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Abstract

The Critical Node Problem is a well-known optimization problem that aims to find the subset
of nodes in a graph whose removal impacts the graph connectivity as much as possible according to
a specific connectivity measure. In this work, we study a new version of the Critical Node Problem,
which we call the Connected Critical Node Problem, where the set of the removed nodes has to form
a connected subgraph. We consider three connectivity measures and provide complexity results and
solution approaches for general graphs and specific classes of graphs such as graphs with bounded
treewidth, trees and series-parallel graphs. We consider the Connected Critical Node Problem
where the pairwise connectivity (related to the number of pairs of vertices still connected in the
graph) is minimized. We prove that this problem is strongly NP-hard and inapproximable on
general graphs and is polynomial-time solvable on graphs with bounded treewidth and with unit
connection costs. Further, we prove the NP-hardness of the problem with arbitrary connection costs
over trees and series-parallel graphs and derive dynamic programming algorithms. We extend our
results to the problem variants that consider the minimization of the largest connected component
and the maximization of the number of connected components (also called K-way Vertex Cut
Problem). As side results, we provide new complexity results for the classic Critical Node Problem
on series-parallel graphs.

Keywords: Critical Node Problem, Complexity, Dynamic Programming, Treewidth, trees, series-
parallel graphs, K-way Vertex Cut Problem.

1 Introduction

The Critical Node Problem (CNP) belongs to the family of Network Interdiction Problems [42] and
aims at maximally fragmenting a graph by deleting a subset of its nodes (and all incident edges on
such nodes) according to a specific connectivity measure. Considerable attention has been centered
on this problem in the literature due to its numerous applications, including the identification of key
players in a social network [14], transportation networks vulnerability [28], power grid construction
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and vulnerability [39], homeland security [15], telecommunications [4] or epidemic control [51] and
immunisation strategies [9, 17, 45].

Different connectivity measures can be considered according to specific applications of interest and
this choice typically leads to different optimal solution sets, as shown in [5, 40, 47]. The connectivity
measures considered in the literature are often linked to the number of maximal connected components,
their maximum cardinality or the overall number of node pairs connected by a path (the so called
pairwise connectivity) [9, 10, 19, 40, 41]. At the current state of the art, many heuristic algorithms
have been proposed for these problems [1, 5, 6, 37, 38, 45, 46]. We refer to [5, 47] for a comprehensive
literature review of problems involving the main graph fragmentation metrics and to [33] for a recent
and general survey of the CNP. Other alternative ways to quantify the fragmentation of a graph also
exist, such as: the network’s diameter [3], single/multiple-commodity maximum flow or the shortest
path between given source-sink node pairs [26, 34, 36, 50] or functions of the shortest paths lengths
between pairs of nodes [7, 48].

Two recent works consider versions of the CNP where the set of critical nodes has a specific structure.
The work of [25] focus on finding a Critical Path, i.e. a set of critical nodes that creates a path in the
graph between a source node and a sink node. The study of Walteros et al [49] considers sets of critical
nodes that are either cliques or stars. The additional constraints on the set of deleted nodes make
the CNP more tailored to specific applications of interest (such as, e.g., surveillance paths). Following
this interesting trend, in this work we consider a variation of the CNP where the set of critical nodes
has to be a connected subgraph. We denote this problem as the Connected CNP. The connectivity
requirement can reflect many practical situations further motivating the study of such a CNP variant.
In general terms, the Connected CNP finds applications when the nodes could be deleted only through
diffusive processes that progressively remove the nodes in the graph or alternatively when the CNP
is considered as a conquest problem where some resources in a graph (e.g. nodes) are taken by a
player who wants to have connected resources for implementing appropriate defensive strategies. We
mention below some specific application examples associated with the Connected CNP:

• The work of [25] focuses on surveillance applications where drones or patrols aim to intercept
movements in a geographical area represented by a graph. Here the goal is to select paths for
the drones constituted by the most critical nodes that connect a source node and a sink node
in a graph. We can extend the analysis to situations where the surveillance patrol is allowed to
move back and forward to explore relevant parts of a given area, defining a connected subgraph
without a specific topology. Such an extension can be highly reasonable also for disaster relief
applications.

• The study of influential processes in social networks has attracted a lot of attention in the recent
years, see, e.g., [11, 20, 22, 35]. A social network can be typically represented by a graph where
the nodes are people of the social network and each edge represents a friendship between two
people. When one would like to spread an opinion or information in a social network, it is
important to identify a community of people having a large impact on the network in terms of
connectivity. At the same time, such a community must be convinced to spread the information.
To this aim, in practice, it is usually easier to obtain the consensus of individuals if their friends
have already been convinced, giving a more stable community for the spreading process (as
also addressed in some recent versions of network domination problems). In these contexts, we
can consider the Connected CNP so as to identify a connected and robust community that can
partition the social network into small connected components which cannot communicate except
through the critical set of selected people.

Let us formally recall the CNP. Consider an undirected graph G = (V,E) with a set of vertices V

2



and a set of edges E. We denote by n = |V | the number of vertices and by m = |E| the number of
edges. We denote by cij the connection cost between two nodes i ∈ V and j ∈ V in the graph, by ki
the deletion cost associated with the deletion of node i ∈ V , by S the set of deleted nodes (critical
set) and by G[V \ S] the graph induced by the set V \ S. Considering a budget K on the overall
deletion costs, the classic CNP based on pairwise connectivity, thereafter called Pairwise CNP, can
be formulated as follows:

min
S⊆V

∑
i<j

{cij : i, j are connected in G[V \ S]} (1)

∑
i∈S

ki ≤ K (2)

This CNP variant was proven to be strongly NP-hard on general graphs in [9, 2]. A negative ap-
proximation result (under P 6= NP ) is also given in [2], i.e., there does not exist a polynomial time
approximation algorithm for the CNP.

The Pairwise CNP has also been studied over specially structured graphs. A class of graphs strongly
investigated is the class of trees T = (V,E), often solved by Dynamic Programming (DP). In [18], it
has been shown that the Pairwise CNP on trees with unit connection costs, namely when cij = 1 for all
(i, j), is polynomially solvable (even with non-unit node deletion costs ki) while the case with non-unit
connection costs remains strongly NP-hard. Further results are provided in [2] where it is shown that
the Pairwise CNP with unit connection costs is polynomially solvable on graphs with bounded tree-
width. Polynomial and Pseudo-polynomial algorithms are provided in [7] for the Pairwise CNP over
trees with non-unit but specific connection costs. Additional results on specially structured graphs
with different types of objective functions have been provided in the works of [7, 32, 40]. A stochastic
version of the problem over trees is studied in [27].

Another popular version of the CNP focuses on the minimization of the weight of the heaviest com-
ponent (or its cardinality in case of unit node weights) instead of the pairwise connectivity, see, e.g.,
[2, 5, 10, 40, 41, 47]. This problem is sometimes called MinMaxC CNP. It is characterised by node
deletion costs ki as well as node weights ci for all nodes i ∈ V . We define c(H) as the total weight
of the nodes inside a subset of nodes H ⊆ V and comp(G[V \ S]) as the set of maximally connected
components of the graph induced by V \ S. The objective function of the MinMaxC CNP is written
as follows:

min
S⊆V

max{c(H) : H ∈ comp(G[V \ S])} (3)

As observed in [41], this version of the CNP is strongly NP-hard on general graphs with unit node
weights.

Finally, the third version of the CNP considers the maximisation of the number of connected compo-
nents after the deletion of a subset of nodes S. The objective function of this problem, denoted in [41]
as the MaxNum CNP, is:

max
S⊆V
|comp(G[V \ S])| (4)

This problem is also known in the literature as the K-Way Vertex Cut Problem (K-WVCP) and has
been tackled, among others, in [2, 5, 12, 40, 41]. It is shown to be strongly NP-complete with unit
deletion costs on general graphs in [41] by a reduction from the Independent Set Problem.

In this work, we introduce the connected version of the CNP and study the problem with the three
objective functions indicated above. Our contributions are summarised as follows:
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• We prove that the Connected CNP is strongly NP-hard, even on biconnected planar bipartite
graphs, for all three objective functions. We also prove that the Connected CNP based on
pairwise connectivity cannot be approximated by a constant factor in polynomial time.

• For the Connected Pairwise CNP with unit connection costs, we derive a DP algorithm over the
nice tree decomposition of a graph and show that the algorithm is polynomial when the treewidth
of the graph is bounded by a constant. We extend the proposed algorithm to the other objective
functions as well.

• We prove that the Connected Pairwise CNP with arbitrary costs is NP-hard on trees and series-
parallel graphs, and polynomial-time solvable on paths. We also provide efficient DP algorithms
over trees for different input configurations and illustrate the corresponding differences in the
complexity results between the Connected Pairwise CNP and the classic Pairwise CNP. We
perform a similar analysis for the Connected MinMaxC CNP and the Connected MaxNum
CNP.

• As side results, we prove the NP-hardness of the classic Pairwise CNP and the MinMaxC CNP
over series-parallel graphs with arbitrary connection costs and arbitrary node weights, respec-
tively, which were still open problems.

The paper is organised as follows. We first prove the strong NP-hardness and inapproximability of
the Connected CNP over biconnected planar bipartite graphs in Section 2. We then describe a DP
algorithm to solve some problem variants over nice tree decompositions of a general graph in Section 3
and show that the algorithm is polynomial when the treewidth of the graph is bounded by a constant.
The proof of correctness of the algorithm is reported in Appendix A. We provide algorithms and
complexity results over trees in Section 4 and series-parallel graphs in Section 5. For the sake of
exposition, we only present the results for the Connected Pairwise CNP in the main body of the
paper. Extensions of our results to Connected CNP versions based on the weight of the heaviest
connected component and on the number of connected components are presented in Appendices B
and C, respectively. Section 6 draws some conclusions.

2 NP-hardness and inapproximability on biconnected planar bipar-
tite graphs

We derive complexity results for the decision version of the Connected CNP by considering the existing
results for the Connected Minimum Vertex Cover problem. The decision version of the Connected
CNP asks whether there exists a solution with an objective function not worse than a given threshold
value. We prove the NP-completeness of the problem for the three objective functions considered in
the paper in biconnected planar bipartite graphs of maximum degree 4.

Proposition 1: The decision version of the Connected Pairwise CNP is strongly NP-complete
in biconnected planar bipartite graphs of maximum degree 4, even with unit connection costs
and unit deletion costs.

Proof. As already noticed in the literature [2], the Pairwise CNP with unit costs generalises the
Minimum Vertex Cover problem on a given graph G. In fact, a solution of the Pairwise CNP has
zero objective function (i.e., induces a disconnected subgraph) if and only if the same solution is
a vertex cover of G with cardinality bounded by K (< n). Since the MinCVC, where the vertex
cover constitutes a connected subgraph, has been shown to be NP-complete in biconnected planar
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bipartite graphs of maximum degree 4 in [21], we can infer that the Connected Pairwise CNP with
unit costs is also NP-complete in such graphs. Moreover, since the MinCVC tackled in [21] is not
a number problem (all data parameters are equal to one), a pseudo-polynomial algorithm for the
Connected Pairwise CNP would solve the MinCVC in polynomial time. Clearly this is not possible
under P 6= NP , implying the NP-Completeness in the strong sense of the Connected Pairwise CNP
with unit costs.

The NP-completeness results for the Connected MinMaxC CNP and the Connected MaxNum CNP
are reported in Appendices B and C. Employing an argument similar to the reasoning in [2], we also
prove the following result:

Proposition 2: The Connected Pairwise CNP does not admit a polynomial time approximation
algorithm with a bounded approximation ratio unless P = NP, even in biconnected planar
bipartite graphs of maximum degree 4 with unit connection costs and unit deletion costs.

Proof. Consider an instance of the Connected Pairwise CNP over biconnected planar bipartite graphs
of maximum degree 4, with unit connection and deletion costs and a budget capacity K. Deciding
whether there exists a solution set S inducing a zero pairwise connectivity in G[V \ S] corresponds
to finding a connected vertex cover S in G with a size smaller than (or equal to ) K, i.e. |S|≤ K.
At the same time, deciding whether a connected vertex cover with a size not larger than K exists
in biconnected planar bipartite graphs of maximum degree 4 is NP-complete. A polynomial time
approximation algorithm with a bounded approximation ratio for the Connected Pairwise CNP would
allow us to decide the connected vertex cover in polynomial time by just checking if its approximate
solution has a strictly positive objective function. Clearly this is impossible under P 6= NP.

3 The Connected CNP over graphs with bounded treewidth

In this section we provide a DP algorithm over any nice tree decomposition of a graph. In particular,
we extend the algorithmic framework proposed in [2] for the classic Pairwise CNP in order to handle
the additional requirement of having a connected critical set. In our solution approach, we explicitly
keep track of the number of connected components in the partial solutions of the critical set S during
the steps of the algorithm and combine these solutions in polynomial time to eventually compute an
optimal critical set with a single connected component. We start considering the Connected Pairwise
CNP with unit connection costs (cij = 1 for each pair i, j ∈ V ) and arbitrary deletion costs. Our
results are then extended to the other objective functions considered in the previous section (see
Appendices B and C).

3.1 Notations and definitions

Notation. Let V (G) and E(G) denote the node set and the edge set of an undirected graph G
respectively; {u, v} denotes an undirected edge, that is an element of E(G); N(v) = {u: {u, v} ∈ E} is
the set of neighbours of a node v. For any graph H, let comp(H) be the set of connected components
of H; for any set I ⊂ V (H) we denote by G[I] the subgraph induced by I. We also denote the number
of connected node pairs in graph H as

#conn(H) =
∑{(

|V (Ĥ)|
2

)
: Ĥ ∈ comp(H)

}
.
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Tree decomposition. A tree decomposition of a connected graph G is a rooted tree T with node
set V (T ) whose elements Xi ∈ V (T ) are called bags and are subsets of V (G), satisfying the following
properties:

(i)
⋃
{X:X ∈ V (T )} = V (G);

(ii) {u, v} ∈ E(G) =⇒ ∃X ∈ V (T ):u, v ∈ X;

(iii) If P is the unique path in T linking two bags Xi, Xj

u ∈ Xi, u ∈ Xj =⇒ u ∈ Xk for all Xk ∈ P .

In general, a graph can have many tree decompositions. The width of the tree decomposition T is
max{|X|:X ∈ V (T )} − 1; the treewidth of G is the minimum possible width of a tree decomposition
of G. Although finding the treewidth of a general graph is an NP-hard problem [8], it is possible to
construct (if it exists) a tree decomposition of width τ ≤ κ in linear time, for any constant κ [13].

The union of a bag Xi with all its descendant bags in T is denoted Vi. A nice tree decomposition for
graph G is a tree decomposition where, in addition to properties (i)-(iii) listed above, each bag falls
in one of the following cases:

• a leaf (or start) bag Xi has no child and |Xi| = 1;

• a join bag Xi has two child bags Xi′ ,Xi′′ such that Xi′ = Xi′′ = Xi;

• a forget bag Xi has a single child Xj such that Xi = Xj \ {v} for some v ∈ V (G);

• an introduce bag Xi has a single child Xj such that Xi = Xj ∪ {v} for some v ∈ V (G).

A nice tree decomposition with width τ can be obtained from any given tree decomposition with width
τ in polynomial time, with an O(τn) number of bags, see, e.g., [30]. Finally, we recall two well-known
and useful properties of a nice tree decomposition: (a) for an introduce with bag Xi = Xj ∪ {v} with
child Xj , all neighbours of v in Vi are included in Xj ; (b) for a join bag Xi with two children Xi′ and
Xi′′ , the intersection between Vi′ \Xi and Vi′′ \Xi is empty and there is no edge between a node in
Vi′ \Xi and a node in Vi′′ \Xi.

3.2 Connected components configurations

In order to tackle the Connected Pairwise CNP with unit connection costs over a nice tree decompo-
sition of a graph, we consider a specific structure from [2] called connected component configuration
(CCC for short). Given a graph G and a set Σ ⊆ V (G), the CCC of Σ in G is the set of pairs

α = {(Σ ∩ V (H), |V (H) \ Σ|):H ∈ comp(G),Σ ∩ V (H) 6= ∅}.

The number |V (H) \ Σ| represents the number of nodes of a component H not appearing in Σ. We
stress that only the components of G which have a non-trivial intersection with Σ are listed in the
CCC. A collection α = {(Ai, ai)}ki=1 of subset-number pairs where the Ai’s are a partition of Σ ⊆ V (G)

and
∑k

i=1 ai ≤ |V (G)| is called a potential CCC, meaning that it may or may not be a CCC of Σ in

G. We denote by Γ(Σ, r) the set of all possible potential CCCs of Σ such that
∑k

i=1 ai ≤ r. We say
that a potential CCC α is realisable if there exists a subset S such that Σ ⊆ S ⊆ V (G) and α is the
CCC of Σ in G[S]. In such a case, we call G[S] a realisation of α.

We use the concept of CCC to capture the structure of the critical set S and its complement Vi \ S
inside a given bag Xi. In the dynamic programming algorithm presented in the next section, the set
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Σ will represent the intersection of Xi with a partial critical set S ⊆ Vi. This allows us to keep track
of the variation in the number of connected components in G[S] and in the pairwise connectivity in
G[Vi \ S] when a node is added to or removed from a bag (for introduce and forget bags).

We will employ in the dynamic program the following operations on CCCs, taken from [2], to process
forget, introduce and join bags, respectively. Let k = |α| be the number of pairs in a potential CCC
α.

Restriction. Given α = {(Ai, ai)}ki=1 ∈ Γ(Σ, r) and v ∈ Σ, we define

α− v = {(Ai \ {v}, ai + |Ai ∩ {v}|): i = 1, . . . , k s.t. |Ai \ {v}| > 0}.

Hence, the operation α− v induces a potential CCC ∈ Γ(Σ \ {v}, r) where the node v is removed from
the corresponding set Ai in α. If v is the only node in the set, then the associated pair (Ai, ai) is
disregarded.

Extension. Given α = {(Ai, ai)}ki=1 ∈ Γ(Σ, r), v ∈ Σ and L = {i : Ai ∩N(v) 6= ∅}, we define

α+ v = {(Ai, ai) : i = 1, . . . , k s.t. i /∈ L} ∪

{(
{v} ∪

⋃
i∈L

Ai,
∑
i∈L

ai

)}
.

The operation α+ v induces a potential CCC ∈ Γ(Σ ∪ {v}, r) where the node v is (possibly) merged
with the sets Ai in α containing at least one neighbour of v.

Sum. For α′ = {(A′i, a′i)}k
′
i=1 ∈ Γ(Σ, r) and α′′ = {(A′′i , a′′i )}k

′′
i=1 ∈ Γ(Σ, r), we define the sum CCC

α = α′ + α′′ as α = {(Ai, ai)}ki=1 such that

• u, v appear in the same A` if u, v appear in the same A′i of α′ or A′′i of α′′;

• a` =
∑
A′i⊆A`

a′i +
∑

A′′i ⊆A`

a′′i .

The following lemmas allow us to consistently restrict, extend and sum CCCs over a nice tree decom-
position.

Lemma 1 (Lemma 9 in [2]). Consider a bag Xj in a nice tree decomposition T and Σ ⊂ Xj, and
suppose there exists S such that Σ ⊆ S ⊆ Vj \ (Xj \ Σ) and α is the CCC of Σ in G[S]:

(a) For a forget bag Xi = Xj \ {v} with child Xj, α− v is the CCC of Σ \ {v} in G[S], and Σ \ {v} ⊆
S ⊆ Vi \ (Xi \ Σ).

(b) For an introduce bag Xi = Xj∪{v} with child Xj, α+v is the CCC of Σ̂ = Σ∪{v} in Ŝ = S∪{v},
and Σ̂ ⊆ Ŝ ⊆ Vi \ (Xi \ Σ̂).

Lemma 2 (Lemma 10 in [2]). Let Xi be a join bag of T with children Xi′ and Xi′′ and let Σ ⊆ Xi =
Xi′ = Xi′′. Suppose there exist S′ and S′′ such that Σ ⊆ S′ ⊆ Vi′, Σ ⊆ S′′ ⊆ Vi′′. If α′, α′′ are CCCs
of Σ in G[S′], G[S′′], then α = α′ + α′′ is the CCC of Σ in G[S′ ∪ S′′].

3.3 Dynamic programming

We consider a nice tree decomposition of G with bags {Xi} and perform a recursion from the leaves
to the root node of the tree decomposition by properly combining the partial solutions obtained in
each bag of the tree. Given a bag Xi ∈ T , let Σ be the intersection of a partial critical set S ⊆ Vi with
Xi. The corresponding complementary sets are Σ̄ = Xi \ Σ and S̄ = Vi \ S. Therefore, S̄ represents
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the remaining nodes in Vi after the removal of the critical set S, and the pairwise connectivity of
G[Vi] is thus given by the residual graph G[S̄] . We consider in the DP algorithm CCCs that refer
to both (Σ, S) (as described above with a CCC α) and Σ̄, S̄. In particular, for a potential CCC
β ∈ Γ(Σ̄, |Vi \Xi|), we consider a realisation G[S̄] of β, i.e. such that

β = {(Σ̄ ∩ V (H), |V (H) \ Σ̄|):H ∈ comp(G[S̄]), Σ̄ ∩ V (H) 6= ∅}.

Similarly to the previous notations for α, we adopt the general notation β = {(Bi, bi)}i=1...k. The
following definition will represent the number of connected pairs (i.e., the pairwise connectivity) of
the components in G[S̄] that have at least one node in Σ̄:

‖β‖ def
=

∑
(Bi,bi)∈β

(
|Bi|+ bi

2

)
.

For each bag Xi, we define fi(Σ, α, β, π, p) as the minimum sum of the deletion costs of nodes in S,
denoted as k(S), where S is such that

(i) S ∪ S̄ is a partition of Vi, Σ ⊆ S ⊆ Vi \ Σ̄, Σ̄ ⊆ S̄ ⊆ Vi \ Σ,

(ii) G[S] is a realisation of α, |comp(G[S])|= p,

(iii) G[S̄] is a realisation of β, #conn(G[S̄]) = π.

Let Πi(Σ, α, β, π, p) be the above optimisation problem.

Optimal value. The optimal value is recovered by reading the states f1(Σ, α, β, π, p) with f1 ≤ K,
α = {(A1, a1)} or α = ∅ with π ≤

(|V |
2

)
, p = 1 and selecting the state with π as small as possible.

Note that requiring p = 1 forces the deleted set to be connected since there is only one connected
component inside S. We also remark that an optimal solution can be easily recovered from the DP
entries by implementing a backtracking procedure.

We iteratively compute the fi values by going from the leaves up to the root bag X1 through the
following recursions. For the ease of exposition, we provide the proof of correctness of the recursions
in Appendix A.

Start bag. A start bag is a singleton Xi = {v}. We have

fi(Σ, α, β, π, p) =


kv if Σ = {v}, α = {({v}, 0)}, β = ∅, π = 0, p = 1

0 if Σ = ∅, α = ∅, β = {({v}, 0)}, π = 0, p = 0

+∞ in all other cases.

Forget bag. Bag Xi has one child bag Xj , with Xi = Xj \ {v}. We compute fi(Σ, α, β, π, p) as
follows.

fi(Σ, α, β, π, p) = min
{
{fj(Σ∪ {v}, α′, β, π, p):α′ − v = α} ∪ {fj(Σ, α, β′, π, p):β′ − v = β}

}
(5)

Introduce bag. Bag Xi has one child bag Xj , with Xi = Xj ∪ {v}. In this case, we compute
fi(Σ, α, β, π, p) as follows.

fi(Σ, α, β, π, p) =


min {fj(Σ \ {v}, α′, β, π, p′):

α′ + v = α, p = p′ + |α|−|α′|}+ kv
(v ∈ Σ)

min {fj(Σ, α, β′, π′, p):
β′ + v = β, π = π′ + ‖β‖ − ‖β′‖}

(v /∈ Σ)

(6)
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Join bag. Bag Xi has two child bags Xi′ , Xi′′ and Xi = Xi′ = Xi′′ . The recursion for fi(Σ, α, β, π, p)
is written as follows.

fi(Σ, α, β, π, p) = min
{
fi′(Σ, α

′, β′, π′, p′) + fi′′(Σ, α
′′, β′′, π′′, p′′)− k(Σ):

α′ + α′′ = α, β′ + β′′ = β,

p′ + p′′ − |α′|−|α′′|+|α|= p,

π′ + π′′ −
∥∥β′∥∥− ∥∥β′′∥∥+ ‖β‖ = π

} (7)

Proposition 3: The Connected Pairwise CNP with unit connection costs is solved to optimality
by the recursive functions (5)-(7) over any nice tree decomposition of a given graph.

Proof. See Appendix A.

Theorem 1: The Connected Pairwise CNP with unit connection costs can be solved in poly-
nomial time over graphs with a treewidth bounded by a constant κ.

Proof. If the treewidth of a graph is bounded by κ, we can find a nice tree decomposition of the graph
with a number of bags O(κn) in polynomial time.

The DP algorithm requires to compute the values fi(Σ, α, β, π, p) for all bags Xi, all Σ ⊆ Xi, all
α ∈ Γ(Σ, |Vi \ Xi|), β ∈ Γ(Σ̄, |Vi \ Xi|), all values of π and p with 0 ≤ π ≤ |Vi|(|Vi|−1)/2 and
0 ≤ p ≤ |Vi|. As |Vi|≤ n, only n(n − 1)/2 + 1 values are possible for parameters π and only n + 1
values for parameter p. Since κ is a constant, the number of possible bags is in O(n) and each bag
Xi contains a constant number of nodes bounded by κ + 1. So there are at most 2κ+1 sets Σ and,
for any Σ ⊆ Xi, both |Σ| and |Σ̄| are ≤ κ + 1. As noticed in [2], the latter conditions imply that
the number of potential CCCs α (β) is bounded by a polynomial function in n: the number of the
different partitions Ai (Bi) is a function of κ and, for each partition, the possible choices of elements
0 ≤ ai (bi) ≤ n is bounded by (n+1)(κ+1). Hence, the number of fi values to be computed is bounded
by a polynomial in n.

Finally, since all the potential CCCs can be enumerated in polynomial time, it is easy to observe
that computing each entry of the recursive functions (5)-(7) requires only a polynomial number of
operations. Therefore, the DP algorithm has a polynomial time complexity when κ is a constant.

We close this section by underlining that in the case of arbitrary connection costs, the value of
the parameter π would not be polynomially bounded anymore. Moreover, the computation of the
connection cost of a connected component is less straightforward and would invalidate the recursion
relations (6) and (7).

4 The Connected CNP over trees

This section investigates the complexity for the Connected CNP over trees. Since trees have a bounded
treewidth (equal to 1), the results of the previous section apply to the instances of the Connected CNP
over trees with unit connection costs and to the instances of the Connected MinMaxC /MaxNum CNP
over trees. However, while our DP algorithm over a nice tree decomposition of a graph has a higher
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time complexity than the algorithm of [2] for the classic CNP, we will show in the following that
exploiting the connected structure of the critical set leads to faster specialised algorithms than those
for the classic CNP over trees.

In this section we first prove that the Connected Pairwise CNP over trees with arbitrary connection
and deletion costs is NP-complete. Then, we present pseudopolynomial and polynomial algorithms
for different input configurations and compare the obtained results with the existing results for the
Pairwise CNP over trees in [18]. Our results are summarised in Table 1 together with the results
of [18] on the classic CNP over trees for comparison. We also report in the table the results for the
problems over paths. In Appendix B, we also prove that the Connected MinMaxC CNP over trees
turns out to be polynomially solvable. As the Connected MaxNum CNP over trees can be solved in
polynomial time by the DP algorithm developed for graphs with bounded treewidth without imposing
any restriction on the input data (see Appendix C), we decided not to analyse further this problem
variant over trees.

cij ki Complexity
Connected Pairwise CNP Pairwise CNP

Trees:
≥ 0 > 0 Weakly NP-hard Strongly NP-hard [18]
≥ 0 = 1 Solvable in O(n3) Strongly NP-hard [18]
= 1 > 0 Solvable in O(n4) Solvable in O(n7) [18]

Paths:
≥ 0 > 0 Solvable in O(n3) Weakly NP-hard [7, 18]

Table 1: Summary of the derived complexity results for the Connected Pairwise CNP over trees/paths
and comparison with the complexity results in the literature for the Pairwise CNP over trees/paths.

4.1 NP-completeness

In [18] it has been shown that the Pairwise CNP over trees with general connection costs (cij ≥ 0) is
strongly NP-hard. It is also shown that the same result holds even with the further input restriction
ki = 1 for each i ∈ V . The Pairwise CNP over paths with general costs has been proved to be NP-
complete in [18] and shown to be weakly NP-complete in [7]. We show here that the decision version
of the Connected Pairwise CNP over trees, where we seek for solutions with a pairwise connectivity
less than (or equal to) a threshold value Π, is also NP-complete.

Theorem 2: The decision version of the Connected Pairwise CNP over trees with arbitrary
connection and deletion costs is NP-complete.

Proof. The decision version of the Connected Pairwise CNP over trees is indeed an NP-problem as we
can compute and check the objective value of any solution in polynomial time. We prove the theorem
by reducing an arbitrary instance of the decision version of the Knapsack Problem (KP), a well known
NP-complete problem, to an instance of the decision version of the Connected Pairwise CNP over
trees. In an instance of the decision version of the KP we have n items, each with a profit pi and a
weight wi for i = 1, . . . , n, and a threshold value P . The problem asks whether there exists a subset
of the items with a total weight that does not exceed a capacity W and a total profit greater than (or
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equal to) P . If we consider binary variables xi equal to 1 if item i is chosen and equal to 0 otherwise,
we need to find a solution vector x∗ such that

∑n
i=1wix

∗
i ≤W and

∑n
i=1 pix

∗
i ≥ P .

We now construct an instance of the Connected Pairwise CNP as follows. For each item i, we introduce
two nodes 2i− 1 and 2i linked by an edge {2i− 1, 2i}. Each node 2i− 1 is a leaf node with k2i−1 = 1.
We set k2i = wi for each node 2i and c2i−1,2i = pi for each pair (2i− 1, 2i). We then add a root node
2n + 1 with k2n+1 = 1 and an edge {2i, 2n + 1} to each node 2i with c2i,2n+1 = Π + 1. All other
connection costs are set to 0. Finally, we set K = W + 1 and Π =

∑n
i=1 pi − P . Obviously, such a

reduction is polynomial.

We show that there exists a feasible solution for the decision version of the KP if and only if there exists
a feasible solution for the decision version of the Connected Pairwise CNP. Let v∗ denote a feasible
solution vector of the Connected Pairwise CNP with binary variables vj (j = 1, . . . , 2n+1) equal to 1 if
node j is removed. Given a solution x∗ to the decision version of the KP, we derive the corresponding
Connected Pairwise CNP solution by setting v∗2i = x∗i , v

∗
2i−1 = 0 for i = 1, . . . , n and v∗2n+1 = 1. Such

a solution is feasible because it has a connected set of removed nodes,
∑2n+1

j=1 kjv
∗
j ≤W + 1 = K and

a pairwise connectivity equal to

n∑
i=1

pi −
∑

i:v∗2i=1

pi ≤
n∑
i=1

pi − P = Π.

On the other hand, suppose we have a solution v∗ to the decision version of the Connected CNP. This
solution must necessarily have v∗2n+1 = 1 or else the objective function would be larger than Π (as in
that case we could remove at most one intermediate node 2i in order to maintain the connectivity of
the critical set). We can also assume without loss of generality that v∗2i−1 = 0 for i = 1, . . . , n. In fact,
as v∗2n+1 = 1, any leaf node 2i − 1 can be removed only if its neighbour 2i is removed. But in this
case the removal of a leaf node is suboptimal as this operation would only induce budget consumption
without lowering the objective function. We derive a feasible KP solution x∗ by setting x∗i = v∗2i for
i = 1, . . . , n. Indeed, we have:

n∑
i=1

wix
∗
i =

n∑
i=1

wiv
∗
2i ≤W and

n∑
i=1

pix
∗
i =

∑
i:v∗2i=1

pi ≥ P

where the inequality
∑

i:v∗2i=1 pi ≥ P is implied by considering that for the objective function of v∗ we

have
∑n

i=1 pi −
∑

i:v∗2i=1 pi ≤ Π =
∑n

i=1 pi − P .

Hence, since the decision version of the KP can be reduced to the decision version of the Connected
Pairwise CNP over trees, the Connected Pairwise CNP over trees is NP-complete.

4.2 Dynamic Programming algorithms

We derive dynamic programming algorithms to solve the Connected Pairwise CNP over trees. The
logic of the algorithms is to recursively exploit the requirement that the set of the removed nodes
must be connected, which implies that over trees the removed nodes must constitute a tree as well.
This consideration leads to dynamic programming schemes running with a considerably lower time
complexity with respect to the solution methods derived in [18] for the Pairwise CNP over trees.
The proposed dynamic programs allow us to show that the Pairwise CNP over trees with arbitrary
connection and deletion costs is weakly NP-hard and that the problem is polynomially solvable when
either the connection costs or the deletion costs are one. Hence, we make progress in evaluating at
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what extent the inherent difficulty of solving the Pairwise CNP over trees reduces when the set of the
deleted nodes is required to be connected.

Consider a tree T rooted in a given node r. We define the levels of T as follows. The children of
the root node r constitute the first level of T , the children of the children of r define the second level
of T , and we proceed in the same way moving down in T until all its levels are identified. For our
algorithmic developments, we denote by Ta the subtree of tree T rooted in a node a. Any subtree Ta
has node a as root, it contains the children of a and all the subsequent nodes in the lower levels of T .
We denote the i − th child of a as ai and the set of children of a as CHa, i.e. CHa = {a1, a2, . . . }.
Also, let na = |Ta| be the number of nodes in Ta. We indicate by PW (Ta) =

∑
i<j{cij : i, j ∈ Ta}

the overall cost of the connections between each node pair in Ta. Notice that the computation of all
PW (Ta) can be performed in O(n3). Finally, let fi denote the father node of a node i.

The structure of the dynamic programming recursions will be based on a suitable exploration of each
subtree Ta where node a is removed and any other node can be removed only if all the nodes in
the unique path between the root a and it are removed. We remark that our dynamic programming
schemes resemble the so called left-right approach proposed in [29] and a related variant proposed
in [16] for the precedence constraint knapsack problem over trees. This problem is a variant of the
standard knapsack problem where the items are associated with the nodes of a tree and an item can
be packed only if all its predecessors in the unique path from the root node are selected. In the
following, we first handle the case with arbitrary connection costs cij and then consider the case with
unit connection costs.

4.2.1 Arbitrary connection costs (cij ≥ 0 for i, j ∈ V )

For each subtree Ta, we compute an optimal solution that minimises the pairwise connectivity in the
subtree when root a is removed. We first index the nodes by a depth first search starting from the root,
i.e. a = 1, and excluding the leaves. Let n′a (< na) denote the overall number of ordered nodes. Then,
we recursively consider the nodes for removal according to the depth first search (see the example in
Figure 1 after the description of the dynamic program functions). The leaves in Ta will not be visited
as if their father node is removed in a solution, the removal of any leaf node will not contribute to
further lowering the objective function. If instead the father node is not removed, no leaf node can
be removed as the resulting set of deleted nodes would not be connected. For each subtree Ta, we
consider the subproblems where a subset of the nodes can be removed. Correspondingly, we define for
a triple (i, j, k) with 1 ≤ i ≤ j ≤ n′a and 0 ≤ k ≤ K:

Ra(i, j, k) := minimum connection costs of a solution for subtree Ta when the nodes in the path
from 1 to i are removed and other nodes in set {1, . . . , j} can be removed, given a
budget k.

If no feasible solution exists for a triple (i, j, k), we set R(i, j, k) = +∞ (i.e. an arbitrarily large value).
We analyse all the subtrees and compute an optimal solution for the original tree T by selecting the
node a∗ ∈ V such that:

a∗ = arg min{Ra(1, n′a,K) + PW (T \ Ta) : a ∈ V } (8)

where the connection costs Ra(1, na,K) in Ta are summed with the connection costs PW (T \ Ta)
in the remaining part of the tree. Notice that when a is a leaf node or a node whose children are
leaves, we have n′a = 1 and either Ra(1, n

′
a,K) = 0 if ka ≤ K or else Ra(1, n

′
a,K) = +∞. In the

remaining cases, to compute Ra(1, n
′
a,K) we can recursively compute the Ra(i, j, k) values for some

triples (i, j, k) identified by the depth first exploration of Ta. In particular, we will only consider
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specific values of j for given values of i and k. For the root node a = 1 and k = 0, . . . ,K we have:

Ra(1, 1, k) =

{∑
h∈CH1

PW (Th) if k1 ≤ k;

+∞ otherwise.
(9)

In fact, if the value k of the budget allows the removal of node 1, the connection costs are equal to the
sums of the pairwise connectivities of the subtrees rooted in each child of node 1, i.e.

∑
h∈CH1

PW (Th).
Then, we consider the removal of a node i > 1 by going down in the tree and applying a down move.
More precisely, in a down move we set j = i and have for k = 0, . . . ,K:

Ra(i, j, k) =

{
Ra(fi, j − 1, k − ki)− PW (Ti) +

∑
h∈CHi

PW (Th) if ki ≤ k;

+∞ otherwise.
(10)

Hence, in a down move the node i is added to the set of nodes available for removal (j = i) and node
i is removed when ki ≤ k. In such a case, the pairwise connectivity in Ta is given by the connection
costs obtained with triple (fi, j − 1, k − ki), without the term PW (Ti), plus the connection costs in
the subtrees rooted in each child of i. The latter costs are represented by the term

∑
h∈CHi

PW (Th).

A down move is performed whenever we can visit a new node by moving down in Ta. Otherwise,
after visiting a node i, we backtrack to its father node fi and apply an up move where we have for
k = 0, . . . ,K:

Ra(fi, j, k) = min{Ra(fi, i− 1, k); Ra(i, j, k)}. (11)

In the min comparison in (11), we evaluate, for a given value of k and father node fi, whether it is
convenient to remove the child node i when the nodes available for removal are the nodes 1, . . . , j.
If node i is removed, we consider the term Ra(i, j, k). Else, we consider the subproblem associated
with triple (fi, i − 1, k) and take the term Ra(fi, i − 1, k) as the nodes i + 1, . . . , j (which lie in the
tree under the node i when an up move is considered) cannot be available for removal if node i is
not removed. An up move is performed until a new down move can be applied. By following these
rules, the tree is explored until we compute the optimal solution value Ra(1, n

′
a,K) (see the example

in Figure 1). Without going into the details, we remark that we can implement a simple backtracking
procedure to compute also the optimal solution corresponding to R(1, n′a,K) without increasing the
time complexity of the algorithm. Considering the proposed dynamic program, we can state the
following proposition.

Proposition 4: The Connected Pairwise CNP over trees with arbitrary connection and deletion
costs admits a pseudopolynomial time algorithm with time complexity O(n2K).

Proof. For a given subtree Ta, the dynamic programming algorithm analyses the relevant edges twice
for each value of k. Thus, the number of elementary operations needed to execute the algorithm is
bounded by O(naK). Since we consider all the subtrees to compute an optimal solution for T , the
overall running time is bounded by O(n2K).

With the results of Proposition 4 and Theorem 2, we immediately have the following statement.

Corollary 1: The Connected Pairwise CNP over trees with arbitrary connection and deletion
costs is weakly NP-hard.

In problem instances with unit deletion costs (ki = 1 for each i ∈ V ), we have the following result.
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1

2

3

5

6 74

Down move

Up move

Figure 1: Example of a sequence of down/up moves for the exploration of a subtree Ta where the fol-
lowing sequence of Ra(i, j, k) entries is computed for k = 0, . . . ,K: Ra(1, 1, k), Ra(2, 2, k), Ra(3, 3, k),
Ra(2, 3, k), Ra(4, 4, k), Ra(2, 4, k), Ra(1, 4, k), Ra(5, 5, k), Ra(6, 6, k), Ra(5, 6, k), Ra(7, 7, k),
Ra(5, 7, k), Ra(1, 7, k).

Corollary 2: The Connected Pairwise CNP over trees with arbitrary connection costs and
unit deletion costs is polynomially solvable.

Proof. Since we have K < n in the meaningful instances with unit deletion costs, the dynamic program
described above constitutes a polynomial time algorithm as it runs with O(n3) time complexity.

4.2.2 Unit connection costs (cij = 1 for i, j ∈ V )

In any instance of the Connected Pairwise CNP over trees with unit connection costs, the pairwise
connectivity is bounded from above by the number of node pairs n(n − 1)/2. We can modify the
above recursions for dynamic programming by deletion costs and perform dynamic programming by
connection costs for a given subtree Ta. For a triple (i, j, c) with 1 ≤ i ≤ j ≤ n′a and 0 ≤ c ≤∑

h∈CH1
PW (Th), we define:

Ra(i, j, c) := minimum deletion cost of a solution for subtree Ta with connection costs ≤ c when
the nodes in the path from 1 to i are removed and other nodes in set {1, . . . , j} can
be removed.

As in the previous algorithm, we set R(i, j, c) = +∞ if no feasible solution exists for a triple (i, j, c).
In the root node a = 1 we have for each value of c:

Ra(1, 1, c) =

k1 if
∑

h∈CH1

PW (Th) ≤ c;

+∞ otherwise.

(12)

Clearly, when we only remove the root node, the value of R coincides with k1 when
∑

h∈CH1
PW (Th) ≤
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c. In a down move we again set j = i and have for each value of c:

Ra(i, j, c) =


Ra(fi, j − 1, c+ c′) + ki if Ra(fi, j − 1, c+ c′) + ki ≤ K,

with c′ = PW (Ti)−
∑

h∈CHi

PW (Th) and c+ c′ ≤
∑

h∈CH1

PW (Th);

+∞ otherwise.

(13)

Here, we consider the removal of node i in a feasible solution for triple (i, j, c). Correspondingly, we
add the deletion cost ki to the deletion cost given by the triple (fi, j − 1, c + c′) (with j = i), where
c′ represents the decrease of the pairwise connectivity when node i is removed. Clearly, a value c+ c′

out of the relevant range of values of c is not considered. Similarly to the previous dynamic program,
in an up move we have for each c:

Ra(fi, j, c) = min{Ra(fi, i− 1, c); Ra(i, j, c)}. (14)

The optimal value for the subtree Ta is given by the smallest quantity cmin such that Ra(1, n
′
a, cmin) ≤

K. The corresponding solution value for T is cmin + PW (T \ Ta). By analyzing all the subtrees, we
identify the subtree Ta that contains a global optimal solution and recover such a solution by a back-
tracking procedure. Considering the modified dynamic program, we state the following proposition.

Proposition 5: The Connected Pairwise CNP over trees with unit connection costs admits a
polynomial time algorithm with time complexity O(n4).

Proof. The dynamic programming algorithm for each subtree Ta has a running time of O(2na ·na(na−
1)/2) = O(n3a) as we consider the relevant edges in the subtree twice for each value of c and we have
c ≤ na(na − 1)/2. Considering all the O(n) subtrees, the overall time complexity is O(n4).

4.2.3 Polynomiality over paths

The Pairwise CNP was suggested to be weakly NP-hard over paths with arbitrary connection and
deletion costs in [18]. This result was then proved in [7]. We show here that the Connected Pairwise
CNP over paths can be easily solved in polynomial time. We consider the nodes indexed by increasing
numbers from left to right in the path. It suffices to evaluate n solutions where we start removing a
different node i ∈ V and progressively delete subsequent nodes j > i until the deletion budget allows
it. Since the connection costs of a given solution can be computed in O(n2), the problem can be solved
to optimality in O(n3) time. We summarise this result in the following proposition.

Proposition 6: The Connected Pairwise CNP over paths is solvable in polynomial time with
time complexity O(n3).

Notice that the same algorithm can be applied over paths to the other objective functions studied
in this article, MinMaxC and MaxNum, but with a lower time complexity due to the computation
of the objective function, i.e., O(n2) for the Connected MinMaxC CNP and O(n) for the Connected
MaxNum CNP (whose solutions can yield either one or two connected components).

We conclude this section by observing that even stronger results can be obtained for the version of
the CNP where the set of critical nodes is further restricted to form a path, see e.g. [25]. In such a
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version of the CNP over trees, since there exists a unique path between any two nodes, there is only
a polynomial number of O(n2) paths that we can consider for the critical set, therefore solving such
a problem over trees can be done in polynomial time.

5 The Connected CNP over series-parallel graphs

Several variants of the CNP have been studied specifically over series-parallel graphs: for example, [40]
established the polynomiality of the CNP based on the cardinality of the largest connected component
or the number of connected components, while [7] established polynomiality for a certain class of the
Distance-CNP with unit connection costs. Since series-parallel graphs have treewidth 2, they can be
solved by the (pseudo-)polynomial algorithm described in Section 3 in certain cases. In this section,
we provide further insight on the cases where such instances prove to be NP-hard.

We recall a few definitions and facts about series-parallel graphs. Two-terminal graphs (TTG) G(s, t)
with source node s and sink node t represent the building blocks of a series-parallel graph, since such
a graph can be obtained by performing series and parallel compositions of two TTG at a time: the
series operation consists in merging nodes t1 and s2 of TTG graphs G1(s1, t1) and G2(s2, t2) while the
parallel operation consists in merging node s1 with s2 on one part and node t1 with t2 on the other
part. The full series-parallel graph G can be constructed by a set of series-parallel operations which
can be represented by a binary tree where the leaves are two-nodes single-edged graphs called K̂2 and
the construction can be performed by following the operations from leaves to root (each node being
either a series or a parallel operation between the graphs of the nodes below). Such a binary tree can
be identified in linear time [43, 44]. An example is given in Figure 2 where two TTGs are merged
using a parallel operation.

s1 t1

s2 t2

s t

Figure 2: Example of a parallel operation between two TTGs of a series-parallel graph (on the left),
where the final result is displayed on the right.

We now propose to study the complexity of the Connected Pairwise CNP over series-parallel graphs
when the connection costs are non-unitary, since the case of unitary connection costs is handled by the
recursion proposed in Section 3. We will first establish the NP-completeness of the Connected CNP
based on pairwise connectivity over series-parallel graphs with integer connection and deletion costs
and provide a result of strong NP-hardness for the classic Pairwise CNP over series-parallel graphs
with integer connection costs. We sum up our findings over series-parallel graphs in Table 2 along
with existing results for the classic Pairwise CNP.

We first perform a reduction of the decision version of the Partition Problem to prove the NP-
completeness of the Connected CNP over series-parallel graphs.

16



cij ki complexity
Connected Pairwise CNP Pairwise CNP

≥ 0 > 0 NP-hard Strongly NP-hard
= 1 > 0 Polynomial Polynomial [2]

Table 2: Summary of our complexity results for the Connected Pairwise CNP over series-parallel
graphs along with complexity results for the Pairwise CNP (partially taken from [2]).

n+ 1

1

2

n

n+ 2

c1,n+2 = a1

c2,n+2 = a2

cn,n+2 = an

kn+1 = 1 kn+2 = K + 1

k1 = a1

k2 = a2

kn = an

Figure 3: Example of a series-parallel instance for the Connected CNP over series-parallel graphs
obtained by reduction of a Partition instance.

Theorem 3: The decision version of the Connected Pairwise CNP over series-parallel graphs
is NP-complete with integer connection and deletion costs.

Proof. We introduce an instance of the Partition Problem [23] as follows. An instance of the Partition
Problem is made of a set A = {1, . . . , n} of n positive integers ai and its decision version consists in
identifying a subset A′ ⊂ A such that

∑
i∈A′ ai =

∑
i∈A ai/2.

We construct an instance of the decision version of the Connected CNP based on a general instance
of the Partition Problem as follows. For each i ∈ A, we define a node i with ki = ai. We also define a
node n+ 1 with kn+1 = 1 and a node n+ 2 with kn+2 =

∑
i∈A ai/2 + 2 and add edges (i, n+ 1) and

(i, n+ 2) for i ∈ A. We set ci n+2 = ai for i ∈ A while all other connection costs are null. The terminal
nodes s and t are nodes n+1 and n+2 and the overall graph is a series-parallel graph. The maximum
threshold K on the total weight of deleted nodes is fixed at K =

∑
i∈A ai/2 + 1 and the maximum

threshold Π on total pairwise connectivity is fixed at P =
∑

i∈A ai/2 for the decision version of the
Connected CNP. We display a graphical example of the obtained Connected CNP instance in Figure 3
where it can be seen that the graph is obtained by series combinations of K̂2 graphs and finish the
combination by an overall parallel operation. The reduction is polynomial.
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We now prove that there exists a feasible solution for the decision version of the Partition Problem
iff there exists a feasible solution for the decision version of the Connected CNP. Let us consider a
solution A∗ to the decision version of the Partition Problem and define the corresponding Connected
CNP solution as v∗i = i for i ∈ A∗, v∗n+1 = 1 and v∗n+2 = 0. Such a solution is connected and has:

n+2∑
i=1

kiv
∗
i =

∑
i∈A∗

ai + 1 = K and
∑
i<j

ciju
∗
ij =

∑
i∈A\A∗

ai =
∑
i∈A

ai/2 = P,

which implies it is a feasible solution to the decision version of the Connected CNP. On the other hand,
suppose that we have a feasible solution to the decision version of the Connected CNP. It has necessarily
v∗n+2 = 0 (in order to respect the budget constraint). Since the critical set must be connected, setting
v∗n+1 = 0 would mean that we can delete only one node in the graph. This could result in an optimal
solution only if, given the index im ∈ A, we have aim =

∑
i∈A ai/2. In such a case, the deleted node

corresponds to the optimal subset A∗ of the Partition Problem and the correspondence is easy to
obtain. In any other case, any feasible solution to the decision version of the Connected CNP must
have v∗n+1 = 1 so that the deletion of any subset of the nodes i ≤ n induces a connected subgraph.
The residual budget for deleting such nodes is K − 1 =

∑
i∈A ai/2. By construction of the connection

cost, we have that
∑

i,j∈V :i<j ciju
∗
ij =

∑
i∈A:v∗i =0 ai =

∑
i∈A ai −

∑
i∈A:v∗i =1 ai, hence we have that∑

i,j∈V :i<j ciju
∗
ij ≥

∑
i∈A ai −K + 1 =

∑
i∈A ai/2. In order to have a Yes instance for the Connected

CNP, we need to have the relation:∑
i∈A:v∗i =1

ai =
∑

i∈A:v∗i =0

ai =
∑
i∈A

ai/2,

which guarantees that the partition instance is a Yes instance too, which completes the proof.

Since one of our goals is to compare the complexity of the Connected CNP with the complexity of the
classic CNP, we will also derive an NP-completeness result for the classic Pairwise CNP over series-
parallel graphs, albeit stronger than the one above. In order to do this, we will use the reduction from
the Multicut in Trees (MCT) presented in [18] to derive the strong NP-completeness of the Pairwise
CNP over trees and we refer to [18] for more details. The MCT consists in finding the edge set of
minimum weight whose deletion will disconnect a collection H = {{u1, v1}, . . . , {ut, vt}} of node pairs
in the tree. In the proof of the following theorem, we consider only the unweighted version of the
MCT where each edge has unitary weight, which has been shown to be strongly NP-complete in [24].

Theorem 4: The decision version of the Pairwise CNP is strongly NP-complete on series-
parallel graphs with integer connection costs, even with unit deletion costs.

Proof. We need to prove the equivalence of a Yes instance of the MCT with a Yes instance of the Pair-
wise CNP over series-parallel graphs with unit deletion costs. Consider an instance of the unweighted
MCT, i.e. a tree T = (V,E) with n = |V | and a collection H of pairs of nodes to disconnect. An
instance of the decision version of the MCT also contains a maximum threshold B and asks whether
there exists an edge subset W ⊂ E with |W |≤ B such that the removal of edge subset W disconnects
each pair in H. In order to construct an instance of the decision version of the Pairwise CNP over
series-parallel graphs, we will first follow the reduction provided in Section 2 of [18]. Therefore we
first construct a tree T ′ = (V ′, E′) containing all the nodes in V . For each edge of e = {i, j} ∈ E,
we add two nodes e1 and e2 and three edges {i, e1}, {e1, e2} and {e2, j}, i.e. i − e1 − e2 − j forms a
subpath. We set the connection cost cuv = 1 for {u, v} ∈ H, cuv = M > |H| if {u, v} = {e1, e2} for
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all e ∈ E and cuv = 0 in any other case. Finally, we add an extra node q with an edge between q and
each leaf node in T ′ to obtain a series-parallel graph G(r, q) with terminal nodes r and q where r is the
root node of T . We set the connection costs ciq = 0 for all nodes i ∈ V ′ and all deletion costs ki = 1
for i ∈ V ′ ∪ {q}. We set the maximum deletion threshold K = B and the maximum connectivity
threshold P = M(n − K − 1). We observe that the deletion of terminal node q does not provide
any reduction of the total connection in the decision version of the Connected CNP. Therefore, the
logic of the proof follows the steps of Proposition 2.1 in [18] and we refer the reader to it for further
details. Since the unweighted MCT is strongly NP-complete, it follows that the Connected CNP on
series-parallel graphs is strongly NP-complete, even with unit deletion costs.

The results for the MinMaxC CNP over series-parallel graphs are reported in Appendix B.

6 Conclusions

We have introduced in this work a variant of the Critical Node Problem where the set of critical nodes
forms a connected subgraph. This requirement had only been partially investigated for specially
structured critical sets in [25, 49]. We studied three versions of the problem based on three different
objective functions and stated their NP-hardness status on even biconnected planar bipartite graphs.
We then studied the complexity of the Connected CNP on tree decompositions of a general graph and
derived dynamic programming algorithms. We showed that the problems are polynomially solvable
with unit weights in the objective function when the treewidth of the graph is bounded by a constant.
We also investigated the considered problems over trees and highlighted the differences in complexity
with the classic CNP over trees. Finally, we studied the complexity of the problems over series-parallel
graphs with arbitrary costs and we provided additional results on the NP-hardness of several variants
of the classic CNP over series-parallel graphs.

The complexity of some versions of the CNP in other types of graphs has been successfully investigated,
e.g., in [32] for proper interval graphs and in [31] for bipartite permutation graphs. Therefore, an
analysis of the Connected CNP over such specially structured graphs could be a natural direction for
future research. Another interesting research line would be the development of decomposition methods
based on mathematical programming to solve the Connected CNP on general graphs, as in, e.g., [25]
and [49]. Finally, as underlined in the Introduction, many heuristic approaches were developed for
the CNP given the inherent difficulty of solving any variant of the problem over general graphs. It
would be interesting to tailor some of these approaches to include the constraint of having a connected
critical set.

Appendix A Proof of correctness of the DP algorithm over tree
decompositions

We consider the following strategy to show the correctness of the recursive functions (5)-(7). For each
type of bag of the nice tree decomposition, we show that fi(Σ, α, β, π, p), i.e. the left hand side (lhs)
of the equations, is at least as large as the right hand side (rhs) of the equations under the assumption
that fi(Σ, α, β, π, p) exists finite. We also show that fi(Σ, α, β, π, p) is at most as large as a finite value
of the rhs of the equations. This implies that the recursive functions are correct when the fi values
are finite. Notice that when the fi values are not finite, we just have a propagation of +∞ values and
thus the correctness of the recursive functions still holds.
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Start bag. The recursion for start bags is straightforward: we evaluate the possible removal of node
v and consider the corresponding settings of Σ, α, β, π and p.

Forget bag. For a forget bag Xi, we have Vi = Vj . First assume that the lhs of (5) exists and is
finite. Then there exists an optimal set S for Πi(Σ, α, β, π, p) satisfying the requirements (i)-(iii). As
v /∈ Xi, v is never included in Σ when Xi is considered. We have either v ∈ S̄ or v /∈ S̄.

Case v ∈ S̄. This implies v /∈ Σ for the child bag Xj . Let Σ̄′ = Σ̄∪{v}, Σ′ = Σ; Σ′, Σ̄′ form a partition
of Xj , and Σ̄′ ⊆ S̄ ⊆ Vj\Σ′, Σ′ ⊆ S ⊆ Vj\Σ̄′. Among all the potential CCCs β′ ∈ Γ(Σ̄′, |Vj\Xj |), let us
consider the CCC of Σ̄′ in G[S̄], namely β′ = {(Σ̄′∩V (Ĥ), |V (Ĥ)\Σ̄′|): Ĥ ∈ comp(G[S̄]), Σ̄′∩V (Ĥ) 6=
∅}. By Lemma 1(a) β′ − v is the CCC of Σ̄ in G[S̄], namely β′ − v = β. Also, α is still the CCC
of Σ in G[S], #conn(G[S̄]) = π and |comp(G[S])|= p. Thus, S is a feasible solution to problem
Πj(Σ, α, β

′, π, p), min{fj(Σ, α, β′, π, p:β′ − v = β} exists, finite, and

fi(Σ, α, β, π, p) = k(S) ≥ min{fj(Σ, α, β′, π, p):β′ − v = β}.

Case v /∈ S̄. Let Σ̄′ = Σ̄, Σ′ = Σ ∪ {v}; Σ′, Σ̄′ form a partition of Xj , with Σ̄′ ⊆ S̄ ⊆ Vj \ Σ′,
Σ′ ⊆ S ⊆ Vj \ Σ̄′. Consider α′ = {(Σ′ ∩ V (Ĥ), |V (H̄) \ Σ′|):V (Ĥ) ∈ comp(G[S])}, the CCC of Σ′ in
G[S]: by Lemma 1(a) α′ − v is the CCC of Σ in G[S], thus α′ − v = α. Also, β is still the CCC of Σ̄
in G[S̄], #conn(G[S̄]) = π, |comp(G[S])|= p. Then S is a feasible solution to Πj(Σ ∪ {v}, α′, β, π, p),
min{fj(Σ ∪ {v}, α′, β, π, p:α′ − v = α} exists, finite, and

fi(Σ, α, β, π, p) = k(S) ≥ min{fj(Σ ∪ {v}, α′, β, π, p):α′ − v = α}.

This analysis shows that a finite fi(Σ, α, β, π, p) is not smaller than the rhs of (5). Now assume
the rhs of (5) exists, finite, and is given by either min{fj(Σ, α, β′, π, p:β′ − v = β} (Case (1)) or
min{fj(Σ ∪ {v}, α′, β, π, p:α′ − v = α} (Case (2)).

Case (1). Assume that min{fj(Σ, α, β′, π, p:β′−v = β} = k(S) is finite for some S, and let Σ̄′ = Σ̄∪{v}
and Σ′ = Σ as v /∈ Σ. By definition of fj , we have Σ̄′ ⊆ S̄ ⊆ Vj\Σ′, Σ′ ⊆ S ⊆ Vj\Σ̄′, #conn(G[S̄]) = π,
|comp(G[S])|= p. By Lemma 1(a) β′− v = β is the CCC of Σ̄ = Σ̄′ \ {v} in G[S̄]. Also, Σ′ = Σ and α
is still the CCC of Σ in G[S]; #conn(G[S̄]) = π, |comp(G[S])|= p. Hence S is also a feasible solution
to Πi(Σ, α, β, π, p), fi is finite and

fi(Σ, α, β, π, p) ≤ k(S) = min{fj(Σ, α, β′, π, p:β′ − v = β}.

Case (2). Assume min{fj(Σ∪{v}, α′, β, π, p:α′−v = α} = k(S) is finite for some S. Let Σ′ = Σ∪{v},
Σ̄′ = Σ̄. By definition of fj we have that β is the CCC of Σ̄′ in G[S̄], α′ is the CCC of Σ′ in G[S],
Σ̄′ ⊆ S̄ ⊆ Vj \Σ′, Σ′ ⊆ S ⊆ Vj \ Σ̄, #conn(G[S̄]) = π, |comp(G[S])|= p. By Lemma 1(a) α′ − v = α is
the CCC of Σ in G[S]; β is still the CCC of Σ̄ in G[S̄]. Also, #conn(G[S̄]) = π and |comp(G[S])|= p.
Hence S is a feasible solution to Πi(Σ, α, β, π, p), fi is finite and

fi(Σ, α, β, π, p) ≤ k(S) = min{fj(Σ ∪ {v}, α′, β, π, p:α′ − v = α}.

The previous inequalities show that fi(Σ, α, β, π, p) is also bounded from above by a finite rhs of (5).
Putting all the results together proves that equality (5) holds for a forget bag.

Introduce bag. We have v ∈ Xi and v /∈ Xj . We distinguish two cases for bag Xi: v /∈ Σ, v ∈ Σ.

Case v /∈ Σ. Let fi(Σ, α, β, π, p) exist, finite, and S be the optimal solution to Πi(Σ, α, β, π, p). Con-
sidering the child bag Xj , we define S̄′ = S̄ \{v}, S′ = Vj \ S̄ = S. By the definition of fi(Σ, α, β, π, p),
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α is also the CCC of Σ′ = Σ in G[S′]. Define β′ as the CCC of Σ̄′ in G[S̄′]. By Lemma 1(b) β′ + v is
the CCC of Σ̄ = Σ̄′ ∪ {v} in G[S̄], hence β′ + v = β. As v is not added to the critical set when G[Vi]
is considered, the variation of the pairwise connectivity of G[Vi] and G[Vj ] is given by the difference
‖β‖ − ‖β′‖. This because all the neighbours of v in G[S̄] are included in Σ̄ due to the properties of
an introduce bag (see Section 3.1). Thus, we can compute the variation of the pairwise connectivity
by considering only the components in G[S̄] and G[S̄′] with a non trivial intersection with Σ̄ and Σ̄′,
respectively. Given this counting argument, if we also have π = π′ + ‖β‖ − ‖β′‖ then S(= S′) is a
feasible solution to Πj(Σ, α, β

′, π′, p), the rhs of (6) exists, finite, and

fi(Σ, α, β, π, p) = k(S) = k(S′) ≥ min {fj(Σ, α, β′, π′, p):β′ + v = β, π = π′ + ‖β‖ − ‖β′‖}.

Now let the rhs of (6) exist, finite, and consider S′ ⊆ Vj such that min {fj(Σ, α, β′, π′, p):β′ + v =
β, π = π′+‖β‖−‖β′‖} = k(S′). We define S̄ = S̄′∪{v} and note here that S = Vi \ S̄′ = S′. We have
that α is the CCC of Σ in G[S] and β′ + v = β is the CCC of Σ̄ ∪ {v} in G[S̄] by Lemma 1(b). If the
equality π = π′ + ‖β‖ − ‖β′‖ also holds, we can state that S is a feasible solution to Πi(Σ, α, β, π, p).
Hence, fi is finite and we have

fi(Σ, α, β, π, p) ≤ k(S) = min {fj(Σ, α, β′, π′, p):β′ + v = β, π = π′ + ‖β‖ − ‖β′‖}.

Clearly, the previous two inequalities show that equality (6) holds when v /∈ Σ.

Case v ∈ Σ. Let fi(Σ, α, β, π, p) exist, finite, and S be the optimal solution to Πi(Σ, α, β, π, p). Note
that v ∈ Σ =⇒ v /∈ S̄. Define S̄′ = S̄, S′ = Vj \ S̄′ = S \ {v}. Then G[S̄′] = G[S̄] and β is the CCC
of Σ̄ in G[S̄]. Note that Σ′ = Σ \ {v}. Define α′ as the CCC of Σ′ in G[S′]. Then by Lemma 1(b)
α′+v = α is the CCC of Σ in G[S]. If the equality p = p′+|α|−|α′| also holds, by employing a counting
argument similar to the previous one we can state that S′ is a feasible solution to Πj(Σ

′, α′, β, π, p′).
So we have a finite rhs in (6) and

fi(Σ, α, β, π, p) = k(S) = k(S′) + kv ≥ min {fj(Σ \ {v}, α′, β, π, p′):α′ + v = α, p = p′ + |α|−|α′|}+ kv.

Let the rhs of (6) exist, finite, and consider a solution S′ minimising the rhs. We define S̄ = S̄′ and
S = Vi \ S̄ = S′ ∪ {v}. Note that Σ′ = Σ \ {v} and Σ̄′ = Σ̄. If α′ is the CCC of Σ′ in G[S′], then by
Lemma 1(b) α′ + v = α is the CCC of Σ in G[S]. Also, β is the CCC of Σ̄ in G[S̄]. It is easy to see
that if p′ is the number of components in G[S′] then p = p′+ |α|−|α′| is the number of components in
G[S]. Thus, S is a feasible solution to Πi(Σ, α, β, π, p), fi is finite and

fi(Σ, α, β, π, p) ≤ k(S) = k(S′) + kv = min {fj(Σ \ {v}, α′, β, π, p′):α′ + v = α, p = p′ + |α|−|α′|}+ kv.

The previous inequalities prove that equality (6) also holds when v ∈ Σ.

Join bag. First, assume that fi(Σ, α, β, π, p) = k(S) is finite for some S ⊂ Vi\Σ̄. Then Σ̄ ⊆ S̄ ⊆ Vi\Σ,
Σ ⊆ S ⊆ Vi \ Σ̄, #conn(G[S̄]) = π, |comp(G[S])|= p.

Let us define S̄′ = S̄∩Vi′ , S′ = Vi′\S̄′, S̄′′ = S̄∩Vi′′ , S′′ = Vi′′\S̄′′. We have S̄ = S̄′∪S̄′′ and S = S′∪S′′.
Notice also that Σ̄ ⊆ S̄ =⇒ Σ̄ ⊆ S̄′ since Σ̄ ⊆ Xi = Xi′ ; also, S̄ ⊆ Vi \Σ =⇒ S̄ ∩Vi′ ⊆ Vi′ \Σ, hence
Σ̄ ⊆ S̄′ ⊆ Vi′ \Σ. Similarly, it follows that Σ ⊆ S′ ⊆ Vi′ \ Σ̄, Σ̄ ⊆ S̄′′ ⊆ Vi′′ \Σ, Σ ⊆ S′′ ⊆ Vi′′ \ Σ̄. Let
α′ and β′ denote the CCCs of Σ and Σ̄ in G[S′] and G[S̄′], respectively. Also, let α′′ and β′′ denote
the CCCs of Σ and Σ̄ in G[S′′] and G[S̄′′], respectively. By Lemma 2, α′+α′′ is the CCC of Σ in G[S],
and β′ + β′′ is the CCC of Σ̄ in G[S̄]. Hence α = α′ + α′′ and β = β′ + β′′. Let π′ = #conn(G[S̄′]),
π′′ = #conn(G[S̄′′]), p′ = |comp(G[S′])|, p′′ = |comp(G[S′′])|. We show now that if we also have

π = #conn(G[S̄]) = (π′ −
∥∥β′∥∥) + (π′′ −

∥∥β′′∥∥) + ‖β‖ ,
p = |comp(G[S])| = (p′ − |α′|) + (p′′ − |α′′|) + |α|,
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then S′ and S′′ are indeed feasible solutions to Πi′(Σ, α
′, β′, π′, p′) and Πi′′(Σ, α

′′, β′′, π′′, p′′), respec-
tively. Let us consider the first equality. As observed in [2], a component of G[S̄′] or G[S̄′′] that does
not intersect Σ̄ is also a component of G[S̄] with a trivial intersection with Σ̄ and vice versa. To
compute π, we can sum the pairwise connectivity of the components in G[S̄] that do not intersect Σ̄
with the pairwise connectivity of the components in G[S̄] that intersect Σ̄. The first term is given by
(π′−‖β′‖) + (π′′−‖β′′‖) as the number of connected pairs in G[S̄′] or G[S̄′′] belonging to components
that intersect Σ̄ are subtracted from the total number of pairs π′ and π′′. The second term is given by
‖β‖ as β is the CCC of Σ̄ in G[S̄]. A similar counting argument applies to p = (p′−|α′|)+(p′′−|α′′|)+|α|
when set Σ and graphs G[S], G[S′] and G[S′′] are considered.

Since by construction Σ is included in both S′ and S′′, we have k(S) = k(S′) + k(S′′)− k(Σ). Thus,
when S′ and S′′ are feasible solutions to Πi′(Σ, α

′, β′, π′, p′) and Πi′′(Σ, α
′′, β′′, π′′, p′′), the rhs of (7)

is finite and we have

fi(Σ, α, β, π, p) = k(S) = k(S′) + k(S′′)− k(Σ) ≥
≥ min{fi′(Σ, α′, β′, π′, p′) + fi′′(Σ, α

′′, β′′, π′′, p′′)− k(Σ)}.

Now assume that the rhs of (7) exists, finite, i.e. fi′(Σ, α
′, β′, π′, p′) = k(S′) and fi′′(Σ, α

′′, β′′, π′′, p′′) =
k(S′′) for a suitable choice of S′ and S′′ that minimises the rhs. Define S = S′∪S′′, S̄ = S̄′∪ S̄′′. Note
that here Σ ⊂ S ⊆ Vi \ Σ̄, Σ̄ ⊆ S̄ ⊆ Vi \ Σ. By Lemma 2, since α′,α′′ are CCCs of Σ in G[S′], G[S′′],
α′ + α′′ = α is the CCC of Σ in G[S]. Similarly, β′ + β′′ = β is the CCC of Σ̄ in G[S̄]. As before, if
π = (π′−‖β′‖) + (π′′−‖β′′‖) + ‖β‖ and p = (p′− |α′|) + (p′′− |α′′|) + |α|, then S is a feasible solution
to Πi(Σ, α, β, π, p), fi is finite and

fi(Σ, α, β, π, p) ≤k(S) = k(S′) + k(S′′)− k(Σ) =

min
{
fi′(Σ, α

′, β′, π′, p′) + fi′′(Σ, α
′′, β′′, π′′, p′′)− k(Σ)

}
.

The derived inequalities prove that equality (7) holds.

Appendix B Extensions to the Connected MinMaxC CNP

Many results obtained for the Connected Pairwise CNP can be extended to the MinMaxC CNP as
well. We extend here the analysis of the complexity over graphs with bounded treewidth, trees, and
series-parallel graphs.

B.1 NP-hardness on biconnected planar bipartite graphs

We can use the reasonings in the proof of Proposition 1 to show that the unweighted Connected
MinMaxC CNP provides a solution to the MinCVC when the maximum cardinality of the remaining
components must be one at most. We state the following proposition.

Proposition 7: The decision version of the Connected MinMaxC CNP is strongly NP-complete
in biconnected planar bipartite graphs of maximum degree 4, even with unit node weights and
unit deletion costs.

B.2 Graphs with bounded treewidth

We can modify the DP algorithm of Section 3 to prove similar results for the Connected MinMaxC
CNP where the objective is to minimise the weight of the heaviest component in G[S̄]. In order to
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deal with such an objective function, we redefine the second elements of the pairs of a CCC α (or
β). More precisely, we now define α = {(Σ ∩ V (H), c(V (H) \ Σ)):H ∈ comp(G),Σ ∩ V (H) 6= ∅} as
the CCC of a set Σ in a graph G and we modify only the restriction operation of a potential CCC
α = {(Ai, ai)}ki=1 ∈ Γ(Σ, r) as follows:

α− v = {(Ai \ {v}, ai + c(Ai ∩ {v})): (Ai, ai) ∈ α, |Ai \ {v}| > 0}.

Also, we now have ‖β‖ = max{c(Bi) + bi}i=1...k for a CCC β = {(Bi, bi)}i=1...k.

We consider the same function fi(Σ, α, β, π, p) as in Section 3.3 but now π = max{c(H) : H ∈
comp(G[S̄])}. The dynamic program follows the same reasonings as those of the algorithm for the
Connected Pairwise CNP. For a start bag Xi = {v} we have

fi(Σ, α, β, π, p) =


kv if Σ = {v}, α = {({v}, 0)}, β = ∅, π = 0, p = 1

0 if Σ = ∅, α = ∅, β = {({v}, 0)}, π = cv, p = 0

+∞ in all other cases.

The recursive functions (5)-(7) are respectively replaced with:

fi(Σ, α, β, π, p) = min
{
{fj(Σ∪{v}, α′, β, π, p):α′− v = α}∪ {fj(Σ, α, β′, π, p):β′− v = β}

}
(15)

fi(Σ, α, β, π, p) =



min
{
fj(Σ \ {v}, α′, β, π, p′):

α′ + v = α, p = p′ + |α|−|α′|
}

+ kv
(v ∈ Σ)

min
{
fj(Σ, α, β

′, π′, p):

β′ + v = β, π = max{π′, cv +
∑

l=1...|β|:Bl∩N(v) 6=∅

(c(Bl) + bl)}
}

(v /∈ Σ)

(16)

fi(Σ, α, β, π, p) = min
{
fi′(Σ, α

′, β′, π′, p′) + fi′′(Σ, α
′′, β′′, π′′, p′′)− k(Σ):

α′ + α′′ = α, β′ + β′′ = β,

p′ + p′′ − |α′|−|α′′|+|α|= p,

max{π′, π′′, ‖β‖} = π
} (17)

The optimal value is given by the state f1(Σ, α, β, π, p) ≤ K with α = {(A1, a1)} or α = ∅, p = 1 and π
as small as possible. The proof of correctness of our algorithm is very similar to that for the Connected
Pairwise CNP. As regards the time complexity of the DP algorithm, given the definition of the CCCs
we now have a number of indices in fi(Σ, α, β, π, p) and a number of operations to perform for the
recursive functions which are pseudo-polynomial in n and c(V ). We derive the following proposition
and corollary.
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Proposition 8: The Connected MinMaxC CNP with arbitrary node weights and arbitrary
deletion costs can be solved in pseudo-polynomial time over graphs with a treewidth bounded
by a constant κ.

Corollary 3: The Connected MinMaxC CNP with unit node weights and arbitrary deletion
costs can be solved in polynomial time over graphs with a treewidth bounded by a constant κ.

We observe that Proposition 8 is more general than Theorem 1 and implies that over graphs with
bounded treewidth, the Connected MinMaxC CNP is never strongly NP-hard. Besides, we will show
in the next section that the Connected MinMaxC CNP over trees turns out to be polynomial even
with arbitrary node weights and arbitrary deletion costs.

B.3 Complexity results over trees

The complexity of the MinMaxC CNP over trees has been studied in [40], where the problem was
proved to be polynomial with unit node weights (ki = 1 ∀i ∈ T ) and weakly NP-hard with arbitrary
node weights and arbitrary deletion costs. We show here that the Connected MinMaxC CNP with
arbitrary node weights and arbitrary deletion costs is a polynomial problem. We again consider all
the subtrees where the root node is removed. For each Ta, we solve to optimality the problem over
the considered subtree by the following greedy strategy. After the removal of the root node a, we
progressively remove the node i with maximum c(Ti) and whose father was already removed (in order
to guarantee the connectivity of the deleted set), and iterate as long as the budget constraint is not
violated. Notice that each value c(Ti) can be pre-computed in O(n). It is easy to see that this
algorithm is optimal. Consider the initial situation where the root node is removed. Clearly, it would
be suboptimal to remove other nodes (one or more) instead of the child node i with maximum c(Ti)
as this operation would consume deletion budget without improving the objective function. So an
optimal solution will indeed remove the node i whenever possible. The same argument applies for the
progressive selection of the next nodes to remove in an optimal solution.

After solving the subproblem associated with Ta, we take the maximum between the corresponding
optimal value and c(T \Ta) to compute the value of the objective function over T . An optimal solution
for T is given by analyzing all the relevant subtrees and considering the subproblem that gives the
minimum global objective function. The following proposition holds.

Proposition 9: The Connected MinMaxC CNP over trees admits a polynomial time algorithm
with time complexity O(n3).

Proof. The execution time of the algorithm for solving each problem associated with a subtree Ta is
trivially bounded by O(n2a) since, at each iteration, we can select the node to remove in O(na) and na
nodes are removed at most. Since the number of subtrees to consider is in O(n), the resulting time
complexity is O(n3).

We summarise our results in Table 3.

B.4 Series-parallel graphs

We can state the following proposition for the Connected MinMaxC CNP over series-parallel graphs.
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ci ki complexity
Connected MinMaxC CNP MinMaxC CNP

≥ 0 > 0 Solvable in O(n3) Weakly NP-hard [40]
= 1 > 0 Solvable in O(n3) Solvable in O(n3 log n) [40]

Table 3: Summary of our complexity results for the Connected MinMaxC CNP over trees and com-
parison with the complexity results in [40] for the MinMaxC CNP over trees.

Theorem 5: The decision version of the Connected MinMaxC CNP over series-parallel graphs
is NP-complete with arbitrary connection and deletion costs.

Proof. We can show the above theorem by performing a reduction from the Partition Problem, very
similar to the one in Theorem 3. The only difference is that we give a node weight ci = ai to all
nodes i ∈ A, a deletion budget K =

∑
i∈A ai/2 and a deletion cost kn+1 = K + 1 to node n + 1

so that it cannot be deleted anymore. We refer to Figure 4 for a visual example of the Connected
MinMaxC CNP instance obtained. Consequently, the undeleted nodes will always form a single
connected component whose total weight will be:

∑
i∈A:v∗i =0 ai. The rest of the proof is very similar

to the proof of Theorem 3.

Corollary 4: The Connected MinMaxC CNP is weakly NP-hard on series-parallel graphs with
arbitrary node weights and deletion costs.

Proof. The DP algorithm of Section 3 for the Connected MinMaxC CNP is valid for integer node
weights, which provides a pseudopolynomial time algorithm. Since the problem has an NP-complete
decision version, the above result follows.

We can use a slightly modified version of the above proof to show that the classic MinMaxC CNP on
series-parallel graphs is NP-complete with arbitrary weights, which had not been investigated before.

Theorem 6: The decision version of the MinMaxC CNP is NP-complete on series-parallel
graphs with arbitrary node weights and deletion costs.

Proof. We can perform the same reduction as in the above proof for the Connected MinMaxC CNP,
changing the deletion weight of node n + 1 to kn+1 = K + 1 so it cannot be deleted and choosing
K = W . The rest of the proof follows very similarly to the one of Theorem 6.

Using the results of [40] we can formulate the following corollary:

Corollary 5: The MinMaxC CNP is Weakly NP-hard on series-parallel graphs with arbitrary
node weights and deletion costs.

25



Proof. The recursion functions and equations of [40] can be easily extended to integer node weights,
which provides a pseudopolynomial time algorithm. Since the problem has an NP-complete decision
version, the above result follows.

n+ 1

1

2

n

n+ 2kn+1 = K + 1

cn+1 = 0

kn+2 = K + 1

cn+2 = 0

k1 = c1 = a1

k2 = c2 = a2

kn = cn = an

Figure 4: Example of a series-parallel instance for the Connected MinMaxC CNP over series-parallel
graphs obtained by reduction from a Partition instance.

Our results for the Connected MinMaxC CNP over series-parallel graphs are summed up in Table 4.

ci ki complexity
Connected MinMaxC CNP MinMaxC CNP

≥ 0 > 0 Weakly NP-hard Weakly NP-hard
= 1 > 0 Polynomial Polynomial [40]

Table 4: Summary of our complexity results for the Connected MinMaxC CNP based on the heaviest
component weight over series-parallel graphs, along with complexity results for the CNP (partially
from [40]).

Appendix C Extensions to the Connected MaxNum CNP

In this section, we present the results for the Connected MaxNum CNP. We first show the NP-hardness
of the problem on biconnected planar bipartite graphs. Then, we illustrate our results on graphs with
bounded treewidth. No additional meaningful findings can be derived for the Connected MaxNum
CNP over trees or series-parallel graphs with respect to the more general results obtained in graphs
with bounded treewidth.

C.1 NP-hardness on biconnected planar bipartite graphs

We can state the following proposition for the Connected MaxNum CNP:
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Proposition 10: The decision version of the Connected MaxNum CNP is strongly NP-complete
in biconnected planar bipartite graphs of maximum degree 4, even with unit deletion costs.

Proof. Analogously to the proof of Proposition 1, it suffices to reduce the decision version of the
Minimum Connected Vertex Cover problem to the decision version of Connected MaxNum CNP with
unit deletion costs. Given a connected graph G and a number K, the decision version of the MinCVC
asks whether there exists a connected set S that is a vertex cover of G and such that |S|≤ K . Given
an instance of the MinCVC, we can straightforwardly construct an instance of the Connected MaxNum
CNP with unit deletion costs, a deletion budget K and a minimum threshold n−K on the number of
connected components. It is easy to check that if a Yes instance exists for the MinCVC with a solution
S∗ with, |S∗|≤ K, the number of connected components in G[V \S∗] is n−|S∗|≥ n−K. Hence, set S∗

constitutes also a solution of the corresponding instance of the Connected MaxNum CNP. Conversely,
consider a Yes instance of the Connected MaxNum CNP with solution S∗ that induces a remaining
graph with at least n−K components. If |S∗|= K, clearly |S∗| is also a connected vertex cover as each
of the n −K components in G[V \ S∗] must have one node only. Suppose now that |S∗|< K. Since
each component in G[V \ S∗] must necessarily have at least one neighbour in S∗, we can iteratively
add nodes in S∗ by adding nodes from the connected components in G[V \ S∗] (with cardinality > 1)
until again |S∗|= K and ensuring that set S∗ is connected. Thus, a Yes instance of the Connected
MaxNum CNP implies a Yes instance of the MinCVC, completing the reduction.

C.2 Graphs with bounded treewidth

We also extend the proposed DP algorithm of Section 3 to the Connected MaxNum CNP. Here we
consider the definition of fi(S, α, β, π, p) as in Section 3.3 but with π = |comp(G[S̄])| and do not need
to modify the definition of a CCC. For a start bag Xi = {v} we now have

fi(Σ, α, β, π, p) =


kv if Σ = {v}, α = {({v}, 0)}, β = ∅, π = 0, p = 1

0 if Σ = ∅, α = ∅, β = {({v}, 0)}, π = 1, p = 0

+∞ in all other cases.

We can then replace the recursive functions (5)-(7) respectively with:

fi(Σ, α, β, π, p) = min
{
{fj(Σ∪{v}, α′, β, π, p):α′− v = α}∪ {fj(Σ, α, β′, π, p):β′− v = β}

}
(18)

fi(Σ, α, β, π, p) =


min {fj(Σ \ {v}, α′, β, π, p′):

α′ + v = α, p = p′ + |α|−|α′|}+ kv
(v ∈ Σ)

min {fj(Σ, α, β′, π′, p):
β′ + v = β, π = π′ + |β|−|β′|}

(v /∈ Σ)

(19)

fi(Σ, α, β, π, p) = min
{
fi′(Σ, α

′, β′, π′, p′) + fi′′(Σ, α
′′, β′′, π′′, p′′)− k(Σ):

α′ + α′′ = α, β′ + β′′ = β,

p′ + p′′ − |α′|−|α′′|+|α|= p,

π′ + π′′ − |β′|−|β′′|+|β|= π
} (20)
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The optimal value is given by the state f1(Σ, α, β, π, p) ≤ K with α = {(A1, a1)} or α = ∅, p = 1 and
π as large as possible. Again, the proof of correctness of the algorithm is very similar to that for the
Connected Pairwise CNP.

Proposition 11: The Connected MaxNum CNP with arbitrary deletion costs can be solved
in polynomial time over graphs with a treewidth bounded by a constant κ.
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