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INTEGRATING ISOLATED EXAMPLES WITH WEAKLY-SUPERVISED SOUND
EVENT DETECTION: A DIRECT APPROACH

Mohammad Abdollahi, Romain Serizel, Alain Rakotomamonjy, Gilles Gasso

Universite de Rouen

ABSTRACT

In an attempt to mitigate the need for high quality
strong annotations for Sound Event Detection (SED),
an approach has been to resort to a mix of weakly-
labelled, unlabelled and a small set of representative
(isolated) examples. The common approach to integrate
the set of representative examples into the training pro-
cess is to use them for creating synthetic soundscapes.
The process of synthesizing soundscapes however could
come with its own artefacts and mismatch to real record-
ings and harm the overall performance. Alternatively, a
rather direct way would be to use the isolated examples
in a form of template matching. To this end in this paper
we propose to train an isolated event classifier using the
representative examples. By sliding the classifier across a
recording, we use its output as an auxiliary feature vector
concatenated with intermediate spectro-temporal repre-
sentations extracted by the SED system. Experimental
results on DESED dataset demonstrate improvements in
segmentation performance when using auxiliary features
and comparable results to the baseline when using them
without synthetic soundscapes. Furthermore we show
that this auxiliary feature vector block could act as a
gateway to integrate external annotated datasets in or-
der to further boost SED system’s performance.

Index Terms— sound event detection, deep learn-
ing, posteriorgrams, weakly-supervised learning

1. INTRODUCTION

Sound Event Detection (SED) is a machine listening task
that addresses the questions of What and When of oc-
curring audio events, the responses to which would be
the perceptual class of an event and its location in time
respectively. The necessity of such SED systems mani-
fests itself in applications such as audio information re-
trieval [1], surveillance [2], bioacoustic monitoring [3] and
self-driving cars [4] to a name a few. One main challenge
with SED is the inherent difficulty and cost of acquiring
annotated data of high quality/resolution. Hence there
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has been a growing body of research in development of
models using lower quality annotations (lower tempo-
ral resolution, noisy labels, etc.) and un-annotated data
examples potentially augmented with a small set of (iso-
lated) representative examples of each target event class.

Isolated examples are generally used indirectly through
synthesizing soundscapes [5], to generate strongly-labelled
examples. The relative contribution of each level of an-
notations in this heterogeneous dataset has been studied
by Turpault et al [6]. Surprisingly, their findings in-
dicate the relative equal contribution of both sets of
weak and strongly (synthetic) labelled examples to sys-
tem’s segmentation performance. In pre-deep learning
speech recognition, Phoneme posteriorgrams output by
pre-trained phoneme classifiers were used as features
fed to the downstream blocks[7]. In spoken keyword
detection, Chen et al. [8] trained a deep neural network
(DNN) to classify among a number of keywords and
by sliding the DNN across an audio recording used the
output scores (followed by post-processing) to mark the
keyword boundaries. Similarly, isolated examples could
be used for template matching by sliding them across
recordings to generate similarity scores and using these
scores for detection of event boundaries.

In this paper we propose to integrate a similar ap-
proach into training the SED system. Rather than us-
ing the similarity scores directly for decision making, we
will use them as auxiliary features to enhance the perfor-
mance of the Weakly-Supervised SED (WSSED) system.
Beyond the isolated examples, we also investigate the
utility of using classifiers trained on other (non-target)
external datasets (e.g. ESC-50) to generate the auxiliary
features and report performance gains.

2. BASELINE SED SYSTEM

In this work, we have chosen a CNN-Transformer ar-
chitecture proposed by Myazaki et al. [9] as our baseline
model. Similar to a Convolutional Recurrent Neural Net-
work (CRNN), CNN-Transformer uses a Convolutional
Neural Network (CNN) for extraction of intermediate
representations, but instead of a RNN, it is followed by



few layers of transformer encoder for temporal depen-
dency modelling.

Given a time-frequency representation of an audio
signal as input (e.g. Mel-spectrogram) X [F i×T i] where
F i and T i represent the dimensions of the input along
frequency and time respectively, a CNN extracts a repre-
sentation H [C×F e×T e] with F e and T e being the result-
ing (downsampled) frequency and time dimensions and
C the number of extracted feature maps. Merging the
F e and C dimensions, would result a T e-long sequence
of d = C × F e dimensional feature vectors hi :

H = {h1, . . . , hT e} (1)

Every element of this sequence is first linearly projected
to a lower dimensional space using an Embedding layer.
The resulting sequence of embedding vectors, after being
added to the respective positional encoding vectors are
passed through N layers of transformer encoders.

A final single-layer Multi-layer Perceptron (MLP)
is applied on all elements of the output sequence of
the transformer to predict the segment-based labels.
The clip-level label is obtained by performing attention-
pooling [10] over all elements in the output sequence.

3. PROPOSED APPROACH

In this work we take a more direct approach in inte-
grating isolated examples into training a WSSED sys-
tem. Rather than synthesizing soundscapes with them,
we propose to use them to build an isolated event classi-
fier. The idea is that, given a large enough set of isolated
examples of the target events, we could build a classifier
operating on a certain time scale and slide it across test
audio examples in order to generate similarity/likelihood
scores. These scores could then be used (in addition to
some post-processing) to detect target event boundaries.
Such an approach would be very similar to the recent
line of work on Keyword Spotting (KWS) [8, 11]. Unlike
in the case of KWS however, our set of examples is much
smaller and usually suffers from more intra-class acous-
tic variability. In this paper we propose to integrate a
similar approach into training the SED system by using
the output of an isolated event classifier as an additional
feature. We leverage transfer learning to train the clas-
sifier in order to mitigate the effects of low sample-size
training dataset. In fact, we use the same pre-trained
backbone CNN of the CNN-transformer baseline, and
train a single-layer MLP on top of it.

In our proposed system, each segment of the temporal
sequence H at the CNN’s output is passed to the MLP
and the classifier’s output scores are appended to the
spectro-temporal features of that segment. The overall
schematic of the proposed system is illustrated in fig-

ure 1 in which we have introduced an Auxiliary Feature
generator block.

3.1. Event Classifier

Since the goal is to use the classifier for detection and to
produce an output probability vector at a specified tem-
poral resolution, we train a point-wise MLP operating
on each ht independently. This means we broadcast the
event label to all of it sub-segments across time. Never-
theless, in order to further expand the effective receptive
field input to the MLP when classifying ht, we concate-
nate a set of 2k + 1 dilated neighbouring feature slices
centred around each ht to be passed to the MLP:

ot = MLP (



ht−(k.d)
...

ht

...
ht+(k.d)

) (2)

with ot being the classifier’s output at time instance t
and d the dilation factor. Similar to the SED system’s
output, in order for the classifier to account for event
polyphony and non-target sound events, we train the
classifier with a Binary Cross-Entropy (BCE) loss on
sigmoid-activated outputs over the 10 classes of target
events. We refer to the output vector in this case as a
posteriorgram.

3.2. Auxiliary Feature Generator Block

The above trained MLP classifier is integrated into the
SED system in the form of an Auxiliary Feature Genera-
tor (AFG) block where the trained MLP is moved across
the extracted representations ht of a recording and gen-
erates a posteriorgram ot for each corresponding ht. We
further take the logarithm of these probability scores be-
fore using them as features in the rest of the system.

Additionally, in order to emphasize the points in time
where the classifiers output experience sharp changes
(potential event boundaries) we propose to augment each
log-probability vector with its first order dynamics dt:

dt =
N∑

n=1
n × (log(ot+n) − log(ot−n)) (3)

where N is the width of the window used for the calcu-
lation of the derivative. The resulting output feature of
the AFG block is the concatenation of each log(ot) and
dt yielding the auxiliary feature sequence P :

P = {p1, . . . , pT e} = {
[
log(o1)

d1

]
, . . . ,

[
log(oT e)

dT e

]
} (4)
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Fig. 1: General schematic of the proposed approach with the AFG block

As illustrated in figure 1, the AFG output features pt

are concatenated with the ht and the sequence of tandem
feature slices are batch-normalized before being passed
to the embedding layer and the succeeding transformer
encoder layers which will be trained using the weakly-
labelled (and synthetic) examples.

3.3. Training Procedure

In this work, while training the SED system, we keep
the parameters of the classifier (MLP and the backbone
CNN) frozen and use the rest of weakly- and strongly-
annotated examples only to train the embedding layer
and the transformer layers. Given that the CNN is
already pre-trained using a large dataset, this should
not be a limiting factor on the system’s learning capac-
ity. Nevertheless training the entire system end-to-end,
which given two tasks and two datasets would be framed
as a multitask learning problem, seems more appealing
and we intend to address that in our future works.

4. EXPERIMENTS

4.1. Model Parameters

In this work rather than using a shallow CNN as in the
original baseline CRNN model of DCASE task 4, we use
a deeper Efficientnet-B2 model [12] used in a work by by
Gong et al. [13] pre-trained on Audioset [14].

Each 10-second audio clip is resampled at the rate
of 16kHz and is converted to log Mel-spectrogram with
25ms window length, 10ms window hop and 128 Mel
bands. The resulting 2D array is passed through the
backbone CNN of the system.

The Efficientnet-B2 final convolutional layer yields a
feature map of 1408 × 4 × 33 dimension as its output.
After average pooling along the frequency axis we end
up with a temporal sequence of 33 1408-dimensional fea-
ture vectors. This sequence is passed through an em-
bedding layer to produce a sequence of 256-dimensional

embedding vectors, which in turn is passed through the
transformer encoder layers. We use 3 layers of trans-
former encoder blocks, with 512 as the hidden dimen-
sion of the positional feed-forward network and 4 atten-
tion heads. In the proposed approach the features in
this sequence are concatenated with the AFG’s output
features, and passed to the embedding layer to be pro-
jected to a sequence of the 256-dimensional vectors simi-
lar to the baseline model. The same pre-trained CNN is
used for training the MLP in the AFG block. We chose
width k = 1 and dilation d = 2 to define the temporal
extent of information resulting in a 4224-dimensional in-
put to the MLP. The MLP consists of a 512 unit hidden
layer with batch-normalization followed by ReLU activa-
tion function. With the 10 output classes of the isolated
classifier, the auxiliary features will be 20-dimensional
vectors. Since the number and duration of examples per
event class are highly variable in the set of isolated exam-
ples we adopt a weighted sampling strategy in each batch
to train the classifier. For training both the SED system
and the classifier we use data augmentation pipeline con-
sisting of mixup [15], frequency and time masking [16]
and random additive gaussian noise.

4.2. Datasets

4.2.1. SED Datasets

The datasets that were provided as part of DCASE 2021
task4 challenge (DESED) are listed below.

Weakly-annotated data: 1578 10-second long au-
dio clips of domestic recordings taken from Audioset [14]
with verified clip-level labels.

Unlabelled Data: 14412 clips of 10-second clips se-
lected from Audioset. We did not use the unlabelled data
in our experiments.

Soundbank of isolated events: 1009 isolated ex-
amples of target events taken from FSD50k [17] with
clip durations ranging from 55ms to 83.1s. The median



w. Synth F1 PSDS1 PSDS2

Baseline 7 23.21 0.097 0.336
3 38.92 0.251 0.512

Ours 7 35.25 0.183 0.491
3 40.20 0.263 0.523

Table 1: A comparative performance evaluation of pro-
posed AFG block on WSSED system

number of examples per class is 62 and the median total
duration of examples per class is 310s.

Synthetic Soundscapes: a collection of 10000 syn-
thetically generated soundcapes using the Scaper [18] li-
brary using the soundbank of isolated events and a se-
lected set of background sounds from SINS dataset [19].

4.2.2. External Datasets

We also used an external dataset for auxiliary feature
generation in our experiments.

ESC-50: a collection of 2000 event clips all of 5s
durations across 50 sound event classes each containing
40 examples [20].

4.3. Results

Table 1 summarizes the performance of our proposed ap-
proach against the baseline CNN-Transformer system.
The results are reported on the provided validation set.
The performance is reported using intersection-based F1
macro score and PSDS measures. PSDS1 and PSDS2
are two specific hyperparameter settings of the PSDS
measure where the former emphasizes more accurate lo-
calization while the focus of latter is on distinguishing
classes from one another. In order to evaluate the po-
tential of AFG block to complement or even replace the
use of synthetic soundscapes, we report the performance
of the baseline system when trained only with weakly-
labelled examples alone (w/o synth) and when including
the synthetic soundscapes (w. synth).

4.4. AFG, a Gateway for External Datasets

Given the generality of the AFG block, we further inves-
tigate the utility of it as a gateway to integrate external
annotated datasets. The idea is that nothing restricts
the MLP to be trained on the provided soundbank of
isolated examples. Even if the target classes of an exter-
nal dataset does not overlap with the SED task at hand,
projecting slices of a recording into a classifier trained
on a externally-annotated dataset could provide relevant
discriminative features and hence reduce the uncertainty
inherent in the weakly-labelled examples.

w. Synth F1 PSDS1 PSDS2

Baseline 7 23.21 0.097 0.336
3 38.92 0.251 0.512

AFG: ESC-50 7 28.33 0.131 0.451
3 39.56 0.227 0.536

AFG: ESC-50
+ isolated examples

7 38.22 0.202 0.553
3 41.31 0.251 0.574

Table 2: Effect of using external datasets for feature
generation on WSSED system’s performance

Table 2 lists the results of using the ESC-50 dataset
to generate auxiliary features and results are reported for
both when used alone and when combined with features
from isolated examples. When combined, we concate-
nate the auxiliary features from both trained classifiers
before projecting them into the transformer’s embedding
dimension. The results are shown for both with and
without the use of synthetic dataset in training the SED
system. Our results suggest this approach as a rather
simple way to distil discriminative information inherent
in external datasets into WSSED with minimal effort and
without requiring any further annotations with respect
to the target task.

5. CONCLUSIONS

In this work we have presented a different way of incor-
porating a small set of isolated examples into training
a WSSED system. Rather than using them to create
synthetic soundscapes, we proposed to use the output
of a classifier built using them as an auxiliary feature
for each sub-segment of an input recording. We have
evaluated our approach using DCASE2021 task-4 setup
and dataset. Our results suggest that by means of in-
troducing this feature augmentation we could improve
the performance of the baseline system with or with-
out synthetic soundscapes. In addition we showed that
the auxiliary features could be generated using external
datasets to encode extra knowledge into the system and
improve the performance.

In our future work we intend to explore other ways of
auxiliary feature generation particularly memory-based
methods using the advances in deep metric learning and
few-shot learning. Moreover, as the auxiliary feature
block and the main SED system share the backbone net-
work, the system could be end-to-end optimized through
framing it as a multi-task learning problem.
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