F s − �s
√

V (Fs)
→ 0 a.s.

10



Lemma 2. If a+ b < 2∕ds+, then for all star motif s and under the B-EDD model, we have,
as m ∼ n→∞,

V̂ (Fs)∕V (Fs)→ 1 a.s.

3.2 Goodness-of-fit tests for the B-EDD model
We consider a bipartite network  and we want to test if it arises from the B-EDD model:

{

H0 ∶  follows a B-EDD model,
H1 ∶  does not follow a B-EDD model.

To this aim, we consider the test statisticWs = (Fs−F s)∕
√

V̂ (Fs) defined in (12). The
idea is thus to compare the frequency of a motif observed in the network with its expected
value under the B-EDD model.
Remark 8. We can consider more specific hypothesis. Suppose we want to test the top
node heterogeneity under B-EDD, more specificallyH0 ∶  follows a B-EDD model and g
is constant. Then, according to (7), we have that 
d = �d underH0, so a similar statistic to
Ws can be designed by considering F s =

∏ps
u=1 F

dsu
1

∏qs
v=1 Λesv∕F

ds+
1 . In the same manner, a

statistic can be designed to test the bottom node heterogeneity.

Illustration. Table 3 gives the test statisticsWs for goodness of fit to the B-EDD model
for the same motifs as in Table 2. According to Theorem 1, these statistics should be com-
paredwith the quantiles of standard normal distribution (0, 1). Almost nomotif frequency
displays a significant deviation from its expectation under the B-EDD model. Only motif
16 in the plant-pollinator network displays a higher frequency than expected under B-EDD
(with p-value 7.5 10−3).

plant-pollinator
s 5 6 10 15 16
Ws -6.45 10−2 9.96 10−1 -6.63 10−2 7.52 10−1 2.43

seed dispersal
s 5 6 10 15 16
Ws -2.14 10−1 -2.14 10−1 -2.93 10−1 -2.95 10−1 -3.56 10−1

Table 3: Test statisticsWs for the goodness-of-fit of B-EDD for the same motifs as in Table 2.

3.3 Tests for the comparison of two bipartite networks
This section is devoted to network comparison test. More specifically, considering two
networks assumed to arise from two B-EDD models, we want to test if they arise from the
same B-EDD model, or for, instance, from two different B-EDD model with same function
g. The rational behind the tests we propose is to compare the frequency of a motif observed
in one network with its expected value according to the parameters of the other network. To
this aim, we need to introduce specific notations.
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Notations. The B-EDD model is parametrized with the (m, n, �, g, ℎ) but all moments
depend on (m, n, �, 
, �), where 
 (resp. �) stands for the sequence of occurrence probabil-
ity of all the top (resp. bottom) star motifs. In the sequel we denote by Es the expected
frequency of motif s:

Es(m, n, �, 
, �) ∶= �s,

so its plug-in estimate is Es(m, n, F1,Γ,Λ) = F s. Similarly, we denote the variance of
the frequency by Vs(m, n, �, 
, �) ∶= V (Fs) and its plug-in estimate Vs(m, n, F1,Γ,Λ) ∶=
V̂s(Fs).

A global test. We consider two bipartite networks A and B supposed to arise from
B-EDDmodels with respective dimensions and parameters (mA, nA, �A, 
A, �A) and (mB, nB, �B, 
B, �B).
We want to test

{

H0 ∶
{

(�A, gA, ℎA) = (�B, gB, ℎB)
}

,
H1 ∶

{

�A ≠ �B or gA ≠ gB or ℎA ≠ ℎB
}

.

This is to test that, although the two networks may have different dimensions (m, n), they
have the same density (�), the same top node heterogeneity (g) and the same bottom node
heterogeneity (ℎ).

Test statistics. The test statistic is based on FAs and FBs the empirical frequencies of
motif s in A and B respectively. The superscript A (resp. B) is added to all quantities
observed in A (resp. B).

Ws =

(

FAs − Es(m
A, nA, FB1 ,Γ

B,ΛB)
)

−
(

FBs − Es(m
B, nB, FA1 ,Γ

A,ΛA)
)

√

Vs(mA, nA, FB1 ,Γ
B,ΛB) + Vs(mB, nB, FA1 ,Γ

A,ΛA)
. (13)

Theorem 2. If both mA∕mB and nA∕nB tends to constants, if a + b < 2∕ds+, then for all
non-star motif s and under H0, the statistic Ws is asymptotically normal as mA ∼ nA ∼
mB ∼ nB →∞:

Ws
D
←→  (0, 1).

Proof.We decompose
FAs − Es(m

A, nA, FB1 ,Γ
B,ΛB) = LAs + C

A
s

where LAs = F
A
s − Es(m

A, nA, �B1 , 

B, �B)

and CAs = Es(m
A, nA, �B1 , 


B, �B) − Es(mA, nA, FB1 ,Γ
B,ΛB).

Because (mA, nA) go to infinity at the same speed as (mB, nB), underH0,LAs ∕Vs(mA, nA, �B1 , 
B, �B)is asymptotically normal according to Proposition 2, whereas CAs ∕Vs(mA, nA, �B1 , 
B, �B)tends to zero according to Lemma 1. Using the same arguments for the symmetric term, we
get that and the negligible one (CAs ∕Vs(mA, nA, �B1 , 
B, �B), CBs ∕Vs(mA, nA, �A1 , 
A, �A)

),
replacingVs(mA, nA, �B1 , 
B, �B) andVs(mB, nB, �A1 , 
A, �A)with their plug-in estimateVs(mA, nA, FB1 ,ΓB,ΛB)and Vs(mB, nB, FA1 ,ΓA,ΛA). We conclude using Lemma 2 and Slutsky Theorem. ■
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Testing equal top nodes heterogeneity. Suppose we want to test that, although the
two networks may have different dimensions, different densities, and different bottom node
heterogeneity, they have the same top node heterogeneity, that is

{

H0 ∶
{

gA = gB
}

,
H1 ∶

{

gA ≠ gB
}

.

Since we allow the two networks to have different densities, one might normalize the
probabilities of star motifs given in (5) as follows:


̃1 = 1, 
̃2 = �2∕�21 
̃3 = �7∕�31 
̃4 = �17∕�41, 
̃5 = �44∕�41,

�̃1 = 1, �̃2 = �3∕�21, �̃3 = �4∕�31 �̃4 = �8∕�41, �̃5 = �18∕�41.

This allows to see that we can rewrite Es(m, n, �, 
, �) = �s as an expression of g on which
relies the test we consider. According to (6) and to the definition of �s under the B-EDD
model, we get:

Es(m, n, �, g, ℎ) = �d
s
+

ps
∏

u=1

̃dsu

qs
∏

v=1
�̃esv = �

ds+
ps
∏

u=1

qs
∏

v=1
gdsuℎesv ,

where gd = ∫ g(u)ddu and ℎe = ∫ ℎ(v)edv. We may consider the following test statistic:

W g
s =

(

FAs − Es(m
A, nA, FA1 , Γ̃

B, Λ̃A)
)

−
(

FBs − Es(m
B, nB, FB1 , Γ̃

A, Λ̃B)
)

√

Vs(mA, nA, FA1 , Γ̃
B, Λ̃A) + Vs(mB, nB, FB1 , Γ̃

A, Λ̃B)
,

where Γ̃ and Λ̃ are the plug-in estimates of 
̃ and �̃ respectively. Similar statistics can be
designed to test �A = �B, ℎA = ℎB or any combination.

Illustration. Both the plant-pollinator and the seed dispersal networks involve plants
species. Although these species are not the same, one may be interested in comparing if
the level of heterogeneity across plants (encoded in the function g) is the same in both
networks. From an ecological point of view, this amounts to test if there is the same the
degree of imbalance between specialists and generalists among plants regarding pollination
and seed dispersion, that are two of the main reproduction means.
Table 4 provides the results of the network comparison test presented above. No significant
difference is observed, suggesting that, although generalist and specialist plants may exist
for both types of interactions, the degree of imbalance between them is comparable.

4 Simulation study
We designed a simulation study to illustrate Theorem 1 and to assess the performance of
the goodness-of-fit test and the comparison test described in Section 3.2 and Section 3.3 re-
spectively. More specifically, our purpose is to illustrate the asymptotic normality of the test
statistics and evaluate the power of the tests for various graph sizes, densities and sparsity
regimes.
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s 5 6 10 15 16
F A
s 9.21 10−5 1.00 10−5 8.12 10−6 3.32 10−7 4.47 10−8

Ê0F A
s 1.96 10−4 3.75 10−5 1.74 10−5 4.25 10−6 1.33 10−6

F B
s 5.13 10−4 1.15 10−4 5.07 10−5 1.79 10−5 5.96 10−6

Ê0F B
s 2.66 10−4 2.92 10−5 2.85 10−5 1.50 10−6 1.69 10−7

F B
s − F

A
s -4.21 10−4 -1.05 10−4 -4.26 10−5 -1.76 10−5 -5.91 10−6

Ê0(F B
s − F

A
s ) -6.96 10−5 8.37 10−6 -1.11 10−5 2.75 10−6 1.16 10−6

√

V̂0(F A
s ) + V̂0(F B

s ) 2.25 10−4 7.24 10−5 3.26 10−5 1.59 10−5 7.38 10−6
Ws -1.56 -1.56 -0.97 -1.28 -0.96

Table 4: Network comparison test for H0 = {gA = gB} as defined in Section 3.3 for the same
motifs as in Table 2. Networks: A = plant-pollinator, B = seed dispersal. Ê0(⋅) is a shorthand
for the notation Es(⋯) (idem for V̂0(⋅) and Vs(⋯)).

4.1 Asymptotic normality
Simulation design. We simulated series of networks with parameters (m, n, �, �g, �ℎ)
varying according to the following design:
Network dimension: We simulated networks with equal dimensions m = n, with values

in {50, 100, 200, 500, 1000, 2000};
Sparsity regime: We considered equal parameters a = b in {1∕3, 1∕4, 1∕5, 1∕6};
Network density: The resulting density is � = �0m−an−b, �0 being fixed so that � = .01

when m = n = 100;
Degree imbalance: We considered the functions g(u) = �gu�g−1 and ℎ(v) = �ℎv�ℎ−1;

observe that �g = 1 means that g is constant so no imbalance does exist top nodes
(resp. for �ℎ, ℎ and bottom nodes). We set �g = 2, �ℎ = 3.

For each configuration, S = 100 networks were sampled and the test applied.

Results. The results are displayed in Figure 3 and Figure 4. In Figure 3, the QQ-plots of
theWs statistic (black dots) defined in (12) and the W̃s statistic (blue dots) defined in (14)
hereafter, are given for four motifs in a network with dimension m = n = 1000 and sparsity
regime a = b = 1∕3 . Remember that the larger the power a, the sparser the graph. We
observe that normality ofWs holds for motifs 6 and 15, but not for motifs 5 and 10.
Actually, the latter case is due to the fluctuations of F s. More specifically, for non-star
motifs, F s is not an unbiased estimate of �s and it is not independent from Fs. As a con-
sequence, for finite dimensions m and n, we both have that E(F s) ≠ �s = E(Fs) and
V (Fs − F s) ≠ V (Fs). Both the bias of F : B(F s) = E(F ) − �s and the variance of the
numerator ofWs: V (Fs − F s) can be estimated using the delta method, which requires the
covariance given in Equation (10). This enables us to define a corrected version W̃s of the
test statisticWs:

W̃s ∶= V̂
(

Fs − F s
)−1∕2 (

Fs − F s + B̂(F s)
)

, (14)

where the bias B̂(F s) and V̂
(

Fs − F s
)

are both plug-in estimates.
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Illustration. We provide in Table 5 the values of corrected corrected statistics W̃s for the
plant-pollinator and the seed dispersal networks, to be compared with Table 3. Observe that
the correction does not yield in different conclusions, in terms of fit to the B-EDD model
for both networks.

s 5 6 10 15 16
plant-pollinator -0.05 1.03 -0.03 0.79 2.49
seed dispersal -0.17 -0.14 -0.20 -0.19 -0.22

Table 5: Corrected test statistics W̃s for the goodness-of-fit of B-EDD for the same motifs as in
Table 2.

motif 6 motif 15 motif 5 motif 10
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Figure 3: Qq-plots of the test statistics Ws for 4 motifs in a network with dimension m = n =
2000 and sparsity regime a = 1∕3 (black dots). Blue dots: qq-plot for the corrected statistic
W̃s defined in Equation (14). Red line: 95% confidence interval for a qq-plot with sample size
S = 100.

Figure 4 displays the QQ-plots of the corrected test statistics W̃s gathered according
to the order of magnitude of the expected motif frequencies. All network sizes, sparsity
regimes and non-star motifs are thus considered here together. As expected, the normality
becomes more accurate when the motifs frequency increases.

4.2 Power of the goodness-of-fit test
Simulation design. In order to illustrate the power of the goodness-of-fit test, we simu-
lated a series of networks from amixture of a B-EDDmodel and a latent blockmodel (LBM)
[Govaert and Nadif, 2008], characterizing the presence of clusters of rows and columns in
incidence matrices. Thus, a mixing weight � varying from 0 to 1 was considered so that
� = 0 corresponds to a B-EDD that is H0. In details, the following simulation setup was
investigated:
Network dimension and density: Weconsidered dimensions similar to the pollination and

seed dispersal binary networks studied in Simmons et al. [2019b], that is m = n ∈
{101,… , 103}. To mimic the sparsity of the same networks, we fitted the density via
a linear regression and obtained log10(�) = 0.3457 − 0.3958 log10(mn);

B-EDD model: We used the same functions g and ℎ as in Section 4.1, with �g = 2, �ℎ = 3;
LBM model: We considered 2 groups in rows and 2 groups in columns, all groups with

proportion 1∕2 and all connection probabilities 
kl = C
min for all 1 ≤ k,l ≤ 2,
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Figure 4: Qq-plots of the corrected test statistics W̃s. The plot displays the results of the sim-
ulation design (i.e for all network size n, sparsity regime a and non-star motifs s. The qq-plots
are gathered accorded to the order of magnitude of the expected count E(Ns), from the smallest
(top left) to the largest (bottom right). Red line: same legend as Figure 3.

except 
22 = C
max, with C set such that C(
max + 3
min)∕4 = 1. Two regimes were
considered: 
max = 0.95 (scenario I: easy) and 
max = 0.5 (scenario II: hard);

Connection probability: We sampled the {Ui}1≤i≤m and {Vj}1≤j≤n all independently and
uniformly over [0, 1], and set the {Zi}1≤i≤m and {Wj}1≤j≤n as Zi = I{Ui > .5} + 1
andWj = I{Vj > .5} + 1. Finally, the edges were sampled with probability

ℙ{Gij = 1 ∣ Ui, Vj} = �
(

(1 − �)g(Ui)ℎ(Vj) + �
ZiWj

)

.

For each configuration, S = 500 networks were sampled and the test applied. Again the
test corrected statistic W̃s was used.

Results. The results are given in Figure 5. For illustration purposes, we only present the
results we obtained for m = n ranging from 50 to 500. Moreover, for the sake of clarity, we
only consider motifs 5, 6, 10, and 15 which constitute a representative panel of the set of
motifs with size 4 and 5.
As the network dimensions increase, we can clearly observe that the tests become more
powerful. For small networks with m = n = 50 and m = n = 100, the LBM regime
with 
max = 0.95 is easier and leads to tests associated with motifs 5 and 6 with higher
power. These differences vanish for larger values of n and m. Overall, we found that motifs
5 and 6 lead to more powerful tests. These results illustrate that the methodology proposed
is relevant and that the goodness-of-fit tests for different motifs can be used to detect the
departure from a B-EDD model.

4.3 Power of the network comparison test
Simulation design. We also studied the power of the test for network comparison in-
troduced in Section 3.3. To this aim, we simulated series of networks A with parameters
(mA, nA, �A, �Ag , �Aℎ ) varying according to the same design as in Section 4.1, where �Ag was
set to 2.
We focused on the test ofH0 = {gA = gB} so, for each networkA, we simulated a sequence
of networks B with same dimensions (mB = mA, nB = nA), but a with a different parameter
�Bg . More specifically, setting �∗g = 1 (absence of degree imbalance between top nodes), we
sampled networks B with �Bg = (1 − �)�A + ��∗g , with � = 0, 0.1, 0.2,…1, so that � = 0
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m = n = 50 m = n = 100 m = n = 200 m = n = 500
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Figure 5: Empirical power of the goodness-of-fit tests, averaged over S = 500 simulations.
Top: scenario I (easy: 
max = 0.95); bottom: scenario II (hard: 
max = 0.5). From left to right:
m = n = 50, 100, 200, 500. Color = motif: black=5, red=6, green=10, blue=15.

corresponds toH0.
Regarding the two remaining parameters �B and �Bℎ , we considered two scenarios:
I (easy): �B = �B, �Bℎ = �Aℎ , so that the two networks only differ with respect to �g;
II (hard): �B = �A∕2, �Bℎ = 2, so that the two network differ in all parameters, but only

the difference in �g is tested.
The ’hard’ scenario is designed to assess the ability of the proposed test statistic to accom-
modate to differences in density and bottom node imbalance between the two networks,
when testing the equality of their top node imbalance. For each configuration, S = 500
pairs of networks (A, B) were sampled and compared.
Following the simulation results presented in Section 4.1, we used the delta-method to de-
rive a corrected version W̃s of the test statistic Ws defined in Equation (13). Similarly to
Section 4.1, the performances of the uncorrected test statistic Ws become similar to these
of the corrected version W̃s for large networks (results not shown).

Illustration. Again, to illustrate the effect of the proposed correction, we provide in Ta-
ble 6 the values of corrected statistics W̃s testing H0 = {gA = gB}, network A being
plant-pollinator and network B being seed dispersal. These results can be compared with
Table 4: The correction yields in (moderately) higher absolute values, suggesting a gain of
power.

Results. The results are displayed in Figure 6. We only present the results formA = nA =
mB = nB ranging for 50 to 500. Moreover, as in the previous section, we only consider mo-
tifs 5, 6, 10 and 15.
As expected, the test becomesmore powerful when the networks dimensions increase. More
interestingly, for small networks, the smaller motifs (5 and 6, with size 4) turn out to yield
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s 5 6 10 15 16
W̃s -2.71 -1.90 -1.76 -1.34 -0.96

Table 6: Corrected test statistics W̃s forH0 = {gA = gB} for the same motifs as in Table 2 and
same networks as in Table 4.

a higher power. The difference vanishes when the dimensions increase.
These conclusions hold under the two scenarios, which shows that the proposed test statis-
tic does accommodate for departures that may exist between two networks, not being the
departure under study (scenario II ’hard’). Still, the power is always better under scenario I:
obviously, the test performs better when focusing on the only difference that actually exists
(scenario I ’easy’).
m = n = 50 m = n = 100 m = n = 200 m = n = 500
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Figure 6: Empirical power of the network comparison test forH0 = {gA = gB}, averaged over
S = 500 simulations. Top: scenario I (easy); bottom: scenario II (hard). From left to right:
m = n = 50, 100, 200, 500. Color = motif: same legend as Figure 5.

5 Proofs
5.1 Definitions and technical lemmas
In this section, we introduce notations and useful technical lemmas for establishing proofs
of Proposition 2 in Section 5.2, Lemma 1 in Section 5.3 and Lemma 2 in Section 5.4.

5.1.1 Definitions

Let remind that we consider a bipartite graph  = ( , ) with N nodes. The set of nodes
is  = ( t,b), where  t = J1, mK (resp. bJ1, nK) stands for the set of top (resp. bottom)
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nodes, and the set of edges is  ⊂  t × b, meaning than an edge can only connect a top
node with a bottom node. The total number of nodes is thereforeN = n+m. We denote by
G the corresponding m × n incidence matrix where the entry Gij of G is 1 if (i, j) ∈  , and
0 otherwise.

Let consider now a collection of bipartite graphs (l)l∈J1,NK = (l, l) with l nodes.
In the following, we introduce notations for subsets of interest and a filtration we will use
to construct differences of martingales involving motif counts.

Subsets definitions. Let introduce the following subsets definitions:
• l = {(k1,… , kl) ⊂  t ∪ b with at least one top node and one bottom node}, l ∈

J2, NK, it is the set of nodes of l meaning the l selected nodes among , and kl
denotes the l-th and last selected one; we will use kl several times hereafter;

• V t
l = l ∩  t and V b

l = l ∩ b, these are the sets of top and bottom nodes in l;
• s,l =

{

(i1,… , ips) ⊂ V
t
l

}

×
{

(j1,… , jqs) ⊂ V
b
l

}

, l ∈ Jps + qs, NK, it is the posi-
tions set of motif s in l;

• Tl = {kl ∈  t} is an event;
• s,l =

{

{s,l−1 ⧵ ips} ∪ {ips = kl} if Tl,
{s,l−1 ⧵ jqs} ∪ {jqs = kl} otherwise,

it is the positions set of motif s in l with the particularity that kl the last node added
to l is part of motif s.

Filtration. The filtration (l)l∈J2,NK is defined by the �-algebra l = �
(

l
).

5.1.2 Technical lemmas

We present here three lemmas which are key arguments in the proofs of Proposition 2,
Lemma 1 and Lemma 2.

The following lemma gives the order of magnitude of the variance of a count. Before,
its statement let give the order of magnitude of the expected count of a motif s with ps top
nodes and qs bottom nodes. It writes E(Ns) = cs�s, with

cs = Θ(mpsnqs) (normalizing coefficient specific to s) (15)
� = Θ(m−an−b), with a, b > 0 (graph density) (16)
�s = Θ(�ds+) = Θ(m−ads+n−bds+) (expected frequency of s), (17)

where ds+ stands for the total number of edges in s and cs being defined in (3).
Lemma 3. We have,

V (Ns) = Θ
(

max(m2ps−2ads+−1n2qs−2bds+ , m2ps−2ads+n2qs−2bds+−1, m2ps−ads+−1n2qs−bds+−1)
)

.

Proof. Let observe that, for �, � ∈ s,N ,
N2
s =

∑

�
Ys(�) +

∑

�∩�≠∅
Ys(�)Ys(�) +

∑

�∩�=∅
Ys(�)Ys(�).

Thus, a general form for the variance is the following:
V (Ns) = E(Ns) +

∑

t∈2(s)
E(Nt) +

(

|s| − c2s
)

�2s , (18)
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wheres =
{

�, � ∈ s,N ∶ � ∩ � = ∅
} and 2(s) denotes the set of supermotifs of swhich

are formed by two overlapping occurrences of s.
Let evaluate the orders of the three added terms of assertion (18). Considering that

� = Θ(m−an−b), the first term of (18) is Θ(mps−ads+nqs−bds+). Then denoting (a)b = a(a −
1)… (a − b), we see that

|s| − c2s =
(m2ps−1)

(ps!)2
(n)2qs−1
(qs!)2

−
(mps−1)

2

(ps!)2
(n)2qs−1
(qs!)2

(19)

= Θ

(

(−1)2ps−1p2sm
2ps−1n2qs + (−1)2qs−1q2sm

2psn2qs−1

(ps!)2(qs!)2

)

= Θ
(

max(m2ps−1n2qs , m2psn2qs−1)
)

.

Thus the third term is Θ (

max(m2ps−2ads+−1n2qs−2bds+ , m2ps−2ads+n2qs−2bds+−1)
)

.
Let focus now on the second term. When t ∈ k(s), it can result of an overlap of (i)

only top nodes, (ii) only bottom nodes, or (iii) both. For each case we have
(i) pt < 2ps, qt = 2qs, dt+ = 2ds+ soENt = O(m2ps−1n2qs�2d

s
+) = O(m2ps−2ads+−1n2qs−2bds+);

(ii) pt = 2ps, qt < 2qs, dt+ = 2ds+ soENt = O(m2psn2qs−1�2d
s
+) = O(m2ps−2ads+n2qs−2bds+−1);

(iii) pt < 2ps, qt < 2qs, ds+ < dt+ < 2ds+ so ENt = O(m2ps−ad
s
+−1n2qs−bds+−1).

Combining the orders of the three terms of assertion (18), we get that the order of mag-
nitude of the variance of a count is

V (Ns) = Θ
(

max(m2ps−2ads+−1n2qs−2bds+ , m2ps−2ads+n2qs−2bds+−1, m2ps−ads+−1n2qs−bds+−1)
)

.

■

The last argument of proof of Proposition 2, Lemma 7 and Lemma 1 relies on the fol-
lowing result.
Lemma 4. We have, as m ∼ n→∞,

V (Ns|U, V )∕V (Ns)→ 1 in probability.

Proof. First let us write that
E(Ns|U, V ) =

∑

�∈s

ℙ
(

Ys(�) = 1|U�t , V�b
)

E(N2
s |U, V ) =

∑

�,�∈s

ℙ
(

Ys(�)Ys(�) = 1|U�t , V�b , U�t , V�b
)

.

The proof relies on showing the convergence in probability of the two above expectations
towards ∑�∈s ℙ

(

Ys(�) = 1
) and ∑

�,�∈s ℙ
(

Ys(�)Ys(�) = 1
), respectively. Let us now

introduce the equivalence relation Rs and the set Rs defined as follows:
Rs ∶ (�t, �b) ∼ (�̃t, �̃b)⇔ As�t,�b = A

s
�̃t,�̃b

and Rs =
(

�
(

J1, psK
)

⊗ �
(

J1, qsK
))

∕Rs.

Then, we can exhibit the two following quantities which are two-samples U-Statistics (see
Section 12.2, p.165 in Van der Vaart [2000]):

rs
cs

∑

�∈s

k1
(

U�t , V�b
) and rs

cs

∑

�∈s

k2
(

U�t , V�b , U�t , V�b
)

,
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with rS and cs being defined in (2), (3), respectively, s denoting the location relative to a
given position for motif s and where

k1
(

U�t , V�b
)

=
∑

�∈Rs

ℙ
(

Ys(�(�)) = 1|U�t(�t), V�b(�b)
)

k2
(

U�t , V�b , U�t , V�b
)

=
∑

(�� ,�� )∈Rs

ℙ
(

Ys(��(�))Ys(��(�)) = 1|U�t�(�t), V�b�(�b), U�t� (�t), V�b� (�b)
)

,

with k1(·) and k2(·) being permutation symmetric kernels in (Ui)i and (Vj)j separetely. We
conclude by applying the central limit theorem for two-sample U-Statistics (see Theorem
12.6 in Van der Vaart [2000]) which holds under the assumption that the kernel of the U-
statistic has a finite moment of order two. Here, as it concerns probabilities this assumption
is obviously fulfilled. ■

In proofs of Lemma 2, Lemma 6 and Lemma 7, we need to know the cardinal order of
the sets ⊗k

s,l ⧵ (k)s,l, k = 2, 4 which contains only dependent k-uplets of positions of motif
s on the event Tl for which the last node added to l is a top node. Recall that s,l is the
positions set of motif s in the subgraph of  with nodes in l and the particularity that kl
the last node added to l is part of motif s. The definition of the other set of interest is the
following:

(k)s,l =
{

�1,… �k ∈ s,l ∶ (�t1 ⧵ kl) × �
b
1 ∩… ∩ (�bk ⧵ kl) × �

b
k = ∅

}

.

Lemma 5. We have, on Tl,

|s,l|
k − |(k)s,l| = Θ

(

lk(ps−1)−1t lkqsb

)

,

with lt and lb denoting respectively top and bottom nodes in l.

Proof. Let observe that

|s,l| =
(

lt − 1
ps − 1

)(

lb
qs

)

,

|(k)s,l| =
(

lt − 1
ps − 1

)k( lb
qs… qs lb − kqs

)

+
(

lt
ps… ps lt − kps

)(

lb
qs

)k

+
(

lt
ps… ps lt − kps

)(

lb
qs… qs lb − kqs

)

.

The leader term of order Θ
(

lk(ps−1)t lkqsb

)

obviously vanishes and imply the lost of one
order (the calculation omitted here are simply based on the same arguments as in (19)). ■

5.2 Proof of Proposition 2
For establishing the proof of Proposition 2, we first consider a decomposition ofLs = Fs−�s
in Section 5.2.1 , then we focus on the reminder term of this decomposition in Lemma 6
and finally show the asymptotic normality of the leading term in Lemma 7.
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5.2.1 Decomposition of Ls
Let use the sets introduced in Section 5.1.1 to express Ls as follows:

Ls(U, V ) = Fs − �s(U, V ) = 1
cs

∑

�=(�t,�b)∈s,N

{Ys(�) − �s(U�t , V�b)}

= 1
cs

N
∑

l=1

∑

�∈s,l

{Ys(�) − �s(U�t , V�b)},

with the random variablesU, V of the B-EDDmodel (1). Then let decomposeLs as the sum
of two expressions, the first one corresponding to a martingale difference sequence relative
to the filtration (l)l∈J2,NK, the second one being a term of rest:

Ls(U, V ) ∶= Ms(U, V ) + Rs(U, V ),

where

Ms(U, V ) =
1
cs

N
∑

l=1

∑

�∈s,l

{Ys(�) − E(Ys(�)|l−1;U, V )}

Rs(U, V ) =
1
cs

N
∑

l=1

∑

�∈s,l

{E(Ys(�)|l−1;U, V ) − �s(U�t , V�b)}.

Observe that by construction, Ms,l =
∑

�∈s,l{Ys(�) − E(Ys(�)|l−1;U, V )} is a condi-
tional martingale difference with respect to (l)l∈J2,NK:

E(Ms,l(U, V )|l−1;U, V ) = 0.

5.2.2 Study of Rs

Lemma 6. Under the B-EDD model and condition a + b < 2∕ds+,

Rs(U, V )∕
√

V (Fs)|U, V → 0 a.s. as m ∼ n→∞,

where Rs(U, V ) =
1
cs

∑N
l=1

∑

�∈s,l{E(Ys(�)|l−1;U, V ) − �s(U�t , V�b)}.

Proof. The proof consists in showing the two following assertions:
(A1) E

(

Rs(U, V )∕
√

V (Fs)|U, V
)

= 0;
(A2) V

(

csRs(U, V )∕
√

V (Ns)|U, V
)

→ 0 almost surely as n tends to infinity under con-
dition a + b < 2∕ds+.

Let show assertion (A1):

E
(

Rs(U, V )|U, V
)

= E
⎛

⎜

⎜

⎝

1
cs

N
∑

l=1

∑

�∈s,l

{E(Ys(�)|l−1;U, V ) − �s(U�t , V�b)}|U, V
⎞

⎟

⎟

⎠

= E
⎛

⎜

⎜

⎝

1
cs

N
∑

l=1

∑

�∈s,l

E(Ys(�)|l−1;U, V )
⎞

⎟

⎟

⎠

− 1
cs

N
∑

l=1

∑

�∈s,l

�s(U�t , V�b)

= 1
cs

∑

�=(�t,�b)∈s,N

E(Ys(�)|U, V ) −
1
cs

∑

�=(�t,�b)∈s,N

�s(U�t , V�b) = 0.
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Let focus now on assertion (A2). Let first observe that,
V
(

Rs(U, V )|U, V
)

= V
⎛

⎜

⎜

⎝

1
cs

N
∑

l=1

∑

�∈s,l

{E(Ys(�)|l−1;U, V ) − �s(U�t , V�b)}|U, V
⎞

⎟

⎟

⎠

=
N
∑

l=1
V
⎛

⎜

⎜

⎝

1
cs

∑

�∈s,l

E(Ys(�)|l−1;U, V )|U, V
⎞

⎟

⎟

⎠

,

by independance of successive choices of l. Using definition (4) of the indicator motif,
we see that

N
∑

l=1
V
⎛

⎜

⎜

⎝

1
cs

∑

�∈s,l

E(Ys(�)|l−1;U, V )|U, V
⎞

⎟

⎟

⎠

=
N
∑

l=1
V
⎛

⎜

⎜

⎝

1
cs

∑

�∈s,l

E

(

∏

i∈�t,j∈�b
G
Asij
ij |l−1;U, V

)

|U, V
⎞

⎟

⎟

⎠

.

Then according to measurability with respect to l−1 and the position (top or bottom) of kl
the last selected node, we get

N
∑

l=1
V
⎛

⎜

⎜

⎝

1
cs

∑

�∈s,l

E

(

∏

i∈�t,j∈�b
G
Asij
ij |l−1;U, V

)

|U, V
⎞

⎟

⎟

⎠

= ℙ(Tl)
N
∑

l=1
V
⎛

⎜

⎜

⎝

1
cs

∑

�∈s,l

(

∏

j∈�b
E(Gklj|U, V )

As(klj)

)

⎛

⎜

⎜

⎝

∏

i∈�t⧵kl ,j∈�b
G
Asij
ij

⎞

⎟

⎟

⎠

|U, V
⎞

⎟

⎟

⎠

+ (1 − ℙ(Tl))
N
∑

l=1
V
⎛

⎜

⎜

⎝

1
cs

∑

�∈s,l

(

∏

i∈�t
E(Gikl |U, V )

As(ikl)

)

⎛

⎜

⎜

⎝

∏

i∈�t,j∈�b⧵kl

G
Asij
ij

⎞

⎟

⎟

⎠

|U, V
⎞

⎟

⎟

⎠

,

and using the usual notation of the conditional expectation of Gij’s, we have
V
(

Rs(U, V )|U, V
)

= ℙ(Tl)
N
∑

l=1
V
⎛

⎜

⎜

⎝

1
cs

∑

�∈s,l

(

∏

j∈�b
�1(Ukl , Vj)

As(klj)

)

⎛

⎜

⎜

⎝

∏

i∈�t⧵kl ,j∈�b
G
Asij
ij

⎞

⎟

⎟

⎠

|U, V
⎞

⎟

⎟

⎠

+ (1 − ℙ(Tl))
N
∑

l=1
V
⎛

⎜

⎜

⎝

1
cs

∑

�∈s,l

(

∏

i∈�t
�1(Ui, Vkl )

As(ikl)

)

⎛

⎜

⎜

⎝

∏

i∈�t,j∈�b⧵kl

G
Asij
ij

⎞

⎟

⎟

⎠

|U, V
⎞

⎟

⎟

⎠

.

Then, considering the fact that V (∑i aiXi) ≤
(

∑

i ai
√

V (Xi)
)2, we get

V
(

Rs(U, V )|U, V
)

≤ 2
N
∑

l=1

⎛

⎜

⎜

⎜

⎝

1
cs

∑

�∈s,l

(

∏

j∈�b
�1(Ukl , Vj)

As(klj)

)

√

√

√

√

√V
⎛

⎜

⎜

⎝

∏

i∈�t⧵kl ,j∈�b
G
Asij
ij |U, V

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

2

.
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From now, we will work on the set ⊗2
s,l ⧵ (2)s,l which contains only dependent pairs of

positions. It follows from the Bernoulli conditional distribution of Gij combined with the
fact that a√b <√

ab when a < 1, that
V
(

Rs(U, V )|U, V
)

≤ 2
N
∑

l=1

⎛

⎜

⎜

⎜

⎝

1
cs

∑

�∈⊗2s,l⧵
(2)
s,l

√

∏

j∈�b
�1(Ukl , Vj)

As(klj)
∏

i∈�t⧵kl ,j∈�b
�1(Ui, Vj)As(ij)

⎞

⎟

⎟

⎟

⎠

2

≤ 2
N
∑

l=1

1
c2s

⎛

⎜

⎜

⎜

⎝

∑

�∈⊗2s,l⧵
(2)
s,l

√

�s(U�t , V�b)

⎞

⎟

⎟

⎟

⎠

2

≤ 2
c2s

N
∑

l=1

(

|s,l|
2 − |(2)s,l|

)

max
�∈⊗2s,l⧵

(2)
s,l

�s(U�t , V�b).

In order to evaluate the right-hand side term of the above inequality, recall that cs =
Θ(mpsnqs) by (15), �s = Θ

(

m−ads+n−bds+
) by (17) and |s,l|

2 − |(2)s,l| = Θ
(

l2ps−3t l2qsb

)

by
Lemma 5, lt and lb denoting respectively top and bottom nodes in l. Thus, we get

2
c2s

N
∑

l=1

(

|s,l|
2 − |s,l|

)

max
�∈⊗2s,l⧵

(2)
s,l

�s(U�t , V�b)

= Θ
(

m−2psn−2qs
)

N
∑

l=lt+lb=1
Θ
(

l2ps−3t l2qsb l
−ads+
t l

−bds+
b

)

= Θ
(

m−2psn−2qs
)

N
∑

l=lt+lb=1
Θ
(

l2ps+2qs−ad
s
+−bd

s
+−3

)

= Θ
(

N−ads+−bd
s
+−3

)

.

By taking the normalization√V (Fs) =
√

V (Ns)∕cs which order is
Θ
(

max
(

N−2ads+−2bd
s
+−1, N−ads+−bd

s
+−2

))

by Lemma 2 and (15), we conclude to V
(

Rs(U,V )
√

V (Fs)
|U, V

)

→ 0 almost surely as n tends to
infinity under condition a + b < 2∕ds+. ■

5.2.3 Study ofMs

Lemma 7. Under the B-EDD model and condition a + b < 2∕ds+,

Ms(U, V )∕
√

V (Fs)|U, V
D
←→ 

(

0,
V (Ns|U, V )

V (Ns)
)
)

, as m ∼ n→∞,

whereMs(U, V ) =
1
cs

∑N
l=1

∑

�∈s,l{Ys(�) − E(Ys(�)|l−1;U, V )}.
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Proof.We will apply the following martingale central limit theorem to the conditional mar-
tingale difference sequenceMs,l(U, V ) =

∑

�∈s,l{Ys(�) − E(Ys(�)|l−1;U, V )} with re-
spect to (l)l∈J2,NK.
Theorem 3 ([Hall and Heyde, 2014]). Suppose that for every n ∈ ℕ and kn → ∞ the ran-
dom variables Xn,1,… , Xn,kn are a martingale difference sequence relative to an arbitrary
filtration n,1 ⊂ n,1 ⊂… ⊂ n,kn . If

1.
∑kn
i=1 E(X

2
n,i|n,i−1)→ 1 in probability,

2.
∑kn
i=1 E(X

2
n,iI{|Xn,i| > �}|n,i−1)→ 0 in probability for every � > 0,

then
∑kn
i=1Xn,i


←→  (0, 1).

Here Xn,i and n,i would beMs,l(U, V )∕(cs
√

V (Fs)) and l respectively, and we have
to verify the two following conditions:
(C1) 1

V (Ns)
∑N
l=1 E(M

2
s,l(U, V )|l−1;U, V )→

V (Ns|U,V )
V (Ns)

in probability,

(C2) 1
V (Ns)

∑N
l=1 E

(

M2
s,l(U, V )I

{

|Ms,l(U,V )|
√

V (Ns)
> �

}

|l−1;U, V
)

→ 0 in probability for
every � > 0.

Let verify condition (C1). First observe that it follows from properties of martingale dif-
ferences, meaning variance decomposition, null conditional expectation and conditional or-
thogonality of differences, that

V

( N
∑

l=1
Ms,l(U, V )|U, V

)

= E

[

V

( N
∑

l=1
Ms,l(U, V )|l−1;U, V

)]

+ V

[

E

( N
∑

l=1
Ms,l(U, V )|l−1;U, V

)]

= E

[

V

( N
∑

l=1
Ms,l(U, V )|l−1;U, V

)]

= E
⎡

⎢

⎢

⎣

E
⎛

⎜

⎜

⎝

( N
∑

l=1
Ms,l(U, V )

)2

|l−1;U, V
⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

= E

( N
∑

l=1
E
(

M2
s,l(U, V )|l−1;U, V

)

)

,

and further notice that V
(

∑N
l=1Ms,l(U, V )|U, V

)

= V
(

csMs(U, V )|U, V
). SinceMs =

Ls − Rs (see Section 5.2.1),

E

(

1
V (Ns)

N
∑

l=1
E(M2

s,l(U, V )|l−1;U, V )

)

= V

(

cs
Ls(U, V ) − Rs(U, V )

√

V (Ns)
|U, V

)

→ V (Ns|U, V )∕V (Ns), as n→∞,

in probability and under condition a+b < 2∕ds+, because V
(

cs
Ls(U,V )
√

V (Ns)
|U, V

)

= V (Ns|U,V )
V (Ns)

and V
(

cs
Rs(U,V )
√

V (Ns)
|U, V

)

→ 0 a.s. under condition a + b < 2∕ds+ by Lemma 6.
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Now, let verify condition (C2). First, by applying the Cauchy-Schwartz inequality, we
get

1
V (Ns)

N
∑

l=1
E

(

M2
s,l(U, V )I

{

|Ms,l(U, V )|
√

V (Ns)
> �

}

|l−1;U, V

)

≤
N
∑

l=1
E

(

M4
s,l(U, V )

V (Ns)2
|l−1;U, V

)1∕2

×
N
∑

l=1
ℙ

(

|Ms,l(U, V )|
√

V (Ns)
> �|l−1;U, V

)1∕2

,

then applying Bienaymé-Tchebychev inequality implies that
N
∑

l=1
E

(

M4
s,l(U, V )

V (Ns)2
|l−1;U, V

)1∕2

×
N
∑

l=1
ℙ

(

|Ms,l(U, V )|
√

V (Ns)
> �|l−1;U, V

)1∕2

≤ 1
V (Ns)2

N
∑

l=1
E(M4

s,l(U, V )|l−1;U, V ) ×
1

�2V (Ns)

N
∑

l=1
E(M2

s,l(U, V )|l−1;U, V ),

and by condition (C1), we get

1
V (Ns)

N
∑

l=1
E

(

M2
s,l(U, V )I

{

|Ms,l(U, V )|
√

V (Ns)
> �

}

|l−1;U, V

)

≤ 1
�2V (Ns)2

N
∑

l=1
E(M4

s,l(U, V )|l−1;U, V ) ×
V (Ns|U, V )

V (Ns)
.

Then, we use the following notation for expressingMs,l:
Ms,l =

∑

�∈s,l

{Ys(�) − E(Ys(�)|l−1;U, V )} = Ns,l − E(Ns,l|l−1;U, V ).

By the binomial formula we thus have

E(M4
s,l(U, V )|l−1;U, V ) = E

(

(

Ns,l − E(Ns,l|l−1;U, V )
)4
|l−1;U, V

)

= E
(

N4
s,l|l−1;U, V

)

− 4E
(

N3
s,lE(Ns,l|l−1;U, V )|l−1;U, V

)

+6E
(

N2
s,lE(Ns,l|l−1;U, V )2|l−1;U, V

)

−4E
(

Ns,lE(Ns,l|l−1;U, V )3|l−1;U, V
)

+ E(Ns,l|l−1;U, V )4.

Using the same arguments as in the proof of Lemma 6, observe that

E
(

Ns,l|l−1;U, V
)

≤ 2
∑

�∈s,l

(

∏

j∈�b
�1(Ukl , Vj)

As(klj)

)

E
⎛

⎜

⎜

⎝

⎛

⎜

⎜

⎝

∏

i∈�t,j∈�b⧵kl

G
Asij
ij

⎞

⎟

⎟

⎠

|U, V
⎞

⎟

⎟

⎠

≤ 2
∑

�∈s,l

�s(U�t , V�b),

and we have,
E
(

Nk
s,l|l−1;U, V

)

= E
(

Ns,l|l−1;U, V
)

+
∑

t∈k(s)
E
(

Nt,l|l−1;U, V
)

+ E
(

Ns,l|l−1;U, V
)k ,
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where k(s) denotes here the set of supermotifs of swhich are here formed by k overlapping
occurrences of s. Finally, we get

1
V (Ns)

N
∑

l=1
E

(

M2
s,l(U, V )I

{

|Ms,l(U, V )|
√

V (Ns)
> �

}

|l−1;U, V

)

≤ 1
�2V (Ns)2

N
∑

l=1
E
(

M4
s,l(U, V )|l−1;U, V

)

×
V (Ns|U, V )

V (Ns)

≤ 2
�2V (Ns)2

N
∑

l=1
|s,l|

4 ×
(

max
�∈s,l

�s(U�t , V�b)
)4

×
V (Ns|U, V )

V (Ns)
.

Condition (C2) holds sinceV (Ns)2 = Θ
(

max
(

N4ps+4qs−4ads+−4bd
s
+−2, N4ps+4qs−2ads+−2bd

s
+−4

))

by Lemma 3, |s,l|
4 = Θ

(

l4ps−4t l4qsb

)

(see the proof of Lemma (5)),�4s = Θ
(

N−4ads+−4bd
s
+
)

by (17) and V (Ns|U, V )∕V (Ns) = Θ(1) by Lemma 4. ■

5.3 Proof of Lemma 1
Proof. Let show that (F s − �s)∕

√

V (Fs) → 0 a.s. as n → ∞ under the B-EDD model and
condition a + b < 2∕ds+ ruling the graph density. Recall (8) the definition of F s:

F s =

∏ps
u=1 Γdsu

∏qs
v=1 Λesv

F d
s
+

1

,

where Γd (resp Λd) denote the normalized empirical frequencies of the top (resp bottom)
star motif with degree d and F1 the one of the edge.

Let begin with a Taylor expansion of order 1 of F s in parameters (
, �, �1) denoting the
top star motif, bottom star motif and edge probabilities respectively:
F s(Γ,Λ, F1) = F s(
, �, �1) + )F s(
, �, �1)

(

(Γ,Λ, F1) − (
, �, �1)
)

+ o
(

(Γ,Λ, F1) − (
, �, �1)
)

= �s + �s) log(F s(
, �, �1))
(

(Γ,Λ, F1) − (
, �, �1)
)

+ o
(

(Γ,Λ, F1) − (
, �, �1)
)

= �s + �s

{ ps
∑

u=1

1

dsu
(Γdsu − 
dsu ) +

qs
∑

v=1

1
�esv
(Λesv − �esv) −

d+
�1
(F1 − �1)

}

+o
(

Γ − 
,Λ − �, F1 − �1)
)

.

Given the two following observations: i) the asymptotic normality of (Fs − �s)∕
√

V (Fs)
holds for any motif s, including star motifs, under the B-EDD model and condition a+ b <
2∕ds+ by Proposition 2, ii) the empirical frequencies of motifs converge to the expected ones
by the law of large numbers, we get
F s − �s
√

V (Fs)

=
ps
∑

u=1
Θ
⎛

⎜

⎜

⎝

�s

dsu

√

V (Γdsu )

V (Fs)

⎞

⎟

⎟

⎠

+
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∑

v=1
Θ
⎛

⎜

⎜

⎝

�s
�esv

√

V (Λesv)

V (Fs)

⎞

⎟

⎟

⎠

+ Θ
⎛

⎜

⎜

⎝

�s
�1

√

V (F1)
V (Fs)

⎞

⎟

⎟

⎠

+ o (1)

=
ps
∑

u=1
Θ
⎛

⎜

⎜

⎝

�scs

dsuc


√

V (NΓdsu
)

V (Ns)

⎞

⎟

⎟

⎠

+
qs
∑

v=1
Θ
⎛

⎜

⎜

⎝

�scs
�esvc�

√

V (NΛesv
)

V (Ns)

⎞

⎟

⎟

⎠

+ Θ
⎛

⎜

⎜

⎝

�scs
�1c1

√

V (N1)
V (Ns)

⎞

⎟

⎟

⎠

+ o (1) .
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Here and only here, NΓd (resp. NΛd ) and c
 (resp. c�) denote, by abuse of notation, the
count of top stars (resp. bottom stars) of degree d and their number of positions in the graph.
Considering only non-star motifs s, according to the orders ofmagnitude of cs,�s and V (Ns)
given in (15), (17) and Lemma 3 respectively, we conclude to (F s − �s)∕

√

V (Fs) → 0 a.s.
as n →∞ because −2d(a + b) < 0 , with d = dsu , esu or 1. ■

5.4 Proof of Lemma 2
Proof. Let show that V̂ (Fs)∕V (Fs) → 1 a.s., as n → ∞. First, observe that according to
(18), we can write:

V (Ns) =
∑

t∈{s}∪2(s)
E(Nt) − E(Ns)2 = cs�s +

∑

t∈2(s)
ct�t − c2s�

2
s ,

where 2(s) denotes here the set of super-motifs of s which are formed by two overlapping
occurrences of s. Then considering V̂ (Ns) its plug-in version, meaning F s replaces �s, we
get

V̂ (Ns) − V (Ns) = cs(F s − �s) +
∑

t∈2(s)
ct(F t − �t) − c2s (F

2
s − �

2
s).

Now we use Lemma 1 stating that, under the B-EDD model and condition a + b < 2∕ds+,
F s − �s = o(

√

V (Fs)) for all motif s and the continuous mapping theorem, to obtain that
V̂ (Ns) − V (Ns) = cso(

√

V (Fs)) +
∑

t2(s)
cto(

√

V (Ft)) − c2s o(V (Fs))

= o(
√

V (Ns)) +
∑

t∈2(s)
o(
√

V (Nt)) − o(V (Ns)). (20)

Let discuss now the order of (V̂ (Ns) − V (Ns))∕V (Ns). The first and last terms of (20)
divided by V (Ns) obviously vanish. When t ∈ 2(s), we refer to the order of magnitude of
V (Ns) given in Lemma 3 and its proof (see (i)-(ii)-(iii)) to get that√V (Nt)∕V (Ns) vanishes
under condition a+ b < (ps + qs)∕ds+. We can finally conclude to V̂ (Fs)∕V (Fs)→ 1 a.s., as
n→∞ under condition of Theorem 1.

■
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Figure 7: Bipartite motifs of size 2, 3, 4 and 5 as given in Simmons et al. [2019b].
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Figure 8: Bipartite motifs of size 6 as given in Simmons et al. [2019b].
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