East Asian Monsoonal Climate Sensitivity Changed in the Late Pliocene in Response to Northern Hemisphere Glaciations

Ze Zhang, Alexis Licht, David de Vleeschouwer, Zhixiang Wang, Yanzhen Li, David B Kemp, Liangcheng Tan, Rui Zhang, Xiaoke Qiang, Chunju Huang

To cite this version:
Ze Zhang, Alexis Licht, David de Vleeschouwer, Zhixiang Wang, Yanzhen Li, et al.. East Asian Monsoonal Climate Sensitivity Changed in the Late Pliocene in Response to Northern Hemisphere Glaciations. Geophysical Research Letters, 2022, 49, 10.1029/2022gl101280. hal-03894632

HAL Id: hal-03894632
https://hal.science/hal-03894632
Submitted on 12 Dec 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License
Geophysical Research Letters

RESEARCH LETTER
10.1029/2022GL101280

Key Points:
- Cyclic patterns in East Asian summer monsoon intensity during the Pliocene were mainly driven by Antarctic ice sheet variations.
- A major reorganization of the East Asian climate system occurred at 2.75–2.6 Ma in response to Northern Hemisphere glaciation.
- Quaternary East Asian summer monsoon on orbital scales displays a sensitivity that is unique to the modern icehouse with bipolar ice sheets.

Supporting Information:
Supporting Information may be found in the online version of this article.

Correspondence to:
Z. Wang and C. Huang, wangzh18905@126.com; huangcj@cug.edu.cn

Citation:

Received 14 SEP 2022
Accepted 22 NOV 2022

Abstract
Mio-Pliocene sedimentary archives of the East Asian summer monsoon (EASM) in NE Tibet record a monotonic response to orbital forcing, dominated by eccentricity. By contrast, Pleistocene archives display a more stochastic response that varies regionally and temporally. When and why this response changed is poorly understood. Here, we present a new high-resolution Rb/Sr ratio data set of EASM intensity from the Sanmenxia Basin, North China, that spans the Plio-Pleistocene transition. Our results indicate decreased monsoonal rainfall in the late Pliocene, dated at 2.75–2.6 Ma, associated with an intensified response to obliquity and enhanced climate stochasticity. This transition is attributed to the increase of Northern Hemisphere ice volume. Quaternary monsoons display a sensitivity unique to the modern icehouse with large bipolar ice sheets, while pre-Quaternary monsoons were solely impacted by Antarctic ice sheet dynamics on orbital time-scales.

Plain Language Summary
The late Pliocene-early Pleistocene transition (LP/EP) is a period of global cooling and the intensification of Northern Hemisphere glaciation. Yet, the evolution of the East Asian summer monsoon (EASM) during this time remains a topic of ongoing discussion and debate. Here we present high-resolution paleoclimate data from a record of lake sediments across the Pliocene-Pleistocene transition period. We show that there was a reorganization of the East Asian monsoon system 2.75–2.6 million years ago, associated with an increase in climate forcing caused by cyclic changes in Earth’s tilt and in climate stochasticity. This transition is attributed to the appearance of new high-latitude forcing mechanisms on monsoon intensity caused by the growth of ice sheets in the Northern Hemisphere.

1. Introduction
Reconstructing monsoon variability during past Greenhouse periods is critical for understanding its future response(s) to global warming. The East Asian Summer Monsoon (EASM) is a critical component of the Asian monsoon system and brings abundant moisture from the Pacific Ocean and the South China Sea to East Asia (J. B. Liu et al., 2015; J. Y. Lu et al., 2021; Z. X. Wang et al., 2019, 2021). On orbital time-scales (ca. 10–100 kyr), EASM intensity and inland penetration are sensitive to pCO₂ (Kripalani et al., 2007; H. Lu et al., 2013; Luo et al., 2021), as well as variations in insolation driven by Earth’s astronomical configuration (Ao, Dupont-Nivet, et al., 2020; Sun, Kutzbach, et al., 2015; Y. C. Wang et al., 2020). Recent studies demonstrate that EASM sensitivity to astronomical forcing changed with time, following mechanisms that remain poorly understood (Sun, Kutzbach, et al., 2015; Y. C. Wang et al., 2020).

Sensitivity of EASM precipitation to astronomical forcing is well-documented in paleosols and records of past lake expansion/contraction in lacustrine basins of North China (Sun, Kutzbach, et al., 2015; Y. C. Wang et al., 2020). Variations in pedogenesis and/or lake level can be reconstructed by Rb/Sr (rubidium/strontium) and other elemental ratios, for example, Al/Na and Ti/Zr, because these proxies are sensitive to the hydroclimate (Ao, Rohling, et al., 2021; Jin et al., 2020). Climate variability reconstructed using such ratios are dominated by...
100 kyr eccentricity cycles from the mid Oligocene to the Pliocene, 28–3 Myr ago (Ao, Liebrand, et al., 2021; Ao, Rohling, et al., 2021; Nie et al., 2017; Z. X. Wang, et al., 2019, 2021). Longer-scale 405 kyr eccentricity forcing is also observed in sufficiently long records (e.g., Ao, Rohling, et al., 2021). This prominent eccentricity signature is intriguing because eccentricity has a negligible direct influence on insolation patterns. Hence, it operates through a series of non-linear processes within the carbon cycle and/or cryosphere (Ao, Liebrand, et al., 2021).

Quaternary sediment archives that record EASM sensitivity to astronomical forcing yield contrasting results. Most Quaternary Chinese sedimentary basins are marked by eolian dust input, generated in central Asia and carried by winter winds (Ao, 2000). The study of grain-size and magnetic properties in loess deposits indicate dominant 41 kyr obliquity cycles before 0.9 Ma and 100 kyr eccentricity cycles since then (e.g., Sun, Clemens, et al., 2006, 2010). This pattern is consistent with astronomical rhythms preserved in benthic δ18O data (De Vleeschouwer et al., 2020; Lisiecki & Raymo, 2005; Westerhold et al., 2020). Other magnetic properties-based proxies suggest prominent 405-kyr eccentricity cycles (C. Y. Liu et al., 2021). In contrast, microcadio δ18O and elemental variations are dominantly forced by 41 kyr obliquity cycles over the last 1.5 Myr (T. Li et al., 2017). This discrepancy suggests that the evolution of dust transport controlled by the East Asian winter monsoon and the evolution of soil water controlled by the EASM are influenced by different processes (T. Li et al., 2017). The combination of both influences on sedimentary material yields regional and temporal complexities.

Previous work suggests that EASM intensity lost its monotonic eccentricity pacing sometime in the late Neogene, and shifted to a much more complex sensitivity to astronomical parameters, with obliquity becoming a major player during most of the Quaternary (T. Li et al., 2017; Sun, Clemens, et al., 2006, 2010). Yet, the causes and precise timing of this shift remain poorly understood. Investigating when and why this shift occurred is critical to understand the modern and future mechanisms of monsoonal intensity. The sedimentary fill of the Sanmen paleolake in the Sanmenxia Basin, North China, spans from the early Pliocene to late Pleistocene (S. B. Wang et al., 1999, 2004) and thus covers the time during which the EASM changed its response to radiative forcing. Here, we present a high-resolution (1.8 kyr) geochemical record spanning the interval from 3.9 to 2.2 Ma from the Sanmenxia Basin to decipher orbital-scale lake level changes in response to EASM variability during this key interval.

2. Materials and Methods

2.1. Sampling

The Sanmenxia Basin is a sub-basin of the larger Fenwei Basin (J. Liu et al., 2019), enclosed by the East Qinling mountains to the south, and the Zhongtiao Mountains to the north (Figure S1 in Supporting Information S1). The Sanmenxia Basin was occupied by closed lakes until the opening of the Sanmen gorge in the Mid Pleistocene (S. B. Wang et al., 1999, 2004, B. Wang et al., 2013). The Sanmen Formation is dated to the Pliocene—early Pleistocene by magnetostratigraphy and thermoluminescence dating (S. B. Wang et al., 1999).

Our sampling profile at the Huangdigou section covers the lower part of the Sanmen Formation with its diagnostic basal conglomerates and subsequent colored clays, and is capped by fluvial sands. The profile is unconformably capped by late Quaternary loess (S. B. Wang et al., 1999). Our study focuses on the lacustrine deposits beneath the Quaternary loess. These lithologies indicate a environmental shift from alluvial fans to fluvo-lacustrine alternations in a shallow, closed lake system, and finally to fluvial deposits (Text S1 in Supporting Information S1). Biostratigraphic dating based on fossil mammals and ostracods near our section indicates a Pliocene to Pleistocene age for the strata (Huang & Ji, 1984; Huang & Sun, 1959; Yuan, 1986), and this corroborates with the dating of S. B. Wang et al. (1999). The same strata have been alternatively attributed to the Mio-Pliocene (Xiao et al., 2021), though this alternative correlation provides unrealistic changes of depositional rates and is incompatible with thermoluminescence dating of the uppermost part of the section (S. B. Wang et al., 1999). It should be noted that our sampling site belongs to the same geological unit as S. B. Wang et al. (1999), but in a new area about 2 km away from their profile. Thus, the lithology and stratal thickness are slightly different (Figure S2 in Supporting Information S1). We sampled a 90 m-thick section at ca. 40 cm resolution for magnetostratigraphic dating to increase the dating precision (100 cm resolution in S. B. Wang et al., 1999; see Text S3 in Supporting Information S1 for detailed paleomagnetic analyses procedures) and sampled the central part of the section (40–81 m, where fine-grained lacustrine deposits are prominent) at 4 cm resolution for Rb/Sr analysis (see Text S2 in Supporting Information S1 for a description of climate proxies).
2.2. Rb/Sr
Sampling trenches were excavated to a depth of >0.5 m from the freshly exposed surfaces for sedimentary logging and sampling. The abundance of rubidium (Rb) and strontium (Sr) were measured in the field with an Innov-X Systems X-ray fluorescence spectrometer in geochemistry mode using beam 1 (50 kv) and beam 2 (10 kv). The measurement time for each sample analysis was at least 50 s. A total of 945 data points were acquired with a measurement interval of 4 cm.

2.3. Spectral Analysis and Cross-Spectral Analysis
Spectral analysis of the Rb/Sr data was done on the 40–81 m (corrected thickness is 40–77.6 m after removing a gravel layer between 71.6 and 75 m) interval of our section where fine-grained lacustrine deposits are prominent. The power spectra and sliding window spectral analysis of Rb/Sr in the thickness domain and time domain were calculated using Acycle 2.0 software (M. S. Li et al., 2019). Cross-spectral analysis results were generated using the “ARAND” program from Brown University, USA (Howell et al., 2006; see Text S4 in Supporting Information S1 for detailed descriptions).

3. Results
3.1. Paleomagnetic Results
The detailed magnetic polarity stratigraphy of our section is displayed on Figure 1. We identified eight normal (N1–N8) and seven reversed (R1–R7) polarity zones, based on at least two points to determine a polarity zone (Figure 1). Both the normal and reversed polarity intervals match well with all of the geomagnetic polarity time scale polarity subzones within the age interval from chrons C3n to C2n (4.8–1.9 Ma). Subsequently, the age of each sampling level was estimated by piecewise linear interpolation between age control points, enabling the sediment accumulation rate of each polarity interval to be obtained.

3.2. Cyclostratigraphic Results
Based on the magnetostratigraphy, the fluvio-lacustrine deposits (40–81 m) in our section span a duration of ~1.7 Myr across the interval 3.9–2.2 Ma, with an average sedimentation rate of ~2.2 cm/kyr that remains broadly stable (see Text S5 in Supporting Information S1 for full details; note that the thick conglomerate interval of 71.6–75 m was removed for this calculation). This time window covers the Plio-Pleistocene transition. The sampling interval (4 cm) corresponds to a 1.8-kyr temporal sampling resolution (assuming a 2.2 cm/kyr sedimentation rate). Thus, this is sufficient to resolve individual precession, obliquity, and eccentricity cycles. Based on the sedimentation rate, the ~1,000-cm and ~270-cm cycles in the raw (thickness domain) Rb/Sr data represent ~405 and ~100 kyr eccentricity cycles, while the ~100-cm spectral peak is interpreted as a ~41 kyr obliquity signal (Figure 2c).

The 405 and 100 kyr eccentricity cycles are the dominant astronomical controls on Rb/Sr in the late Pliocene, but the dominant orbital forcing shifts to 41 kyr obliquity at the Plio-Pleistocene transition (i.e., 2.6 Ma) at ~70 m, after a 0.15 Myr transition period (2.75–2.6 Ma) with limited 100 kyr cyclicity (Figure 2). These changes occurred while accumulation rates remained unchanged (Figure 2g), corroborating the accuracy of our age model.

3.3. Recurrence Analysis Results
We apply a recurrence analysis measure of determinism (DET) to our record to identify individual climate states that share statistically distinctive dynamics (Steffen et al., 2018; see Text S6 in Supporting Information S1). DET values close to zero correspond to unpredictable (stochastic) climate dynamics while large values indicate deterministic dynamics. The DET parameter can thus be used to highlight climate state transitions (Westerhold et al., 2020). DET values average 0.70 ± 0.12 (2σ) over the interval 3.9–2.75 Ma (40–66.5 m). They then experience a marked peak over the interval 2.75–2.7 Ma (66.5–67.5 m; average = 0.89 ± 0.12 (2σ). DET values decrease to 0.58 ± 0.14 (2σ) between 2.6 and 2.2 Ma (67.5–81 m; Figure 3). This decrease broadly coincides with the timing of the orbital cyclicity shift from eccentricity to obliquity across the Plio-Pleistocene transition. A t-test performed on DET values confirms a higher stochasticity after 2.6 Ma than before 2.75 Ma (p = 0.027).
4. Discussion

4.1. Eccentricity Pacing of East Asian Monsoonal Intensity Before the Pleistocene

Previous studies conducted on the Huangdigou section have shown that the Fenwei Basin has been tectonically stable since the Pliocene, and that sediment provenance has been steady over the study interval with a dominant source from the North China Craton (Chen et al., 2021; Z. X. Wang et al., 2022; Zhang et al., 2021). Our high-resolution Rb/Sr record reflects lake level (lacustrine expansions and contractions) and are thus interpreted to reflect regional climatic changes in the absence of strong tectonic or geomorphic control(s) on lake evolution. Westerly derived moisture was likely not an important source of rainfall in Central and Northern China during Plio-Pleistocene because of the early shielding effect of North Tibetan uplift on the track of the Westerlies (An et al., 2001). Instead, multiple lines of evidence (i.e., pollen analysis, isotopic data on biomarkers and carbonates, climate simulations) corroborate a dominant monsoonal source for the rainfall in Central and Northern China during those times (H. Y. Lu et al., 2019; H. L. Wang et al., 2019). Our Rb/Sr record is thus interpreted as a direct...

Figure 1. Regional lithostratigraphic and magnetostratigraphic correlations. Lithostratigraphy, magnetostratigraphy, Rb, Sr content and Rb/Sr ratios (40–81 m) of the Huangdigou section, with correlation with the 2020 geomagnetic polarity time scale (GPTS 2020, Ogg, 2020). Each polarity zone in the magnetic polarity stratigraphy is defined by at least two data points. Ostracod fossil information is from Yuan. (1986). Photo (a) is fluvial sandstone in the upper part of the section; (b, c) are reddish-brown and gray-green mudstones interpreted as lacustrine deposits; (d, e) are siltstones and sandstones interpreted as lacustrine deposits. The location of the photos is marked on the lithology column.
proxy for changes in EASM intensity and penetration on orbital time scales (see Text S2 in Supporting Information S1 for a detailed explanation of climate proxies).

The influence of eccentricity on insolation is too weak to force monsoonal hydroclimate directly, but eccentricity can have an impact on regional insolation via its modulation of precession (S. C. Clemens & Tiedemann, 1997; Ruddiman, 2008). Nevertheless, the Rb/Sr data in our section show only very weakly developed precession cycles (Figure 2), as seen in many previous Tibetan records (Ao, Rohling, et al., 2021; Z. X. Wang et al., 2018, 2019). Precession forcing can transfer into the eccentricity band in sedimentary archives via mechanisms related to post-depositional diagenesis, stratigraphic hiatuses and biological disturbance that are still poorly understood (e.g., Hilgen et al., 2015; Kemp, 2011; Ripepe & Fischer, 1991). Asymmetry in the response of proxies for past moisture to precession-band insolation forcing may also contribute to prominent eccentricity signal; this asymmetry has been proposed for magnetic susceptibility (MS), which may record faithfully intervals of increased rainfall while missing some intervals of decreased rainfall (Cheng et al., 2021; Sun, An, et al., 2010). This bias remains yet to be shown for Rb/Sr data. The over-expression of eccentricity might also reflect a non-linear monsoonal response to insolation forcing (e.g., S. C. Clemens et al., 2018; Hilgen et al., 2015; Kemp, 2011; Ripepe & Fischer, 1991). All mechanisms proposed to explain a strong eccentricity control on monsoonal intensity rely on non-linear amplification mechanisms related to Antarctic ice-sheet (AIS) dynamics, eustatic sea level and the global carbon cycle (Ao, Liebrand, et al., 2021; Nie et al., 2017; Z. X. Wang et al., 2019, 2021). AIS volume and eustatic sea-level are prominently forced by eccentricity for most of the Oligocene-Miocene (De Boer et al., 2014; Holbourn et al., 2013; Pälike et al., 2006).

Three amplification mechanisms have been proposed to relate EASM intensity, eustatic sea-level and AIS growth. (a) Periodic advances and retreats of East Asian coastlines related to eustatic variations forced by periodic changes in AIS size could impact moisture availability along the pathway of EASM winds (Nie et al., 2017); (b) Periodic AIS expansions could impact the Pacific meridional overturning circulation and Pacific sea surface temperature (SST) gradients, which affect the cross-equatorial pressure/heat gradient and the amount of regional latent heat,
modulating EASM moisture transport (Ao, Liebrand, et al., 2021; Nie et al., 2017); (c) AIS expansions could impact the Atlantic meridional overturning circulation and Atlantic SST gradients, which influences the strength and position of westerly winds; they in turn could have controlled the supply of westerly derived moisture during Miocene times (Z. X. Wang et al., 2019) and/or the penetration of the EASM (Ao, Liebrand, et al., 2021).

To better understand the links between EASM intensity and global climate changes, we reconstructed meridional SST gradients through the studied interval (Text S7; Figure S5 in Supporting Information S1). Meridional SST gradients increased over the period 2.75–2.6 Ma (Figures 4d and 4e) and shifted from dominant ~100 kyr eccentricity to ~41 kyr obliquity cycles (Figure S6 in Supporting Information S1). In our record, this time window corresponds to (a) a peak of DET values; (b) the disappearance of 100 kyr cyclicity; (c) a peak in Rb/Sr values (Figure 4). The synchronicity between our record and meridional SST gradients over this period supports a genetic relationship between the global overturning circulation and EASM intensity. However, phase analysis indicates a nearly 90° lag (~25 kyr) between these different records (Figures S6c and S6d in Supporting Information S1). We thus suggest that late Pliocene changes in meridional SST gradients might not have been the only cause of the shift in EASM sensitivity.
4.2. Response of Northern Hemispheric Ice Sheet Expansion to Obliquity-Forcing Climate Change in East Asian Across the Pliocene-Pleistocene Transition

Our record bridges the gap between Mio-Pliocene lacustrine records, which show a climatic sensitivity to eccentricity forcing in NE Tibet (Ao, Liebrand, et al., 2021; Ao, Rohling, et al., 2021; Nie et al., 2017; Z. X. Wang...
Eccentricity forcing of AIS volume and eustatic sea-level was prominent for most of the Pliocene until obliquity forcing took over from eccentricity in driving AIS and eustatic sea-level dynamics at 2.9–2.6 Ma (De Boer et al., 2014). The 2.9–2.6 Ma time interval is coeval with the end of the mid-Pliocene warming event and the first major intensification of the Northern Hemisphere glaciation (NHG). This event is seen in North Atlantic climate proxy data, including deep-sea oxygen isotopes (M. E. Raymo et al., 1992), planktonic foraminiferal assemblages (Dowsett & Poore, 1990) and ice rafted debris abundance (Smith et al., 2018). The increased expression of obliquity in AIS and eustatic sea-level after ~2.9 Ma is attributed to a significant influence of obliquity on NHG growth, which in turn impacts AIS expansion via eustatic feedback (De Boer et al., 2014). The change of orbital forcing in our Plio-Pleistocene record at 2.6 Ma is similar with the changes in AIS and eustatic orbital forcing. Our results thus suggest strong teleconnections between AIS expansion, eustatic sea level and EASM intensity.

DET values highlight that the change in orbital forcing after 2.75–2.6 Ma was associated with a shift to a more stochastic monsoonal response to NHG (Figure 3). The marked rise in DET values during the 2.75–2.7 Ma interval suggests the crossing of a tipping point in monsoonal dynamics (Scheffer et al., 2009; Westerhold et al., 2020). Recurrence analysis of the South Asian summer monsoon recorded by grain size in the Arabian Sea Ocean Drilling Program Site 722 (S. C. Clemens et al., 2008) shows a similar trend (Figure S7 in Supporting Information S1). These results suggest that the changes in Asian climate stochasticity across the Plio-Pleistocene boundary also affected the South Asian monsoon. We attribute this shift to the influence of NHG on central and East Asian climate. The shift is followed ~400 kyr later by a major transition in global climate state seen in global benthic δ18O and δ13C recurrence plots (transition from “coolhouse” to “icehouse”; Westerhold et al., 2020). This ~400 kyr delay suggests that NHG onset impacted the global carbon cycle and monsoonal intensity in different ways and that global temperatures were likely not the direct driver of the change in monsoonal sensitivity (Y. C. Wang et al., 2020). NHG ice and low temperatures at high northern latitudes have been shown to impact EASM intensity by influencing the strength of the Siberian high (Gai et al., 2020; Guo et al., 2004), the locus of the westerly track (Abell et al., 2021), meridional shift of the Intertropical Convergence Zone (Haug et al., 2001; Yancheva et al., 2007) and changes in SST gradients (C. M. Brierley & Fedorov, 2010). The diversity of these potential forcing mechanisms can partly explain the regional, temporal, and proxy-related orbital complexity seen in late Pleistocene EASM records (Gai et al., 2020; T. Li et al., 2017; Sun, Kutzbach, et al., 2015). We postulate that their combination results in the increased stochasticity seen in our record.

If the large-scale features of the EASM were mainly constrained by Asian geography and topography and were roughly steady over the last 40 Ma (Farnsworth et al., 2019; Licht et al., 2016), our results indicate that polar glaciations significantly impacted the EASM circulation. It is noteworthy that the extra-long (~2.4 Myr) eccentricity cycle is close to a minimum between 2.75 and 2.6 Ma (Figures 4f and 4g). This orbital configuration indicates a significant weakening of Northern Hemisphere seasonality, promoting ice sheet growth at this time (E. Raymo & Nisancioglu, 2003), and the appearance of cool summers may also account for the significant weakening of the Asian summer monsoon. The EASM was similarly affected during the AIS expansion across the Eocene-Oligocene Transition (EOT; Ao, Dupont-Nivet, et al., 2020). A recurrence analysis of low frequency MS (χlf) data, an indicator of EASM intensity (Ao, Dupont-Nivet, et al., 2020; C. Y. Liu et al., 2021; Sun, Clemens, et al., 2006), from the lacustrine beds of the Lanzhou Basin across the EOT (Ao, Dupont-Nivet, et al., 2020), shows that DET values peaked at 34 Ma and gradually decreased across the early Oligocene glaciation (Figure S8 in Supporting Information S1). Thus, polar ice sheets appear to have played a crucial role in determining EASM variability on orbital time-scales. Quaternary monsoons likely display a sensitivity that is unique to the modern icehouse with bipolar ice sheets. These results call for caution when using Miocene coolhouse records or earlier warmhouse archives as analogs to predict monsoonal responses to global warming.
5. Conclusions

Our geochemical data from the Sanmennia Basin highlight a major shift from eccentricity forcing to obliquity forcing of hydroclimate across the Plio-Pleistocene transition (~2.6 Ma). This is also associated with an increase in climate stochasticity as indicated by recurrence analysis. Combined with previous cyclostratigraphic studies from NE Tibetan lakes, our new results show that the EASM was paced by eccentricity in a uni-polar ice-sheet configuration, and shifted to a 41 kyr obliquity response as soon as bipolar ice sheets emerged. Our findings emphasize that global boundary conditions are thus equally important as local low-latitude insolation forcing for the EASM.

Data Availability Statement

All of our measured proxy data presented here available in the figshare website (available from https://doi.org/10.4121/14820342).

References

Herbert, T., Peterson, L., Lawrence, K., & Liu, Z. (2010). Tropical ocean temperatures over the past 3.5 million years. Science, 328(5985), 1530–1534. https://doi.org/10.1126/science.1185435

References From the Supporting Information

