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We classify the left-invariant sub-Riemannian structures on the unique five-dimensional simply connected two-step nilpotent Lie group with two-dimensional commutator subgroup; this 5D group is the first two-step nilpotent Lie group beyond the three-and five-dimensional Heisenberg groups. Alongside, we also present a classification, up to automorphism, of the subspaces of the associated Lie algebra (together with a complete set of invariants).

Introduction

Invariant sub-Riemannian structures on Lie groups have proved to be a well-suited differential geometric language for the study of several physical systems as well as being a rich source of examples and counterexamples for a number of fundamental questions and conjectures in sub-Riemannian geometry (see, e.g., [START_REF] Agrachev | A comprehensive introduction to sub-Riemannian geometry[END_REF], [START_REF] Calin | Sub-Riemannian geometry[END_REF], [START_REF] Liu | Shortest paths for sub-Riemannian metrics on rank-two distributions[END_REF], [START_REF] Montgomery | A tour of subriemannian geometries, their geodesics and applications[END_REF]). Much work has been done in studying specific structures, their geodesics, and trying to classify various families of structures, for instance studying the class of structures in three dimensions (see e.g., [START_REF] Agrachev | Sub-Riemannian structures on 3D Lie groups[END_REF], [START_REF] Biggs | Isometries of Riemannian and sub-Riemannian structures on three-dimensional Lie groups[END_REF], [START_REF] Boscain | Invariant Carnot-Caratheodory metrics on S 3 , SO(3), SL(2), and lens spaces[END_REF], [START_REF] Butt | Extremal trajectories and Maxwell strata in sub-Riemannian problem on group of motions of pseudo-Euclidean plane[END_REF], [START_REF] Mazhitova | Sub-Riemannian geodesics on the three-dimensional solvable non-nilpotent Lie group SOLV[END_REF], [START_REF] Moiseev | Maxwell strata in sub-Riemannian problem on the group of motions of a plane[END_REF], [START_REF] Sachkov | Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane[END_REF]), in four dimensions (see e.g., [START_REF] Adams | On sub-Riemannian geodesics on the Engel groups: Hamilton's equations[END_REF], [START_REF] Almeida | Sub-Riemannian homogeneous spaces of Engel type[END_REF], [START_REF] Ardentov | Extremal trajectories in the nilpotent sub-Riemannian problem on the Engel group[END_REF], [START_REF] Ardentov | Conjugate points in nilpotent sub-Riemannian problem on the Engel group[END_REF], [START_REF] Bartlett | Control systems on nilpotent Lie groups of dimension ≤ 4: equivalence and classification[END_REF]), or for some sufficiently regular and thus amenable families of structures like those on the (2n + 1)-dimensional Heisenberg groups (see, e.g., [START_REF] Biggs | On sub-Riemannian and Riemannian structures on the Heisenberg groups[END_REF] and the references therein).

In this paper we consider the left-invariant sub-Riemannian structures on a five-dimensional two-step nilpotent Lie group with two-dimensional commutator subgroup, which we denote by T. This group is the first (lowest-dimensional) two-step nilpotent Lie group beyond the three-and five-dimensional Heisenberg groups. We note that although the four-dimensional Engel group (the simply connected Lie group with Lie algebra having nonzero-commutator relations [E 2 , E 4 ] = E 1 , [E 3 , E 4 ] = E 2 ) has a smaller dimension than T, the fact that it is a three-step nilpotent Lie group makes the sub-Riemannian structures on the Engel group arguably more complicated (cf. [START_REF] Adams | On sub-Riemannian geodesics on the Engel groups: Hamilton's equations[END_REF], [START_REF] Ardentov | Extremal trajectories in the nilpotent sub-Riemannian problem on the Engel group[END_REF], [START_REF] Ardentov | Conjugate points in nilpotent sub-Riemannian problem on the Engel group[END_REF], [START_REF] Bartlett | Control systems on nilpotent Lie groups of dimension ≤ 4: equivalence and classification[END_REF]).

In Section 2, we give a matrix representation for T, determine the group of automorphisms of its Lie algebra t, and classify the subspaces of t up to automorphism. In Section 3 we then proceed to classify the sub-Riemannian structures on T up to isometry (by making use of the fact that all isometries are affine in this context [START_REF] Kivioja | Isometries of nilpotent metric groups[END_REF]) and briefly describe the isotropy subgroups of identity.

The Lie group T

There is only one five-dimensional two-step nilpotent simply connected (real) Lie group with two-dimensional commutator subgroup (see, e.g., [START_REF] Šnobl | Classification and identification of Lie algebras[END_REF]). We denote this group T and its Lie algebra t. The Lie group T has the following matrix representation (cf. [START_REF] Ghanam | Minimal matrix representations of five-dimensional Lie algebras[END_REF])

T =            1 x 1 x 4 x 5 0 1 x 2 x 3 0 0 1 0 0 0 0 1     : x 1 , x 2 , x 3 , x 4 , x 5 ∈ R        t =            0 v 1 v 4 v 5 0 0 v 2 v 3 0 0 0 0 0 0 0 0     = 5 i=1 v i E i : v 1 , . . . , v 5 ∈ R        .
The non-zero Lie brackets of t are given by

[E 1 , E 2 ] = E 4 , [E 1 , E 3 ] = E 5 .
The centre z = E 4 , E 5 of t coincides with its commutator subalgebra.

Lemma 2.1. The group of automorphisms of t is given by

Aut(t) =                  a 1 0 0 0 0 a 2 b 1 c 1 0 0 a 3 b 2 c 2 0 0 a 4 b 3 c 3 a 1 b 1 a 1 c 1 a 5 b 4 c 4 a 1 b 2 a 1 c 2       ∈ R 5×5 : a 1 = 0, b 1 c 2 -c 1 b 2 = 0            with respect to the ordered basis (E 1 , E 2 , E 3 , E 4 , E 5 ).
Proof. Suppose ϕ ∈ Aut(t). That is, ϕ : t -→ t is a linear isomorphism that preserves Lie brackets. Let [ϕ ij ] be the matrix representation of ϕ relative to the ordered basis (E 1 , E 2 , E 3 , E 4 , E 5 ).

As ϕ•z = z, we have that ϕ 14 = ϕ 24 = ϕ 34 = 0 and ϕ 15 = ϕ 25 = ϕ 35 = 0. As ϕ preserves the Lie bracket [E 

      .
Preservation of the Lie bracket [E 2 , E 3 ] = 0 gives the conditions ϕ 12 ϕ 23 -ϕ 22 ϕ 13 = 0 and ϕ 12 ϕ 33 -ϕ 32 ϕ 13 = 0. If ϕ 12 = 0, then ϕ 23 = ϕ 22 ϕ 13 ϕ 12 , ϕ 33 = ϕ 32 ϕ 13 ϕ 12 and so det ϕ = 0, which is a contradiction. Thus ϕ 12 = 0. Similarly, assuming that ϕ 13 = 0 leads to a contradiction and thus ϕ 13 = 0. Therefore,

[ϕ ij ] =       ϕ 11 0 0 0 0 ϕ 21 ϕ 22 ϕ 23 0 0 ϕ 31 ϕ 32 ϕ 33 0 0 ϕ 41 ϕ 42 ϕ 43 ϕ 11 ϕ 22 ϕ 11 ϕ 23 ϕ 51 ϕ 52 ϕ 53 ϕ 11 ϕ 32 ϕ 11 ϕ 33      
with ϕ 11 = 0 and ϕ 22 ϕ 33 -ϕ 23 ϕ 32 = 0. It is a simple matter to show that any such map ϕ is an automorphism.

Subspace classification

Let s and w be two subspaces of a Lie algebra g. We say that s and w are equivalent if there exists an automorphism ϕ ∈ Aut(g) such that ϕ • s = w. The subspace s is called bracket generating if the smallest subalgebra of g containing s is g itself. If s is an ideal, then it is said to be a fully characteristic ideal if ϕ • s = s for all ϕ ∈ Aut(g).

We identify some scalar invariants for subspaces of the Lie algebra t. A simple invariant is the dimension of a subspace: if s is equivalent to w, then dim(s) = dim(w). Two more invariants can be found by considering the dimension of the intersection of a given subspace with any fully characteristic ideal. Accordingly, since the centre

z = E 4 , E 5 and the subspace c = E 2 , E 3 , E 4 , E 5
are both fully characteristic ideals (by Lemma 2.1 in the case of c), we have that

dim(s ∩ z) = dim(w ∩ z) and dim(s ∩ c) = dim(w ∩ c).
whenever s and w are equivalent. The last scalar invariant is slightly more involved.
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Lemma 2.2. If s is equivalent to w, then

dim(s ∩ z ∩ [E 1 , s ∩ c]) = dim(w ∩ z ∩ [E 1 , w ∩ c]). Proof. Let ϕ ∈ Aut(t) such that ϕ • s = w. Then there exists ψ ∈ Aut(t) such that ψ • E 1 = a 1 E 1 , a 1 = 0, ψ| c = ϕ| c
, and ψ| z = ϕ| z (see Lemma 2.1). Therefore

w ∩ z ∩ [E 1 , w ∩ c] = (ϕ • s) ∩ z ∩ [E 1 , (ϕ • s) ∩ c] = ϕ • (s ∩ z) ∩ [E 1 , ϕ • (s ∩ c)] = ψ • (s ∩ z) ∩ 1 a 1 ψ • E 1 , ψ • (s ∩ c) = ψ • (s ∩ z ∩ [E 1 , s ∩ c]) and so dim(w ∩ z ∩ [E 1 , w ∩ c]) = dim(s ∩ z ∩ [E 1 , s ∩ c]).
With these invariants at hand, we now proceed to classify the subspaces of t. In Table 1 we list the equivalence class representatives identified alongside their associated values for the scalar invariants. 

Subspace s dim(s) dim(s ∩ c) dim(s ∩ z) dim(s ∩ z ∩ [E 1 , s ∩ c]) E 1 1 0 0 0 E 2 1 0 0 E 4 1 1 0 E 1 , E 2 2 1 0 0 E 1 , E 4 1 1 0 E 2 , E 3 2 0 0 E 2 , E 5 2 1 0 E 2 , E 4 2 1 1 E 4 , E 5 2 2 0 E 1 , E 2 , E 3 3 2 0 0 E 1 , E 2 , E 5 2 1 0 E 1 , E 2 , E 4 2 1 1 E 1 , E 4 , E 5 2 2 0 E 2 , E 3 , E 4 3 1 1 E 2 , E 4 , E 5 3 2 1 E 1 , E 2 , E 3 , E 4 4 3 1 1 E 1 , E 2 , E 4 , E 5 3 2 1 E 2 , E 3 , E 4 , E 5 4 2 2 E 1 , E 2 , E 3 , E 4 , E 5 5 4 2 
SA: E 1 , E 2 , E 2 , E 3 , E 1 , E 4 , E 2 , E 5 , E 2 , E 3 , E 4 , E 1 , E 2 , E 4 I: E 4 , E 2 , E 4 , E 1 , E 4 , E 5 , E 2 , E 4 , E 5 , E 1 , E 2 , E 4 , E 5 FCI: E 4 , E 5 , E 2 , E 3 , E 4 , E 5 Gen: E 1 , E 2 , E 3 , E 1 , E 2 , E 3 , E 4 S: E 1 , E 2 , E 1 , E 2 , E 5 .
Here, the subspaces are listed according to their class: subalgebras (SA), ideals (I), fully characteristics ideals (FCI), bracket generating subspaces (Gen), or subspaces (S) with none of these properties.

Proof. We treat a typical case for determining a class representative. Suppose s is a subspace of the Lie algebra t with dim(s) = 3.

(1)

Further, suppose dim(s ∩ z) = 1. (2) Let X ∈ s ∩ z, X = x 4 E 4 + x 5 E 5 . Then ϕ =       1 0 0 0 0 0 x 4 -x 5 0 0 0 x 5 x 4 0 0 0 0 0 x 4 -x 5 0 0 0 x 5 x 4      
is an automorphism such that ϕ • E 4 = X. Thus s is equivalent to a subspace s containing

E 4 . Now, by a simple dimensionality argument, 2 ≤ dim(s ∩ c) ≤ 3. Let us suppose dim(s ∩ c) = 2. ( 3 
)
Since E 4 ∈ s ∩ c, there exists V , W ∈ s such that W , E 4 = s ∩ c, V , W , E 4 = s and V / ∈ c. This implies that v1 = 0 and w1 = 0; here V = vi E i and W = wi

E i . Finally, suppose that dim(s ∩ z ∩ [E 1 , s ∩ c]) = 1. (4) 
Then

1 = dim( V , W , E 4 ∩ z ∩ [E 1 , V , W , E 4 ∩ E 2 , E 3 , E 4 , E 5 ]) = dim( E 4 ∩ [E 1 , W , E 4 ]) = dim( E 4 ∩ [E 1 , W ]) = dim( E 4 ∩ w2 E 4 + w3 E 5 )
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ϕ =       v1 0 0 0 0 v2 w2 0 0 0 v3 0 1 0 0 v4 w4 0 v1 w2 0 v5 w5 0 0 v1       is an automorphism such that ϕ • E 1 , E 2 , E 4 = V , W , E 4 = s.
Thus s (and therefore s)

is equivalent to E 1 , E 2 , E 4 .
By considering all other possible values of the invariants in ( 1), ( 2), (3), and ( 4) one obtains all possible class representatives. As all representatives obtained are differentiated by the set of scalar invariants (see Table 1), they are mutually non-equivalent. Standard computations determine whether each class representative is a subalgebra, ideal, fully characteristic or generating subspace.

Since the four scalar invariants identified evaluate distinctly for each equivalence class (see Table 1), these invariants form a complete set. 

dim(s) = dim(w), dim(s ∩ z) = dim(w ∩ z), dim(s ∩ c) = dim(w ∩ c), and dim(s ∩ z ∩ [E 1 , s ∩ c]) = dim(w ∩ z ∩ [E 1 , w ∩ c]).
Here z = E 4 , E 5 and c = E 2 , E 3 , E 4 , E 5 .

Sub-Riemannian structures on T

A left-invariant sub-Riemannian structure is a triple (G, D, g) where G is a real, finitedimensional, connected Lie group, D is a smooth bracket generating left-invariant distribution on G, and g is a left-invariant Riemannian metric on D. Equivalently: D( 1) is a bracket generating linear subspace of the Lie algebra

g of G with D(x) = d 1 L x • D(1) for every x ∈ G, where L x : G → G, y → xy; g 1 is a positive definite, symmetric bilinear form on D(1) with g x (d 1 L x • A, d 1 L x • B) = g 1 (A, B) for every A, B ∈ D(1).
Let (G, D, g) and (G , D , g ) be two left-invariant sub-Riemannian structures. An isometry between (G, D, g) and (G , D , g ) is a diffeomorphism φ : G → G such that φ * D = D and g = φ * g ; that is,

d x φ • D(x) = D (φ(x)) and g x (X, Y ) = g φ(x) (d x φ • X, d x φ • Y ),
for all x ∈ G and X, Y ∈ D(x). By definition, left translations L x are isometries. Isometries preserve the Carnot-Carathéodry distance associated to the sub-Riemannian structure.

It turns out that for left-invariant sub-Riemannian structures on simply connected nilpotent Lie groups, every isometry is the composition of a left-translation and a Lie group isomorphism [START_REF] Kivioja | Isometries of nilpotent metric groups[END_REF]. (Indeed in [START_REF] Kivioja | Isometries of nilpotent metric groups[END_REF] this is proved more generally for nilpotent metric Lie groups.) Therefore, since all left translations are isometries, if two such structures are isometric then there exists a Lie group isomorphism between them that realizes the isometry. We note that there is a one-to-one correspondence between the Lie group automorphisms on a simply connected Lie group and the Lie algebra automorphisms on its Lie algebra (see, e.g., [START_REF] Hilgert | Structure and geometry of Lie groups[END_REF]). Consequently, we have the following simple algebraic characterization for two sub-Riemannian structures on a simply connected nilpotent Lie group G with Lie algebra g to be isometric. Proposition 3.1. (cf. [START_REF] Bartlett | Control systems on nilpotent Lie groups of dimension ≤ 4: equivalence and classification[END_REF], [START_REF] Biggs | On sub-Riemannian and Riemannian structures on the Heisenberg groups[END_REF]) Two left-invariant sub-Riemannian structures (G, D, g) and (G, D , g ) on a simply connected nilpotent Lie group G are isometric if and only if there exists an automorphism ψ ∈ Aut(g) such that

ψ • D(1) = D (1) and g 1 = ψ * g 1 .
Here

(ψ * g 1 )(A, B) = g 1 (ψ • A, ψ • B) for A, B ∈ D(1).
Accordingly, the distribution D of any left-invariant sub-Riemannian structure (T, D, g) on T, is isometric to a structure with distribution at identity being one of the bracket generating subspaces listed in Theorem 2.3. All that remains to be done is to normalize the metrics g by Lie algebra automorphisms using Proposition 3.1. Doing this we arrive at the following classification of left-invariant sub-Riemannian structures on T. Theorem 3.2. Any left-invariant sub-Riemannian structure (T, D, g) is isometric to exactly one of the following:

(T, H 3 , h 3 ) : H 3 (1) = E 1 , E 2 , E 3 h 3 1 = diag(1, 1 , 1) 
(T, H 4 , h 4,α ) :

H 4 (1) = E 1 , E 2 , E 3 , E 4 h 4,α 1 = α • diag(1, 1, 1, 1), α > 0 (T, H 5 , h 5,(α,β) ) : H 5 (1) = E 1 , E 2 , E 3 , E 4 , E 5 h 5,(α,β) 1 = diag(1, 1, 1, α, β), α ≥ β > 0.
Here the metrics are written with respect to the bases given for their respective distributions.

Remark 3.3. (T, H 5 , h 5,(α,β) ) corresponds to the result in [START_REF] Homolya | Simply connected two-step homogeneous nilmanifolds of dimension 5[END_REF]Proposition 6] for the classification of invariant Riemannian structures on T.

Proof. We treat the rank 4 structures (i.e., those with dim D(g) = 4, g ∈ T) as a typical case. Let (T, D, g) be a rank 4 left-invariant sub-Riemannian structure. By Theorem 2.3 there exists ψ 0 ∈ Aut(t) such that ψ 0 • D(1) = H 4 [START_REF] Adams | On sub-Riemannian geodesics on the Engel groups: Hamilton's equations[END_REF]. By Proposition 3.1, (T, D, g) is isometric to (T, H 4 , g 1 ) for some metric g 1 on H 4 .

We can write g 1 1 as a positive definite symmetric matrix with respect to the basis (E 1 , E 2 , E 3 , E 4 ) for H 4 (1): [START_REF] Adams | On sub-Riemannian geodesics on the Engel groups: Hamilton's equations[END_REF]. That is to say, (T, H 4 , g 1 ) is isometric to (T, H 4 , g 2 ) by Proposition 3.1.

g 1 1 =     h 1 a 1 a 2 a 3 a 1 h 2 a 4 a 5 a 2 a 4 h 3 a 6 a 3 a 5 a 6 h 4     . Now ψ 1 =       1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 -a 3 h 4 -a 5 h 4 -a 6 h 4 1 0 0 0 0 0 1       is an automorphism of t such that ψ -1 1 • H 4 (1) = H 4 (1) and g 2 1 = (ψ 1 ) * g 1 1 has matrix g 2 1 =     h 1 a 1 a 2 0 a 1 h 2 a 4 0 a 2 a 4 h 3 0 0 0 0 h 4     with respect to (E 1 , E 2 , E 3 , E 4 ) for some constants a 1 , a 2 , a 4 , h 1 , . . . h 4 ∈ R. Note here that g 1 1 = (ψ -1 1 ) * g 2 1 , or equivalently g 2 1 (A, B) = (ψ 1 ) * g 1 1 (A, B) = g 1 1 (ψ 1 • A, ψ 1 • B) for A, B ∈ H 4
Continuing on in this way, we have

ψ 2 =         1 0 0 0 0 a 1 h 3 -a 2 a 4 a 4 2 -h 2 h 3 1 - a 4 h 2 0 0 a 2 h 2 -a 1 a 4 a 4 2 -h 2 h 3 0 1 0 0 0 0 0 1 - a 4 h 2 0 0 0 0 1         ∈ Aut(t), g 3 1 = ψ * 2 g 2 1 =     b 1 0 0 0 0 b 2 0 0 0 0 b 3 0 0 0 0 b 4     for some b 1 , . . . , b 4 ∈ R. Note that a 4 2 -h 2 h 3 = 0 and h 2 = 0 since g 2 1 is positive definite. Finally, ψ 4 = diag b 2 b 4 , b 1 b 4 , b 1 b 2 b 3 b 4 , b 1 b 2 b 2 4 , b 1 b 2 2 b 3 b 2 4
is an automorphism such that g Now suppose (T, H 4 , h 4,α ) and (T, H 4 , h 4,β ) are isometric for some α, β > 0. By Proposition 3.1 there exists ψ ∈ Aut(t) such that ψ • H 4 (1) = H 4 (1) and h 4,α = ψ * h 4,β . Utilizing Lemma 2.1 and computing these conditions in coordinates, it is fairly straightforward to show that this implies that α = β. Hence, each different α > 0 yields a non-isometric structure.

Since isometries preserving the identity element are automorphisms of the group, it is not difficult to find the (linearized) isotropy subgroup of identity (i.e., the subgroup of the isometry group fixing the identity).

Corollary 3.4. The isotropy subgroups of identity associated to the respective left-invariant sub-Riemannian structures on T are given by (i) Iso 1 (T, H 3 , h 3 ) ∼ = Z 2 × O(2), (ii) Iso 1 (T, H 4 , h 4,α ) ∼ = Z 2 × Z 2 × Z 2 , (iii) Iso 1 (T, H 5 , h 5,(α,β) ) ∼ = Z 2 × Z 2 × Z 2 , for α > β > 0, Iso 1 (T, H 5 , h 5,(α,α) ) ∼ = Z 2 × O(2) where α > 0.

Remark 3.5. The isotropy groups of (T, H 5 , h 5,(α,β) ), α ≥ β > 0 correspond to the result in [START_REF] Homolya | Simply connected two-step homogeneous nilmanifolds of dimension 5[END_REF]Proposition 7] for invariant Riemannian structures on T.

Corollary 2 . 4 .

 24 Two subspaces s and w of t are equivalent if and only if

4 1 = ψ * 3 g 3 1 = b 1 b 2 b 4 I 4 = h 4,α 1 with α = b 1 b 2 b 4 .

 14414 It therefore follows by transitivity that (T, D, g) is isometric to (T, H 4 , h 4,α ) for some α > 0.

  1 , E 2 ] = E 4 , we get ϕ 44 = (ϕ 11 ϕ 22 -ϕ 21 ϕ 12 ) and ϕ 54 = (ϕ 11 ϕ 32 -ϕ 31 ϕ 12 ). Similarly, as ϕ preserves the Lie bracket [E 1 , E 3 ] = E 5 , we have that ϕ 45 = (ϕ 11 ϕ 23 -ϕ 21 ϕ 13 ) and ϕ 55 = (ϕ 11 ϕ 33 -ϕ 31 ϕ 13 ). 42 ϕ 43 (ϕ 11 ϕ 22 -ϕ 21 ϕ 12 ) (ϕ 11 ϕ 23 -ϕ 21 ϕ 13 ) ϕ 51 ϕ 52 ϕ 53 (ϕ 11 ϕ 32 -ϕ 31 ϕ 12 ) (ϕ 11 ϕ 33 -ϕ 31 ϕ 13 )

		We thus have that	
		 ϕ 11 ϕ 12 ϕ 13	0	0
	[ϕ ij ] =	ϕ 21 ϕ 22 ϕ 23   ϕ 31 ϕ 32 ϕ 33    ϕ 41 ϕ	0 0	0 0

2 Table 1 :

 21 Subspace equivalence class representatives for t with values for scalar invariantsOn the classification of sub-Riemannian structures on a 5D two-step nilpotent Lie group Theorem 2.3. Any proper subspace of the Lie algebra t is equivalent to exactly one of the following
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