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1.  Introduction
Reconstructing monsoon variability during past Greenhouse periods is critical for understanding its future 
response(s) to global warming. The East Asian Summer Monsoon (EASM) is a critical component of the Asian 
monsoonal system and brings abundant moisture from the Pacific Ocean and the South China Sea to East Asia (J. 
B. Liu et al., 2015; J. Y. Lu et al., 2021; Z. X. Wang et al., 2019, 2021). On orbital time-scales (ca. 10–100 kyr), 
EASM intensity and inland penetration are sensitive to ρCO2 (Kripalani et al., 2007; H. Lu et al., 2013; Luo 
et al., 2021), as well as variations in insolation driven by Earth's astronomical configuration (Ao, Dupont-Nivet, 
et al., 2020; Sun, Kutzbach, et al., 2015; Y. C. Wang et al., 2020). Recent studies demonstrate that EASM sensi-
tivity to astronomical forcing changed with time, following mechanisms that remain poorly understood (Sun, 
Kutzbach, et al., 2015; Y. C. Wang et al., 2020).

Sensitivity of EASM precipitation to astronomical forcing is well-documented in paleosols and records of 
past lake expansion/contraction in lacustrine basins of North China (Sun, Kutzbach, et al., 2015; Y. C. Wang 
et al., 2020). Variations in pedogenesis and/or lake level can be reconstructed by Rb/Sr (rubidium/strontium) 
and other elemental ratios, for example, Al/Na and Ti/Zr, because these proxies are sensitive to the hydroclimate 
(Ao, Rohling, et al., 2021; Jin et al., 2020). Climate variability reconstructed using such ratios are dominated by 

Abstract  Mio-Pliocene sedimentary archives of the East Asian summer monsoon (EASM) in NE Tibet 
record a monotonic response to orbital forcing, dominated by eccentricity. By contrast, Pleistocene archives 
display a more stochastic response that varies regionally and temporally. When and why this response changed 
is poorly understood. Here, we present a new high-resolution Rb/Sr ratio data set of EASM intensity from 
the Sanmenxia Basin, North China, that spans the Plio-Pleistocene transition. Our results indicate decreased 
monsoonal rainfall in the late Pliocene, dated at 2.75–2.6 Ma, associated with an intensified response 
to obliquity and enhanced climate stochasticity. This transition is attributed to the increase of Northern 
Hemisphere ice volume. Quaternary monsoons display a sensitivity unique to the modern icehouse with large 
bipolar ice sheets, while pre-Quaternary monsoons were solely impacted by Antarctic ice sheet dynamics on 
orbital time-scales.

Plain Language Summary  The late Pliocene-early Pleistocene transition (LP/EP) is a period of 
global cooling and the intensification of Northern Hemisphere glaciation. Yet, the evolution of the East Asian 
summer monsoon (EASM) during this time remains a topic of ongoing discussion and debate. Here we present 
high-resolution paleoclimate data from a record of lake sediments across the Pliocene-Pleistocene transition 
period. We show that there was a reorganization of the East Asian monsoon system 2.75–2.6 million years 
ago, associated with an increase in climate forcing caused by cyclic changes in Earth's tilt and in climate 
stochasticity. This transition is attributed to the appearance of new high-latitude forcing mechanisms on 
monsoon intensity caused by the growth of ice sheets in the Northern Hemisphere.
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100 kyr eccentricity cycles from the mid Oligocene to the Pliocene, 28–3 Myr ago (Ao, Liebrand, et al., 2021; Ao, 
Rohling, et al., 2021; Nie et al., 2017; Z. X. Wang, et al., 2019, 2021). Longer-scale 405 kyr eccentricity forcing 
is also observed in sufficiently long records (e.g., Ao, Rohling, et al., 2021). This prominent eccentricity signa-
ture is intriguing because eccentricity has a negligible direct influence on insolation patterns. Hence, it operates 
through a series of non-linear processes within the carbon cycle and/or cryosphere (Ao, Liebrand, et al., 2021). 
Quaternary sediment archives that record EASM sensitivity to astronomical forcing yield contrasting results. 
Most Quaternary Chinese sedimentary basins are marked by eolian dust input, generated in central Asia and 
carried by winter winds (An, 2000). The study of grain-size and magnetic properties in loess deposits indicate 
dominant 41 kyr obliquity cycles before 0.9 Ma and 100 kyr eccentricity cycles since then (e.g., Sun, Clemens, 
et  al.,  2006, 2010). This pattern is consistent with astronomical rhythms preserved in benthic δ 18O data (De 
Vleeschouwer et al., 2020; Lisiecki & Raymo, 2005; Westerhold et al., 2020). Other magnetic properties-based 
proxies suggest prominent 405-kyr eccentricity cycles (C. Y. Liu et al., 2021). In contrast, microcodium δ 18O and 
elemental variations are dominantly forced by 41 kyr obliquity cycles over the last 1.5 Myr (T. Li et al., 2017). 
This discrepancy suggests that the evolution of dust transport controlled by the East Asian winter monsoon and 
the evolution of soil water controlled by the EASM are influenced by different processes (T. Li et al., 2017). The 
combination of both influences on sedimentary material yields regional and temporal complexities.

Previous work suggests that EASM intensity lost its monotonic eccentricity pacing sometime in the late Neogene, 
and shifted to a much more complex sensitivity to astronomical parameters, with obliquity becoming a major 
player during most of the Quaternary (T. Li et al., 2017; Sun, Clemens, et al., 2006, 2010). Yet, the causes and 
precise timing of this shift remain poorly understood. Investigating when and why this shift occurred is critical 
to understand the modern and future mechanisms of monsoonal intensity. The sedimentary fill of the Sanmen 
paleolake in the Sanmenxia Basin, North China, spans from the early Pliocene to late Pleistocene (S. B. Wang 
et al., 1999, 2004) and thus covers the time during which the EASM changed its response to radiative forcing. 
Here, we present a high-resolution (1.8 kyr) geochemical record spanning the interval from 3.9 to 2.2 Ma from 
the Sanmenxia Basin to decipher orbital-scale lake level changes in response to EASM variability during this 
key interval.

2.  Materials and Methods
2.1.  Sampling

The Sanmenxia Basin is a sub-basin of the larger Fenwei Basin (J. Liu et al., 2019), enclosed by the East Qinling 
mountains to the south, and the Zhongtiao Mountains to the north (Figure S1 in Supporting Information S1). The 
Sanmenxia Basin was occupied by closed lakes until the opening of the Sanmen gorge in the Mid Pleistocene (S. 
B. Wang et al., 1999, 2004, B. Wang et al., 2013). The Sanmen Formation is dated to the Pliocene—early Pleis-
tocene by magnetostratigraphy and thermoluminescence dating (S. B. Wang et al., 1999).

Our sampling profile at the Huangdigou section covers the lower part of the Sanmen Formation with its diagnostic 
basal conglomerates and subsequent colored clays, and is capped by fluvial sands. The profile is unconformably 
capped by late Quaternary loess (S. B. Wang et al., 1999). Our study focuses on the lacustrine deposits beneath 
the Quaternary loess. These lithologies indicate a environmental shift from alluvial fans to fluvio-lacustrine 
alternations in a shallow, closed lake system, and finally to fluvial deposits (Text S1 in Supporting Informa-
tion S1). Biostratigraphic dating based on fossil mammals and ostracods near our section indicates a Pliocene to 
Pleistocene age for the strata (Huang & Ji, 1984; Huang & Sun, 1959; Yuan, 1986), and this corroborates with the 
dating of S. B. Wang et al. (1999). The same strata have been alternatively attributed to the Mio-Pliocene (Xiao 
et al., 2021), though this alternative correlation provides unrealistic changes of depositional rates and is incom-
patible with thermoluminescence dating of the uppermost part of the section (S. B. Wang et al., 1999). It should 
be noted that our sampling site belongs to the same geological unit as S. B. Wang et al. (1999), but in a new area 
about 2 km away from their profile. Thus, the lithology and stratal thickness are slightly different (Figure S2 in 
Supporting Information S1). We sampled a 90 m-thick section at ca. 40 cm resolution for magnetostratigraphic 
dating to increase the dating precision (100 cm resolution in S. B. Wang et al., 1999; see Text S3 in Support-
ing Information S1 for detailed paleomagnetic analyses procedures) and sampled the central part of the section 
(40–81 m, where fine-grained lacustrine deposits are prominent) at 4 cm resolution for Rb/Sr analysis (see Text 
S2 in Supporting Information S1 for a description of climate proxies).
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2.2.  Rb/Sr

Sampling trenches were excavated to a depth of >0.5  m from the freshly exposed surfaces for sedimentary 
logging and sampling. The abundance of rubidium (Rb) and strontium (Sr) were measured in the field with 
an Innov-X Systems X-ray fluorescence spectrometer in geochemistry mode using beam 1 (50 kv) and beam 2 
(10 kv). The measurement time for each sample analysis was at least 50 s. A total of 945 data points were acquired 
with a measurement interval of 4 cm.

2.3.  Spectral Analysis and Cross-Spectral Analysis

Spectral analysis of the Rb/Sr data was done on the 40–81 m (corrected thickness is 40–77.6 m after removing a 
gravel layer between 71.6 and 75 m) interval of our section where fine-grained lacustrine deposits are prominent. 
The power spectra and sliding window spectral analysis of Rb/Sr in the thickness domain and time domain were 
calculated using Acycle 2.0 software (M. S. Li et al., 2019). Cross-spectral analysis results were generated using 
the “ARAND” program from Brown University, USA (Howell et al., 2006; see Text S4 in Supporting Informa-
tion S1 for detailed descriptions).

3.  Results
3.1.  Paleomagnetic Results

The detailed magnetic polarity stratigraphy of our section is displayed on Figure 1. We identified eight normal 
(N1–N8) and seven reversed (R1–R7) polarity zones, based on at least two points to determine a polarity zone 
(Figure 1). Both the normal and reversed polarity intervals match well with all of the geomagnetic polarity time 
scale polarity subzones within the age interval from chrons C3n to C2n (4.8–1.9 Ma). Subsequently, the age of 
each sampling level was estimated by piecewise linear interpolation between age control points, enabling the 
sediment accumulation rate of each polarity interval to be obtained.

3.2.  Cyclostratigraphic Results

Based on the magnetostratigraphy, the fluvio-lacustrine deposits (40–81 m) in our section span a duration of 
∼1.7 Myr across the interval 3.9–2.2 Ma, with an average sedimentation rate of ∼2.2 cm/kyr that remains broadly 
stable (see Text S5 in Supporting Information S1 for full details; note that the thick conglomerate interval of 
71.6–75  m was removed for this calculation). This time window covers the Plio-Pleistocene transition. The 
sampling interval (4 cm) corresponds to a 1.8-kyr temporal sampling resolution (assuming a 2.2 cm/kyr sedimen-
tation rate). Thus, this is sufficient to resolve individual precession, obliquity, and eccentricity cycles. Based on 
the sedimentation rate, the ∼1,000-cm and ∼270-cm cycles in the raw (thickness domain) Rb/Sr data represent 
∼405 and ∼100 kyr eccentricity cycles, while the ∼100-cm spectral peak is interpreted as a ∼41 kyr obliquity 
signal (Figure 2c).

The 405 and 100 kyr eccentricity cycles are the dominant astronomical controls on Rb/Sr in the late Pliocene, but 
the dominant orbital forcing shifts to 41 kyr obliquity at the Plio-Pleistocene transition (i.e., 2.6 Ma) at ∼70 m, 
after a 0.15 Myr transition period (2.75–2.6 Ma) with limited 100 kyr cyclicity (Figure 2). These changes occurred 
while accumulation rates remained unchanged (Figure 2g), corroborating the accuracy of our age model.

3.3.  Recurrence Analysis Results

We apply a recurrence analysis measure of determinism (DET) to our record to identify individual climate states 
that share statistically distinctive dynamics (Steffen et  al.,  2018; see Text S6 in Supporting Information S1). 
DET values close to zero correspond to unpredictable (stochastic) climate dynamics while large values indicate 
deterministic dynamics. The DET parameter can thus be used to highlight climate state transitions (Westerhold 
et al., 2020). DET values average 0.70 ± 0.12 (2σ) over the interval 3.9–2.75 Ma (40–66.5 m). They then expe-
rience a marked peak over the interval 2.75–2.7 Ma (66.5–67.5 m; average = 0.89 ± 0.12 (2σ). DET values 
decrease to 0.58 ± 0.14 (2σ) between 2.6 and 2.2 Ma (67.5–81 m; Figure 3). This decrease broadly coincides 
with the timing of the orbital cyclicity shift from eccentricity to obliquity across the Plio-Pleistocene transition. 
A t-test performed on DET values confirms a higher stochasticity after 2.6 Ma than before 2.75 Ma (p = 0.027).
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4.  Discussion
4.1.  Eccentricity Pacing of East Asian Monsoonal Intensity Before the Pleistocene

Previous studies conducted on the Huangdigou section have shown that the Fenwei Basin has been tectonically 
stable since the Pliocene, and that sediment provenance has been steady over the study interval with a domi-
nant source from the North China Craton (Chen et al., 2021; Z. X. Wang et al., 2022; Zhang et al., 2021). Our 
high-resolution Rb/Sr record reflects lake level (lacustrine expansions and contractions) and are thus interpreted 
to reflect regional climatic changes in the absence of strong tectonic or geomorphic control(s) on lake evolution. 
Westerly derived moisture was likely not an important source of rainfall in Central and Northern China during 
Plio-Pleistocene because of the early shielding effect of North Tibetan uplift on the track of the Westerlies (An 
et al., 2001). Instead, multiple lines of evidence (i.e., pollen analysis, isotopic data on biomarkers and carbonates, 
climate simulations) corroborate a dominant monsoonal source for the rainfall in Central and Northern China 
during those times (H. Y. Lu et al., 2019; H. L. Wang et al., 2019). Our Rb/Sr record is thus interpreted as a direct 

Figure 1.  Regional lithostratigraphic and magnetostratigraphic correlations. Lithostratigraphy, magnetostratigraphy, Rb, Sr content and Rb/Sr ratios (40–81 m) of the 
Huangdigou section, with correlation with the 2020 geomagnetic polarity time scale (GPTS 2020; Ogg, 2020). Each polarity zone in the magnetic polarity stratigraphy 
is defined by at least two data points. Ostracod fossil information is from Yuan. (1986). Photo (a) is fluvial sandstone in the upper part of the section; (b, c) are 
reddish-brown and gray-green mudstones interpreted as lacustrine deposits; (d, e) are siltstones and sandstones interpreted as lacustrine deposits. The location of the 
photos is marked on the lithology column.
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proxy for changes in EASM intensity and penetration on orbital time scales (see Text S2 in Supporting Informa-
tion S1 for a detailed explanation of climate proxies).

The influence of eccentricity on insolation is too weak to force monsoonal hydroclimate directly, but eccentricity 
can have an impact on regional insolation via its modulation of precession (S. C. Clemens & Tiedemann, 1997; 
Ruddiman, 2008). Nevertheless, the Rb/Sr data in our section show only very weakly developed precession cycles 
(Figure 2), as seen in many previous Tibetan records (Ao, Rohling, et al., 2021; Z. X. Wang et al., 2018, 2019). 
Precession forcing can transfer into the eccentricity band in sedimentary archives via mechanisms related to 
post-depositional diagenesis, stratal hiatuses and biological disturbance that are still poorly understood (e.g., 
Hilgen et al., 2015; Kemp, 2011; Ripepe & Fischer, 1991). Asymmetry in the response of proxies for past mois-
ture to precession-band insolation forcing may also contribute to prominent eccentricity signal; this asymmetry 
has been proposed for magnetic susceptibility (MS), which may record faithfully intervals of increased rainfall 
while missing some intervals of decreased rainfall (Cheng et al., 2021; Sun, An, et al., 2010). This bias remains 
yet to be shown for Rb/Sr data. The over-expression of eccentricity might also reflect a non-linear monsoonal 
response to insolation forcing (e.g., S. C. Clemens et  al.,  2018; Hilgen et  al.,  2015; Kemp,  2011; Ripepe & 
Fischer, 1991). All mechanisms proposed to explain a strong eccentricity control on monsoonal intensity rely 
on non-linear amplification mechanisms related to Antarctic ice-sheet (AIS) dynamics, eustatic sea level and the 
global carbon cycle (Ao, Liebrand, et al., 2021; Nie et al., 2017; Z. X. Wang et al., 2019, 2021). AIS volume and 
eustatic sea-level are prominently forced by eccentricity for most of the Oligocene-Miocene (De Boer et al., 2014; 
Holbourn et al., 2013; Pälike et al., 2006).

Three amplification mechanisms have been proposed to relate EASM intensity, eustatic sea-level and AIS growth. 
(a) Periodic advances and retreats of East Asian coastlines related to eustatic variations forced by periodic changes 
in AIS size could impact moisture availability along the pathway of EASM winds (Nie et al., 2017); (b) Periodic 
AIS expansions could impact the Pacific meridional overturning circulation and Pacific sea surface temperature 
(SST) gradients, which affect the cross-equatorial pressure/heat gradient and the amount of regional latent heat, 

Figure 2.  Cyclostratigraphic (astronomical) evolution in the thickness and time domain of the Sanmen paleolake from the Huangdigou section. (a) The Rb/Sr data 
in the 40–77.6 m (corrected thickness) interval are shown. (b) The Rb/Sr data band-pass filtered curves of 40–77.6 m (0.004 ± 0.0024 cycles/cm). (c) 2π-multitaper 
method evolutive Fast Fourier transform spectrogram using a 600 kyr sliding window shows variance in the Rb/Sr series in the thickness domain. (d) Floating Rb/Sr 
time series (after cyclostratigraphic calibration). (e) ∼100 kyr filtered curve (Rb/Sr, 0.01 ± 0.003 cycles/kyr). (f) ∼41 kyr filtered curve (Rb/Sr, 0.025 ± 0.005 cycles/
kyr). (g) Estimated accumulation rate of Huangdigou section. (h) 2π-multitaper method evolutive Fast Fourier transform spectrogram using a 400 kyr sliding window 
shows variance in the Rb/Sr time series in the time domain. The black dashed line indicates the timing of a significant enhancement of the 41 kyr cycle.
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modulating EASM moisture transport (Ao, Liebrand, et al., 2021; Nie et al., 2017); (c) AIS expansions could 
impact the Atlantic meridional overturning circulation and Atlantic SST gradients, which influences the strength 
and position of westerly winds; they in turn could have controlled the supply of westerly derived moisture during 
Miocene times (Z. X. Wang et al., 2019) and/or the penetration of the EASM (Ao, Liebrand, et al., 2021).

To better understand the links between EASM intensity and global climate changes, we reconstructed meridional 
SST gradients through the studied interval (Text S7; Figure S5 in Supporting Information S1). Meridional SST 
gradients increased over the period 2.75–2.6 Ma (Figures 4d and 4e) and shifted from dominant ∼100 kyr eccen-
tricity to ∼41 kyr obliquity cycles (Figure S6 in Supporting Information S1). In our record, this time window 
corresponds to (a) a peak of DET values; (b) the disappearance of 100 kyr cyclicity; (c) a peak in Rb/Sr values 
(Figure  4). The synchronicity between our record and meridional SST gradients over this period supports a 
genetic relationship between the global overturning circulation and EASM intensity. However, phase analysis 
indicates a nearly 90°lag (∼25 kyr) between these different records (Figures S6c and S6d in Supporting Informa-
tion S1). We thus suggest that late Pliocene changes in meridional SST gradients might not have been the only 
cause of the shift in EASM sensitivity.

Figure 3.  Recurrence plot and determinism (DET) values of Rb/Sr in the Sanmenxia Basin. A transition in recurrence 
plot from darker areas before ∼2.75 Ma to white areas afterward indicate a prominent system change (e.g., see Marwan 
et al., 2007). Recurrence analysis of determinism (DET) shows that climate in warmer intervals is generally more 
deterministic (predictable) than in cooler intervals. From 3.9 Ma toward the LP/EP at 2.75 Ma determinism rises, approaching 
a threshold in the climate system (peak DET), DET values stabilized at a low level after 2.6 Ma.
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4.2.  Response of Northern Hemispheric Ice Sheet Expansion to Obliquity-Forcing Climate Change in 
East Asian Across the Pliocene-Pleistocene Transition

Our record bridges the gap between Mio-Pliocene lacustrine records, which show a climatic sensitivity to eccen-
tricity forcing in NE Tibet (Ao, Liebrand, et al., 2021; Ao, Rohling, et al., 2021; Nie et al., 2017; Z. X. Wang 

Figure 4.  Terrestrial climate changes of the Sanmenxia Basin and China Loess Plateau and comparison with benthic δ 18O, 
Atlantic meridional sea surface temperature (SST) gradient and Pac fic meridional SST gradient across the LP/EP transition. 
(a) Global Benthic δ 18O from the global compilation (LR04 stack; Lisiecki & Raymo, 2005). (b) Rb/Sr of the Huangdigou 
section in the Sanmenxia Basin. (c) Magnetic susceptibility of the Lingtai section in the China Loess Plateau (Sun 
et al., 2010). (d) Meridional SST gradient between Ocean Drilling Program (ODP) Sites 982 and 662 (Atlantic; K. Lawrence 
et al., 2009; Herbert et al., 2010). The orange line is obtained using a 200 kyr running mean. (e) Meridional SST gradient 
between ODP Sites 846 and 1,012 (Pacific; Z. Liu & Herbert, 2004; K. T. Lawrence et al., 2006; C. M. Brierley et al., 2009). 
The black line is obtained using a 200 kyr running mean. (f) The La2004 eccentricity solution (Laskar et al., 2004). The black 
dashed line is the ∼2.4 Myr filtered curve (eccentricity, 0.00042 ± 0.00015 cycles/kyr). (g) The La2004 obliquity solution 
(Laskar et al., 2004).
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et  al.,  2018, 2019,  2021; Figure S3 in Supporting Information  S1), and Pleistocene records that show more 
regional and temporal complexity and more prominent obliquity forcing (T. Li et al., 2017; Sun, An, et al., 2010). 
The shift to a more prominent obliquity signal after the 2.75–2.6 Ma interval is also corroborated by several 
other (non lacustrine) East Asian records. Notably, obliquity forcing significantly increases in MS records from 
Chinese loess-paleosol sequences at 2.75–2.59 Ma (Sun, Clemens, et al., 2006, 2010). Spectral analysis of previ-
ously published carbonate content data in the Plio-Pleistocene eolian Red Clay at the Lantian section (K. X. Wang 
et al., 2022; western part of Fenwei Basin) also shows a very similar evolution, with a prevalence of obliquity 
after 2.6 Ma (Figure S4 in Supporting Information S1), corroborating the regional nature of the observed change.

Eccentricity forcing of AIS volume and eustatic sea-level was prominent for most of the Pliocene until obliq-
uity forcing took over from eccentricity in driving AIS and eustatic sea-level dynamics at 2.9–2.6 Ma (De Boer 
et al., 2014). The 2.9–2.6 Ma time interval is coeval with the end of the mid-Pliocene warming event and the first 
major intensification of the Northern Hemisphere glaciation (NHG). This event is seen in North Atlantic climate 
proxy data, including deep-sea oxygen isotopes (M. E. Raymo et al., 1992), planktonic foraminiferal assemblages 
(Dowsett & Poore,  1990) and ice rafted debris abundance (Smith et  al.,  2018). The increased expression of 
obliquity in AIS and eustatic sea-level after ∼2.9 Ma is attributed to a significant influence of obliquity on NHG 
growth, which in turn impacts AIS expansion via eustatic feedback (De Boer et al., 2014). The change of orbital 
forcing in our Plio-Pleistocene record at 2.6 Ma is similar with the changes in AIS and eustatic orbital forcing. 
Our results thus suggest strong teleconnections between AIS expansion, eustatic sea level and EASM intensity.

DET values highlight that the change in orbital forcing after 2.75–2.6 Ma was associated with a shift to a more 
stochastic monsoonal response to NHG (Figure  3). The marked rise in DET values during the 2.75–2.7  Ma 
interval suggests the crossing of a tipping point in monsoonal dynamics (Scheffer et  al.,  2009; Westerhold 
et al., 2020). Recurrence analysis of the South Asian summer monsoon recorded by grain size in the Arabian Sea 
Ocean Drilling Program Site 722 (S. C. Clemens et al., 2008) shows a similar trend (Figure S7 in Supporting 
Information S1). These results suggest that the changes in Asian climate stochasticity across the Plio-Pleistocene 
boundary also affected the South Asian monsoon. We attribute this shift to the influence of NHG on central and 
East Asian climate. The shift is followed ∼400 kyr later by a major transition in global climate state seen in global 
benthic δ 18O and δ 13C reccurrence plots (transition from “coolhouse” to “icehouse”; Westerhold et al., 2020). 
This ∼400 kyr delay suggests that NHG onset impacted the global carbon cycle and monsoonal intensity in differ-
ent ways and that global temperatures were likely not the direct driver of the change in monsoonal sensitivity 
(Y. C. Wang et al., 2020). NHG ice and low temperatures at high northern latitudes have been shown to impact 
EASM intensity by influencing the strength of the Siberian high (Gai et al., 2020; Guo et al., 2004), the locus of 
the westerly track (Abell et al., 2021), meridional shift of the intertropical convergence zone (Haug et al., 2001; 
Yancheva et al., 2007) and changes in SST gradients (C. M. Brierley & Fedorov, 2010). The diversity of these 
potential forcing mechanisms can partly explain the regional, temporal, and proxy-related orbital complexity seen 
in late Pleistocene EASM records (Gai et al., 2020; T. Li et al., 2017; Sun, Kutzbach, et al., 2015). We postulate 
that their combination results in the increased stochacity seen in our record.

If the large-scale features of the EASM were mainly constrained by Asian geography and topography and were 
roughly steady over the last 40 Ma (Farnsworth et al., 2019; Licht et al., 2016), our results indicate that polar 
glaciations significantly impacted the EASM circulation. It is noteworthy that the extra-long (∼2.4 Myr) eccen-
tricity cycle is close to a minimum between 2.75 and 2.6 Ma (Figures 4f and 4g). This orbital configuration 
indicates a significant weakening of Northern Hemisphere seasonality, promoting ice sheet growth at this time 
(E. Raymo & Nisancioglu, 2003), and the appearance of cool summers may also account for the significant weak-
ening of the Asian summer monsoon. The EASM was similarly affected during the AIS expansion across the 
Eocene-Oligocene Transition (EOT; Ao, Dupont-Nivet, et al., 2020). A recurrence analysis of low frequency MS 
(χlf) data, an indicator of EASM intensity (Ao, Dupont-Nivet, et al., 2020; C. Y. Liu et al., 2021; Sun, Clemens, 
et al., 2006), from the lacustrine beds of the Lanzhou Basin across the EOT (Ao, Dupont-Nivet, et al., 2020), 
shows that DET values peaked at 34 Ma and gradually decreased across the early Oligocene glaciation (Figure S8 
in Supporting Information S1). Thus, polar ice sheets appear to have played a crucial role in determining EASM 
variability on orbital time-scales. Quaternary monsoons likely display a sensitivity that is unique to the modern 
icehouse with bipolar ice sheets. These results call for caution when using Miocene coolhouse records or earlier 
warmhouse archives as analogs to predict monsoonal responses to global warming.
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5.  Conclusions
Our geochemical data from the Sanmenxia Basin highlight a major shift from eccentricity forcing to obliquity 
forcing of hydroclimate across the Plio-Pleistocene transition (∼2.6 Ma). This is also associated with an increase 
in climate stochasticity as indicated by recurrence analysis. Combined with previous cyclostratigraphic studies 
from NE Tibetan lakes, our new results show that the EASM was paced by eccentricity in a uni-polar ice-sheet 
configuration, and shifted to a 41 kyr obliquity response as soon as bipolar ice sheets emerged. Our findings 
emphasize that global boundary conditions are thus equally important as local low-latitude insolation forcing for 
the EASM.

Data Availability Statement
All of our measured proxy data presented here available in the figshare website (available from https://doi.
org/10.4121/14820342).
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