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Abstract—Dynamic Time Division Duplexing (DynTDD) is
one of the key features that enable the dynamic or flexible
uplink and downlink transmission and reception for a specific
sub-frame in 5G mobile networks. However, the advantages
of the DynTDD system are difficult to fully utilize due to
the cross-link interference (CLI) arising from neighboring
cells using different transmission directions on the same or
partially- overlapping time-frequency resources. There are two
types of cross-link interference; between the Base Stations
(BS), which is known as BS-to-BS or DL-to-UL interference,
and between User Equipment (UE) which is known as UE-
to-UE or UL- to-DL interference. Rank deficiency of channel
matrices is an important aspect of Multi-Input Multi-Output
(MIMO) wireless systems. Poor scattering and the presence
of single or very few direct paths are some reasons for rank
deficiency in wireless channels. While the implications of rank
deficient channels are well understood for the single user
(SU) point-to-point setting, less is known for interference
networks. In this paper, we give a sufficient condition for
a full rank MIMO interfering channel, that outperforms the
current state of the art, we provide also tighter necessary
conditions for Interference Alignment (IA) feasibility, that
are very close to the necessary and sufficient condition,
which gives all the feasible cases. Then we extend a MIMO
Interference Alignment (IA) feasibility framework to rank
deficient channels, by investigating our published theorem for
the necessary and sufficient condition in this case.

Index Terms—Dynamic TDD, MIMO, rank deficient, inter-
ference alignment, Degree of Freedom

I. INTRODUCTION

Beside the potential to significantly improve the overall
resource utilization [1] and considerately reduce the latency
[2], Dynamic Time Division Duplexing (DynTDD), brings
some new challenges because of the introduction of cross-
link interference (CLI), including DL-to-UL and UL-to-DL
interference.

Studies focusing on resolving the BS-to-BS interference
problem rather than the UE-to-UE interference have been
much more prevalent. The reason for this is that during
an UL transmission, DL to UL interference may cause
substantial performance degradation, contrarily to the DL
transmission where the DynTDD is only used in favor of
it [3]. But according to [4], the UE-to-UE interference
power level is low for the UEs in the center of the cell
region but very high for the cell-edge UEs. Moreover,
for network stability, it is also very important to handle
the UE-to-UE interference of edge UEs. Thus, to further

improve network capacity significantly, we have to resort to
concurrent transmissions. Multiple concurrent transmission
techniques (e.g., Zero Forcing (ZF), Interference Alignment
(IA), and distributed MIMO) are proposed in which multi-
ple senders jointly encode signals to multiple receivers so
that interference is aligned or canceled and each receiver is
able to decode its desired information.

The feasibility conditions of IA have been analyzed
in [5]–[11]. [12] also mathematically characterizes the
achievable Degrees-of-Freedom (DoF) of their proposed
DIA technique for a given number of antennas at BS/MS.
In [5] the authors show that for the MIMO Interfering
Broadcast Channel (IBC) where each user has one de-
sired data stream, a proper system is feasible. For the
symmetric (which we call here uniform) MIMO Interfer-
ing Broadcast Channel (IBC), they provide a proper but
infeasible region of antenna configurations by analyzing
the difference between the necessary conditions and the
sufficient conditions of linear IA feasibility. [11] established
a necessary and sufficient condition on IA feasibility for the
(full rank) MIMO Interfering Broadcast Multiple Access
Channel (IBMAC), which characterizes the optimal sum
DoF for various practical network configurations.

The main contributions of this paper are summarized as
follows: the work reported in this paper comes to go beyond
our study in [13] and [14]. We start by reporting the proper
conditions considering centralized design for IA feasibility.
Then we give a sufficient condition in a full rank MIMO IC,
which is written in terms of the problem dimension (number
of UEs, number of antennas, and the number of streams).
After that, we propose tighter necessary conditions that
show motivating numerical results since it is very close
to the sufficient and necessary condition for IA feasibility.
In the end, we give the numerical result that shows the
gap between our sufficient condition, the sufficient and
necessary condition, and the existing sufficient condition
in the current state of the art. We highlight also the gap
between our different proposed conjectures and the suffi-
cient and necessary condition. In addition, for the reduced
Rank MIMO IBMAC-IC we establish for a given system
a comparative table between our previous IA methods in
[13] and the necessary and sufficient condition in [14], to
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confirm the conclusion about the choice of the IA method,
based on the rank of the interfering channel, that increase
the feasible DoF.

II. DYNAMIC TDD SYSTEM MODEL

We consider a MIMO system with two cells, one operat-
ing in DL and the other one in UL. Each cell has one BS of
M antennas, with Kul and Kdl interfering/interfered users
in the UL and DL cell respectively. The kth DL UE and
the lth UL UE have Ndl,k and Nul,l antennas respectively.
This scenario brings the two types of interference, the BS-
to-BS interference, and the UE-to-UE interference between
the UEs that are particularly on the edge of the two
cells as shown in Fig 1. The channel between the lth
user in the UL cell and the kth user in the DL cell is
denoted as Hk,l ∈ CNdl,k×Nul,l with k ∈ [1, ...,Kdl] and
l ∈ [1, ...,Kul]. Denote ddl,k and dul,l as the number of data
streams from the DL BS to the kth DL UE and from the lth
UL UE to the UL BS respectively. We denote the rank of the
UE-to-UE interference channel (IC) as rk,l. We have rk,l
distinguishable significant paths contribute to Hk,l, where
distinguishable means with linearly independent antenna
array responses from other paths, at both the Tx side and
the Rx side. Then we can factorize Hk,l as:

Hk,l = Bk,lA
H
k,l (1)

with Bk,l ∈ CNdl,k×rk,l and Ak,l ∈ CNul,l×rk,l are full
rank matrices.

Fig. 1: DynTDD system model.

To analyze the UE-to-UE interference, we have both the
DL and UL UEs will contribute to cancel each link of
interference between them. We consider Fk ∈ CNdl,k×ddl,k

and Gl ∈ CNul,l×dul,l as the Rx/Tx beamforming (BF)
matrices at the kth DL and the lth UL users respectively.
ZF from UL UE l to the DL UE k requires:

FH
k Hk,lGl = 0,∀k ∈ {1, ...,Kdl},∀l ∈ {1, ...,Kul} .

(2)

Our system of Fig.1 is also called IBMAC (Interfering
Broadcast–Multiple Access Channel) in [11] which corre-
sponds to a two cells system with one cell being in DL (BC)
and another in UL (MAC) and with interference between
the two cells.

In our study, we suppose that the number of base station
antennas is large enough so that all UL or DL UE streams
can be supported, and that the BS-to-BS interference can
be mitigated by exploiting a limited rank BS-to-BS channel
[12]. Hence the IBMAC problem is then limited to the
interference from UL users to DL users, which we may call
IBMAC-IC (IBMAC Interference Channel). We assume:

ddl,k ≥ 1 and dul,l ≥ 1. (3)

III. IA FEASIBILITY CONDITIONS FOR DYNTDD
UE-TO-UE GENERIC RANK MIMO IBMAC

In this section we analyze the overall UL UE to DL UE
interference, considering generic rank MIMO channels.

A. Proper Conditions

In [13] we have established the proper conditions, where
the global proper conditions are given by [13, eq.(6)].

Note that this condition subsumes the SU MIMO con-
ditions dul,l ≤ Nul,l, ddl,k ≤ Ndl,k so that the number
of variables on the LHS is non-negative. Apart from this
proper condition for the overall system, we get an overall
set of proper conditions by considering all subsystems also.

Theorem 1. Overall Proper Conditions for IA Feasibility
in generic rank MIMO IBMAC-IC
The conditions in [13, eq.(6)] should be satisfied also by
any subsystem, i.e. the IBMAC-IC formed by any subset of
the UL users and any subset of the DL users, such that:∑

l∈Uul

dul,l(Nul,l − dul,l) +
∑

k∈Udl

ddl,k(Ndl,k − ddl,k)

≥
∑

k∈Udl

∑
k∈Udl

min(rk,lddl,k, rk,ldul,l, dul,lddl,k) .

∀ Uul ⊆ [ 1, ...,Kul ] and ∀ Udl ⊆ [ 1, ...,Kdl ]

(4)

B. Necessary and sufficient Conditions

In our previous work [14] we have revisited the feasibility
analysis framework of [7], [6] and [5]. Thus we have pro-
vided a detailed analysis of the UE-to-UE interference by
shedding light on the channel matrices and the beamformers
at Tx and Rx, which was of huge use to provide the
necessary and sufficient condition for IA feasibility in a
Reduced Rank MIMO IBMAC-IC. To better understand
the following theorems and conjectures, we report here
the representation of Jacobian matrices J and JH that
include all the UE-to-UE interference channels of our
system model, where the details to obtain these matrices
are given in [14]:
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.

.
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0 Idul,Kul
⊗H

(2)
KdlKul

0 (H
(3)
KdlKul

)T ⊗Iddl,Kdl


(5)︸ ︷︷ ︸

JG

︸ ︷︷ ︸
JF

The block Idul,l
⊗H

(2)
kl in JG has dimensions dul,lddl,k×

dul,l(Nul,l − dul,l), the block (H
(3)
kl )T ⊗ Iddl,k

in JF has
dimensions dul,lddl,k × (Ndl,k − ddl,k)ddl,k.
The dimensions are for matrix JG:∑Kul

l=1

∑Kdl
k=1 dul,lddl,k ×

∑Kul
l=1 (Nul,l − dul,l) dul,l,

for matrix JF :∑Kul
l=1

∑Kdl
k=1 dul,lddl,k ×

∑Kdl
k=1(Ndl,k − ddl,k) ddl,k .

AH
kl =

[
A

(1)
kl A

(2)
kl

]
, BH

kl =
[
B

(1)
kl B

(2)
kl

]
. (6)

The matrix blocks A
(1)
kl and B

(1)
kl have dimensions rkl ×

dul,l and rkl × ddl,k respectively.

JH =



(Idul,1
⊗B

(1)H
11 ) 0 (A

(1)T
11 ⊗Iddl,1

) 0

.

.

.

.

.

.

.

.

.

.

.

.

0 (Idul,Kul
⊗B

(1)H
KdlKul

) 0 (A
(1)T
KdlKul

⊗Iddl,Kdl
)


(7)︸ ︷︷ ︸

JB

︸ ︷︷ ︸
JA

The necessary and sufficient condition for IA feasibility
in a regular MIMO IBMAC-IC is given in the following
Theorem:

Theorem 2. Necessary and Sufficient Condition for IA
Feasibility in a Regular MIMO IBMAC-IC
For a full rank MIMO IBMAC-IC, the DoF tuple
(dul,1, ..., dul,Kul

, ddl,1, ..., dul,Kdl
) is feasible almost

surely if and only if J has full row rank.

And the necessary and sufficient condition for IA fea-
sibility in a reduced rank MIMO IBMAC-IC is provided
and proved in [14], this condition is given by the following
Theorem:

Theorem 3. Necessary and Sufficient Condition for IA
Feasibility in Reduced Rank MIMO IBMAC-IC
For a deficient rank MIMO IBMAC-IC, the DoF
(dul,1, ..., dul,Kul

, ddl,1, ..., dul,Kdl
) are feasible almost

surely if and only if:

rank(J) = rank(JJ ) = rank([J JH ]) (8)

i.e., the column space of JH in (7) should be contained in
the column space of J in (5).

IV. IA FEASIBILITY CONDITIONS FOR DYNTDD
UE-TO-UE FULL RANK MIMO IBMAC

In this section, we focus on the sufficient condition
of IA feasibility in a full rank MIMO IBMAC-IC.The
aim here is to give an easy formulation of a sufficient
condition, in terms of the problem dimensions: the number
of antennas at UL and DL UEs, the number of data stream
and the number of users that are included in the UE-to-
UE interference, rather than the sufficient and necessary
condition in Theorem 2 given by a Jacobian matrix row
rank. [11] finds sufficiency in the limited scenario in which
all DL UEs and UL UEs have the same number of data
streams ddl,k = ddl, dul,l = dul, for this assumption the
number of antennas at DL Ndl,k and at UL Nul,l must
satisfy mod(Ndl,k − ddl, dul) = mod(Nul,l − dul, ddl) = 0
so the IA is feasible. Within this scope, we establish a
sufficient condition for IA feasibility given by our following
Theorem 4, which gives a much greater DoF than the recent
work in [11].
Theorem 4. Sufficient Condition for IA Feasibility in a
Regular MIMO IBMAC-IC
For a full rank MIMO IBMAC-IC, respecting the proper
condition of Theorem 1, and if:

∀k, l : (Nul,l − dul,l) ≥ ddl,k and (Ndl,k − ddl,k) ≥ dul,l (9)

then (dul,1, ..., dul,Kul
, ddl,1, ..., dul,Kdl

) is feasible.

The equation in (9) means that both the block matrix
Idul,l

⊗H
(2)
kl in JG and the block matrix (H

(3)
kl )T ⊗ Iddl,k

in JF should be full row rank.
For the proof, see the Appendix.
In the following, we introduce three conjectures that

represents another sufficient condition, and two tighter
necessary conditions for IA feasibility in regular MIMO
IBMAC-IC.
Conjecture 1. Sufficient Condition for IA Feasibility in
a Regular MIMO IBMAC-IC
For a full rank MIMO IBMAC-IC, respecting the proper
condition of Theorem 1, and if:

∀k, l : (Nul,l − dul,l) ≥ ddl,k or (Ndl,k − ddl,k) ≥ dul,l (10)

and:
Kdl∑
k=1

ddl,k min(Ndl,k − ddl,k,
∑
l

dul,l −max
i

(dul,i))+

Kul∑
l=1

dul,l min(Nul,l − du,l,
∑
k

ddl,k −max
i

(ddl,i))

≥
Kdl∑
k=1

Kul∑
l=1

ddl,kdul,l

(11)

then (dul,1, ..., dul,Kul
, ddl,1, ..., dul,Kdl

) is feasible.

The equation in (10) means that either the block matrix
Idul,l

⊗H
(2)
kl in JG or the block matrix (H

(3)
kl )T ⊗Iddl,k

in
JF should be full row rank. The equation in (11) represents
the tighter necessary version of the proper condition in (4).
Conjecture 2. Tighter Necessary Condition for IA Feasi-
bility in a Regular MIMO IBMAC-IC
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For full rank MIMO channels, if the tuple of DoF
(dul,1, ..., dul,Kul

, ddl,1, ..., dul,Kdl
) respects the proper

condition of Theorem 1 and is feasible, then it may satisfy
the following necessary condition:

Kdl∑
k=1

ddl,k min(Ndl,k − ddl,k,max
l

(dul,l))+

Kul∑
l=1

dul,l min(Nul,l − dul,l,max
k

(ddl,k))

≥
Kul∑
l=1

Kdl∑
k=1

dul,lddl,k

(12)

The LHS of equation (12) represents the number of non
zero columns of the Jacobian matrix J in equation (5), and
the RHS is the number of rows of J .
Conjecture 3. Tighter Necessary Condition for IA Feasi-
bility in a Regular MIMO IBMAC-IC
For full rank MIMO channels, if the tuple of DoF
(dul,1, ..., dul,Kul

, ddl,1, ..., dul,Kdl
) respects the proper

condition of Theorem 1 and is feasible, then it may satisfy
the following necessary condition:

∀k, l : (Nul,l − dul,l) ≥ ddl,k

or

∀k, l : (Ndl,k − ddl,k) ≥ dul,l

(13)

The conjecture 3 means that either JG or JF is full row
rank.

V. RESULTS AND DISCUSSION
For the evaluation of the different given conditions for the

IA feasibility, we give the numerical results in Table I. Thus
we compare the number of combinations (a combination is
a given number of data streams at each UL and DL UE) for
different sum DoF, when considering the proper condition
in Theorem 1, the necessary and sufficient condition in
Theorem 2, our sufficient condition in Theorem 4, and the
sufficient condition in [11, Theorem 3]. We choose as an
example Kul = 2 and Kdl = 3, for the following three
systems:

• System 1: Nul,1 = 3, Nul,2 = 7, Ndl,1 = 2, Ndl,2 = 3 and
Ndl,3 = 8, which is the system that has been chosen in [11],

• System 2: Nul,1 = 4, Nul,2 = 7, Ndl,1 = 4, Ndl,2 = 5 and
Ndl,3 = 6,

• System 3: Nul,1 = 7, Nul,2 = 7, Ndl,1 = 6, Ndl,2 = 5 and
Ndl,3 = 6.

We get the following numerical results by doing an exhaus-
tive search for all the possible combinations that satisfies
each given theorem in Table I, and this process is repeated
for different sum DoF. We give here a example to better
understand the meaning of a combination, for System 1
when SumDoF = 6, the different possible combinations
that respect the proper condition in Theorem 1 are:

dul,1 = 2, dul,2 = 1, ddl,1 = 1, ddl,2 = 1 and ddl,3 = 1
dul,1 = 1, dul,2 = 2, ddl,1 = 1, ddl,2 = 1 and ddl,3 = 1
dul,1 = 1, dul,2 = 1, ddl,1 = 2, ddl,2 = 1 and ddl,3 = 1
dul,1 = 1, dul,2 = 1, ddl,1 = 1, ddl,2 = 2 and ddl,3 = 1

dul,1 = 1, dul,2 = 1, ddl,1 = 1, ddl,2 = 1 and ddl,3 = 2

From these results, we can conclude that:
• The gap in term of the number of combinations

between the proper (Theorem 1) and the necessary and
sufficient condition (Theorem 2) is not negligible, and
it is proportional to the number of antennas. Thus a

SumDoF 5 6 7 8 9 10 11 12 13 14 15
Proper Theorem 1SY S1 1 5 10 15 20 21 19 5 0 0 0
Theorem 2SY S1 1 5 10 15 20 21 16 3 0 0 0
Theorem 4 (9)SY S1 1 2 1 0 0 0 0 0 0 0 0
[11, Theorem 3]SY S1 1 0 0 1 0 0 0 0 0 0 0

Proper Theorem 1SY S2 1 5 15 33 58 83 80 26 4 0 0
Theorem 2SY S2 1 5 15 31 50 67 60 21 4 0 0
Theorem 4 (9)SY S2 1 5 15 22 20 9 2 0 0 0 0
[11, Theorem 3]SY S2 1 0 0 0 0 0 1 0 0 0 0

Proper Theorem 1SY S3 1 5 15 35 70 125 189 241 187 51 8
Theorem 2SY S3 1 5 15 35 70 125 173 197 167 51 8
Theorem 4 (9)SY S3 1 5 15 35 61 76 72 52 28 12 3
[11, Theorem 3]SY S3 1 0 0 1 0 0 1 0 0 0 0

TABLE I: Number of combinations for different Sum DoF
in a full rank interference channel, Kul = 2 and Kdl = 3

feasible Sum DoF needs to be associated to feasible
combinations (distribution of the DoF at UL and DL
UE), so the IA is feasible,

• All the feasible cases are given by the necessary
and sufficient condition (Theorem 2), our sufficient
condition (Theorem 4) comes to cover a subset of
these feasible cases, the size of this subset is quite
interesting, since Theorem 4 is written in term of the
problem dimension, and does not need the full row
rank test on J .

• When considering our sufficient condition (Theorem 4)
with the sufficient condition mentioned before in the
state of the art [11, Theorem 3], we notice how much
our sufficient condition outperforms and improves the
available state of the art.

In Table II we give some numerical results for the three
systems mentioned before, to evaluate the gap between the
given conjectures and the necessary and sufficient condition
in Theorem 2.

SumDoF 5 6 7 8 9 10 11 12 13 14 15
Proper Theorem 1SY S1 1 5 10 15 20 21 19 5 0 0 0
Theorem 2SY S1 1 5 10 15 20 21 16 3 0 0 0
Theorem 4 (9)SY S1 1 2 1 0 0 0 0 0 0 0 0
Conjecture 1SY S1 1 3 1 0 0 0 0 0 0 0 0
Conjecture 2SY S1 1 4 6 8 12 14 8 2∗ 0 0 0
Conjecture 3SY S1 1 5 9 11 11 7 2 0 0 0 0
Proper Theorem 1SY S2 1 5 15 33 58 83 80 26 4 0 0
Theorem 2SY S2 1 5 15 31 50 67 60 21 4 0 0
Theorem 4 (9)SY S2 1 5 15 22 20 9 2 0 0 0 0
Conjecture 1SY S2 1 5 4 11 11 4 1 0 0 0 0
Conjecture 2SY S2 1 5 15 31 50 66 57 11 1 0 0
Conjecture 3SY S2 1 5 15 31 49 61 46∗ 14∗ 3 0 0
Proper Theorem 1SY S3 1 5 15 35 70 125 189 241 187 51 8
Theorem 2SY S3 1 5 15 35 70 125 173 197 167 51 8
Theorem 4 (9)SY S3 1 5 15 35 61 76 72 52 28 12 3
Conjecture 1SY S3 1 5 4 12 14 30 24 38 28 10 0
Conjecture 2SY S3 1 5 15 35 69 119 160 161 85 12 0
Conjecture 3SY S3 1 5 15 35 70 125 173 197 167 51 8

TABLE II: Number of combinations for different Sum DoF
in a full rank interference channel, Kul = 2 and Kdl = 3

(∗) : the given condition gives some combinations that are
proper but not feasible. (Feasible = Theorem 2 is satisfied).
From these results, we can notice that:

• Conjecture 1 is another sufficient condition for IA
feasibility that gives more feasible combinations com-
paring to Theorem 4, from our observation, Conjecture
1 can find some combinations which are not found by
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Theorem 4, so Conjecture 1 and Theorem 4 can be
complementary,

• Conjecture 2 and Conjecture 3 are very close to the
necessary and sufficient conditions in Theorem 2, but
at some DoF these conditions gives some combinations
(at most two combinations) that are proper but not
feasible, it is for this reason that these conditions are
mentioned as a tighter necessary condition.

In Table III we move to a reduced rank MIMO IBMAC-
IC, and we evaluate the DoF of uniform system (Nul,l =
Nul, Ndl,k = Ndl, dul,l = dul, ddl,k = ddl, rkl = r)
with Ndl = 4, Nul = 5, Kdl = 4 and Kul = 2, for
the different conditions established in [13] and the proper
and sufficient conditions given by Theorem 3. In Table III
we give different example than [14] in order to show that
the previous conclusion mentioned in [14] are also true at
different number of antennas. In the following we give the
description of each element in Table III, where a generic
tuple (ddl, dul, dtot) denotes the uniform DoF of a DL UE,
an UL UE, and the overall UL and DL sum DoF:

• (dp,dl, dp,ul, dp,tot) considering Theorem 2 in the cen-
tralized case,

• (dd,dl, dd,ul, dd,tot) considering the distributed
method, with DL UE DoF as in [13, eq. (31a)], UL
UE DoF as in [13, eq. (31b)] (with nF , nG in Table
III optimized as nFd

, nGd
),

• (dc,dl, dc,ul, dc,tot) considering the combined method,
with DL UE DoF as in [13, eq. (26)], the UL UE as
in [13, eq. (27)] (with nF , nG in Table III optimized
as nFc , nGc ),

• (dr,dl, dr,ul, dr,tot) considering Rx side ZF only as in
[13, eq. (26)] with nF = Kul,

• (dt,dl, dt,ul, dt,tot) considering Tx side ZF only as in
[13, eq. (27)] with nG = Kdl,

• (dT3,dl, dT3,ul, dT3,tot) considering Theorem 3.

r 0 1 2 3 4
(dp,dl,dp,ul,dp,tot) (5,4,28) (4,2,20)

or
(3,4,20)

(4,1,18) (3,1,14) (3,1,14)

(dd,dl,dd,ul,dd,tot) (5,4,28) (4,2,20) (1,4,12) (2,0,8)(∗∗) (0,4,8)(∗∗)

(nF,d,nG,d) (1,2) (1,2) (2,0) (1,2) (2,0)
(dc,dl,dc,ul,dc,tot) (5,4,28) (4,2,20) (3,1,14) (3,1,14) (3,1,14)
(nF,c,nG,c) (1,2) (1,2) (2,0) (2,0) (2,0)
(dr,dl, dr,ul, dr,tot) (5,4,28) (3,4,20) (3,1,14) (3,1,14) (3,1,14)
(dt,dl, dt,ul, dt,tot) (5,4,28) (5,0,20)(∗∗) (5,0,20)(∗∗) (5,0,20)(∗∗) (5,0,20)(∗∗)

(dT3,dl, dT3,ul, dT3,tot) (5,4,28) (4,2,20) (3,2,16) (3,1,14) (3,1,14)

TABLE III: DoF per user as a function of the rank of any
cross link channel with Nul = 4, Ndl = 5, Kul = 2 and
Kdl = 4.

(∗∗): the given DoF does not satisfy the conditions in (3).
If negative DoF results from a formula, this DoF will be
set to zero logically.

The observations in [14, Table I] are always true in this
case.

VI. CONCLUSIONS

In this paper we address the IA feasibility in MIMO
IBMAC-IC, thus by considering a full rank interference

channel, we establish a sufficient condition for IA feasibil-
ity, that is written in terms of the problem dimension (num-
ber of UEs, number of antennas, and number of streams).
This condition outperform the existing sufficient condition
in [11] in term of the feasible DoF region (combinations), to
highlight this we provide a comparative table between our
and the existing sufficient condition in the state of the art
for IA feasibility in full rank MIMO IC. We propose also
two conjectures, written in terms of the problem dimension,
as a tighter necessary conditions for IA feasibility, and by
numerical results, we show how much these conjectures are
interesting since their results are very close to the necessary
and sufficient condition given in Theorem 2. For the rank
deficient MIMO IC we evaluate the DoF for a number of
dimensions and compare the results between the proper
conditions mentioned before in our previous work [13]
including the centralized and distributed design, the zero-
forcing in shared fashion or only considering Tx or Rx, and
our sufficient condition given by Theorem 3, here we take
another number of dimension than the one taken in [14] to
confirm the observations given before in [14] regarding the
rank of the MIMO IC for which the distributed method is
interesting to be applied for the IA. The byproduct of our
results is that the IA feasibility conditions that we provide
are applicable to any MIMO interference network, for our
system model as an example we consider the DynTDD
interference network.

APPENDIX

Proof of Theorem 4: Diagonal Shift method
For the ease of understanding of the following proof, we
can divide JF and JG into sub-matrices JFk

and JGk

respectively, regarding the kth receiver, such as:

J =



JG1
JF1

0 0 0

JG2 0 JF2 0 0

...
...

. . .
...

JGKdl
0 0 0 JFKdl


(14)

For each receiver k ∈ [1, . . . ,Kdl], the matrices JFk
and

JGk
are given by (15) and (16) respectively:

JFk
=

JT
Fk1

JT
Fk2

. . . JT
FkKul

T

(15)

JGk
=



JGk1
0 . . . 0

0 JGk2
. . . 0

...
. . .

...

0 . . . 0 JGkKul


(16)
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With l ∈ [1, . . . ,Kul], we have:

JFkl
= H

(3)T
kl ⊗Iddl,k (17a)

JGkl
= Idul,l

⊗H
(2)
kl (17b)

We prove here that for any system (Ndl,k, Nul,l, ddl,k, dul,l)
satisfying Theorem 4, the associated matrix J to this system
can be transformed to a permutation matrix with a rank
equal to the number of rows of J , i.e. J is a full row
matrix, thus the IA is feasible. This transformation can be
done following the coming steps acting on JF then on JG

side, we call this proof as Diagonal Shift method:

• Building Diagonals on JF :
– First diagonal: On the given matrix J at JF ,

we choose the longest diagonal∗∗∗ from the 1st

element of JF1 and we put to zero the other
elements in the rows including this diagonal, we
note the number of elements of this diagonal as n1.
If n1 is equal or smaller than the number of rows
of JF1

, we set the variable sh to 0 or 1 respectively,

– Second diagonal: We choose the longest diagonal
from the element at the 1st column and the
(sh × ddl,2 + 1)th row of JF2 , i.e. the diagonal
is shift down by sh × ddl,2 elements. We put to
zero the other elements in the rows including this
diagonal. We note the number of elements of this
diagonal as n2. If n2 is equal or smaller than the
number of rows of JF2 , we don’t increment sh or
we increment by 1 respectively,

...
– Kth

dl diagonal: We choose the longest diagonal
from the element at the 1st column and the
(sh× ddl,Kdl

+1)th row of JFKdl
, i.e. the diagonal

is shift down by sh ddl,Kdl
elements.We put to

zero the other elements in the rows including this
diagonal.

• Choosing elements from JG:
The following process is done for each k ∈
[1, . . . ,Kdl]:
Whenever nk, with k ∈ [1, . . . ,Kdl], is smaller than
the number of rows of JFk

noted as mk, we work on
the mk − nk remaining rows of J that don’t include
element from the previous chosen diagonals on JFk

.
For those rows, we choose mk − nk elements from
JGk

. The column and row of each chosen element
should be different from each other and also different
from the previously selected element in JG1

, . . . ,
JGk−1

.
∗∗∗: Our longest diagonal should take n elements for a
matrix A ∈ (m × n) with m ≥ n, it begins always at
the 1st column of A:

• If the diagonal begins at the ith row with i ≤ (m −
n + 1), the diagonal will end at the nth column and
the (i+ n− 1)th row;

• If the diagonal begins at ith row with i > (m−n+1);
the diagonal will be stopped at the (m−i+1)th column
and the mth row and goes forward from (m− i+2)th

column and the 1st row.
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