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ABSTRACT

Context. The 98◦ obliquity of Uranus is commonly attributed to giant impacts that occurred at the end of the planetary formation. This
picture, however, is not devoid of weaknesses.
Aims. On a billion-year timescale, the tidal migration of the satellites of Jupiter and Saturn has been shown to strongly affect their
spin-axis dynamics. We aim to revisit the scenario of tilting Uranus in light of this mechanism.
Methods. We analyse the precession spectrum of Uranus and identify the candidate secular spin–orbit resonances that could be respon-
sible for the tilting. We determine the properties of the hypothetical ancient satellite required for a capture and explore the dynamics
numerically.
Results. If it migrates over 10 Uranus’s radii, a single satellite with minimum mass 4 × 10−4 Uranus’s mass is able to tilt Uranus from
a small obliquity and make it converge towards 90◦. In order to achieve the tilting in less than the age of the Solar System, the mean
drift rate of the satellite must be comparable to the Moon’s current orbital expansion. Under these conditions, simulations show that
Uranus is readily tilted over 80◦. Beyond this point, the satellite is strongly destabilised and triggers a phase of chaotic motion for the
planet’s spin axis. The chaotic phase ends when the satellite collides into the planet, ultimately freezing the planet’s obliquity in either
a prograde or a plainly retrograde state (as Uranus today). Spin states resembling that of Uranus can be obtained with probabilities
as large as 80%, but a bigger satellite is favoured, with mass 1.7 × 10−3 Uranus’s mass or more. Yet, a smaller ancient satellite is
not categorically ruled out, and we discuss several ways to improve this basic scenario in future studies. Interactions among several
pre-existing satellites are a promising possibility.
Conclusions. The conditions required for the tilting seem broadly realistic, but it remains to be determined whether Uranus could
have hosted a big primordial satellite subject to substantial tidal migration. The efficiency of tidal energy dissipation within Uranus is
required to be much higher than traditionally assumed, more in line with that measured for the migration of Titan. Hints about these
issues would be given by a measure of the expansion rate of Uranus’s main satellites.
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1. Introduction

The spin axis of Uranus is inclined by about 98◦ with respect
to its orbit normal. This large inclination is particularly puzzling
as all other giant planets in the Solar System have obliquity val-
ues smaller than 30◦. The most widely accepted explanation for
this discrepancy is a series of impacts with large planetesimals
that probably occurred at the end of the accretion phase (see e.g.
Morbidelli et al. 2012; Izidoro et al. 2015; Salmon & Canup
2022). In this picture, the two ice giants Uranus and Neptune
would have acquired random spin-axis orientations, whereas
runaway gas accretion would have driven the obliquities of
Jupiter and Saturn towards 0◦ (Ward & Hamilton 2004; Hamilton
& Ward 2004). Differing impact histories may also explain why
Uranus and Neptune have qualitatively different satellite sys-
tems and show dissimilar heat fluxes (Reinhardt et al. 2020).
However, as argued by Rogoszinski & Hamilton (2020), this
scenario suffers from several weaknesses. Uranus and Neptune
have strikingly similar masses, radii, and spin rates; they also
feature similar atmospheric dynamics (Aurnou et al. 2007), and
both have non-dipolar magnetic fields which are likely produced

through the same internal convection processes (see e.g. Bailey
& Stevenson 2021, for a review). If the final formation stages of
Uranus and Neptune had been dominated by giant impacts, one
would expect them to present a much larger diversity of prop-
erties (see e.g. Chau et al. 2021), perhaps in the spirit of the
terrestrial planets of the Solar System. Even though the rotation
state of both Uranus and Neptune can be reproduced individ-
ually by a finely tuned collision (see e.g. Slattery et al. 1992;
Reinhardt et al. 2020, and the insightful discussions of Rufu
& Canup 2022), similar spin rates, above all, are not what one
would expect as the outcome of random collisions. Instead, the
strong similarities between Uranus and Neptune may indicate
that their final properties result from smoother processes, and
that gas accretion supplied enough angular momentum to dom-
inate their rotation states, similarly to Jupiter and Saturn. This
idea is supported by the fact that the spin rates of all four giant
planets are a fraction of their critical rotation speeds in a con-
sistent way with formation theories (Machida et al. 2008; Ward
& Canup 2010; Lovelace et al. 2011; Batygin 2018; Bryan et al.
2018; Dong et al. 2021; Dittmann 2021). In this unified picture,
we would expect the obliquities of Uranus and Neptune to have
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been small after their formations, and to have evolved to their
observed values (about 98◦ and 30◦) at later stages.

Today, the orbits and spin axes of Uranus and Neptune are
stable and far from any kind of strong perturbation. Therefore,
it seems natural to assume that their tilting occurred early, when
the Solar System was still evolving. It is now believed that the
last large-scale changes in the Solar System happened during a
phase of instability that followed the dissipation of the proto-
planetary disc, as the giant planets were migrating in a swarm
of planetesimals (Tsiganis et al. 2005). It was initially proposed
that this event could be related to a phase of resurging collisions
recorded in the lunar craters (called the late heavy bombard-
ment; see Gomes et al. 2005). Numerous refinements were then
brought to the instability model in order to properly reproduce
the structure of the Solar System as we observe it today. The
most recent advances favour a very early migration and instabil-
ity (within 10 Myr, or even immediately after dispersal of the
gas disc), and no relation with the late heavy bombardment (see
Clement et al. 2018, 2021; Nesvorný et al. 2018; Morgan et al.
2021).

The instability itself did not exactly place the giant plan-
ets on their current orbits. After the instability, the scattering
of the remaining planetesimals produced a last grasp of migra-
tion, during which Uranus and Neptune still migrated over a
few astronomical units. In this much depleted environment, the
migration of Uranus and Neptune was slower, in accordance
with observations: in order to reproduce the observed Kuiper
belt, Neptune probably migrated during this last stage with an
e-folding timescale larger than 10 Myr and possibly extending to
about 100 Myr at the very end of the migration (see Nesvorný
2015, 2018 for a review). Yet, as noted by Ida et al. (2000),
Neptune’s migration could not have been arbitrarily slow; oth-
erwise, mean-motion resonances in the Kuiper belt would be
overcrowded. Putting everything together, Uranus and Neptune
most likely finished their migration from several tens to a few
hundreds of millions of years at most after the dispersal of the
gas disc. This timespan puts strong constraints on their tilting
scenarios if they are required to happen during the planetary
migration.

Apart from collisions, possible tilting mechanisms involve
some kind of spin–orbit coupling (Boué & Laskar 2010;
Quillen et al. 2018; Millholland & Batygin 2019; Rogoszinski
& Hamilton 2020, 2021). This means that at some point, the
spin-axis precession motion of the planet enters into resonance
with some harmonics stemming from its orbital dynamics. If this
happens while the orbits of the planets are still being reshaped,
then the resonance properties change over time. Previous authors
found that during planetary migration, there exist several ways to
displace the resonant equilibrium configuration of the spin axis
from a small obliquity ε ≈ 0◦ to over 90◦ (and even up to 180◦
in the case described by Quillen et al. 2018). However, because
Uranus and Neptune are today so far from the Sun, their spin-axis
precession timescales are extremely large and count in hundreds
of millions of years. In order to yield reasonable tilting probabil-
ities, the displacement of the equilibrium must be very slow (i.e.
adiabatic) compared to the libration inside the resonance, which
itself is slower than the spin-axis precession motion. Hence, for
Uranus placed near its current location, authors invariably deter-
mined that the timescale for a tilting up to 90◦ or more greatly
exceeds the expected duration of the planetary migration (see
e.g. Quillen et al. 2018).

In order to speed up the spin-axis precession of
Uranus and catch a strong resonance, we can imagine that
Uranus formed much closer to the Sun than it is now

(Rogoszinski & Hamilton 2021), or that it once had a big
satellite (Boué & Laskar 2010) or a massive disc around it
(Harris & Ward 1982; Rogoszinski & Hamilton 2020). Indeed,
close-in planets precess faster, and satellites or circumplanetary
discs have the ability to magnify the spin-axis precession rate of
their host planet (see e.g. Tremaine 1991; Boué & Laskar 2006;
Millholland & Batygin 2019). However, authors found that
even with these refinements, the timescale required for a purely
adiabatic tilting of Uranus hardly fits in the limited amount of
time offered by planetary migration (see e.g. Rogoszinski &
Hamilton 2021). Moreover, the late planetary migration has
certainly not been perfectly smooth, but “grainy” (as a result
of the scattering of large planetesimals; see e.g. Nesvorný &
Vokrouhlický 2016). The level of smoothness of the planetary
migration further complicates the adiabatic tilting process, as
a sudden change in the semi-major axis of a given planet may
release Uranus out of resonance, in which case the tilting would
stop.

Yet, the tilting of Uranus may not have been produced
through an adiabatic process: instead of moving the stable equi-
librium point, the quickest way to incline a planet via a resonance
is to do so over a single large-amplitude libration cycle (a “reso-
nance kick”). In this case, the resonance itself must be extremely
wide, which puts new constraints on the orbital dynamics of
the planets. In Appendix A, we show that the orbital inclina-
tion I of the planet with respect to the invariable plane must
verify tan I ⩾ 3 − 2

√
2 in order to allow for trajectories going

from ε ≈ 0◦ to over 90◦ during a single libration inside a secu-
lar spin–orbit resonance. Therefore, irrespectively of the secular
spin–orbit resonance involved (e.g. s7 or s8, as considered by pre-
vious authors), a large orbital inclination of more than about 10◦
is required for the resonant harmonic. This limit quite accurately
matches the numerical experiments of Rogoszinski & Hamilton
(2020). However, in order to yield a reasonable probability of
reproducing Uranus’s current state (instead of a single finely
tuned pathway), the inclination needed is actually much larger
than 10◦. In fact, the most successful tilting scenarios found in
previous studies involve, altogether, a massive satellite (or disc),
a resonance drift due to planetary migration, and a phase of very
large orbital inclination (see Boué & Laskar 2010; Rogoszinski
& Hamilton 2020). Unfortunately, as discussed by Vokrouhlický
& Nesvorný (2015), large inclination values for Uranus and/or
Neptune are an improbable transient feature of Solar System
migration models, and none was reported in the extensive sim-
ulations of Nesvorný & Morbidelli (2012). Moreover, the mass
required for the satellite in order to reach a strong secular spin–
orbit resonance was found to be implausibly large (e.g. 0.01
Uranus’s mass), and some additional mechanism was needed to
remove the satellite after the tilting. Hence, the timescale issue
remains a major problem for previous “collisionless” scenarios
for the tilting of Uranus.

In the alternative migration scenario recently proposed by Lu
& Laughlin (2022), the large-inclination harmonic is provided
by the hypothetical Planet 9 (see e.g. Batygin et al. 2019). Even
though this scenario does not alleviate the need for a massive
circumplanetary disc, the large inclination of Planet 9 allows for
dramatic resonance kicks that can easily produce the required
level of obliquity excitation for Uranus. However, much uncer-
tainty remains about the migration history (and existence) of
Planet 9, and it is not clear whether its large inclination actu-
ally predates its scattering away, as assumed by the authors. This
scenario also suffers from the same caveats as previous works
regarding Uranus’s disc: a massive equatorial disc needs to be
maintained and continuously fed during the whole tilting phase,
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which may not be realistic (see Rogoszinski & Hamilton 2020);
besides, the accretion of matters from the disc onto Uranus
would slow down the resonance crossing phenomenon, possibly
beyond the timescale of planetary migration.

As the spin axis of Neptune is much less inclined, its cur-
rent orientation is easier to explain. Possible scenarios involve
a very early tilt during planetary formation (Martin et al. 2020)
and/or a resonance crossing during the late planetary migration
(Rogoszinski & Hamilton 2020). If Neptune was surrounded by
a massive circumplanetary disc at that time, even a moderate res-
onance kick would be enough. For this reason, we may consider
that the case of Neptune is (at least partially) solved.

Independently of Uranus and Neptune, Saillenfest & Lari
(2021) have recently described a mechanism through which a
migrating satellite can tilt an initially small-obliquity planet up
to over ε = 90◦ with almost no modification to its spin rate. Their
study was prompted by the works of Lainey et al. (2009, 2020),
who discovered that the orbital expansion of satellites around
Jupiter and Saturn are much faster than previously thought, indi-
cating that efficient mechanisms of tidal dissipation can take
place not only in terrestrial planets, as it was known for the
Earth-Moon system, but also in giant planets. Such a fast satellite
migration has been found to deeply affect the spin-axis dynamics
of Jupiter and Saturn (see Lari et al. 2020; Saillenfest et al. 2020,
2021a,b). In fact, while exploring the future evolution of Saturn
and Titan, Saillenfest & Lari (2021) showed that if a satellite
substantially migrates inwards or outwards, then its influence on
the spin-axis precession of its host planet changes over time in a
way that is intimately linked to the properties of its equilibrium
orbital plane, called the “Laplace plane” (Tremaine et al. 2009).
The Laplace plane is well defined everywhere in the parameter
space, except at a specific point, called S1, where it degenerates
into a continuum of equilibria. When it comes to the spin-axis
dynamics of the planet, S1 appears as a singularity located at
an obliquity ε = 90◦, towards which all secular spin–orbit res-
onances converge if the satellite is massive enough. Over the
migration of its satellites, a planet therefore has a chance of
being captured in resonance and brought to extreme obliqui-
ties. Depending on the migration rate of the satellite, this whole
process can take place over the entire lifetime of the plane-
tary system. Importantly, S1 is surrounded by an unstable region
which may lead to the destruction of the satellite once the tilt-
ing is achieved (Tremaine et al. 2009; Saillenfest & Lari 2021).
New satellites could then be formed from the leftover debris disc
(Crida & Charnoz 2012).

In this context, it appears tempting to revisit the case of
Uranus’s obliquity and see whether this new satellite migration-
destabilisation mechanism could solve at least part of the mys-
tery. Since tidal migration of satellites is a process that never
stops, the tilting would not need to be restricted to a short times-
pan, contrary to previous models, and the resonance involved
would not need to be very strong. As a result, this new sce-
nario would neither require a particularly massive satellite, nor
a particularly high orbital inclination for the planet. This tilting
mechanism was actually proven to work for Saturn on its current
orbit, and it is expected to work as well for any giant planet of the
Solar System, should it have the adequate long-range migrating
satellite (Saillenfest & Lari 2021).

In this article, we aim to assess the feasibility of this tilting
mechanism for Uranus and to determine the main parameters that
would be required: the mass of the satellite, its migration range
and timescale, etc. Due to the multi-scale nature of the mech-
anism, the current structure of the Solar System actually offers
many usable constraints, such as its age, the orbital dynamics

of the planets, and the properties of Uranus’s current satellite
system.

The basic mechanism considered here is composed of two
stages. The resonance capture and adiabatic tilting up to the
unstable zone is studied in Sect. 2. We recall the basic mecha-
nism through which a migrating satellite can tilt its host planet
(Sect. 2.1), and conduct a preliminary analysis of the parameters
needed in the case of Uranus: the mass of the satellite (Sect. 2.2),
its migration range (Sect. 2.3), and the resonance capture prob-
abilities (Sect. 2.4). The final destabilisation phase is studied in
Sect. 3. We show that the satellite triggers a double synergistic
destabilisation involving the planet’s spin axis (Sect. 3.1) and we
explore the range of possible outcomes numerically (Sect. 3.2);
we then quantify the probability of reproducing Uranus’s current
spin state (Sect. 3.3) and determine the conditions under which
the satellite collides into the planet (Sect. 3.4). In Sect. 4, we
discuss whether the parameters that we obtain appear realistic
in the broader context of satellite formation theories and tidal
migration mechanisms. We conclude in Sect. 5.

2. Adiabatic tilting up to the unstable zone

2.1. Tilting mechanism

As shown by Saillenfest & Lari (2021), the influence of a given
regular satellite on the spin-axis precession of its host planet
critically depends on its non-dimensional “mass parameter” η,
defined by

η =
1
2

m
M

r2
M

J2R2
eq
, (1)

where m is the mass of the satellite, M is the mass of the planet,
J2 is its second zonal gravity coefficient, and Req is a normalis-
ing radius (that we take equal to the planet’s equatorial radius).
The characteristic length rM is the distance at which the equilib-
rium orbital plane of the satellite lies exactly halfway between
the equatorial plane and the orbital plane of the planet (the index
M stands for “midpoint”). Its definition is closely related to the
Laplace radius1 rL introduced by Tremaine et al. (2009), as

r5
M = 2r5

L = 2
M
m⊙

J2R2
eqa3
⊙(1 − e2

⊙)3/2. (2)

In this expression, m⊙ is the mass of the star, and a⊙ and e⊙
are the semi-major axis and the eccentricity of the planet on
its orbit around the star. The value of rM for Uranus is about
53 Req. We neglect for now the influence of inner satellites in
the effective value of J2 (see e.g. Tremaine et al. 2009). This
means either that Uranus possessed a single satellite at that
time, or that other satellites were too small and/or too close to
Uranus to substantially contribute. We go back to this point in
Sect. 4.

For a small mass ratio m/M, the free spin-axis precession
frequency of the planet taking into account the influence of its
satellite can be approximated by

Ω0 = p
cos ε + η

a2

r2
M

sin(2ε − 2IL)
2 sin(ε)

 , (3)

1 There is currently no consensus in the literature on the exact defini-
tion of the “Laplace radius”. To avoid confusion with previous works,
we stick to the definition of Tremaine et al. (2009) for rL and introduce
rM as a distinct characteristic length.
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where ε is the planet’s obliquity, a is the semi-major axis of the
satellite, and IL is the inclination of the satellite’s local Laplace
plane with respect to the planet’s equator. The leading factor p is
the characteristic spin-axis precession rate of the planet (without
satellite); it relates to the classic “precession constant” α as p =
α(1 − e2

⊙)−3/2, and it can be written as

p =
3
2

Gm⊙
ωa3
⊙(1 − e2

⊙)3/2

J2

λ
, (4)

where G is the gravitational constant, ω is the spin rate of
the planet, and λ is its normalised polar moment of inertia.
Equation (3) is valid as long as the satellite oscillates around
its local circular Laplace equilibrium on a timescale that is much
smaller than the spin-axis precession motion of the planet, which
is usually well verified in practice (Saillenfest & Lari 2021). A
good approximation for IL is given by the formula

IL =
π

2
+

1
2

atan2
[
− sin(2ε),−r5

M/a
5 − cos(2ε)

]
, (5)

which becomes exact in the limit m/M → 0 (Tremaine et al.
2009). It should be noted that even a satellite with a small mass
ratio m/M can have a large mass parameter η, and therefore a
strong influence in Eq. (3); see Table 1 of Saillenfest & Lari
(2021) for examples.

Because of orbital perturbations (e.g. mutual gravitational
interactions with other planets), the orbital plane and eccentric-
ity of the planet2 are not fixed but vary on a secular timescale.
Assuming that the orbit of the planet is long-term stable, its
secular motion can be expressed (at least locally) in convergent
quasi-periodic series:

z = e⊙ exp(iϖ⊙) =
∑

k

Ek exp(iθk),

ζ = sin
I⊙
2

exp(iΩ⊙) =
∑

k

S k exp(iϕk),
(6)

where ϖ⊙, I⊙, and Ω⊙ are the planet’s longitude of pericentre,
orbital inclination, and longitude of ascending node measured
in an inertial frame. The amplitudes Ek and S k are real con-
stants and the angles θk and ϕk evolve linearly over time t with
frequencies µk and νk:

θk(t) = µk t + θ(0)
k and ϕk(t) = νk t + ϕ(0)

k , (7)

where the index k runs over all terms that have non-negligible
amplitudes. In Appendix B, we give the orbital solution of
Laskar (1990) for Uranus with amplitudes down to 10−9. This
solution can be considered valid (at least in a qualitative point
of view) since the end of the planetary migration. In the inte-
grable approximation, the frequency of each term corresponds
to a unique combination of the fundamental frequencies of the
system, usually noted g j and s j. Table 1 shows the combina-
tions of fundamental frequencies identified for the twenty largest
terms of Uranus’s ζ series. In contrast to previous works, in
which authors studied the effect of large inclination variations
for Uranus or Neptune during early stages of their evolution, we
stress that the orbit of Uranus is now very steady. Over billions of
years, its inclination barely exceeds 1◦ with respect to the invari-
able plane of the Solar System. Yet, as we show below, dramatic

Table 1. First twenty terms of Uranus’s inclination and longitude of
ascending node in the J2000 ecliptic and equinox reference frame.

k Identification(∗) νk (′′ yr−1) S k × 109 ϕ(0)
k (o)

1 s5 0.00000 13 773 646 107.59
2 s7 −3.00557 8 871 413 320.33
3 s8 −0.69189 563 042 203.96
4 s6 −26.33023 347 710 307.29
5 −g5 + g6 + s6 −2.35835 299 979 224.75
6 −g5 + g7 + s7 −4.16482 187 859 231.66
7 g5 − g7 + s7 −1.84625 182 575 224.56
8 −g7 + g8 + s8 −3.11725 59 252 146.97
9 g6 − g7 + s6 −1.19906 25 881 313.99

10 2g5 − s7 11.50319 18 941 101.01
11 g5 + g7 − s7 10.34389 11 930 11.68
12 g5 − g6 + s7 −26.97744 10 362 225.10
13 s1 −5.61755 10 270 348.70
14 −g5 + g6 + s7 20.96631 7346 237.78
15 g7 − g8 + s7 −0.58033 5474 197.32
16 s1 + γ −5.50098 3662 342.89
17 g5 − g6 + s6 −50.30212 2748 29.83
18 s2 −7.07963 2372 273.81
19 g5 − g7 + s8 0.46547 1575 106.88
20 2g6 − s6 82.77163 1514 308.95

Notes. Due to the secular resonance (g1 − g5) − (s1 − s2), an additional
fundamental frequency γ appears in term 16 (see Laskar 1990). (∗)There
are typographical errors in Laskar (1990) in the identification of the 6th
and 7th terms.

obliquity variations can still occur if we leave the system evolve
for a sufficient amount of time.

As a result of the motion of the planet’s orbital plane,
its long-term spin–axis dynamics is shaped by secular spin–
orbit resonances, that is, by resonances between the unperturbed
spin–axis precession frequency Ω0 in Eq. (3) and the forcing
frequencies µk and νk appearing in Eq. (7). As detailed by
Saillenfest et al. (2019b), the largest resonances are those of
order 1 in the amplitudes {S k}, for which the resonance angle is
σ = ψ + ϕ j, where ψ is the precession angle of the planet’s spin
axis and j is a given index in the ζ series3. If the planet is trapped
in a secular spin–orbit resonance while its satellite migrates, then
its mean obliquity ε evolves together with a along a level curve
of Ω0, such that the relation Ω0 + ν j ≈ 0 is maintained.

Saillenfest & Lari (2021) have shown that for a mass param-
eter η ⩾ 2, all level curves of Ω0 with values between p and
pη/2 connect ε = 0◦ to the singular point S1, which has coor-
dinates (a, ε) = (rM, 90◦); this property is illustrated in Fig. 1.
In other words, any secular spin–orbit resonance with a forcing
term having a negative frequency ν j such that

p ⩽ |ν j| ⩽ p
η

2
(8)

would allow for a tilting of the planet between ε = 0◦ and
ε = 90◦. If the resonance is large and/or if there are large neigh-
bouring resonances, the planet may even go beyond 90◦. For
2 Throughout this article, the orbit of the planet-satellite barycentre
around the star is generally referred to as “the orbit of the planet” for
simplicity. This distinction will be important in Sect. 3, when using a
self-consistent coupled model for the planet and its satellite.
3 For short, the first-order secular spin–orbit resonance with resonant
angle σ = ψ + ϕ j will be called the “ν j resonance”, where j is a given
index in Table 1.
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Fig. 1. Level curves of the spin–axis precession rate of the planet as
a function of its obliquity and the distance of its satellite. The sim-
plified formula in Eq. (3) is used here with η = 20. Curves in the
pink region connect ε = 0◦ to S1. Curves in the blue region connect
ε = 0◦ to ε = 0◦ again. Curves in the green region never go to ε = 0◦
but they connect to S1. The mirror level curves exist for ε > 90◦ with
reversed precession motion. The precession rate along the red level is
Ω0 = pη/2. The precession rate along the dark green level is Ω0 = p;
it connects (a, ε) = (0, 0◦) to S1. The dashed blue curve is the ridge
line separating the close and far satellite regimes; it has expression
(a/rM)5 = [

√
cos2(2ε) + 24 − cos(2ε)]/6. See Fig. 17 of Saillenfest &

Lari (2021) for examples with other values of η.

retrograde resonances (i.e. positive frequency ν j), the condition
in Eq. (8) allows for a tilting between ε = 180◦ and ε = 90◦.
Equation (8) can easily be transposed to higher-order secular
spin–orbit resonances: ν j should simply be replaced by a com-
bination of frequencies νk and µk (see Saillenfest et al. 2019b
for the variety of possible resonances). However, in the case of
Uranus, resonances of order 2 and higher are very small and only
a few of them may possibly allow for a capture.

2.2. Minimum mass for the satellite

The simplified condition in Eq. (8) offers a quick way to assess
whether a given satellite can produce large obliquity variations
of its host planet, or which are the optimum parameters of a
hypothetical satellite in order to produce a dramatic tilting. In
the case of Uranus, p is much smaller than any frequency |νk |

appearing in its ζ series; therefore, the condition for a satellite to
allow for a capture into resonance and tilting up to 90◦ is simply
η ⩾ 2|ν⋆|/p, where ν⋆ is the frequency of the closest resonance
(i.e. that with the lowest frequency in absolute value). This con-
dition directly gives the minimum mass required for the satellite
that we compute below.

The largest uncertainty in Uranus’s precession constant
comes from its polar moment of inertia λ. Helled et al. (2010)
also warn readers about the poor accuracy of the spin rate ω
measured by Voyager 2, whose value is usually cited (see e.g.
Yoder 1995; Archinal et al. 2018); they provide a new estimate
for the solid-body rotation period of Uranus that differs from the
Voyager value by several percent. As for λ, Hubbard & Marley
(1989) give λ = 0.22680 obtained from their interior models
using a normalising radius Req = 25 559 km. Guided by previ-
ous works, we assume λ = 0.23 for simplicity and consider a
10% uncertainty on the product ωλ, used to account for model
dependency and the uncertainty on ω (the impact of this choice

is commented below). This exploration interval entirely con-
tains the more recent estimates of Nettelmann et al. (2013) and
Neuenschwander & Helled (2022), whose values for λ range
from 0.21840 to 0.22670, depending on the model used. We
obtain values of the frequency parameter p of Uranus ranging
from 0.0075 to 0.0092′′ yr−1, with minor contribution to the
uncertainty range coming from other parameters.

Among all terms in Uranus’s ζ series computed by Laskar
(1990), the negative frequency with smallest absolute value is
ν15 = g7 − g8 + s7 (see Table 1 and Appendix B). Even though
this term is very small and unlikely to produce a resonance cap-
ture (see below), we can use it to compute the minimum mass
ever that a satellite should have in order to tilt Uranus via a secu-
lar spin–orbit resonance after the end of the planetary migration.
According to Eq. (8) and with our 10% uncertainty range on the
value of ωλ, we obtain a minimum mass parameter ηmin rang-
ing from about 130 to 150. From Eq. (1), this gives a minimum
mass mmin for the satellite lying between about 3.2 × 10−4 and
3.8 × 10−4 the mass of Uranus. Two comments can be made
about this estimate: Firstly, we note that it does not strongly
depend on the poorly known value of ωλ; since we look here
for an order-of-magnitude estimate, we adopt its central value for
definitiveness and use it in the rest of the article. Secondly, the
minimum mass obtained here is not absurdly high as compared
to the mass ratios of regular satellites found in the Solar System
(see e.g. Murray & Dermott 1999) or obtained in simulations of
satellite formation around Uranus and Neptune (Szulágyi et al.
2018). For comparison, a satellite with mass m/M ≈ 3.5 × 10−4,
that is, m ≈ 3 × 1022 kg, would be smaller than Jupiter’s moon
Europa. Yet, it is still about ten times the mass of Titania or
Oberon, which are today the most massive satellites of Uranus.
Hence, if Uranus has been tilted with the mechanism described
here, then it should have involved an ancient satellite which has
now disappeared.

The need for a hypothetical past satellite does not seem to be
a problem because the satellite involved is likely to be destruc-
ted anyway during the final stage of the tilting mechanism (see
Saillenfest & Lari 2021). We come back to this point below. Now
that the need for a hypothetical ancient satellite of Uranus is
established, we must determine what could have been its phys-
ical and orbital properties in order for the tilting scenario to be
plausible. Apart from the very small ν15 term, Uranus’s ζ series
features several low-frequency terms that may be good candi-
dates for secular spin–orbit resonances. Table 2 lists the eight
closest resonances with the corresponding minimum masses
mmin for the hypothetical satellite computed through Eq. (8). For
completeness, we include in this table some terms that would
require quite a massive satellite to trigger a resonance, even
though this possibility appears more unlikely in the context of
satellite formation theories (see the discussions in Sect. 4).

2.3. Migration range and velocity

In order to allow for a resonance capture, the migration of the
satellite must be slow compared to the oscillations of the reso-
nance angle σ = ψ + ϕ j, so that the parameter change is close to
the adiabatic regime (see e.g. Su & Lai 2020; Saillenfest et al.
2020, 2021b). Among the terms listed in Table 2, this condi-
tion may not be verified for all realistic sets of parameters. For
each resonance, the oscillation period near the resonance cen-
tre (called Cassini state 2) can be computed by modelling the
influence of the satellite as an enhanced precession constant α′
for Uranus (see e.g. French et al. 1993; Ward & Hamilton 2004;
Saillenfest & Lari 2021) and by applying the analytical formulas
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Table 2. Minimum mass of the satellite in order for Uranus to reach the
few closest resonances and be tilted from 0◦ to 90◦.

k Identification νk T (sep)
lib mmin/M mk/M

(′′ yr−1) (Myr) (×10−5) (×10−5)

15 g7 − g8 + s7 −0.58033 3021 35 36
3 s8 −0.69189 115 41 44
9 g6 − g7 + s6 −1.19906 519 71 79
7 g5 − g7 + s7 −1.84625 92 110 129
5 −g5 + g6 + s6 −2.35835 51 141 172
2 s7 −3.00557 4 179 233
8 −g7 + g8 + s8 −3.11725 115 186 244
6 −g5 + g7 + s7 −4.16482 40 248 368

Notes. k is the index of the resonant term in Uranus’s ζ series ordered by
decreasing amplitude (see Table 1); T (sep)

lib is the libration period inside
the resonance when the separatrix appears; mmin is the minimum mass
of the satellite obtained analytically through Eq. (8); mk is the minimum
mass of the satellite obtained semi-analytically using a more realistic
model (see text). The terms are sorted here by increasing value of the
frequency |νk | (i.e. by increasing value of mmin).

of Saillenfest et al. (2019b) or Su & Lai (2020). As described
by Boué & Laskar (2006), the spin–axis precession rate of a
planet increases over time if it hosts an outward-migrating close-
in satellite, or an inward-migrating far-away satellite. When the
satellite reaches some threshold distance, a separatrix appears
around Cassini state 2, after which point the planet may be
captured in the secular spin–orbit resonance considered. The
libration period T (sep)

lib when the separatrix appears is given in
Table 2 for each candidate resonance. An adiabatic resonance
encounter could possibly have taken place for Uranus if T (sep)

lib is
much smaller than the age of the Solar System. In this regard,
the ν9 and ν15 resonances are very unlikely candidates, as adia-
baticity would impose the satellite to hardly migrate at all over
the Solar System lifetime, in which case the tilting of Uranus is
impossible. Indeed, these two terms have the smallest amplitudes
in our list, and the resonance width and oscillation frequency
scale as the square root of the amplitude of the term (see e.g.
Atobe et al. 2004; Li & Batygin 2014). The situation is different
for the other candidate resonances in Table 2: we see that Uranus
would have enough time to oscillate at least several dozens of
time inside the resonance over the Solar System age, poten-
tially allowing for an adiabatic capture and tilting to extreme
obliquities. We quantify this point below.

Equation (3) provides a qualitative understanding of how the
spin-axis precession rate varies over the space of parameters, and
we used it to obtain a quick estimate for the minimum mass of
the satellite mmin required for each candidate resonance. How-
ever, one may recall that Eq. (3) is approximate and strictly valid
only for small satellites. As argued by Saillenfest & Lari (2021),
the complete formula of French et al. (1993) is more precise and
gives satisfactory results up to larger satellite masses; it can then
be used to compute the locations of the resonances and their
widths for any distance of the satellite. In this case, there is no
closed-form expression for the minimum mass of the satellite but
we can compute it in the following way: For a given mass m, the
formula of French et al. (1993) is used to obtain an effective pre-
cession constant α′. This precession constant is then injected into
the equations of Saillenfest et al. (2019b) in order to compute the
locations and widths of all resonances in the plane (a, ε). Since
α′ depends on the obliquity, the equations are implicit and must

be solved numerically. We repeat this procedure for different
masses (e.g. using the bisection method) until we obtain the min-
imum mass needed for a given resonance to exist somewhere in
the plane (a, ε) and go from ε = 0◦ to 90◦. The minimum masses
obtained in this way are listed in Table 2; we call them mk, where
k is the index of the resonant term in Uranus’s ζ series. When mk
is large, we see that our simplified analytical expression system-
atically underestimates its value (i.e. mmin ≲ mk), even though it
gives the correct order of magnitude.

Figure 2 shows the locations and widths of all resonances
reachable by the system for different masses of the satellite. It
also features the region E1 where the classic Laplace plane of the
satellite is unstable (black striped area; see Tremaine et al. 2009
and Saillenfest & Lari 2021). If the system enters the region E1,
the satellite first transfers to an eccentric equilibrium, and then
it suffers from wild orbital changes, that are the most extreme in
the vicinity of the singular point S1. The behaviour of the system
in this region is investigated in Sect. 3. As expected, resonances
are more numerous for a more massive satellite, because their
respective minimum mass criteria are verified simultaneously.
When we increase the mass of the satellite, resonances appear
near a = rM (blue zone in Fig. 1), then touch the singular point
S1 (red curve in Fig. 1), at which point we define the mass mk.
Then, if we increase the mass further, resonances expand towards
smaller and larger semi-major axes (pink region in Fig. 1).
Figure 2 shows that the ν9 and ν15 resonances are indeed very
thin, and that Uranus also possesses two extremely weak retro-
grade resonances (ν19 and ν32). Since m2 is only slightly smaller
than m8 (see Table 2), the ν8 resonance appears in panel d but
does not connect to S1 (as in the blue zone in Fig. 1). From these
examples, we deduce that in order to tilt Uranus from 0◦ to 90◦,
its hypothetical ancient satellite must migrate at least over a dis-
tance ∆a ≈ 0.2 rM, either inwards or outwards. This semi-major
axis range represents a physical distance of about 10 Uranus’s
radii. In order for the satellite to go through this distance in less
than the age of the Solar System, its mean migration velocity
must be larger than about 6 cm yr−1. Compared to the measured
expansion rates of the Moon from the Earth (4 cm yr−1; see e.g.
Williams & Boggs 2016), Ganymede from Jupiter (11 cm yr−1;
see Lainey et al. 2009) and Titan from Saturn (11 cm yr−1; see
Lainey et al. 2020), this migration velocity appears quite real-
istic. Hence, even though the specific dissipation mechanisms
acting in the interior of Uranus are essentially unknown yet, at
least we are assured that both terrestrial and gaseous planets
are able to generate the appropriate range of satellite migration
velocities.

It should be noted, however, that the satellite migration needs
to be sustained at least up to a distance of a ≳ 0.8 rM in order
for the tilting mechanism to fully operate (see Fig. 2). Since the
characteristic radius rM is quite large for Uranus (rM ≈ 53 Req),
this may require the satellite to be fairly big to raise a substantial
tidal bulge inside Uranus even at this distance. Assuming that
the satellite migrates from a = 0.8 rM to a = rM, the equivalent
constant parameter k2/Q of energy dissipation within Uranus
can be estimated from classical theories (see e.g. Goldreich &
Soter 1966; Efroimsky & Lainey 2007). As shown by Fig. 3, the
mean energy dissipation within Uranus is required to be much
higher than assumed in historical works, even if the whole pro-
cess takes as long as the age of the Solar System (for comparison,
Goldreich & Soter 1966 gave Q ≳ 105). This new scenario for the
tilting of Uranus must therefore be viewed in the context of the
fast satellite migration predicted by Fuller et al. (2016) and mea-
sured by Lainey et al. (2020) for the satellites of Saturn. Within
this change of paradigm, ‘effective’ quality factors Q of order
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Fig. 2. Locations and widths of first-order secular spin–orbit resonances for different masses of the hypothetical ancient satellite. In each panel, the
mass labelled m j is the minimum satellite mass in order to allow for Uranus to reach the ν j resonance and be tilted from 0◦ to 90◦ (see Table 2). The
extent of all resonances is shown in pink and the centre of the ν j resonance is highlighted with a red curve. The approximate ridge line separating
the close and far satellite regimes is shown by the dashed blue line (same as in Fig. 1). The black striped area is the region E1 where the satellite’s
classic Laplace plane is unstable. The red dot is the singular point S1. Resonances are labelled by the frequency ν j of the forcing term (arrows).
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Fig. 3. Quality factor of tidal energy dissipation within Uranus in order
for a satellite to migrate from a = 0.8 rM to a = rM. The ratio k2/Q
is computed from classical formulas and plotted here assuming a Love
number k2 = 0.1 for Uranus (Gavrilov & Zharkov 1977). The mass of
the satellite is labelled above the curves. For comparison, the dotted
blue line shows the case of a satellite migration from a = 0.96 rM to
a = rM (i.e. a migration range reduced to ∆a = 2 Req), as obtained in the
numerical experiments of Sect. 3.3.

unity are realistic for distant satellites around gaseous planets.
For instance, Fuller et al. (2016) predicted Q ≈ 20 for Titan, and
Q ≈ 1 for Callisto if a similar resonance-locking mechanism is
currently at play in the Jupiter–Callisto system as well. Effective

quality factors can also be smaller than unity, because they are
not directly linked to a physical tidal lag as they would be in
classical theories (see Fuller et al. 2016). The definition of an
equivalent constant Q here is therefore only used for comparison
purpose.

Alternatively, a chain of mean-motion resonances among
several satellites might offer another way to produce a fast
satellite migration up to large distances (as it is the case for
Ganymede; see e.g. Lari et al. 2020). But again, these aspects
intimately depend on the specific dissipation mechanism at play
and we can hardly give any more quantitative argument at this
stage.

2.4. Tilting efficiency

The few closest resonances reachable by Uranus and its hypo-
thetical satellite have diverse properties, and apart from general
considerations about the level of adiabaticity required, it is not
obvious which resonances are more prone to tilting Uranus than
others. For this reason, we turn to a numerical exploration of the
capture mechanism.

Our setting is similar to the one used by Saillenfest & Lari
(2021) for Saturn: we implement the classic equations of motion
for the secular spin-axis dynamics (see e.g. Laskar & Robutel
1993; Néron de Surgy & Laskar 1997), in which we modify the
precession constant α according to the formula of French et al.
(1993). The satellite is assumed to lie on its local Laplace plane
at all time and to adiabatically follow its drift as the obliquity
is changing. This approximation is valid as long as the orbital
timescale of the satellite is much shorter than the motion of the
planet’s spin axis, which is well verified in practice. However, it
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Fig. 4. Examples of capture in secular spin–orbit resonance and tilting to large obliquities. The satellite’s mass and the resonances are labelled as
in Fig. 2. Numerical trajectories go from left to right (black dots) over a timespan of billions of years. The migration timescale τ of the satellite is
9 Gyr for panel a and 6 Gyr for panels b and c. Integrations are stopped in the hatched region, where the numerical model used here fails.

assumes that the satellite’s orbital equilibrium is stable, which
is not true in region E1. Modelling the satellite’s influence as a
modified α also requires that the variations of α are slow com-
pared to the spin–axis dynamics, which is not the case in the
vicinity of S1. For these reasons, this approach is very efficient
for the stage of capture in secular spin–orbit resonance and adi-
abatic tilting, but it fails when the system reaches the unstable
zone. We use it here to conduct a statistical analysis of the cap-
ture process and to perform millions of numerical integrations in
a reasonable amount of time. As for the destabilisation stage, it
is studied in Sect. 3 below using a self-consistent model.

The tilting mechanism is driven by the migration of the
satellite, which runs on a billion-year timescale. Tidal migra-
tion of satellites is a complex phenomenon that deeply depends
on the internal structure of their host planet, and there is much
ongoing research on this topic (see e.g. Auclair-Desrotour et al.
2014; Fuller et al. 2016; Lin & Ogilvie 2021). Satellite migra-
tion around terrestrial or gaseous planets are known to involve
very different physical mechanisms, and little is known about
the diversity of satellite evolutions that can be produced around
ice giants like Uranus and Neptune. Instead of relying on one
migration scenario, we explore a large range of possibilities for
the variations of the satellite’s semi-major axis a over time t. For
definitiveness, we adopt a power law of the type

a(t) = a0

(
t0 + t

t0

)t0/τ

, (9)

where a0 is the initial location of the satellite, and t0 and τ are
parameters that have the dimension of time. In the following, we
adopt t0 = 4.5 Gyr and vary the parameter τ, that we call the
“migration timescale” (as indeed τ = [a/ȧ]t=0). We stress that
Eq. (9) is purely ad hoc, and that one could have chosen a lin-
ear law instead. The study of more complex migration laws (e.g.
involving fast and slow regimes) is beyond the scope of this arti-
cle; however, if the migration is slow enough to remain in the
adiabatic regime, only the total migration range matters, and not
its precise rate.

At this point, it should be recalled that, even if we do not
model it in detail, the tidal migration of a satellite occurs because
of a transfer of angular momentum between the planet’s rotation
and the satellite’s orbit. The outward migration of the satellite is

therefore accompanied by a decrease in the planet’s rotation rate
ω (along with a change in its equilibrium shape). For the largest
masses mk listed in Table 2, and assuming that the increase in the
satellite’s angular momentum is fully compensated by a change
in ω, the migration of a satellite from a ≈ 0.8 rM to 1 rM would
produce a change in ω of several percent. Such a variation is of
the same order of magnitude as the error on the value of ω mea-
sured by Voyager 2 (Helled et al. 2010), and much less than our
assumed uncertainty on the value of λ (see Sect. 2.2). Moreover,
as the planet slowly cools down on a gigayear timescale after its
formation, it is expected to contract slightly (see Bodenheimer &
Pollack 1986; D’Angelo et al. 2021), with the result of increas-
ing its spin rate. This opposite effect would further reduce the
tidal spin down due to satellites. For these reasons, we neglect
the variations of ω and J2 in our dynamical analysis. We also
consider that their changes are small enough so as to present
no contradiction with our basic assumption that the spin rate of
Uranus is primordial (see Sect. 1).

We are looking for trajectories that go deep inside the unsta-
ble region for the satellite. This way, the obliquity not only grows
large, but we are also assured that the satellite is destabilised and
potentially removed, as required to reproduce the current state of
Uranus. Examples of such trajectories are given in Fig. 4. Panel a
shows a capture in the ν3 resonance; in this example, the satel-
lite has the minimum mass allowing Uranus to be captured in this
resonance and tilted all the way up to 90◦. The thin ν15 resonance
is crossed as well but it hardly affects the trajectory at all. Panel b
shows a case where the satellite has mass m5 but is captured in
the ν7 resonance. Indeed, for such a large mass, resonances are
numerous and there are many possibilities to tilt the planet. As
another example, panel c shows a case where the resonance ν5 is
crossed without capture but the planet is then captured and tilted
in the ν2 resonance.

However, capture and extreme tilting are not guaranteed even
if the satellite has the required mass. There are four cases in
which the mechanism can fail to incline the planet enough to
reach the unstable zone. The first case is when the satellite does
not migrate enough over the Solar System age so as to reach
a ≈ rM. This can happen if it formed too close to the planet (i.e.
too far from the Laplace radius) or if it migrates too slowly. The
three other cases are illustrated in Fig. 5. In panel a, the planet
has a large initial obliquity, which means that it must inevitably
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Fig. 5. Examples of resonant interactions without tilting all the way to the unstable region. Symbols are the same as in Fig. 4 and the satellite has
mass m3 is all panels. The migration timescale τ of the satellite is 9, 2, and 0.2 Gyr for panels a, b, and c, respectively.

cross the resonance separatrix instead of entering smoothly from
below (see e.g. Saillenfest et al. 2020). The outcome of separa-
trix crossings is sensitive to the initial precession phase, and the
planet has therefore a given probability of being captured or not
(see e.g. Henrard & Murigande 1987; Ward & Hamilton 2004;
Hamilton & Ward 2004; Su & Lai 2020). In our case, the capture
probability decreases for growing initial obliquity, and panel a is
a typical example of failed capture. The numerical experiments
of Saillenfest et al. (2021b) show that a fast tidal migration for the
satellite tends to smooth the probability profile and to reduce the
interval of obliquity leading to a 100%-sure capture. In panel b,
the planet is captured but evolves very close to the separatrix;
as the resonance width decreases, the trajectory is then pushed
out of the resonance before having reached a large obliquity. In
panel c, the migration of the satellite is so fast that the resonance
is crossed without altering much the obliquity. This is a typical
example of non-adiabatic crossing, in which the resonance angle
has not enough time to oscillate before the trajectory is already
gone.

In order to quantify the ability of each candidate resonance
to tilt Uranus and destroy the satellite, we turn to Monte Carlo
experiments. In these experiments, the satellite is given the min-
imum mass mk required for a given resonance to exist and go to
90◦ (see Table 2). The satellite is initialised at a0 = 0.8 rM, so as
to focus on the effects of resonance νk and minimise the migra-
tion range required for the tilting (see Fig. 2). Over a grid of
initial obliquity ε0 and migration timescale τ, we sample random
values of initial spin–axis precession angle ψ ∈ [0, 2π) and inte-
grate all trajectories numerically until the satellite goes beyond
a5/r5

M = (10
√

22 − 4)/39 (which is the rightmost limit of the
unstable zone; see Saillenfest & Lari 2021), and for a maxi-
mum timespan of 4 Gyr. This integration timespan is chosen
so that the entire tilting mechanism can take place between the
formation of Uranus and today, with possibly some time left
for the clearing of the debris disc after the satellite’s destruc-
tion (see Sects. 3 and 4 below). A statistic is drawn from each
sample of initial precession angles. We consider that the sys-
tem goes deep enough inside the unstable region if the obliquity
grows over ε = 80◦. This threshold does not mean that the obliq-
uity cannot grow more than 80◦, but the model used here fails
in this regime, so we prefer to use a conservative limit. The
behaviour of the system after destabilisation will be studied in
Sect. 3.

Figure 6 shows the result of our experiments for the few
closest resonances reachable by Uranus. Even though near-zero
initial obliquities are expected from formation models, a variety
of different mechanisms may have produced small primordial
obliquity excitations (see e.g. Millholland & Batygin 2019;
Martin et al. 2020; Rogoszinski & Hamilton 2020, 2021); for this
reason, we explore a wide range of values for ε0. Panel b for m =
m3 is a typical illustration of the different possible behaviours:
for τ ≳ 13 Gyr the migration is too slow to tilt the planet in only
4 Gyr, so the success ratio is zero. For τ ≲ 2 Gyr the migra-
tion is too fast for an adiabatic capture in the ν3 resonance (as in
Fig. 5c). For ε0 ≳ 20◦ the trajectories cross the separatrix, lead-
ing to an inefficient probabilistic capture (as in Figs. 5a,b). This
leaves us with an optimal parameter region with initial obliquity
ε0 ≲ 20◦ and migration timescale 2 ≲ τ ≲ 13 Gyr, for which the
success probability is close to 1. The same structure is observed
in panels d and e for resonances ν7 and ν5. In panels a and c, on
the contrary, the resonances ν15 and ν9 are so thin that the reso-
nance encounter is strongly non-adiabatic in the whole parameter
region explored and no trajectory can possibly achieve the tilting
of Uranus in the required time interval. In panel f, the resonance
ν2 is so large that it produces a 100%-sure capture up to large
initial obliquities and down to very small migration timescales;
moreover, due to the large amplitude of obliquity oscillations
(see Fig. 4c), trajectories can go beyond ε = 80◦ much before
the centre of the resonance does so, which enlarges the yellow
region towards the right side of the graph.

From this preliminary analysis, we conclude that a promising
candidate resonance is ν3 (i.e. a resonance with the nodal orbital
precession mode of Neptune, s8): it requires a minimum mass
for the satellite of only m/M ≈ 4 × 10−4 and has a high tilting
efficiency for a large range of initial obliquities (0◦ ⩽ ε0 ≲ 20◦).
For larger masses, m/M ≳ 1 to 2 × 10−3, the nodal precession
spectrum of Uranus allows for several other possibilities: the res-
onances with ν7 = g5 − g7 + s7 and ν5 = −g5 + g6 + s6 are quite
good candidates, but in a more limited range of initial obliquities
(ε0 ≲ 10◦ and 15◦, respectively). As already argued by previous
authors (Boué & Laskar 2010; Rogoszinski & Hamilton 2020),
the most powerful resonance in terms of tilting efficiency is
ν2 = s7 (i.e. a resonance with the nodal orbital precession mode
of Uranus itself). Indeed, it has a 100% capture ratio up to large
initial obliquities for Uranus (ε0 ≲ 45◦) and for any conceiv-
able migration rate for the satellite. However, it requires quite a
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Fig. 6. Probability of tilting Uranus as a function of its initial obliquity and the migration velocity of its satellite. On each panel, parameters
are sampled on a regular grid, and for each set of parameters, 240 numerical integrations are performed with random initial spin–axis phases
ψ ∈ [0, 2π). The colour map shows the fraction of the 240 trajectories that go beyond ε = 80◦ during the integration. The satellite is initialised at
a0 = 0.8 rM and propagated with the migration law in Eq. (9). Numerical integrations are stopped after 4 Gyr or when the satellite goes beyond the
limit of the unstable zone. The mass of the satellite is labelled on each panel using the notation of Table 2. The top horizontal axis shows the time
required for the satellite to reach a = rM. It can be converted into an effective tidal quality factor Q for Uranus (see Fig. 3).

massive satellite with m/M ≳ 2.3 × 10−3: even though this value
is not absurdly large, it may appear less realistic according to
satellite formation theories (see the discussions in Sect. 4).

We are now assured that Uranus can be efficiently tilted to
large obliquities through the migration of a hypothetical ancient
satellite. The next step is to understand the behaviour of the sys-
tem once it enters the unstable region. This is the purpose of the
next section.

3. Coupled destabilisation of the planet’s spin and
satellite’s orbit

We saw that several secular spin–orbit resonances allow for a
100%-sure capture probability and tilting to ε ≳ 80◦ in large
regions of the parameter space. Such trajectories go deep into
the unstable region (hatched zone in Figs. 2, 4, 5); this is a neces-
sary condition, but is not sufficient to reproduce the current state
of Uranus. Indeed, assuming that Uranus was indeed tilted by
the mechanism presented here, its 98◦ obliquity implies that the
system not only reached the unstable region, but that some addi-
tional dynamical mechanism pushed it much further up, beyond
the 90◦ critical point.

The simplified models used in Sect. 2 are not valid when the
satellite becomes unstable. In order to investigate what happens
to the system at the end of the tilting mechanism, we must use
models that include the self-consistent interactions between the
planet’s spin and satellite’s orbit. For this purpose, the secular
model described by Correia et al. (2011) for the hierarchical plan-
etary case can be transposed to the interactions of a planet and
its satellite subject to the attraction of their host star. Due to the
highly hierarchical nature of the problem, it is enough to expand
all cross interactions to quadrupolar order. The Hamiltonian

function is then averaged over the fast orbital and rotational
angles. Equations are written in a vectorial form and integrated
numerically. In our case, the dynamical variables are the rota-
tional angular momentum of the planet G, the orbital angular
momentum of the satellite G1, and the eccentricity vector of the
satellite e1. The orbital angular momentum of the planet-satellite
barycentre around the star and its eccentricity vector (written G2
and e2 using the notations of Correia et al. 2011) are taken as
quasi-periodic functions of time, varying according to the full
orbital solution of Laskar (1990). This way, all planets of the
Solar System are included in the orbital motion of the planet-
satellite barycentre (but we neglect their direct attraction on the
satellite and on the planet’s equatorial bulge). A full description
of this model is given in Appendix C. Tidal dissipation in the
planet is mimicked by applying a slow variation to the satel-
lite’s semi-major axis as in Eq. (9). In this first exploration of the
dynamics, we do not include tidal dissipation within the satel-
lite and do not track its rotational dynamics. This amounts to
assuming that the energy dissipated within the satellite always
remains negligible as compared to that dissipated in the planet,
and that the eccentricity damping of the satellite is much slower
than its dynamical evolution. The latter point can be verified a
priori: for realistic dissipative parameters (see e.g. Murray &
Dermott 1999), the eccentricity damping timescale of the satel-
lite at a distance a ≳ 0.8rM would count in gigayears. In contrast,
Fig. 7 shows that as soon as the system enters (even moder-
ately deep) into the unstable region, the increase in the satel-
lite’s eccentricity unfolds in less than a few hundred thousand
years4.

4 The destabilisation process is complicated by the existence of the sta-
ble eccentric equilibrium (see Tremaine et al. 2009; Saillenfest & Lari
2021). Yet, we have checked that when the destabilisation is triggered,
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Fig. 7. Timescale of the satellite’s eccentricity increase when the sys-
tem becomes unstable. The colour scale shows the time needed for the
eccentricity to be multiplied by a factor 100, as computed from the equa-
tions linearised at the unstable equilibrium point (see Tremaine et al.
2009; Saillenfest & Lari 2021).

3.1. Destabilisation mechanism

Figure 8 shows a typical example of simulation obtained with
the coupled model. The migration timescale τ is chosen to be in
the middle of the parameter region producing a 100%-sure res-
onance capture (see Fig. 6). The first portion of the trajectory is
identical to what was predicted in Sect. 2 using the simplified
dynamical model (see e.g. Fig. 4c for a similar satellite mass).
Indeed, the oscillations of the satellite around the Laplace equi-
librium are very fast compared to the motion of the planet’s
spin axis; the previous assumption that the satellite instantly fol-
lows the Laplace plane is therefore a very good approximation.
The smooth increase in the satellite’s orbital inclination while its
longitude of node closely oscillates around zero is a direct man-
ifestation of this adiabatic dynamics. Once the system reaches
the border of the unstable zone, however, the dynamics brutally
change: Fig. 8 shows that the satellite’s eccentricity increases
very quickly, which releases the planet from the secular spin–
orbit resonance (σ2 circulates again). From this point on, the
satellite’s orbit starts to evolve chaotically and it can reach almost
any eccentricity and inclination value, while switching sporadi-
cally between being prograde and retrograde with respect to the
planet’s spin. Interestingly, these strong chaotic orbital variations
affect the planet’s obliquity, which evolves pretty much as a ran-
dom walk. At this stage of the evolution, there is no particular
dynamical barrier anymore at ε = 90◦; in the example of Fig. 8,
we see that the planet’s spin can very well become retrograde
and reach the current obliquity of Uranus (dotted line).

The cause of the satellite’s destabilisation is well understood
(see Tremaine et al. 2009; Saillenfest & Lari 2021); the rea-
son for the random walk in obliquity is less obvious. In order
to investigate this mechanism further, we continued the numer-
ical integration of Fig. 8 for one more gigayear with different
physical parameters. The results are shown in Fig. 9. Because of

the timescale of the eccentricity increase in our simulations is indeed
consistent with that shown in Fig. 7.
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Fig. 8. Example of simulation using the fully coupled secular model.
Black and blue are used for quantities related to the planet’s spin axis
and satellite’s orbit, respectively. The orbital elements of the satellite are
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this reference frame by the index Q). In this example, the secular spin–
orbit resonance angle is σ2 = ψ+ϕ2. The mass of the satellite is m/M =
2.2 × 10−3; it is initialised close to the local Laplace equilibrium at a =
37 Req and made migrating outwards with timescale τ = 6.5 Gyr.

the strongly chaotic nature of the dynamics, the slightest change
in initial condition soon leads to a strong divergence of trajec-
tories. In this regard, the evolutions shown in panels a, b, and c
are indistinguishable: from a qualitative point of view, they may
just as well be three different realisations of the same chaotic
process. Hence, from panels a, b, and c, it seems clear that the
chaotic obliquity variations do not depend on the residual migra-
tion of the satellite. Indeed, the destabilisation of the system is an
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Fig. 9. Chaotic diffusion of obliquity for different physical parameters. The black trajectory is the same as in Fig. 8. At t = 4 Gyr (vertical bar),
parameters are instantly changed and the system is integrated for 1 Gyr more (red part). Panel a: no parameter change. Panel b: the satellite no
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irreversible process, and the wild orbital variations of the satel-
lite persist even if its tidal migration stops or is reversed. Changes
in the satellite’s migration are expected to take place in reality
when the satellite becomes unstable; these changes can be due to
tidal dissipation within the satellite (not modelled here), to the
break of the tidal resonant link (in case of a migration driven
by a mechanism similar to that described by Fuller et al. 2016),
or to the reversed effect of energy dissipation when the satellite
becomes retrograde. The absence of a visible influence of the
satellite’s migration properties on the chaotic dynamics guaran-
tees that our idealised model still yields a qualitatively relevant
description of the dynamics when the system goes deep into the
unstable region.

Conversely, panels d and g of Fig. 9 show that the orbital
nodal precession of the planet plays an important role in the
chaotic behaviour of the obliquity. If the planet’s orbit is held
fixed (panel g), its obliquity still oscillates as a result of the
orbital variations of the satellite, but the large-scale obliquity
kicks are suppressed. Panel d shows that one single harmonic
of nodal precession is enough to restore the sporadic jumps in
obliquity (and term k = 2 is the largest). Other panels in Fig. 9

show that the mass of the satellite is directly related to the ampli-
tude of the erratic variations in obliquity: the diffusion is slower
for a less massive satellite, and totally suppressed for m = 0.
Panel i confirms that if the satellite is removed (e.g. because of a
collision; see below), the planet’s obliquity instantly freezes.

From these comparisons, we deduce that the large-scale
chaotic variations in the planet’s obliquity are due to a dou-
ble synergistic destabilisation: (i) the satellite’s orbit is strongly
unstable because of the combined attractions of the planet’s
equatorial bulge and of the star, as previously described by
Tremaine et al. (2009) and Saillenfest & Lari (2021); (ii) by
a partial conservation of angular momentum, the wild orbital
variations of the satellite produce fast oscillations and some
diffusion in the planet’s obliquity (direct effect), but also large-
amplitude variations in the planet’s spin-axis precession fre-
quency. Because of these frequency variations, the planet goes
in and out of the nearby secular spin–orbit resonances, resulting
in strong additional obliquity kicks. These obliquity kicks rein-
force the satellite’s instability and make it explore an even wider
range of orbital elements. Since all secular spin–orbit resonances
converge to the singular point S1 (see e.g. Fig. 2), all available
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resonances are actually “nearby” and contribute to the obliquity
kicks. The largest of them is the ν2 resonance, that is, a resonance
with the nodal orbital precession mode of Uranus itself. Fig. 9d
shows that it contributes most to the obliquity kicks.

3.2. Exploration of the parameter space

The previous example shows that the double destabilisation
mechanism, while putting an end to the stable adiabatic drift
inside the resonance, is able to pump the obliquity high enough
to reproduce the current state of Uranus. We must now inves-
tigate the conditions under which the double destabilisation is
triggered and estimate its efficiency. To this end, we turn to
Monte Carlo experiments.

In our first experiment, the migration timescale of the satel-
lite is set to τ = 7.5 Gyr and the initial obliquity of the planet
is ε0 = 3◦ for all numerical integrations. This puts the system
in the parameter region producing a 100%-sure capture and tilt-
ing in most resonances. As shown in Fig. 6, the choice of ε0 is
not critical, as the same efficiency can be obtained in a large
range of initial obliquities. The initial semi-major axis of the
satellite is a0 = 42 Req (that is, about 0.8 rM). The satellite is
started close to the circular Laplace equilibrium, with an eccen-
tricity e = 10−4 and an inclination ILP = 10−4 rad with respect
to the local Laplace plane. For a given value of the satellite’s
mass m, we draw a random sample of initial conditions for
the planet’s spin-axis precession angle ψ ∈ [0, 2π) and for the
satellite’s argument of pericentre ωLP ∈ [0, 2π) and longitude of
ascending node ΩLP ∈ [0, 2π) measured with respect to the local
Laplace plane. All initial conditions are propagated numerically
for 4 Gyr using the fully coupled secular model, and the maxi-
mum obliquity value reached over the full numerical integration
is recorded.

The result is shown in the panel a of Fig. 10. We can iden-
tify the effects of each individual resonance which progressively
appears as we take a larger mass for the satellite, and whose
bottom extremity sweeps over the satellite’s initial location at
a0 ≈ 0.8 rM (see Fig. 2 for the geometry of the resonances).
Beyond a given mass value, the resonance still exists, but its
bottom extremity is closer to the planet than 0.8 rM, so the sys-
tem does not encounter it during the outward migration of the
satellite. The minimum mass values estimated previously (see
Table 2) correspond quite accurately to the top of the obliq-
uity peaks; their locations are marked by a small line in panel c.
As expected, resonances ν15 and ν9 only produce tiny obliquity
bumps because they are too thin to allow for an adiabatic cap-
ture in less than the age of the Solar System (see Sect. 2.3). We
also checked that for a very fast satellite migration (τ ≲ 3 Gyr),
the peak corresponding to resonance ν7 is greatly reduced and
barely reaches ε = 30◦ because the probability of adiabatic cap-
ture falls to zero (see Fig. 6). The minimum mass estimate for
resonance ν8 appears quite far from the corresponding obliq-
uity peak in Fig. 10, because resonance ν8 is very distorted by
the large neighbour resonance ν2. In fact, resonance ν2 is so
large that it almost completely overlaps resonance ν8; it is also
surrounded by several higher-order resonances that have a non-
negligible width and contribute to the production of chaos (see
Saillenfest et al. 2019b). By carefully analysing the trajectories in
Fig. 10, we found that some of them feature captures in second-
order resonances. An example of capture in a resonance with
critical angle σ = 2ψ + ϕ2 + ϕ5 is given in Appendix D; this
example confirms that the dynamics in the neighbourhood of
resonance ν2 are very rich and not limited to interactions with
harmonic ϕ2 taken in isolation.

Panel a of Fig. 10 reveals that the double destabilisation
mechanism described above can routinely reproduce Uranus’s
obliquity through a capture into resonances ν7, ν5, ν2, ν8, or
ν6. The minimum mass of the satellite for which successful
trajectories are obtained is m/M ≈ 1.2 × 10−3 (i.e. m ≈ m7).
For smaller masses, no trajectory in our sample goes beyond
the current obliquity of Uranus. As expected from the previ-
ous sections, captures into resonance ν3 for m/M ≈ 4.4 × 10−4

are perfectly stable and adiabatic, and trajectories do reach the
unstable region, but then they barely manage to go over ε = 90◦.
This is because the satellite is too small to produce a strong back
reaction on the spin axis when it becomes unstable, and the ν3
resonance is quite isolated from other strong resonances. Both
these aspects contribute to slow down the chaotic diffusion in
obliquity, and one would need to greatly expand the integration
timespan in order to give enough time for trajectories to diffuse
high enough (see Sect. 3.1).

Moreover, the satellite can actually not go on kicking and
jumping all over the place for a long time, because sooner or
later it reaches an orbit that makes it collide into the planet.
Indeed, our simulations show that the secular destabilisation of
the satellite is strong enough to destroy it, similarly to aster-
oid disruption around white dwarfs (O’Connor et al. 2022). In
panel a of Fig. 10, all integrations are continued for 4 Gyr even if
the pericentre distance q of the satellite becomes smaller than
1 Req (this situation is unphysical). For comparison, panel b
shows the same Monte Carlo experiment, but for which integra-
tions are stopped in case of satellite-planet collision (i.e. if ever
q ⩽ 1 Req). The fraction of collisional trajectories is shown in
panel d (black histogram): we see that the transition from 0%
to nearly 100% collisions is very steep for all resonances. This
means that if the system goes deep in the unstable zone, collision
becomes inescapable. Because of the existence of collisional tra-
jectories, the destabilisation of the satellite can be thought of as
the start of a countdown that will eventually put an end to the
evolution of the system. In order to reproduce the current state
of Uranus, we need that the erratic motion of the satellite brings
the planet’s obliquity high enough before the collision. As shown
in panel b, the maximum obliquity values reached before colli-
sion are substantially smaller than what we observed in panel a.
A satellite with mass m/M ≈ 1.2 × 10−3 now only marginally
allows for Uranus’s obliquity to be reached.

The effect of the satellite’s impact on the spin rate and obliq-
uity of the planet can be estimated from the conservation of
angular momentum (see Appendix F and the related discussion
in Sect. 4.2 below). For the range of masses considered in Fig. 10,
the relative change in spin rate due to the impact is a few percent
at most, and the change in spin direction is no larger than a few
degrees.

Depending on the cohesive strength of the satellite and the
rate of its eccentricity increase, the satellite may not even reach
collision but be torn apart by tidal forces farther away from
Uranus. Similarly to the amount of tidal dissipation within the
satellite (that we chose to ignore for now), the exact Roche limit
for the satellite depends on its internal structure and composi-
tion and can only be speculative at this stage. For definitiveness,
we adopt a limit of 2 Req, which is about halfway between the
fluid and rigid Roche limits (assuming that the satellite is homo-
geneous and has a density similar to Uranus’s current regular
satellites; see e.g. Canup & Esposito 1995; Crida & Charnoz
2012; Hesselbrock & Minton 2019). In fact, the satellite is not
expected to be completely torn apart in only one passage, but
rather be progressively eroded and form a torus of material. If
the satellite is differentiated, its denser core may survive much
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Fig. 10. Maximum obliquity reached in the course of numerical integrations using a fully coupled secular model. For each value of the satellite’s
mass (bottom axis), 96 numerical integrations are performed with random initial conditions as described in the text. The initial semi-major axis of
the satellite is a0 = 42 Req and it is made migrating according to Eq. (9) with timescale τ = 7.5 Gyr. Panel a: the maximum obliquity reached over
a full duration of 4 Gyr is shown by a small dot. The horizontal dotted line shows Uranus’s current obliquity. Panel b: same as panel a, except that
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Panel d: histogram showing the fraction of trajectories featuring a collision (black). The magenta bars on top show the small fraction of trajectories
for which the satellite goes below the Roche limit but does not collide into the planet within the integration timespan.

longer than its outer layers, possibly down to collision (Canup
2010). Some fraction of material may also be lost in space (see
e.g. Malamud & Perets 2020; Brouwers et al. 2022). In any
case, the remaining debris would reorganise into a thin equa-
torial disc confined below the fluid Roche limit (see e.g. Hyodo
et al. 2017 and discussions in Sect. 4.3). Hence, if the satellite
is tidally disrupted, there should actually be a continuous (yet
fast) transition regime from the solid satellite, whose influence
on the planet’s spin axis is strong, to the confined debris disc,
whose effect on the planet’s spin axis is negligible. Here, we
do not model these phenomena, and consider that the satellite
instantly disappears when crossing 2 Req. This approximation
may seem quite crude but the results obtained are still infor-
mative, as they can be compared to the pure collisional case
described above: a more realistic behaviour of the system proba-
bly lies somewhere between these two extremes. The maximum
obliquity reached by the planet before the satellite crosses the
Roche limit is shown in panel c of Fig. 10. Obliquity values are
globally lower than in panel b, but the picture is not very different

in a qualitative point of view. Indeed, almost all trajectories
that cross the Roche limit reach collision shortly afterwards
(see panel d).

3.3. Probability of reproducing the current state of Uranus

It is now clear that starting from a small axis tilt, the current
obliquity of Uranus can be reached through the tidal migration of
an ancient satellite, by a capture in secular spin–orbit resonance
followed by a global instability. To reproduce the current state of
Uranus, however, the planet must not only reach Uranus’s obliq-
uity, but stop at its value. In order to estimate the probability of
successful trajectories, we now examine the configuration of the
system at collision, that is, at the time the satellite is expected
to be destructed and leave the planet’s obliquity in a fossilised
state. Panel a of Fig. 11 presents the same Monte Carlo simula-
tions as in Fig. 10, but showing the obliquity of the planet at the
time of collision (instead of the maximum obliquity reached).
The intervals of mass devoid of data points are regions in which
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Fig. 11. Final value of the planet’s obliquity in the simulations of Fig. 10. Panels a and b: the satellite is removed when it collides into the planet.
Trajectories in which the satellite does not collide within the integration timespan are not shown. The main resonances are labelled. The obliquity
histogram is given on the right. Obliquity values larger than 90◦ are highlighted in red; their ratio over all trajectories (including those without
collision) is shown in panel b as a function of mass. Panels c and d: the satellite is removed when it goes below the Roche limit. Trajectories in
which it never does are not shown. Obliquity values larger than 90◦ are highlighted in blue.

no trajectory in our sample features a collision. Obliquity val-
ues are sensibly lower than in Fig. 10b, which means that the
satellite generally does not collide when the planet’s obliquity is
at its maximum, but somewhat later on. We see that collisions
occur when the spin axis is either plainly prograde or retro-
grade, but almost no collision occurs at all while the obliquity
is ε ≈ 90◦. The explanation for this bizarre phenomenon is given
in Sect. 3.4. The colour code in Fig. 11 distinguishes trajectories
ending with ε < 90◦ (prograde family) from those ending with
ε > 90◦ (retrograde family). Interestingly, the bulk of the retro-
grade family is located right at the obliquity value of Uranus (see
histogram on the right). For this reason, we define a run as “suc-
cessful” to reproduce the current state of Uranus when it ends up
in the retrograde family.

Panel b of Fig. 11 shows the probability of success as a
function of mass (i.e. it shows the fraction of trajectories in our
sample that feature a collision and for which the planet’s obliq-
uity at collision is larger than 90◦). In the most favourable region,
probabilities reach 60 to 70% (the highest peak is 73%). In other
words, reproducing the current state of Uranus is the most likely
outcome in this range of parameters. The resonance responsible
for the obliquity increase in this region is ν2 (partially overlap-
ping with resonance ν8). This is not a coincidence: resonance
ν2 is the largest secular spin–orbit resonance that appears in the
orbital series of Uranus.

Panels c and d of Fig. 11 present the same Monte Carlo
experiment, but where the satellite is supposed to be instantly

destructed when it goes below the Roche limit. The same kind of
structure as in panel a is observed, but the division between the
prograde and retrograde families is less marked. The probabil-
ity to end up retrograde is quite smaller: it reaches 20% to 30%
in the most favourable region (the highest peak is 29%). Again,
this can be explained by the coupled destabilisation mechanism:
as the satellite is removed earlier than in panel a, the system is
offered less time to substantially excite the obliquity.

Because of the geometry of secular spin–orbit resonances,
the intervals of mass showing the maximum success probability
in Fig. 11 are specific to the choice of initial semi-major axis a0
of the satellite. The choice a0 ≈ 0.8 rM has been made to roughly
minimise the distance over which the satellite must migrate in
order to reach the unstable region (see Sect. 2.3). However, sim-
ilar success probabilities can be obtained if the satellite starts
closer to the planet and migrates further out. In this case, the
same resonances are reachable up to larger satellite masses. In
order to clarify this point, we repeated our Monte Carlo exper-
iment for different initial locations of the satellite. Figure 12
shows the probability of ending in the retrograde family as a
function of both the satellite’s mass m and its initial distance
a0. The effect of each individual resonance is clearly visible. As
expected, resonance ν2 for m/M ≳ 2 × 10−3 produces the largest
fraction of successful trajectories, but resonances ν5 and ν7 also
generate substantial probabilities of success in particular regions
of the parameter space. The range of mass having the highest
success ratio increases when we decrease the initial distance of
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Fig. 12. Probability of destructing the satellite and producing a retrograde obliquity as a function of the mass of the satellite (bottom axis), its initial
semi-major axis (vertical axis), and its migration timescale (labels). Each pixel features 96 numerical integrations over 4 Gyr with random initial
angles (same setting as in Fig. 10). In the upper panels, the satellite is removed when it collides into the planet (q < Req). In the lower panels, the
satellite is removed when it goes below the Roche limit (q < 2 Req). White pixels mean that the satellite survived in all 96 simulations. Coloured
pixels show the fraction of simulations in which the satellite is destructed and the planet’s spin axis ends in the retrograde family. Resonances are
labelled in panel a.

the satellite; this is a direct consequence of the geometry of
secular spin–orbit resonances. Below a given initial distance,
however, the satellite has not enough time in 4 Gyr to reach the
unstable region, so the success probability is zero. Larger migra-
tion velocities are needed to counteract this problem; they allow
one to initialise the satellite closer to the planet (compare panels
a, b, and c).

If the satellite is initialised closer to the planet, the system
can catch a resonance that brings it to higher obliquities before
triggering the instability (see e.g. resonance ν3 in Fig. 2b, to be
compared with the same resonance in Fig. 2a). This can be a
way to increase the success ratio for small satellites. And indeed,
because of this property, panel c in Fig. 12 shows that resonance
ν3 is able to generate a small fraction of successful trajectories
if the satellite is started at a0 ≲ 35 Req and migrates fast (see the
violet shade for m/M ≈ 7 × 10−4). The success ratios, however,
remain very small in resonance ν3.

In summary, Fig. 12 reveals that the regions of the parame-
ter space allowing the current state of Uranus to be reproduced
are quite vast. Through a capture in resonance ν2, the probabil-
ity of obtaining a final retrograde spin axis (with an obliquity
similar to Uranus’s) can be larger than 80%. Other promising
resonances are ν5 and ν7, with success ratios up to 50%. Thanks
to the large width of resonance ν2, the tilting mechanism can also
operate down to very small migration ranges: this is the case in
the uppermost portion of the graphs, for initial semi-major axes
a0 ≳ 50 Req. To further illustrate this point, Fig. 13 shows the
time elapsed before collision and the migration range covered
by the satellite in these Monte Carlo experiments. In some nar-
row range of parameters, we see that the current state of Uranus
can be reproduced even if the satellite migrates over distances
as small as 2 Req. This reduced migration range increases the
effective quality factor Q that would be required for Uranus (see
Fig. 3).
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Fig. 13. Collision time and migration distance covered by the satellite in the simulations of Fig. 12. Top panels: integration time at collision. Bottom
panels: distance covered by the satellite before collision. Similar graphs are obtained when considering the time of crossing the Roche limit (with
only slightly smaller integration times and migration distances).

3.4. Collision keyholes

The peculiar distribution of obliquity in Fig. 11, showing accu-
mulations in a prograde and a retrograde spin “families” and
much depletion around ε ≈ 90◦, deserves a more in-depth analy-
sis. We write IQ the orbital inclination of the satellite measured
with respect to the planet’s equator and IC its inclination mea-
sured with respect to the planet’s orbital plane (Q and C stand for
“equator” and “ecliptic”). When examining the orbital elements
of the satellite at the time of its collision, we find that the values
of IQ are localised in two very narrow bands that can be visu-
alised in Fig. 14. These two bands are localised at IQ ≈ 55◦ and
125◦; we see that they are less narrow when the satellite crosses
the Roche limit than when the satellite impacts the planet. In
contrast, we find no preferential orientation of the satellite with
respect to the planet’s orbital plane, with inclinations IC covering
almost the entire range from 0◦ to 180◦. This seems to indi-
cate that the pathways to collision (‘collision keyholes’) involve
predominantly planet-satellite interactions.

Figure 15 shows an example of the track left by the satellite
in the plane (e, IQ) as the system wanders in the chaotic zone.
Even though the obliquity of the planet covers a large range of
values during the evolution (see Fig. 8), the two collision key-
holes are extremely localised in inclination IQ: we clearly see
that no collision can possibly occur outside of IQ ≈ 55◦ and
125◦, which explains the existence of the narrow bands in Fig. 14.
We performed various numerical tests, and found that the same
chaotic structure as in Fig. 15 is produced even in the most sim-
ple case of a massless satellite around a planet with fixed orbit
and fixed spin axis. This may not be surprising, because colli-
sions occur on a very short timescale compared to the orbital and
spin-axis motions of the planet, and we only consider relatively
small satellites here. The nature of the collision keyholes should
therefore have a simple dynamical origin that we investigate
here.

The Hamiltonian function describing the secular motion of a
massless satellite around a planet with fixed orbit and spin axis
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the track left during 4 Gyr by a single numerical integration. The phys-
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dashed lines show the locations of the secular resonances that have the
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can be written

H = kPHP + k⊙H⊙, (10)

where the first term comes from the interaction of the satellite
with the equatorial bulge of the planet, and the second term con-
tains the orbital perturbation produced by the star. The explicit
expression of the constant factors {kP, k⊙} and of the Hamiltonian
functions {HP,H⊙} expanded at quadrupolar order are given in
Appendix E. Because HP contains a factor (1 − e2)−3/2, the first
term in Eq. (10) becomes strongly dominant whenever the eccen-
tricity grows large. Indeed, the contribution of kPHP produces a
fast precession of the satellite’s argument of pericentre ωQ and

Table 3. Properties of the secular resonances appearing in the orbital
dynamics of a massless satellite at first order in the solar perturbation.

Resonance angle Nominal location Constant quantity
ξ cos I0 K

ωQ + ΩQ (
√

6 + 1)/5
√

1 − e2(cos IQ − 1)
2ωQ + ΩQ (

√
21 + 1)/10

√
1 − e2(2 cos IQ − 1)

ωQ
√

5/5
√

1 − e2 cos IQ

2ωQ −ΩQ (
√

21 − 1)/10
√

1 − e2(2 cos IQ + 1)
ωQ −ΩQ (

√
6 − 1)/5

√
1 − e2(cos IQ + 1)

ΩQ 0 e

Notes. The retrograde resonances are obtained by inverting the sign of
cos I0 and of ΩQ.

longitude of ascending node ΩQ, at rates

ω̇Q = kP
5 cos2 IQ − 1
√
GMa(1 − e2)2

; Ω̇Q = kP
−2 cos IQ

√
GMa(1 − e2)2

, (11)

with the result of averaging out the angular dependency in k⊙H⊙.
As a consequence, the eccentricity and equatorial inclination of
the satellite become constants of motion when the eccentricity
grows large. Because of this property, the eccentricity of the
satellite can never grow arbitrarily close to 1: the contribution
from kPHP makes it freeze at some point and leaves it with no
alternative but decreasing again.

In order to determine the orbital configurations in which the
eccentricity can grow the largest, we must focus on the inter-
mediate regime in which kPHP is dominant but the contribution
from k⊙H⊙ is not yet negligible. If we adopt a perturbative
approach and consider that the two degrees of freedom are
weakly coupled, any combination ξ = iωQ + jΩQ can become
a resonant angle, where (i, j) ∈ Z2 \ {(0, 0)}. The possible res-
onances at first order in the perturbation are given in the left
column of Table 3. Their nominal location is obtained by impos-
ing ξ̇ = 0 from Eq. (11), which results in one specific value for
the inclination IQ, that we note I0.

The properties of these resonances can be studied with the
method described in Appendix E. In the vicinity of each res-
onance, the averaged system admits a constant quantity K that
links the eccentricity and the inclination of the satellite, in the
same way as the Kozai constant (see e.g. Lidov 1962; Kozai
1962; Saillenfest et al. 2016). The expression of K associated
with each resonance is given in the right column of Table 3.
Because of this constant quantity, the resonance width ∆IQ in
inclination has an equivalent width ∆e in eccentricity (except for
the “resonance” ξ = ΩQ for which the eccentricity itself is con-
stant; see Table 3). The widths of each individual resonance is
shown in Fig. 16 as a function of the distance of the satellite a
and obliquity of the planet ε.

For a fixed value of obliquity ε, the extension of the reso-
nances can be visualised in the space of the satellite’s orbital
elements, as illustrated in Fig. 17. As the resonances all feature
a distinct constant quantity K, they lie in a different space and
we cannot directly judge whether they are overlapping or not
in the sense of Chirikov (1979). However, Fig. 17 gives a pre-
cise idea of the variations of orbital elements expected for the
satellite under the influence of each resonance. For a ≲ 0.2 rM,
resonances are small and well separated from each other for any
obliquity value. When the satellite is close to a = rM, on the con-
trary, and especially if the obliquity is large, resonances allow for
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extreme variations in eccentricity and inclination, in accordance
with what we observed in previous simulations5. Moreover, it is
clear from Fig. 17 that no resonance at all is able to substan-
tially increase the eccentricity over large intervals of equatorial
inclination located around IQ = 0◦, 90◦, and 180◦. This property
explains the peculiar shape of the black region in Fig. 15; the two
spikes are produced by the two triplets of resonances that have
the largest ∆e (see the horizontal dashed lines).

5 The same dynamical mechanism has been reported by Saillenfest
et al. (2019a) for trans-Neptunian objects perturbed by the galactic tides;
in this case, rM ≈ 1000 au.

In Fig. 16, we see that the resonance that produces by far the
largest variations in eccentricity is 2ωQ + ΩQ (which becomes
2ωQ − ΩQ if the orbit is retrograde). This resonance, however,
is very narrow in inclination: a few degrees at most. Its nomi-
nal location is IQ ≈ 56◦ (or IQ ≈ 124◦ for a retrograde orbit), as
given in Table 3; this location closely matches the collision key-
holes in Figs. 14 and 15. We deduce that the secular resonance
2ωQ + ΩQ (when the orbit is prograde) or 2ωQ − ΩQ (when the
orbit is retrograde) is the main responsible for the collision of the
satellite into the planet. This resonance is well known for artifi-
cial satellites; it has been studied in depth by Daquin et al. (2022)

A108, page 19 of 35



A&A 668, A108 (2022)

in the more complicated case of lunisolar perturbations. In our
case, Figs. 16 and 17 reveal that the widths of this resonance
abruptly drop to zero for obliquity values ε = 0◦, 90◦, and 180◦;
this explains why no collision at all occurs around these values
of obliquity, as noticed previously in Fig. 11. One can verify this
property by running a simulation with the planet’s obliquity fixed
to ε = 90◦: we obtain a graph similar to Fig. 15, but in which the
two spikes are smoother, like eroded, and the collision limit is
out of reach for the satellite. The strongest resonance that persists
for ε = 90◦ is ξ = ωQ + ΩQ located at IQ ≈ 46◦ (or equivalently
ωQ − ΩQ at IQ ≈ 134◦), but it is not quite large enough for the
satellite to reach collision (see Fig. 16).

It should be noted, however, that the simplified model used
here to describe the secular resonances predicts an equal prob-
ability for collisions at IQ ≈ 56◦ and 124◦. Equal probabilities
are indeed obtained for small satellites, but more massive satel-
lites happen to collide much more frequently in the retrograde
keyhole (see Fig. 14). A careful examination of Fig. 15 reveals
that the retrograde peak is indeed slightly bigger. This subtlety
cannot be explained using a simplified restricted model.

Another property of Fig. 14 needs to be clarified: the extreme
majority of satellite destructions (collisions of Roche crossings)
that occur when ε > 90◦ (coloured dots) go through the retro-
grade keyhole at IQ ≈ 124◦ and almost never in the prograde
keyhole, whatever the mass of the satellite. In other words, in
almost every trajectory that successfully reproduces the current
state of Uranus, the ancient satellite collides into Uranus while
being retrograde with respect to its equator. This property can
be explained by the “countdown to collision” mentioned ear-
lier: As the satellite wanders about in the chaotic zone, it will
reach sooner or later a collision keyhole. Because of the par-
tial conservation of the planet-satellite angular momentum, the
planet’s spin axis diffuses much more efficiently from ε < 90◦
to ε > 90◦ (or back again) when the satellite is highly retro-
grade with respect to its equator (this can be verified in Fig. 8).
During the short interval while ε ≈ 90◦, collision keyholes are
closed and the satellite is temporarily safe from destruction.
However, when the obliquity becomes substantially larger than
90◦ and the collision keyholes open again, the satellite has a
much larger probability of colliding right away, while still being
retrograde with respect to the planet’s equator, than going back
prograde and then collide. Figures 18 and 19 present an example
of trajectory for both cases. Figure 18 shows the most common
situation, in which the satellite is destructed right away after
having become retrograde and driven the obliquity to values
larger than 90◦. Figure 19 shows the very improbable situation
(much less than 1% of cases) in which the satellite goes back
prograde before being destructed. One can note that these two
trajectories have been obtained using two very different migra-
tion timescales; this highlights the large variety of parameters
from which the current state of Uranus can be reproduced via
the mechanism described here.

4. Discussions

4.1. Forming Uranus’s ancient satellite

In Sect. 3, we have seen that when trying to reproduce the cur-
rent spin state of Uranus via the migration of a single ancient
satellite, large probabilities of success can be obtained for a satel-
lite mass m/M ≈ 1.7 × 10−3 (i.e. about the mass of Jupiter’s
moon Ganymede, m ≈ 15×1022 kg) or larger. In order to achieve
the tilting of Uranus in a billion-year timescale without invok-
ing extravagant migration rates, this satellite should be formed
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Fig. 18. Example of simulation that reproduces the current state of
Uranus. We assume that the satellite is instantly removed when it
goes below the Roche limit (red point). The mass of the satellite is
m/M = 2.2 × 10−3 and it migrates with a timescale τ = 7.5 Gyr.

during the early stages of the Solar System evolution and start its
outward migration at an initial distance a0 ranging from about
40 to 50 Req. We must now discuss whether the existence a such
a satellite around Uranus could appear realistic in the context of
satellite formation theories.

For postulating that Uranus and Neptune had small initial
obliquities, our main hypothesis is that they formed in a similar
manner as Jupiter and Saturn, with the infall of gas dominat-
ing their final spin state (see Sect. 1). With this hypothesis in
mind, it seems natural to consider that a primordial generation of
satellites formed around Uranus and Neptune through a mecha-
nism similar to the Galilean satellites around Jupiter or Titan
around Saturn. Mosqueira & Estrada (2003a,b) modelled the for-
mation of the main satellites of Jupiter, Saturn, and Uranus in a
gaseous circumplanetary disc. According to their work, Uranus
today “lacks” a big satellite, that should have been formed at a
distance of 57 Req and would have been Uranus’s analogue of
Ganymede or Titan. The authors interpreted this discrepancy as
the signature of a substantial inward migration of Uranus’s proto-
satellites in the gaseous disc; they did not notice that a satellite
at this distance around Uranus is unlikely to survive because it is
close to the unstable zone (see Tremaine et al. 2009; Saillenfest
& Lari 2021). Even though major improvements have been made
since then in satellite formation theories (see e.g. Batygin &
Morbidelli 2020), a large distant satellite does seem to lack in
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Fig. 19. Same as Fig. 18, but where the satellite crosses the Roche limit
while having a prograde orbit with respect to the planet’s equator. The
mass of the satellite is m/M = 2 × 10−3 and it migrates with a timescale
τ = 3 Gyr.

Uranus’s system when compared to the systems of Jupiter and
Saturn. This missing satellite may resemble what we are look-
ing for, but some caution is needed. On the one hand, it is now
admitted that planets and satellites have substantially migrated
and been reorganised after their formation (see e.g. Tsiganis et al.
2005; Nesvorný & Morbidelli 2012; Lainey et al. 2009, 2020;
Lari et al. 2020). Hence, trying to adjust formation scenarios to
today’s locations of the planets and their satellites is probably
inadequate. On the other hand, we assumed so far that at the
time of Uranus’s tilting, the hypothetical ancient satellite was
not affected by the attraction of additional close-in satellites. To
lowest order, the gravitational attraction of inner moons is equiv-
alent to increasing the planet’s J2 (Tremaine et al. 2009). If we
take the current satellites of Uranus into account at their current
locations, the effective value of J2 felt by the hypothetical dis-
tant satellite would be multiplied by a factor k ≈ 5.4. As a result,
the Laplace radius is multiplied by k1/5 ≈ 1.4 (see Eq. (2)) and
rM becomes 75 Req instead of 53 Req. This new value still does
not seem too unrealistic, but it does not match any more that
proposed by Mosqueira & Estrada (2003a,b). In order to avoid
this increase in distance for the hypothetical ancient satellite, the
current moons of Uranus should either have been formed after
the tilting (see Sect. 4.3 below), or have been located closer to
Uranus than they are today.

The total satellites-to-planet mass ratios for Jupiter, Saturn,
and Uranus are today a few times 10−4. Canup & Ward (2006)

argued that such similar mass ratios can be explained naturally if
the satellites of all giant planets formed in a similar way within
a circumplanetary disc of gas and dust, with multiple genera-
tions of satellites being formed and lost by migrating through
the disc. Under the widely accepted assumption that Triton is a
captured object, Rufu & Canup (2017) then showed that a pri-
mordial satellite system with mass ratio roughly equal to 10−4

or less is also expected to have existed around Neptune. This
general picture seems to contradict the existence of a primor-
dial satellite with mass m/M ≳ 10−3 around Uranus, as proposed
here. However, even though the typical ratio of 10−4 was found
by Canup & Ward (2006) to only weakly depend on the poorly
known parameters involved, we have no guarantee that satellites
around Jupiter, Saturn, and Uranus did form in roughly similar
external conditions. Mass ratios larger than 10−3 can actually be
obtained from the formulas of Canup & Ward (2006) by slightly
tweaking the poorly known parameters. Moreover, the assump-
tion that the regular satellites of all four giant planets have been
shaped through the same physical processes is itself debated.
Circumplanetary discs around the Solar System giant planets
probably had much more diverse histories than initially envi-
sioned by Canup & Ward (2006), and additional phenomena, as
the truncation of the circumplanetary disc due to the planet’s
magnetosphere, are expected to have played an important role
(see e.g. Sasaki et al. 2010; Batygin & Morbidelli 2020).

Recently, Szulágyi et al. (2018) breathed new life into the
possibility that the satellites of Uranus and Neptune formed early
in a gaseous circumplanetary disc. The range of masses that they
obtain in the framework of their population synthesis appears
in line with our proposed ancient satellite. Yet, in this paper,
the formation of the disc relies on a heat sink forcing the gas
to not exceed a temperature of 100 K in the neighbourhood of
the planet, which may not be realistic. Besides, the satellite pop-
ulation obtained strongly depends on the flux of mass injected
within the disc during planetary formation, which is an unknown
quantity. For these reasons, it seems to us that the mass dis-
tribution obtained by Szulágyi et al. (2018) cannot be used as
an argument in favour of given mass values in our scenario:
using a higher mass flux would increase the mass of the satel-
lites obtained, and vice versa. What we conclude from Szulágyi
et al. (2018) and previous works is that satellites as massive as
what we need here can be formed routinely from circumplan-
etary discs that appear ‘realistic’ for Uranus and Neptune. As
a general rule, very big satellites may also exist around giant
planets (with masses as large as m/M ≈ 10−2), but they are
probably not a generic outcome of formation processes within
gaseous circumplanetary discs. Recent 3D hydrodynamic simu-
lations seem to suggest that, unlike Jupiter and Saturn, planets
similar to Uranus and Neptune do not develop significantly mas-
sive discs unless the equation of state of the gas is taken to be
isothermal (see Fung et al. 2019). For this reason, the formation
of a massive satellite around Uranus may have been unlikely.

Unusually big satellites may also be formed during the pro-
toplanetary disc phase as captured coorbital proto-cores (Hansen
2019). However, those are expected to have large orbital incli-
nations, with most likely values near 180◦, in contrast with the
scenario proposed here in which the satellite starts close to its
local (prograde) Laplace plane. Hence the formation scenario
of Hansen (2019) could be invoked in this context only if it is
associated with an efficient mechanism of inclination damping.
If instead the satellite remains highly retrograde, then tidal dis-
sipation within the planet would result in an inward (rather than
outward) migration. As discussed in Sect. 4.2, the mechanism for
tilting Uranus can work just as well, or even better, if the satellite
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migrates inwards, however there is no evidence showing that a
powerful inward migration of retrograde satellites is possible.
The capture of a large body during the planetesimal-driven plan-
etary migration is also a possibility for Uranus to have acquired
a big ancient satellite (see e.g. Agnor & Hamilton 2006; Li &
Christou 2020); however, captured objects typically have large
eccentricities and inclinations (Nesvorný et al. 2007), in contrast
to the satellite needed here for the tilting of Uranus.

4.2. Smallest ancient satellite allowing for Uranus to be tilted

Even though a mass ratio of m/M ≈ 1.7 × 10−3 does not appear
absurdly high in the context of satellite formation theories,
smaller satellites are generally thought to be more likely for
a primordial formation in a gaseous circumplanetary disc. For
comparison, the mass ratios for the Galilean satellites range from
about 3 to 8×10−5, and the mass ratio for Titan is about 2×10−4.
The possibility for Uranus and Neptune to have had a massive
circumplanetary disc during the late stages of their formation
is itself much debated (see e.g. Szulágyi et al. 2018; Reinhardt
et al. 2020 and Sect. 4.1 above). As the formation of small satel-
lites requires less material and imposes weaker constraints on
their hypothetical gaseous birth disc, it appears natural to try to
minimise as much as possible the mass required for the ancient
satellite in our scenario.

Because of the characteristics of Uranus’s orbital motion, we
can be assured from strong dynamical grounds that no tilting
can be achieved for a single ancient satellite with mass smaller
than m/M ≈ 4.4 × 10−4 (see Sect. 2). With this minimum mass,
a satellite allows for a capture of Uranus in secular spin–orbit
resonance with ν3 and adiabatic tilting up to large obliquity val-
ues. When the system reaches the unstable zone and the satellite
goes wild, however, a mass of m/M ≈ 4.4 × 10−4 is insufficient
to produce a strong back reaction on the planet, and therefore
the satellite is generally destructed before the planet’s spin axis
has time to diffuse much higher up (see Sect. 3). As a result, the
planet’s obliquity is left fossilised to values that are still close
to the boundary of the unstable zone (i.e. from about 75◦ to 80◦
using the parameters of Fig. 11), and far from Uranus’s current
value. We can think of different ways to solve this problem and
increase the success rate for small satellites.

The first and most obvious possibility would be that the
ancient satellite was not alone around Uranus. As explained
above, the addition of close-in satellites increases the effective J2
of Uranus (see e.g. Tremaine et al. 2009). This increase pushes
away the Laplace radius of our hypothetical ancient satellite, but
it also decreases the mass that it needs to have in order for Uranus
to reach a given secular spin–orbit resonance. If Uranus’s J2 is
increased by a factor k by a set of inner satellites, then rM is
enlarged by a factor k1/5 and the mass needed to reach a given
resonance is divided by k2/5 (see equations in Sect. 2.1). It is dif-
ficult to judge a priori which satellite configuration would be
most appropriate here, and how would inner satellites behave
when their distant neighbour becomes unstable. To get a rough
idea of the effect of inner satellites, we note that the current
satellite system of Uranus would push the critical radius rM to
75 Req and divide the mass needed for the ancient satellite by
roughly a factor two. In particular, the strong resonance ν2 show-
ing the highest success probabilities in our scenario would be
reachable by an ancient satellite with mass m/M ≈ 10−3 instead
of 2 × 10−3. This might increase the plausibility of our scenario.
Yet, a set of inner satellites would probably not help to increase
the success probabilities obtained in other resonances, because
the issue does not come from the tilting phase (resonance ν3 is

perfect for that) but from the destabilisation phase (during which
small satellites do not produce a strong enough back reaction on
the planet’s obliquity). A variant of this possibility would be to
have a succession of several migrating satellites that reach the
unstable region one after another: the first one would produce
the resonance capture and tilting to about 80◦, and the other
ones would just reach the unstable region (with the obliquity
being already high) and produce some chaotic obliquity diffu-
sion before being disrupted. If they sum up, each of these limited
obliquity changes may allow the current obliquity of Uranus to
be reached. However, in any case, the exact behaviour of a set of
satellites is hard to predict and one would need to explore these
scenarios self-consistently using numerical simulations.

The second possibility would be to delay the instability of
the satellite such that the obliquity can climb higher up inside
the resonance before the destabilisation phase is triggered. As the
instability originates from an eccentricity increase (see Tremaine
et al. 2009; Saillenfest & Lari 2021), such a delay could be pro-
duced through tidal dissipation inside the satellite, whose main
effect is to damp eccentricity. Yet, dissipation within the satellite
should not be too strong either, otherwise the instability could
be completely suppressed, or the migration of the satellite could
be reversed before the instability has been properly triggered.
As mentioned earlier, the instability is so strong that it is not
expected to be suppressed for realistic dissipation parameters
of the satellite (see Fig. 7 and the related discussion). How-
ever, the rate of energy dissipation within the satellite depends
on its interior properties which can only be speculative at this
stage. Because of the wide range of possible behaviours that
can be obtained when varying the dissipation rate, we leave the
exploration of this possibility for future works.

The third possibility would be to follow a secular spin–orbit
resonance that is connected higher up to the unstable region,
so that the instability is triggered at a larger value of obliquity.
The different panels in Fig. 2 show that a given resonance can
reach the unstable zone at different obliquity values, depending
on the exact mass of the satellite. This change in the resonance
shape is the reason why resonances in Fig. 12 show a higher
success ratio for smaller a0 and larger mass (i.e. in the lower
end of the coloured bands). For resonance ν3, however, a non-
negligible fraction of successful trajectories can be obtained only
for a0 ≲ 33 Req (see panels c and f of Fig. 12). Such small values
of a0 require a very fast tidal migration in order for the system
to reach the unstable zone in less than the age of the Solar Sys-
tem. For even smaller initial semi-major axes, the migration rate
of the satellite would need to be so large that adiabatic capture
in resonance ν3 would be endangered (see Fig. 6). This third
solution in order to increase the success rate of small satellites
is therefore not conclusive. Alternatively, as shown in Fig. 2,
very late instabilities would be produced for a satellite migrat-
ing inwards from an initial semi-major axis a0 > rM. In order
for the satellite to migrate inwards, it should be retrograde with
respect to the planet’s spin motion. Retrograde massive satel-
lites with IQ ≈ 180◦ can be formed through the mechanism
described by Hansen (2019). However, it is not clear whether
retrograde satellites could be able to trigger tidal dissipation
mechanisms that are as efficient as those produced by prograde
satellites (e.g. by a process analogous to that described by Fuller
et al. 2016). This possibility is therefore quite speculative at this
stage.

The fourth possibility would be to invoke an additional
mechanism after the adiabatic drift in resonance ν3 in order to
produce the final missing tilt ∆ε of about 20◦ and reach ε = 98◦.
The first idea that comes to mind is to take into account the

A108, page 22 of 35



M. Saillenfest et al.: Tilting Uranus via the migration of an ancient satellite

effect of the satellite collision in the final obliquity value of
the planet. The satellite destabilisation may also trigger a chain
reaction involving other satellites and lead to several impacts.
Assuming a perfect merger, the effect of a satellite collision into
the planet can be estimated from the conservation of their total
angular momentum. Indeed, the spin-axis motion of the planet
and the destabilisation of its satellite are due to the secular effect
of external perturbers (namely, the Sun and other planets); as
such, external perturbations act on long timescales (at least tens
of thousands of years; see Table 1 of Saillenfest & Lari 2021).
During the very limited time interval of a collision, the planet
and its satellite can therefore be considered as an isolated system.
The details of computations are given in Appendix F. Consider-
ing that the ancient satellite is destabilised by the mechanism
described above, the maximum obliquity change of the planet
due to the impact of its satellite is, in radians,

∆ε ≈ 35
m
M
. (12)

This means that in order to produce a 10◦ extra tilt, the ancient
satellite must have at least a mass m/M ≈ 5×10−3, that is, bigger
than Mercury. In order to produce 15◦, it must have the size of
Mars. These very large masses do not seem realistic in the con-
text of satellite formation, and they clearly do not help to increase
the success rate of small satellites. The effects of a chain reac-
tion involving several satellites are difficult to predict a priori,
but because of the conservation of total angular momentum, the
total mass of the satellites would need to be quite large anyway,
and in the same order of magnitude as in Eq. (12).

Alternatively, given the small size of the obliquity gap to be
filled, one can think of a subsequent impact with a rogue minor
planet, once the tilting over ε ≈ 80◦ has been achieved through
the satellite migration. We consider here the scenario of a small
late impact that only marginally alters the spin rate and obliq-
uity (quite differently from giant impact scenarios mentioned in
Sect. 1, for which the impact itself fully settles the spin rate
and obliquity of the planet). Since collisions capable of a tilt-
ing over ∆ε ≈ 20◦ can still vary a planet’s spin rate by as much
as a factor of two (Rogoszinski & Hamilton 2020), the most
likely size of impactors must be determined with the condition
that it should not significantly change the planet’s spin rate. We
accomplish this by using the code developed by Rogoszinski &
Hamilton (2020, 2021) to calculate a planet’s final spin state after
collisions. The planet grows by summing the angular momenta
of impactors and the planet, and the planet’s final tilt and spin
are extracted from its resulting angular momentum vector. For
simplicity, we assume that the impactors originate from within
the Solar System, they travel on trajectories that are parallel to
the plane of the planet’s orbit, and all their mass is absorbed
upon impact. These approximations are sufficient because we
assume small orbital inclinations, and less than 0.1 M⊕ of debris
is expected to be ejected from the system after an Earth-mass
strike (Kegerreis et al. 2018, 2019). The impactor hits at a random
location on the planet’s surface and over all possible spin-axis
precession phases, so we run this code for a half million iter-
ations to generate probability distributions of the planet’s spin
state. Finally, since the impactors are likely to travel on low-
eccentricity orbits prograde to Uranus’s, we follow the approach
of Hamilton & Burns (1994) and sample the relative speed of
impactors between 0 and 0.4 times the Keplerian speed of a cir-
cular orbit at the distance of Uranus (6.8 km s−1). The values
obtained are much less than Uranus’s escape speed (21.4 km s−1),
so we include gravitational focusing (i.e. trajectories are aimed

Fig. 20. Probability of reproducing Uranus’s current spin state as a func-
tion of the mass of a single impact strike. The planet is initialised with
the current spin rate of Uranus, considered to be primordial. The mass
of the impactor is given in Earth masses (M⊕).

closer to the planet’s centre). Spin and obliquity must be han-
dled simultaneously: we calculate the likelihood of generating
Uranus’s current spin state by measuring the fraction of instances
that are within both ±5◦ of Uranus current obliquity and ±10%
of its current spin rate. Figure 20 shows the results obtained for
initial obliquities between 0◦ and 90◦ and impactor masses from
0 to 1 M⊕. The most likely impactor that can generate Uranus’s
current spin state from an initial tilt of 85◦ has a mass of about
0.1 M⊕. Again, this is close to the size of Mars. Even though
pebble accretion models posit a surplus of Mars-sized cores in
the formation region of the giant planets (see e.g. Levison et al.
2015), and especially beyond Saturn (Izidoro et al. 2015), these
planetesimals are thought to have been accreted and scattered
quickly during planetary formation. After billions of years of
evolution, as required by our tilting mechanism, the structure of
the Solar System was most likely very similar to what it is now.
The most massive objects that may possibly impact Uranus today
are trans-Neptunian dwarf planets, whose small masses lead to a
negligible probability of producing the small missing tilt that we
are looking for (Eris is 0.003 M⊕; compare with Fig. 20). Hence,
even though planetesimal impacts probably happened during the
late stages of planetary formation and possibly produced a small
initial obliquity excitation (which would not be in contradiction
with our tilting scenario; see Fig. 6), impacts of external bodies
do not allow us to decrease the mass of the satellite needed to tilt
Uranus in our scenario.

In conclusion of this subsection, it seems difficult to repro-
duce the current spin state of Uranus if its ancient satellite is
single and has a mass smaller than m/M ≈ 1.7 × 10−3. Taking
into account a system of additional inner satellites resembling
the current ones would allow this lower limit to be decreased by
roughly a factor two. Below m/M ≈ 10−3, however, our simu-
lations show that satellites hardly manage to excite the planet’s
obliquity high enough. In order to increase further the success
rate of small satellites, another possibility would be to include
the effects of tidal energy dissipation within the satellites. This
could help to decrease the minimum mass for a single satellite
down to m/M ≈ 4.4 × 10−4 at most.

4.3. Forming Uranus’s current satellites in a debris disc

Many previous works have been devoted to the formation of
Uranus’s current satellites in the context of the giant impact
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hypothesis (see e.g. Morbidelli et al. 2012; Ida et al. 2020; Rufu
& Canup 2022; Salmon & Canup 2022; Woo et al. 2022). If
our new tilting scenario is correct, then it should also not be
in contradiction with the existence of Uranus’s current satellite
system. As discussed above, strong dynamical arguments show
that Uranus cannot be tilted through the scenario considered
here if its ancient satellite is single and has a mass smaller than
m/M ≈ 4.4 × 10−4. This minimum mass is about four times the
total mass of Uranus’s current satellite system. Assuming that
the ancient satellite goes below the Roche limit during the final
instability (see Sect. 3), then it would be torn apart into a large
amount of debris. The remaining pieces of material would then
collide with each other and rapidly reorganise into an equatorial
disc confined inside the Roche limit (see Morbidelli et al. 2012;
Hyodo et al. 2017).

Since the current regular satellites of Uranus seem to have
been formed in such a tidal disc (Crida & Charnoz 2012;
Hesselbrock & Minton 2019), it is tempting to link them to the
disruption of our hypothetical ancient massive satellite. If the
ancient satellite had mass m/M = 4.4 × 10−4 and was initially
the only regular satellite of Uranus, then about 75% of its mass
should have fallen onto the planet or been ejected, while the
remaining 25% served as building blocks for the current satellite
system of Uranus. These proportions are very similar to those
obtained by Hesselbrock & Minton (2017) in their simulations
of the formation of Phobos from a debris disc. Hesselbrock &
Minton (2017) show that the precise formation efficiency of the
new generation of satellites depends on the exact radius at which
the ancient satellite is torn apart (which itself depends on its
cohesive strength): if the ancient satellite is destructed closer to
the planet, then the viscous spreading of the debris disc results in
more material to be lost by falling onto the planet. Hence, in the
context of the tilting mechanism described above, the minimum
mass m/M ≈ 4.4 × 10−4 for the ancient satellite is compatible
with the formation of all current regular satellites of Uranus from
the debris disc, but more massive ancient satellites are not ruled
out.

When the disc spreads beyond the fluid Roche limit, the
pieces of debris aggregate into new satellites through the mech-
anism described by Crida & Charnoz (2012). For a disc mass
mdisc, the characteristic lifetime of the disc Tdisc = mdisc/ṁdisc is

Tdisc ≈ 0.0425
(

M
mdisc

)2

TRoche,

where TRoche is the orbital period at the fluid Roche limit. Assum-
ing that the disc contains just enough material to form all the
current regular satellites of Uranus, one obtains a characteristic
lifetime of about 4000 yr. This timescale is reduced to 200 yr if
the disc has an initial mass mdisc/M ≈ 4.4 × 10−4. The formation
of the new generation of satellites is therefore extremely fast at
the beginning, and it slows down asymptotically as mdisc ∝ t−1/2.
When the disc mass has decreased below a given threshold, other
phenomena can take over: Estrada & Durisen (2021) show that
micro-meteoroid bombardment can slow down ring particles and
force small-mass rings to drift inwards and eventually vanish rel-
atively quickly. These short evolution timescales would explain
why no massive disc remains around Uranus today, even in the
hypothesis that the destruction of its ancient satellite (and the
end of the tilting mechanism) occurred recently in the history
of the Solar System, perhaps a few hundreds of million years
ago. The current inner sparse ring system of Uranus may be a
remnant of the old massive debris disc, and the innermost satel-
lites of Uranus may be evolved residuals of the last generation

of satellites formed from the disc. These innermost satellites are
known to be unstable on short timescales (see e.g. Duncan &
Lissauer 1997; French & Showalter 2012; French et al. 2015), and
it is probable that they continuously form new ring particles and
new small satellites through mutual collisions and reaccretion
(Tiscareno et al. 2013).

After their formation in the debris disc, the regular satel-
lites of Uranus must have migrated up to their current location.
Oberon is the farthest regular satellite of Uranus and it is located
today at a semi-major axis of a ≈ 23 Req. This distance is to be
compared to the synchronous orbit around Uranus, which lies
somewhat below 3.5 Req (the migration from the fluid Roche
limit at 2.5 Req to the synchronous orbit is produced through
Lindblad torques from the disc while it is massive enough; see
Hesselbrock & Minton 2019).

The current migration rate of Uranus’s satellites is essentially
unconstrained today from direct observations (Lainey 2016), and
even though theoretical arguments can be used to give bounds
to the unknown parameters (Tittemore & Wisdom 1990; Ćuk
et al. 2020), our lack of knowledge about the dissipation mecha-
nisms at play in the interior of Uranus leaves room for a large
range of possible scenarios. For instance, previous arguments
based on mean-motion resonance encounters may be invalidated
if satellites are undergoing a mechanism similar to the “tidal res-
onance locking” of Fuller et al. (2016), for which the effective
quality factor Q of the planet evolves over time in such a way
that semi-major axis ratios are constant (Crida 2020). In fact, as
shown by Lainey et al. (2020), the migration history of satel-
lites around giant planets can result to be spectacularly different
from what one would expect from constant-Q models. Based on
the observed migration rate of Saturn’s satellites, and assuming
that the tidal mechanism of Fuller et al. (2016) was not triggered
long after their formation, then Titan, for instance, would have
migrated across a radial distance of 10 radii of Saturn in 4 Gyr,
that is, more than 600 000 km. In contrast, if we suppose that
Oberon was formed from a debris disc at the Roche limit of
Uranus, then it would need to have migrated over about 20 radii
of Uranus before today, which are about 500 000 km. These large
numbers may seem extraordinary high when viewed in the con-
text of previous works. For instance, Morbidelli et al. (2012)
argued that a tidal disc around Uranus cannot have been the birth
place of its current satellites because they are too far away6.
However, these distances are in line with the measurement of
the current orbital expansion of Saturn’s satellites (Lainey et al.
2020). In any case, if we assume that Uranus had a distant
ancient satellite subject to substantial tidal migration (which is
our basic hypothesis throughout this paper), then some mecha-
nism of efficient energy dissipation must exist in the interior of
Uranus. Regardless of the precise nature of this mechanism, the
dissipation efficiency needed to move Oberon to its current loca-
tion (measured by the equivalent constant parameter k2/Q; see
Sect. 2.3) is smaller than that needed to move the distant satellite
over 10 Req, so if we assume that the latter is possible, then the
former should follow.

Yet, unless the migration rate of Oberon is much larger than
that of Titan (which cannot be firmly ruled out yet, but may
seem unlikely), we cannot expect it to have migrated up its cur-
rent position in less than a couple billion years. This means that
the end of the tilting mechanism of Uranus and the destruction
of its ancient satellite cannot be arbitrarily recent if one wants

6 A fast satellite migration is also discarded by Rufu & Canup (2022),
even though it could be a promising solution to their alternative version
of the coaccretion + giant impact model; see their final discussion.
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to explain the formation of its current satellites in the debris
disc formed. For instance, one could imagine that the migra-
tion of the ancient satellite and tilting of Uranus took 2 Gyr;
then it was followed by the formation of its current satellites in
the debris disc; and then the migration of its current satellites
from the synchronous orbit to their current location took an extra
2 Gyr. Of course, the exact timing of these two phases is highly
speculative.

The creation of a tidal disc that would be suitable for the
formation of the current satellites of Uranus is itself not straight-
forward. Section 3.4 reveals that, for dynamical reasons, the
massive ancient satellite is much more likely to collide into
Uranus through the retrograde keyhole, whereas the current
satellites of Uranus are prograde with respect to its spin axis. Yet,
several factors could lead to the formation of a prograde tidal disc
even if the satellite collides on a retrograde orbit. For instance,
the satellite is not expected to be destructed at once but to form
a torus of debris, and all pieces of debris still orbit in the highly
unstable region before they are damped to the equator plane, so
whether the final tidal disc should be prograde or retrograde is
perhaps not as obvious as it may appear. Impacts of debris into
the planet could also lead to the production of prograde ejecta.

Instead of being directly torn apart by tides, the destabilisa-
tion of the ancient satellite may also have triggered a collision
cascade in a pre-existing system of inner moons. In this case, a
large portion of the total satellite mass would need to be ejected
or collide into the planet anyway, in order to reproduce the cur-
rent mass of Uranus’s system. Furthermore, dramatic satellite
collisions beyond the Roche limit are not expected to produce
a tidal disc, but to lead to a rapid reaccretion of debris into
new moons without substantial spreading (Hyodo & Charnoz
2017). This means that if satellite-satellite collisions occurred
far from the Roche limit, then the current satellites of Uranus
would need to be the remnants of the collision cascade, which
seems to be in contradiction with their spacing and mass dis-
tribution that closely match those expected from formation in
a tidal disc (Crida & Charnoz 2012). Given the large eccen-
tricity and inclination of the massive ancient satellite when it
is destabilised, one would also expect a substantial orbital exci-
tation from such large satellite-satellite collisions. Even though
eccentricities can be quickly damped through tidal dissipation,
this is not the case of inclinations, which have a much longer
damping timescale. Today, only Miranda has a substantial orbital
inclination, and its origin is well explained as a consequence
of a past 5:3 resonance between Ariel and Umbriel (Ćuk et al.
2020). Previous studies obtained similar inclination excitations
via the evolution of Miranda through the 3:1 mean-motion res-
onance with Umbriel (Tittemore & Wisdom 1989; Malhotra &
Dermott 1990; Verheylewegen et al. 2013). Depending on the
actual migration rate of the satellites, this inclination increase
may be quite recent, and trying to link it to the destabilisation of
our big ancient moon would be doubtful. A way to protect the
current satellites of Uranus from the destabilising action of their
distant neighbour would be to place them closer to the planet
at the time of the tilting, because this would lock them more
tightly to Uranus’s equator. Hence, independently of whether
the current satellites of Uranus formed before or after the tilt-
ing, invoking a substantial outward migration for them seems
inescapable.

5. Summary and conclusion

Giant planets are thought to form in a protoplanetary disc made
of gas and dust. During their last formation stages, gas accretion

dominates their final spin state and gives them a primordial near-
zero obliquity. The similarities between the four giant planets of
the Solar System – their spin rates in particular – suggest such
a common formation mechanism, and may disfavour stochastic
processes, such as giant impacts, as being a main formation
ingredient. In this view, the small to moderate obliquity values
of Jupiter (3◦), Saturn (27◦), and Neptune (30◦) can be explained
by post-formation events (see e.g. Ward & Hamilton 2004;
Hamilton & Ward 2004; Ward & Canup 2006; Vokrouhlický &
Nesvorný 2015; Rogoszinski & Hamilton 2020; Saillenfest et al.
2021a). Explaining the extreme obliquity of Uranus (98◦) is
more challenging. Tilting Uranus without affecting its spin rate
much would require a slow process involving its spin-axis pre-
cession motion. Such a process hardly fits the timespan offered
by the different stages of the early Solar System evolution (e.g.
dissipation of the gas disc or late planetary migration). This
is why previous studies investigating the tilting of Uranus as a
post-formation event faced a timescale issue (Boué & Laskar
2010; Quillen et al. 2018; Rogoszinski & Hamilton 2021).

In contrast, the tidal migration of satellites is an everlasting
process that can slowly change the orbit of natural satellites over
billions of years. Massive satellites are known to affect the spin-
axis motion of planets (see e.g. Tremaine 1991; French et al.
1993; Boué & Laskar 2006), and over the lifetime of the Solar
System the migration of the main satellites of Jupiter and Saturn
can potentially produce dramatic obliquity changes to their host
planet (Saillenfest et al. 2020, 2021b). In this article, we exam-
ined whether this mechanism could also apply to Uranus and
possibly explain its extreme obliquity.

The mechanism considered here involves secular spin–orbit
resonances, that is, resonances between the precession of the
spin axis of the planet and some harmonics appearing in its
orbital precession. It is made of two different phases as satel-
lites migrate: (i) a capture in resonance and steady obliquity
increase, and (ii) a violent destabilisation of the satellite when
the obliquity exceeds 70◦ to 80◦ (Saillenfest & Lari 2021). Both
phases can be used to determine the properties of the satel-
lite that would be needed to reproduce the current spin state of
Uranus.

Phase 1. As we are studying a very slow process and the
orbit of Uranus has been stable for billions of years, we need to
consider the current orbital dynamics of Uranus as a forcing to
its spin-axis motion. This puts strong constraints on the possible
secular spin–orbit resonances involved. The orbital forcing term
that is closest to Uranus’s spin-axis precession rate has frequency
ν15 = g7 − g8 + s7 (where g j and s j are the apsidal and nodal
precession modes of the Solar System planets numbered from 1
for Mercury to 8 for Neptune). In order to produce a resonance
with ν15, Uranus must have had a satellite with minimum mass
m/M = 3.5 × 10−4 (assuming that Uranus had a single satel-
lite at that time); however, this resonance is too weak to allow
for an adiabatic capture and tilting in less than the age of the
Solar System. The second closest forcing term has frequency
ν3 = s8. Triggering a resonance with ν3 and tilting Uranus up
to a large obliquity would require a satellite with minimum mass
m/M = 4.4×10−4, that is, m ≈ 4×1022 kg (smaller than Jupiter’s
moon Europa). Simulations show that there is a 100% probabil-
ity for Uranus to be captured and tilted in this resonance in a wide
interval of satellite migration rates and for primordial obliquities
ε between 0◦ and 20◦. In order to complete the tilting phase, the
satellite must migrate over a range of about 10 radii of Uranus
during its history; covering this distance in less than the age of
the Solar System would require the satellite to migrate at least
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6 cm yr−1 on average. This migration rate is orders of magni-
tude higher than what can be inferred from historical models
of tidal dissipation within Uranus, but quite comparable to the
11 cm yr−1 measured for Titan (see Lainey et al. 2020). A mech-
anism similar to that described by Fuller et al. (2016) could be a
viable explanation for a fast satellite expansion around Uranus.

A mass of m/M = 4.4 × 10−4 is roughly four times the total
mass of the current satellites of Uranus; this means that the
satellite involved does not exist anymore and it must have been
destructed during the second phase of the evolution. More mas-
sive ancient satellites allow for other resonances to be reached.
The strongest resonance is ν2 = s7 which can be reached for a
satellite mass m/M = 2.2 × 10−3. Other promising resonance
candidates are ν7 = g5 − g7 + s7 and ν5 = −g5 + g6 + s6, which
can be reached for masses m/M = 1.3 × 10−3 and 1.7 × 10−3,
respectively (i.e. between the masses of Jupiter’s moons Callisto
and Ganymede). These mass estimates hold for a single ancient
satellite. If Uranus had a system of additional inner moons at that
time, then the mass needed would be reduced. For instance, if
we place the hypothetical ancient satellite together with Uranus’s
current moon system, all mass estimates given above should be
divided by roughly a factor two.

Phase 2. We explored the destabilisation phase using a cou-
pled secular model including, altogether, the satellite’s orbit and
the planet’s spin-axis dynamics. When the system reaches the
unstable zone, the satellite’s orbit can be excited very quickly
and reach almost any value of eccentricity and inclination. If
the satellite is massive enough, its wild orbital variations pro-
duce a back reaction on the planet’s spin axis: the planet sweeps
over various secular spin–orbit resonances and undergoes erratic
obliquity kicks. These kicks allow the planet to go much deeper
in the unstable region and reach obliquity values similar to
Uranus’s today. Sooner or later, the satellite reaches the Roche
limit (or collides into the planet), which puts an end to the chaotic
dynamics and fossilises the planet’s spin in its last state. Satel-
lite collisions occur through the action of the secular resonance
2ω+Ω located at equatorial inclination IQ ≈ 56◦, and to its sym-
metric counterpart 2ω − Ω at IQ ≈ 124◦. This resonance is well
known for artificial satellites (see e.g. Daquin et al. 2022). Since
it vanishes for a planet obliquity ε = 90◦, satellite collisions can
only occur when the planet’s obliquity is substantially larger than
90◦ (as Uranus today), or substantially smaller than 90◦. Inter-
estingly, the current state of Uranus is near the maximum of our
histograms in the ε > 90◦ side. This may be in favour of the
mechanism proposed here.

Larger resonances and more massive satellites produce
stronger obliquity kicks. Our simulations show that for m/M =
4.4 × 10−4, the satellite generally collides into the planet before
the obliquity reaches 80◦. Hence, it seems hard to reproduce the
current state of Uranus through a capture in resonance ν3, even if
this resonance demonstrates a great capture and tilting efficiency.
We discussed other phenomena that may produce the missing
extra tilt for such small ancient satellites (e.g. a subsequent col-
lision with a minor planet) but found none to be satisfactory.
More massive satellites are much more successful in reproduc-
ing the current spin state of Uranus. If the satellite has a mass
m/M between 2 and 3 × 10−3, the probability of success through
a capture in resonance ν2 can be as large as 86%. For slightly
smaller masses (m/M ≈ 1.5 to 2 × 10−3), resonances ν5 and ν7
also demonstrate large success ratios, which reach 50% in some
ranges of parameters. As before, these mass estimates can be
reduced if we assume that Uranus already had a set of additional

inner moons at that time; their survival, however, is far from
being guaranteed.

Resonance ν2 is special because it is a secular spin–orbit res-
onance with Uranus’s own nodal precession mode s7. Due to
its large width, it produces large-amplitude oscillations of the
obliquity that can destabilise the satellite very early on, after
only a short passage through Phase 1. Moreover, resonance ν2
produces very strong kicks that can quickly pump the obliquity
up to Uranus’s current value. For this reason, our simulations
show that as long as the satellite is initialised at the right dis-
tance (a0 ≈ 50 Req), the tilting mechanism via resonance ν2 can
operate down to very small migration ranges (only a few Req,
instead of 10 Req in the general case). When studying the for-
mation of the main satellites of Jupiter, Saturn, and Uranus in
gaseous circumplanetary discs, Mosqueira & Estrada (2003a,b)
found that a distance of about 50 Req is precisely where one
would expect a massive satellite to form around Uranus. The cur-
rent main satellites of Uranus (Miranda, Ariel, Umbriel, Titania,
and Oberon) are much further in and they may seem peculiarly
small as compared to other satellites of the giant planets. From
these argument, one may argue at least that forming a satellite
with mass ratio m/M ≈ 2×10−3 at a distance of a0 ≈ 50 Req does
not seem too unreasonable in the context of satellite formation
theories.

Any successful tilting scenario must not only reproduce the
current spin state of Uranus, but also allow for the existence of
its observed satellite system. Today’s main satellites of Uranus
have prograde orbits, and they show signs of having been formed
in a tidal disc (Crida & Charnoz 2012). We have discussed the
possibility that they formed from the debris disc produced by
the destruction of Uranus’s hypothetical ancient satellite, after
the latter went below the Roche limit. The formation of the
new generation of satellites is expected to be very fast com-
pared to other dynamical processes at play. Then, the newborn
satellites would need to migrate outwards from the synchronous
orbit (a ≈ 3.4 Req) up to their current distance (Oberon is at
a ≈ 23 Req). Such a large migration range appears unrealistic in
the context of traditional tidal models, but it could be achievable
on a billion-year timescale if a mechanism similar to the ‘tidal
lock’ recently proposed for Titan is also at play for the satellites
of Uranus (Fuller et al. 2016; Lainey et al. 2020).Yet, if this is
the case, the satellites would have no particular reason to follow
the peculiar distribution described by Crida & Charnoz (2012)
as evidence of their origin in a tidal disc. The possible relation-
ship between our proposed ancient satellite and the current ones
is therefore not a simple question.

Moreover, in our subset of simulations that successfully
reproduce the spin state of Uranus, the disruption of the ancient
satellite almost always occur when the latter is retrograde (IQ ≈

124◦). Therefore, our simplified secular model does not provide
a straightforward way to produce a prograde tidal disc from its
debris, and one would need to model the disruption process in
more detail to assess the properties of the disc – including tidal
dissipation within the satellite, orbital and collisional evolution
of the debris, and the possibility of additional ejecta from the
planet.

These issues are solved if one considers that the current satel-
lites of Uranus are primordial and formed in the same gaseous
disc as our hypothetical ancient satellite (i.e. following the sce-
nario of Mosqueira & Estrada 2003a,b). It is not clear, however,
whether the current satellites would have survived during the
violent unstable phase of their massive neighbour, and whether
they would have kept their orbits as unexcited as they are today.
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Eccentricities can be subsequently damped by tidal dissipation,
but inclinations have much longer damping timescales. A possi-
ble solution to this problem would be to consider that the current
satellites were closer to Uranus during the tilting and more
tightly locked to its equatorial plane, and that they substantially
migrated afterwards. As these scenarios involve several moons,
one would need to investigate them using N-body simulations to
get definite answers.

Our results are based on numerical explorations performed
with secular models. Being fast and valid for arbitrary values of
eccentricity and inclination, these models allow us to explore a
vast range of parameters. During the first phase of the evolution,
we are guaranteed that they give a qualitatively accurate picture.
During the second phase, on the contrary, it may seem question-
able to average the dynamics over the orbit of the satellite even
when its eccentricity grows close to 1 and its precession becomes
very fast. More work is now needed to determine the exact ulti-
mate fate of the satellite and the properties of the tidal disc that
it would create. In this extreme dynamical regime, unaveraged
numerical integrations are probably required.

We have not investigated the effects of tidal dissipation
within the satellite yet. Once again, tidal dissipation would affect
the second phase of the evolution, when the satellite’s eccentric-
ity strongly increases. The exact outcome of the destabilisation
process is hard to predict a priori because it involves three
competing effects: tidal dissipation within the planet (which pro-
duces the outward satellite migration), dynamical destabilisation
(which increases the eccentricity), and tidal dissipation within
the satellite (which circularises the orbit and produces an inward
migration). The net effect on the satellite strongly depends on the
relative timescales of these three competing effects, which are
related to the specific mechanisms of energy dissipation at play.
As dissipation processes inside ice giant planets are essentially
unknown today, and since the internal composition of Uranus’s
ancient satellite is highly speculative, we did not try to obtain a
definite answer here. However, our results can serve as a robust
starting point for future experiments. According to the level of
tidal dissipation within the satellite, we can expect three different
behaviours: (i) If dissipation is exceptionally strong, the destabil-
isation of the satellite would be inhibited and our scenario would
fail to reproduce the spin state of Uranus; (ii) if dissipation is
moderate, the destabilisation may be delayed but not suppressed,
and this could increase the fraction of successful runs for a sin-
gle small satellite, down to a mass m/M ≈ 4.4 × 10−4; and (iii)
if dissipation is small, the picture outlined here would remain
unchanged.

In this article, we have settled the basic ingredients that
would allow for the current state of Uranus to be reproduced
via the migration of an ancient satellite. This scenario can be
refined. One promising variant would be to invoke two satellites:
a big distant one (as that described here), plus a small one located
much closer to Uranus. In this configuration, the inner satellite
would be much more prone to tidal migration than the outer one;
and while the inner satellite migrates outwards over a few Req,
the outer one would feel a change in the effective J2 parame-
ter of Uranus, which would increase its characteristic radius rM.
As a result, the whole tilting mechanism would be triggered all
the same, even though the distant big satellite would not need to
migrate at all. This variant scenario exemplifies how it would
be possible to relax constraints both on the large energy dis-
sipation required in the interior of Uranus (as the migration of
close-in satellites requires much less energy dissipation than the
migration of distant ones), and on the large mass needed for the
ancient satellite (as the combined action of several moderately

massive satellites can produce the same effect). The exploration
of this and other possible variant scenarios are left for future
works.

Despite the unanswered questions mentioned above, this new
picture for the tilting of Uranus appears quite promising to us.
To our knowledge, this is the first time that a single mecha-
nism is able to both tilt Uranus (phase 1) and fossilise its spin
axis in its final state (phase 2) without invoking a giant impact
or other external phenomena. The distribution of our success-
ful runs peaks at Uranus’s location, which appears as a natural
outcome of the dynamics. This picture also seems appealing as
a generic phenomenon: Jupiter today is about to begin the tilt-
ing phase (Saillenfest et al. 2020), Saturn may be halfway in
(Saillenfest et al. 2021b), and Uranus would have completed the
final stage, with the destruction of its satellite.

Confronting this picture to observations is not an easy task.
Part of the answer would be given by a measure of the tidal
migration rate of Uranus’s current satellites. A high rate would
indicate that they formed substantially closer to Uranus: this
would give the possibility that they formed from the debris of
the ancient satellite, or that they were protected from its wild
destabilisation phase.
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Appendix A: Tilting Uranus during the planetary
migration

If we restrict the precession of the planet’s orbital plane to a sin-
gle dominant harmonic with amplitude S 0 = sin(I0/2) and angle
ϕ0 evolving at frequency ν0 (see Eq. 6), the Hamiltonian func-
tion governing the secular spin-axis dynamics of the planet is
simplified into

H = −
α

2
X2

(1 − e2
⊙)3/2

+ ν0Φ0

+ ν0(1 − cos I0)X − ν0 sin I0

√
1 − X2 cos(ψ + ϕ0) ,

(A.1)

where Φ0 is the momentum conjugate to ϕ0, added to obtain
an autonomous Hamiltonian system. In this expression, α is the
precession constant, e⊙ is the eccentricity of the planet, X is
the cosine of obliquity, and ψ is the precession angle (see e.g.
Saillenfest et al. 2019b). Passing to the resonant canonical coor-
dinates X and −σ = −ψ − ϕ0 and dropping unnecessary constant
parts, the Hamiltonian function can be rewritten

H = −
1
2

X2 + γX + β
√

1 − X2 cosσ , (A.2)

using the rescaled timescale dτ = pdt, where

γ = −
ν0 cos I0

p
, β = −

ν0 sin I0

p
, (A.3)

and p = α(1 − e2
⊙)−3/2 is the characteristic spin-axis preces-

sion frequency of the planet. Equation (A.2) is the Hamiltonian
of Colombo’s top problem, which has been widely studied
(Colombo 1966; Henrard & Murigande 1987; Saillenfest et al.
2019b; Haponiak et al. 2020; Su & Lai 2020, 2022). Its equi-
librium points are generally called the ‘Cassini states’, following
Peale (1969).

Since mutual planetary perturbations dominantly produce
a retrograde nodal precession, we have ν0 < 0, so that γ and
β are both positive with these notations. Under the hypothe-
sis that Uranus’s obliquity is small initially, the fastest tilting
is obtained when Uranus acquires its current obliquity during a
single cycle of σ (‘resonance kick’). Assuming that the planet’s
orbit is stable enough to consider that γ and β do not vary much
over this cycle, the existence of such an extreme trajectory puts
strong constraints on the parameters. The existence of a trajec-
tory connecting ε = 0◦ to more than ε = 90◦ first requires that

β ⩾ |γ − 1/2| , (A.4)

which is the condition for which a trajectory passing at X = 0
has the same Hamiltonian value has a trajectory passing at X = 1
(see Eq. (A.2)). Moreover, in order for these two points to belong
to the same trajectory, the separatrix surrounding Cassini state 2
must either contain the north pole of the sphere or be inexis-
tent. As shown by Saillenfest et al. (2019b), this condition can be
written

8β2 ⩾ 1 − 20γ − 8γ2 + (1 + 8γ)3/2 . (A.5)

The two curves defined by Eqs. (A.4) and (A.5) connect at γ =
γcrit, where γcrit = (1+

√
2)/4. For γ < γcrit, Eq. (A.5) is the more

stringent condition, whereas for γ > γcrit, Eq. (A.4) is the more
stringent condition. According to Eq. (A.3), γ and β are linked
through β = γ tan I0. Therefore, the two previous conditions can
be formulated as a minimum value for I0 instead of a minimum
value for β. The minimum inclination of the planet allowing for
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Fig. A.1. Minimum orbital inclination of a planet such that its obliquity
can evolve from 0◦ to more than 90◦ over a single libration in a secular
spin–orbit resonance. Conditions 1 and 2 are given in Eqs. (A.4) and
(A.5), respectively. The minimum inclination is reached at γcrit = (1 +
√

2)/4 and its value is given by tan Imin = 3 − 2
√

2.

its tilting from 0◦ to more than 90◦ as a function of γ is shown
in Fig. A.1. The global minimum of this function is located at
γ = γcrit, and its value is given by tan Imin = 3 − 2

√
2, that is,

Imin ≈ 9.74◦.
The phase portrait of the Hamiltonian at the critical point is

shown in Fig. A.2. We see that it corresponds to the case where
the separatrix enclosing Cassini state 2 goes exactly from ε = 0◦
to ε = 90◦.

The problem is the same if Uranus’s spin axis resonates
with its own orbital precession (i.e. ν0 = s7) or with a harmonic
stemming from an other planet (e.g. Neptune, as investigated by
Rogoszinski & Hamilton 2021, that is, ν0 = s8): this harmonic
must anyway fulfil the conditions described above, which means
that the planet must have a large inclination in order to allow for
a fast tilting. Imposing small inclination values, instead, means
that Uranus cannot acquire a large obliquity during a single libra-
tion, and that we need an additional drift of the resonance centre
(i.e. a variation of γ and β). As discussed in Sect. 1, this alter-
native strongly increases the tilting timescale, because the drift
must be adiabatic enough in order for Uranus to remain inside
the resonance and gradually follow its drift.

Appendix B: Orbital solution for Uranus

The secular orbital solution of Laskar (1990) is obtained by mul-
tiplying the normalised proper modes z•i and ζ•i (Tables VI and
VII of Laskar 1990) by the matrix S̃ corresponding to the lin-
ear part of the solution (Table V of Laskar 1990). In the series
obtained, the terms with the same combination of frequencies are
then merged together, resulting in 56 terms in eccentricity and
60 terms in inclination. This forms the secular part of the orbital
solution of Uranus, which is what is required by our averaged
models.

The orbital solution is expressed in the variables z and ζ as
described in Eqs. (6) and (7). In Tables B.1 and B.2, we give all
terms of the solution in the J2000 ecliptic and equinox reference
frame.
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Fig. A.2. Phase portrait of Colombo’s top Hamiltonian when the planet
has the minimum orbital inclination required for going from an obliq-
uity ε = 0◦ to ε ⩾ 90◦ over a single libration. The top and bottom panels
show the same phase portrait using two sets of coordinates. In the bot-
tom panel, the obliquity ε is the tilt from the z-axis and the resonance
angle σ is the polar angle measured in the xy-plane. The parameters are
γ = (

√
2 + 1)/4 and β = (

√
2 − 1)/4, respectively. The Cassini states

are labelled and showed with coloured dots. The thick black level is the
separatrix of the resonance.

Because of the chaotic dynamics of the Solar System (Laskar
1989, 1990), the fundamental frequencies related to the terres-
trial planets (e.g. s1, s2, and γ appearing in Table 1) could vary
noticeably over billions of years (Hoang et al. 2021). However,
they only marginally contribute to Uranus’s orbital solution, and
none of them takes part in the resonances studied in this article.
We can therefore safely consider that this orbital solution is valid
on a billion-year timescale, at least in a qualitative point of view.

Table B.1. Quasi-periodic decomposition of Uranus’s eccentricity and
longitude of perihelion (variable z).

k µk (′′ yr−1) Ek × 109 θ(0)
k (o)

1 4.24882 37351497 210.67
2 3.08952 29110713 121.36
3 0.66708 1640609 73.98
4 28.22069 1540208 308.11
5 1.93168 423140 208.85
6 5.40817 411981 301.79
7 2.97706 75968 306.81
8 27.06140 53352 218.76
9 4.89647 47827 115.82

10 52.19257 39627 45.83
11 −20.88236 35859 203.93
12 1.82121 28918 154.92
13 0.77840 28310 65.10
14 −19.72306 27851 293.24
15 28.86795 10506 32.64
16 27.57346 9228 43.74
17 −0.49216 8225 164.74
18 29.37998 7279 38.31
19 53.35188 7234 314.93
20 3.60029 4594 301.39
21 −56.90922 4109 224.11
22 5.59644 3787 110.35
23 7.45592 3521 200.24
24 17.91550 2648 335.34
25 76.16447 2387 143.03
26 5.47449 1426 275.01
27 51.03334 1325 316.29
28 5.71670 1082 120.52
29 5.35823 582 94.89
30 6.93423 536 168.90
31 7.05595 423 358.70
32 17.36469 409 303.95
33 7.34103 297 207.85
34 4.36906 221 220.83
35 5.99227 214 113.56
36 7.57299 207 11.47
37 5.65485 206 39.22
38 5.23841 171 272.97
39 17.08266 114 359.38
40 16.81285 98 93.77
41 6.82468 97 194.53
42 7.20563 61 143.91
43 17.63081 42 10.70
44 19.01870 41 39.75
45 17.15752 39 145.02
46 7.71663 38 93.52
47 17.81084 33 238.56
48 18.18553 30 237.28
49 17.72293 25 228.46
50 16.52731 24 311.91
51 18.01611 21 224.83
52 17.47683 21 80.26
53 17.55234 17 17.65
54 18.46794 15 183.15
55 16.26122 15 238.89
56 18.08627 12 176.17

Notes. This solution has been directly obtained from Laskar (1990) as
explained in the text. The phases θ(0)

k are given at time J2000.

Appendix C: Coupled model for the satellite and
the spin axis of its host planet

In Sect. 3, we investigate the effect of the satellite destabili-
sation on the coupled dynamics of the satellite’s orbit and the
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Table B.2. Quasi-periodic decomposition of Uranus’s inclination and
longitude of ascending node (variable ζ).

k νk (′′ yr−1) S k × 109 ϕ(0)
k (o)

1 0.00000 13773646 107.59
2 −3.00557 8871413 320.33
3 −0.69189 563042 203.96
4 −26.33023 347710 307.29
5 −2.35835 299979 224.75
6 −4.16482 187859 231.66
7 −1.84625 182575 224.56
8 −3.11725 59252 146.97
9 −1.19906 25881 313.99

10 11.50319 18941 101.01
11 10.34389 11930 11.68
12 −26.97744 10362 225.10
13 −5.61755 10270 348.70
14 20.96631 7346 237.78
15 −0.58033 5474 197.32
16 −5.50098 3662 342.89
17 −50.30212 2748 29.83
18 −7.07963 2372 273.81
19 0.46547 1575 106.88
20 82.77163 1514 308.95
21 −5.85017 1238 165.47
22 −7.19493 1177 105.12
23 −6.96094 1120 97.96
24 −17.74818 1109 303.28
25 −5.21610 927 18.91
26 −5.37178 922 35.48
27 −5.10025 903 195.38
28 58.80017 887 32.90
29 −6.84091 826 109.96
30 −7.33264 810 196.75
31 34.82788 701 114.12
32 0.57829 545 283.72
33 −5.96899 529 350.64
34 −18.85115 463 240.24
35 −27.48935 449 38.53
36 −25.17116 425 35.94
37 −6.15490 383 89.77
38 9.18847 310 181.15
39 −28.13656 282 134.07
40 −6.73842 265 44.50
41 −7.40536 245 233.35
42 −7.48780 228 47.95
43 −6.56016 214 303.47
44 −8.42342 178 211.21
45 18.14984 139 111.19
46 −19.40256 122 28.16
47 −17.19656 119 153.99
48 −18.01114 84 62.09
49 −17.66094 80 318.93
50 −17.83857 65 109.13
51 −17.54636 58 66.71
52 −17.94404 41 32.26
53 −18.59563 37 278.11
54 −19.13075 15 125.90
55 −18.30007 11 78.29
56 −18.97001 6 253.36
57 −18.69743 3 41.70
58 −18.77933 3 42.83
59 −18.22681 3 226.30
60 −19.06544 3 230.21

Notes. This solution has been directly obtained from Laskar (1990) as
explained in the text. The phases ϕ(0)

k are given at time J2000.

planet’s spin axis. This investigation requires a self-consistent

coupled model that also incorporates the orbital variations of the
planet due to perturbations from all other Solar System planets,
in order for the secular spin–orbit resonances to be present. In
this section, we describe the model that we use for this purpose.

Appendix C.1: Unaveraged Hamiltonian function

Our setting is similar to that of Correia et al. (2011). We con-
sider three bodies with masses mi and positions xi measured in
an inertial reference frame. The momenta conjugate to the posi-
tions xi are Xi = miẋi. We use the index 0 for the planet, index 1
for the satellite, and index 2 for the star. The planet is assumed
to be an extended rigid body. The position x0 of the planet is that
of its centre of mass. We write (I, J,K) the basis vectors associ-
ated with the principal axes of inertia of the planet; the unitary
vectors (I, J,K) are attached to the rigid planet and rotate with
it. In this system of coordinates, the inertia tensor I of the planet
is diagonal and writes:

I =

A 0 0
0 B 0
0 0 C


(I,J,K)

where A ⩽ B ⩽ C . (C.1)

Following Boué & Laskar (2006), the Hamiltonian function
describing the dynamics of the system, as built from its total
energy, can be written
H = HE +HN +HI , (C.2)

where HE corresponds to the Eulerian free rigid rotation of the
planet, HN describes the Newtonian attraction of three mass
points, and HI contains the interactions of the non-spherical
component of the planet with the satellite and the star mass
points. The Eulerian partHE is

HE =
1
2

GTI−1G =
(G · I)2

2A
+

(G · J)2

2B
+

(G ·K)2

2C
, (C.3)

where G is the rotational angular momentum of the planet. The
Newtonian partHN can be written

HN =

2∑
i=0

∥Xi∥
2

2mi
−

∑
0⩽i< j⩽2

Gmim j

∥xi − x j∥
, (C.4)

where G is the gravitational constant. Because of the hierar-
chical nature of the system, we use the following set of Jacobi
coordinates:

r0 =
m0x0 + m1x1 + m2x2

m0 + m1 + m2
,

r1 = x1 − x0 ,

r2 = x2 −
m0x0 + m1x1

m0 + m1
,

(C.5)

with conjugate momenta

p0 = β0ṙ0 = X0 + X1 + X2 ,

p1 = β1ṙ1 = X1 − m1
X0 + X1

m0 + m1
,

p2 = β2ṙ2 = X2 − m2
X0 + X1 + X2

m0 + m1 + m2
,

(C.6)

where the reduced masses are defined as
β0 = m0 + m1 + m2 ,

β1 =
m0m1

m0 + m1
,

β2 =
(m0 + m1)m2

m0 + m1 + m2
.

(C.7)
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The vector r0 describes the position of the barycentre of the
whole system in the inertial reference frame, the vector r1 is the
position of the satellite with respect to the planet, and the vec-
tor r2 is the position of the star with respect to the barycentre
of the planet and its satellite. In this system of coordinates, the
Newtonian part of the Hamiltonian function can be rewritten

HN =
∥p0∥

2

2β0
+HK +HM , (C.8)

where HK is the Hamiltonian describing two decoupled Keple-
rian motions:

HK =

2∑
i=1

(
∥pi∥

2

2βi
−
µiβi

∥ri∥

)
= −

µ1β1

2a1
−
µ2β2

2a2
, (C.9)

in which we define µ1 = G(m0 +m1) and µ2 = G(m0 +m1 +m2),
and ai are the associated semi-major axes. The Hamiltonian
functionHM contains the mutual Newtonian perturbations:

HM =

(
G(m0 + m1)m2

∥r2∥
−
Gm0m2

∥x2 − x0∥

)
−
Gm1m2

∥x2 − x1∥
. (C.10)

We take the hierarchical nature of system into account by noting
that

x2 − x0 =
m1

m0 + m1
r1 + r2 ,

x2 − x1 = −
m0

m0 + m1
r1 + r2 ,

(C.11)

where ∥r1∥ ≪ ∥r2∥, and by performing a multipolar expansion of
HM using the Legendre polynomials. This gives

HM =
Gβ1m2

2r3
2

r2
1 − 3

(r1 · r2)2

r2
2

 + O [ r1

r2

]3 , (C.12)

in which we write ri ≡ ∥ri∥.
The interaction part HI is obtained from the gravitational

potential of a mass element within the planet interacting with
the outer two point-mass bodies. Writing y the position of the
mass element measured with respect to the planet’s barycentre
and yi ≡ xi − x0, we again take advantage of the hierarchical
nature of the system by noting that ∥y∥ ≪ ∥yi∥ ∀i = 1, 2 and that
the planet is almost spherical. By using a multipolar develop-
ment of 1/∥yi − y∥ and integrating over the planet’s volume, we
get

HI =

2∑
i=1

[
Gmi

2∥yi∥
5

[
(2A − B −C) (yi · I)2 + (2B − A −C) (yi · J)2

+ (2C − A − B) (yi ·K)2
]
+ O

[ Req

∥yi∥

]3 ] ,
(C.13)

where Req is the equatorial (i.e. largest) radius of the planet.
Replacing y1 and y2 by their expressions as a function of r1 and
r2, we finally obtain

HI =

2∑
i=1

Gmi

2r5
i

[
(2A − B −C) (ri · I)2 + (2B − A −C) (ri · J)2

+ (2C − A − B) (ri ·K)2
]

+ O

[Req

r1

]3 + O [Req

r2

]3 + O [ r1

r2

]3 + O  r1

r2

[
Req

r2

]2 .

(C.14)

We notice that r0 does not appear in the Hamiltonian function,
thanks to the reduction of the total barycentre. As a result, the
isolated constant term ∥p0∥

2/(2β0) in Eq. (C.8) can be dropped
from the Hamiltonian function.

Appendix C.2: Secular system

The Hamiltonian function obtained above can be decomposed
into

H = H0 + ϵH1 , (C.15)

where H0 = HE + HK is the dominant integrable part and
ϵH1 = HM +HI is a perturbation (we introduce a factor ϵ ≪ 1
to emphasise the smallness of the perturbation). Assuming that
there is no resonance involving the mean motions and/or the
planet’s spin rate, the long-term dynamics of the system at first
order in ϵ is given by the classic averaging method.

In order to average ϵH1 over the fast angles of the rota-
tional motion of the planet, one would need to express HE in
action-angle coordinates. Yet, because of the planet’s relaxation
to hydrostatic equilibrium, we know that the planet’s free rota-
tional motion is close to that of an axisymmetric ellipsoid, for
which the Andoyer angles g and ℓ circulate in an independent
manner (i.e. the motion is composed of a main rotation about the
constant rotational angular momentum G and a slower rotation
about the principal axis K). Assuming that none of the two cor-
responding fast frequencies7 is involved in a resonance, we can
therefore bypass the standard procedure and average the Hamil-
tonian function over g and ℓ separately (see Boué & Laskar 2006;
Vaillant et al. 2019). Expressing the vectors I, J, and K in terms
of the Andoyer angles, we obtain〈

(ri · I)2
〉
g,ℓ
=

〈
(ri · J)2

〉
g,ℓ

=
1 + cos2 J

4
r2

i −
1
2

(
1 −

3
2

sin2 J
)

(ri · w)2 ,

〈
(ri ·K)2

〉
g,ℓ
=

sin2 J
2

r2
i +

(
1 −

3
2

sin2 J
)

(ri · w)2 ,

(C.16)

where w = G/G and J is the angle between G and K, such that

⟨HI⟩g,ℓ = −
2C − A − B

2

(
1 −

3
2

sin2 J
) 2∑

i=1

Gmi

2r3
i

[
1 − 3

(ri · w)2

r2
i

]
.

(C.17)

Upon averaging, J becomes a constant angle, and the planet’s
rotational dynamics is reduced to the orientation of the unitary
angular momentum vector w.

It remains to average the perturbation Hamiltonian over the
fast orbital angles, which are the mean anomalies M1 and M2.
The required integrals are performed using the classical formulas
(see e.g. Appendix A of Boué & Laskar 2006). Dropping the
constant parts, the secular Hamiltonian function is finally

H̄ = H̄M + H̄I , (C.18)
7 g is associated with the proper rotation (or spin motion), and ℓ with
the Eulerian free nutation, also called Chandler wobble (from Chan-
dler 1891 who observed it for the Earth). The period of the free wobble
is expected to be a week or so for rigid Jupiter and Saturn, and about
50 days for Uranus and Neptune (as computed from their spin rates and
moments of inertia).
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where

H̄M =
γ

6

[
1 − 6e2

1 − 3(1 − e2
1)(k1 · k2)2 + 15(e1 · k2)2

]
, (C.19)

and

H̄I =

2∑
i=1

αi

6

[
1 − 3(ki · w)2

]
, (C.20)

in which we have defined

γ =
3Gβ1m2a2

1

4a3
2(1 − e2

2)3/2
, (C.21)

and

αi =
3Gm0miR2

eqJ2

2a3
i (1 − e2

i )3/2

(
1 −

3
2

sin2 J
)
, (C.22)

where

J2 =
2C − A − B

2m0R2
eq

. (C.23)

In these expressions, e1 and e2 are the eccentricity vectors of the
satellite around the planet and of the planet-satellite barycentre
around the star8 (i.e. the vector pointing to the pericentre and
whose norm is the eccentricity), and k1 and k2 are the unitary
angular momentum vectors of the two orbits.

Following Correia et al. (2011), we express the equations of
motion in terms of the (non-canonical) vectorial elements G,
e1, and G1, where G1 is the orbital angular momentum of the
satellite:

G1 = β1

√
µ1a1(1 − e2

1) k1 . (C.24)

We obtain

Ġ = −
2∑

i=1

αi (ki · w)(ki × w) ,

ė1 =
α1

2∥G1∥

[
2(k1 · w)(e1 × w) −

(
1 − 5(k1 · w)2

)
(k1 × e1)

]
+
γ (1 − e2

1)
∥G1∥

[
2(k1 × e1) + (k1 · k2)(e1 × k2)

− 5(e1 · k2)(k1 × k2)
]
,

Ġ1 = α1 (k1 · w)(k1 × w) + γ (1 − e2
1)(k1 · k2)(k1 × k2)

− 5γ (e1 · k2)(e1 × k2) .
(C.25)

The elements e2 and k2 of the planet-satellite barycentre around
the star require a specific treatment. Indeed, the three-body sys-
tem that we consider here is actually not isolated, but subject to
perturbations from additional planets. Their direct interactions
with the satellite’s orbit and the planet’s equatorial bulge are
negligible; however, they are the main contributors to the sec-
ular motion of the planet-satellite barycentre around the star.
This contribution is essential because it gives rise to the secu-
lar spin–orbit resonances. For this reason, we do not integrate
the temporal evolution of e2 and k2 but take them as known
8 As only the norm of e2 appears at quadrupolar order, it does not mat-
ter whether we consider the orbit of the star around the planet-satellite
barycentre or the contrary.

functions of time obtained from earlier works. Given the small
size of the satellites considered in this article, we can safely
assume that its influence did not alter noticeably the motion of
the barycentre of Uranus and its satellite system around the Sun.
Hence, we compute e2 and k2 from the secular orbital solution
of Laskar (1990) described in Appendix B. The conversion from
the variables z and ζ to the vectors e2 and k2 is straightforward.
This solution acts as an indirect forcing term to the dynamics of
the satellite and the spin axis of the planet.

The constant value of Uranus’s rotational angular momentum
G is quite uncertain, as both its spin rateω and moment of inertia
are poorly known (see the discussion in Sect 2.2). For this reason,
it is enough to use the approximate expression for a principal axis
rotator G ≈ Cω = λωm0R2

eq, where λ is the normalised polar
moment of inertia. We adopt the nominal value of λω described
in Sect. 2.2. We also neglect the sin2 J term in Eq. (C.22) which
is not known for Uranus but expected to be extremely small9. The
migration of the satellite is modelled by applying a slow drift in
a1 in the equations of motion according to the migration law in
Eq. (9). As discussed in Sect. 2.4, we neglect the simultaneous
decrease in Uranus’s spin rate ω, whose contribution is smaller
than our uncertainty on the value of G.

Appendix D: High-order secular spin-orbit
resonances

For a given planet, the strongest secular spin–orbit resonances
are of first order in the planet’s orbital inclination (see e.g. Sail-
lenfest et al. 2019b). First-order resonances have resonant angles
of the form σk = ψ + ϕk, where ψ is the spin-axis precession
angle and ϕk is the circulating angle of the kth harmonic in
the planet’s nodal precession spectrum (see Eq. 6). The secu-
lar spin-axis dynamics, however, is not restricted to first-order
resonances. At second order in inclination, resonances involve
two different harmonics with resonant angles of the form σ j,k =
2ψ + ϕ j + ϕk. At order three, there exist five different kinds of
resonances whose properties are described by Saillenfest et al.
(2019b).

In the case of Uranus on its current orbit, resonances are rare
and isolated from each other. Yet, harmonic k = 2 has quite a
large amplitude (see Table 1), and its frequency is not far from
those of harmonics k = 5 and 8. This suggests that high-order
resonances could play a substantial role in the dynamics in the
neighbourhood of resonanceσ2. And indeed, we found that some
fraction of the trajectories shown in Fig. 10 for satellite masses in
the neighbourhood of m = m2 is produced by stable captures in
second-order resonances. Figure D.1 shows an example of such
trajectories: σ2 = ψ + ϕ2 first starts to oscillate, but it is soon
replaced by σ2,5 = 2ψ + ϕ2 + ϕ5, while both σ2 and σ5 circulate.
The nearby resonance σ8 does not play any role in this example.

9 The relaxation of planets to hydrostatic equilibrium tends to reduce
the angle J, and specific internal processes are needed to maintain
a non-zero value. The mean value of J is measured to be about
7 × 10−7 rad for the Earth (Chandler 1891) and 3 × 10−8 rad for Mars
(Konopliv et al. 2020). The Chandler wobble has not been detected yet
for gaseous planets, but from the latest Juno data, the constant J for
Jupiter is constrained to be smaller than 10−6 rad and compatible with
zero (Iess et al. 2018; Serra et al. 2019; Durante et al. 2020). Similar
constraints have been obtained for Saturn (Iess et al. 2019).
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Fig. D.1. Example of stable capture in a secular spin–orbit resonance
of second order. Black and blue are used for quantities related to the
planet’s spin axis and satellite’s orbit, respectively. The numerical inte-
gration is performed with the fully coupled secular model presented in
Sect. 3. The mass of the satellite is m/M = 2 × 10−3. The satellite is
initialised close to the local circular Laplace equilibrium at a = 42 Req
and it is made migrating outwards over ∆a = 9 Req.

Appendix E: Secular resonances of a massless
satellite

In Sect. 3.4, we investigate the origin of the peculiar dynamical
pathways through which the satellite can collide into the planet.
To this end, we simplify the problem and consider the dynamics

of a massless satellite around a planet having a frozen orbit and
spin-axis orientation. The secular Hamiltonian function of the
satellite can be writtenH = kPHP + k⊙H⊙. Expanding both con-
tributions to quadrupole order, Saillenfest & Lari (2021) define
the two constant coefficients as

kP =
3
4
GM

a
J2

R2
eq

a2 and k⊙ =
3
8

Gm⊙
a⊙(1 − e2

⊙)3/2

a2

a2
⊙

, (E.1)

and the two Hamiltonian functions as

HP =
1 − 3 cos2 IQ

3(1 − e2)3/2 , (E.2)

and

H⊙ = −
1
8

[
8e2 + 2(3e2 + 2)(2C2 cos2 IQ + S 2 sin2 IQ − 2)

+ 8CS (3e2 + 2) cos IQ sin IQ cosΩQ

+ 5S 2e2(cos IQ + 1)2 cos(2ωQ + 2ΩQ)

− 20CS e2(cos IQ + 1) sin IQ cos(2ωQ + ΩQ)

+ 10(3C2 − 1)e2 sin2 IQ cos(2ωQ)

− 20CS e2(cos IQ − 1) sin IQ cos(2ωQ −ΩQ)

+ 5S 2e2(cos IQ − 1)2 cos(2ωQ − 2ΩQ)

+ 2S 2(3e2 + 2) sin2 IQ cos(2ΩQ)
]
.

(E.3)

In this expression, C = cos ε and S = sin ε are constant, and
the orbital angles of the satellite (IQ, ωQ,ΩQ) are measured with
respect to the equator and equinox of the planet. All other quan-
tities that appear in the Hamiltonian function are described in the
main text.

Because of the factor (1 − e2)−3/2 in Eq. (E.2), kPHP is the
dominant contribution to the dynamics whenever the eccentricity
grows large. We consider the intermediate regime in which kPHP
is the dominant integrable part of the Hamiltonian and k⊙H⊙ is
a small perturbation. Written in terms of the Delaunay elements,
kPHP is expressed in action-angle coordinates, so we can directly
apply a perturbative method. At first order in the perturbation,
the possible resonances are those directly appearing in Eq. (E.3);
for each of them, the resonance angle ξ is a linear combination
of ωQ andΩQ. These resonances are listed in Table 3 of the main
text.

Using a perturbative approach, we can study the orbital
dynamics of the satellite in the vicinity of each resonance. The
method is the following (see e.g. Saillenfest et al. 2019a, Talu
et al. 2021): The angle ξ is first taken as coordinate by a canonical
change of variables (ωQ,ΩQ) → (ξ, γ). The conjugate momenta
of ξ and γ are written Ξ and Γ. In the vicinity of the resonance,
ξ is a slow angle and γ is a fast angle. At first order in the per-
turbation, the long-term dynamics is described by averaging the
Hamiltonian function over γ. The Hamiltonian system obtained
is independent of γ, which means that Γ is a constant of motion
and can be used as parameter. We end up with a one-degree-of-
freedom system and any possible trajectory for the satellite can
be represented as a level curve of the Hamiltonian function. In
practice, Γ is rewritten as a constant quantity K, whose expres-
sion for each resonance is given in Table 3. By virtue of the con-
stant nature of K, it is equivalent to represent the level curves of
the Hamiltonian function in the (e, ξ) plane or in the (IQ, ξ) plane.

When it emerges from chaos and reaches the weakly per-
turbed regime, the satellite can have any value of K. For
definitiveness, we consider here for each resonance the value of
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Fig. E.1. Geometry of the phase portrait describing the orbital dynam-
ics of a satellite in the vicinity of one of the secular resonances listed
in Table 3 (except the last one). The eccentricity e and equatorial incli-
nation IQ of the satellite are linked through a constant quantity K. The
origin e = 0 of the graph corresponds to the nominal inclination I0 of
the resonance.

K such that e = 0 for IQ = I0, where I0 is the nominal inclination
of the resonance (see Table 3). Even though this represents a
loss of generality, we later see that studying just one value of
K is enough to understand the correct hierarchy between the
various resonances. The case ξ = ΩQ is special, because the
constant quantity is the eccentricity e itself. By putting e = 0,
we obtain the Hamiltonian function that describes the circular
Laplace equilibria (see Tremaine et al. 2009). The ‘resonance’
in this case is the libration island surrounding the orthogonal
equilibrium (called Laplace state P2 by Saillenfest & Lari 2021),
for which the minimum and maximum value of IQ along the
separatrix are given by

cos2 IQ =
1 + u −

√
1 + u2 + 2u cos(2ε)

2u
, (E.4)

where u = r5
M/a

5. All other resonances in Table 3 produce very
similar phase portraits. Since some resonances are very large, we
do not use the pendulum approximation but solve for the exact
resonant Hamiltonian function. The structure of the phase space
is illustrated in Fig. E.1. The width ∆e of the separatrix gives
the maximum eccentricity reachable by the satellite inside the
resonance. It is linked to an analogous width ∆IQ through the
constant quantity K. The widths of each resonance as a function
of the parameters are shown in Figs. 16 and 17 of the main text.

Appendix F: Effect of a satellite collision on the
obliquity

In Sect. 2.4, we observe that large regions of the parameter space
lead to a resonance capture of Uranus. As the satellite continues
to migrate outwards, the system converges towards a configu-
ration for which the satellite is highly unstable. The effects of
this destabilisation are investigated in Sect. 3; they can lead to a
direct collision of the satellite into the planet. In this section, we
investigate what would be the effect of a satellite-planet collision
on the final spin rate and obliquity of the planet.

As explained in Sect. 4.2, the total angular momentum L of
the planet and its satellite can be considered constant during the
collision. The constant vector L can be written

L = LP + LS , (F.1)

where LP is the contribution of the planet’s spin and LS is the
contribution of the satellite’s orbit. After the removal of the satel-
lite, the obliquity of Uranus is not expected to vary at all due to
external perturbations because Uranus is released far from any
kind of spin–orbit resonance. The magnitude of L can therefore
be computed using the current parameters of Uranus. A set of
inner satellites can also be included; however, the current satel-
lites of Uranus only contribute to 1% of L = ∥L∥, which is much
smaller than our uncertainty on Uranus’s moment of inertia. To
leading order, ∥LP∥ ∝ ω and ∥LP∥ ≫ ∥LS∥, so the relative change
in the planet’s spin rate is

∆ω

ω
≈

L − LP

LP
≈

LS

LP
cos IQ , (F.2)

where LP = ∥LP∥, LS = ∥LS∥, and IQ is the orbital inclination of
the satellite with respect to the planet’s equator at the collision
time (i.e. the angle between LP and LS). Using the gyroscopic
approximation for the spin of the planet, the ratio LS/LP can be
written as

LS

LP
=

m
M

n
ω

a2

R2
eq

√
1 − e2

λ
, (F.3)

where n and e are the satellite’s mean motion and eccentricity,
and other quantities are described in Sect. 2.1. The collision is
expected to occur when the semi-major axis of the satellite is
a ≈ rM as defined in Eq. (2). Moreover, the collision condition
requires that a(1−e) ≲ Req which gives a minimum bound for the
eccentricity value at the collision time. When using the physical
parameters of Uranus in Eq. (F.3), we obtain a value of about
35 m/M, where the leading factor varies from 32 to 39 when
assuming a 10% uncertainty on the value of ωλ as in Sect. 2.2.
The order of magnitude for the relative change in the planet’s
spin rate is therefore

∆ω

ω
≈ 35

m
M

cos IQ . (F.4)

The variation in the planet’s spin-axis orientation due to the
impact is quantified by the angle φ between L and LP. From
Eq. (F.1), it can be expressed as

sinφ =
LS

L
sin IQ , (F.5)

that is,

sinφ ≈ 35
m
M

sin IQ . (F.6)

Under favourable longitude of node of the satellite at the time
of collision, the spin-axis deviation φ directly equals the obliq-
uity variation ∆ε. As shown in Sect. 3.4, satellite collisions only
occur when IQ ≈ 55◦ or IQ ≈ 125◦. Therefore, for the mass range
discussed throughout this article, the change in spin rate due to
the satellite’s impact is a few percent at most, and the change in
obliquity is no larger than a few degrees.

The maximum spin-axis deviation φ would be obtained for
a grazing impact with IQ = 90◦. Hence, an upper bound for the
obliquity change in radians due to the satellite collision is ∆ε ≈
35 m/M.

A108, page 35 of 35


	Tilting Uranus via the migration of an ancient satellite
	1 Introduction
	2 Adiabatic tilting up to the unstable zone
	2.1 Tilting mechanism
	2.2 Minimum mass for the satellite
	2.3 Migration range and velocity
	2.4 Tilting efficiency

	3 Coupled destabilisation of the planet's spin and satellite's orbit
	3.1 Destabilisation mechanism
	3.2 Exploration of the parameter space
	3.3 Probability of reproducing the current state of Uranus
	3.4 Collision keyholes

	4 Discussions
	4.1 Forming Uranus's ancient satellite
	4.2 Smallest ancient satellite allowing for Uranus to be tilted
	4.3 Forming Uranus's current satellites in a debris disc

	5 Summary and conclusion
	Acknowledgements
	References
	Appendix A: Tilting Uranus during the planetary migration
	Appendix B: Orbital solution for Uranus
	Appendix C: Coupled model for the satellite and the spin axis of its host planet
	C.1 Unaveraged Hamiltonian function
	C.2 Secular system

	Appendix D: High-order secular spin-orbit resonances
	Appendix E: Secular resonances of a massless satellite
	Appendix F: Effect of a satellite collision on the obliquity


