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Abstract

We classify the left-invariant sub-Riemannian structures on the unique
five-dimensional simply connected two-step nilpotent Lie group with
two-dimensional commutator subgroup; this 5D group is the first two-
step nilpotent Lie group beyond the three- and five-dimensional Heisen-
berg groups. Alongside, we also present a classification, up to automor-
phism, of the subspaces of the associated Lie algebra (together with a
complete set of invariants).
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1 Introduction

Invariant sub-Riemannian structures on Lie groups have proved to be a
well-suited differential geometric language for the study of several physical
systems as well as being a rich source of examples and counterexamples
for a number of fundamental questions and conjectures in sub-Riemannian
geometry (see, e.g., [3, 12, 17, 20]). Much work has been done in studying
specific structures, their geodesics, and trying to classify various families of
structures, for instance studying the class of structures in three dimensions
(see e.g., [2, 8, 10, 11, 18, 19, 21]), in four dimensions (see e.g., [1, 4, 5, 6, 7]),
or for some sufficiently regular and thus amenable families of structures like

*Corresponding author
Acknowledgements. The research leading to these results has received funding from

the National Research Foundation (NRF) of South Africa.



2 R. Biggs and O.K.L. Ntshudisane

those on the (2n + 1)-dimensional Heisenberg groups (see, e.g., [9] and the
references therein).

In this paper we consider the left-invariant sub-Riemannian structures
on a five-dimensional two-step nilpotent Lie group with two-dimensional
commutator subgroup, which we denote by T. This group is the first
(lowest-dimensional) two-step nilpotent Lie group beyond the three- and
five-dimensional Heisenberg groups. We note that although the four-dimensional
Engel group (the simply connected Lie group with Lie algebra having nonzero-
commutator relations [E2, E4] = E1, [E3, E4] = E2) has a smaller dimension
than T, the fact that it is a three-step nilpotent Lie group makes the sub-
Riemannian structures on the Engel group arguably more complicated (cf.
[1, 5, 6, 7]).

In Section 2, we give a matrix representation for T, determine the group
of automorphisms of its Lie algebra t, and classify the subspaces of t up to
automorphism. In Section 3 we then proceed to classify the sub-Riemannian
structures on T up to isometry (by making use of the fact that all isometries
are affine in this context [16]) and briefly describe the isotropy subgroups of
identity.

2 The Lie group T

There is only one five-dimensional two-step nilpotent simply connected (real)
Lie group with two-dimensional commutator subgroup (see, e.g., [22]). We
denote this group T and its Lie algebra t. The Lie group T has the following
matrix representation (cf. [13])

T =



1 x1 x4 x5
0 1 x2 x3
0 0 1 0
0 0 0 1

 : x1, x2, x3, x4, x5 ∈ R


t =



0 v1 v4 v5
0 0 v2 v3
0 0 0 0
0 0 0 0

 =
5∑

i=1

viEi : v1, . . . , v5 ∈ R

 .

The non-zero Lie brackets of t are given by

[E1, E2] = E4, [E1, E3] = E5.

The centre z = ⟨E4, E5⟩ of t coincides with its commutator subalgebra.
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Lemma 1. The group of automorphisms of t is given by

Aut(t) =




a1 0 0 0 0
a2 b1 c1 0 0
a3 b2 c2 0 0
a4 b3 c3 a1b1 a1c1
a5 b4 c4 a1b2 a1c2

 ∈ R5×5 : a1 ̸= 0, b1c2 − c1b2 ̸= 0


with respect to the ordered basis (E1, E2, E3, E4, E5).

Proof. Suppose φ ∈ Aut(t). That is, φ : t −→ t is a linear isomorphism that
preserves Lie brackets. Let [φij ] be the matrix representation of φ relative
to the ordered basis (E1, E2, E3, E4, E5).

As φ ·z = z, we have that φ14 = φ24 = φ34 = 0 and φ15 = φ25 = φ35 = 0.
As φ preserves the Lie bracket [E1, E2] = E4, we get φ44 = (φ11φ22−φ21φ12)
and φ54 = (φ11φ32 − φ31φ12). Similarly, as φ preserves the Lie bracket
[E1, E3] = E5, we have that φ45 = (φ11φ23 − φ21φ13) and φ55 = (φ11φ33 −
φ31φ13). We thus have that

[φij ] =


φ11 φ12 φ13 0 0
φ21 φ22 φ23 0 0
φ31 φ32 φ33 0 0
φ41 φ42 φ43 (φ11φ22 − φ21φ12) (φ11φ23 − φ21φ13)
φ51 φ52 φ53 (φ11φ32 − φ31φ12) (φ11φ33 − φ31φ13)

 .

Preservation of the Lie bracket [E2, E3] = 0 gives the conditions φ12φ23 −
φ22φ13 = 0 and φ12φ33 − φ32φ13 = 0. If φ12 ̸= 0, then φ23 = φ22φ13

φ12
,

φ33 = φ32φ13

φ12
and so detφ = 0, which is a contradiction. Thus φ12 = 0.

Similarly, assuming that φ13 ̸= 0 leads to a contradiction and thus φ13 = 0.
Therefore,

[φij ] =


φ11 0 0 0 0
φ21 φ22 φ23 0 0
φ31 φ32 φ33 0 0
φ41 φ42 φ43 φ11φ22 φ11φ23

φ51 φ52 φ53 φ11φ32 φ11φ33


with φ11 ̸= 0 and φ22φ33 − φ23φ32 ̸= 0. It is a simple matter to show that
any such map φ is an automorphism.

Subspace classification

Let s and w be two subspaces of a Lie algebra g. We say that s and w are
equivalent if there exists an automorphism φ ∈ Aut(g) such that φ · s = w.
The subspace s is called bracket generating if the smallest subalgebra of
g containing s is g itself. If s is an ideal, then it is said to be a fully
characteristic ideal if φ · s = s for all φ ∈ Aut(g).
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We identify some scalar invariants for subspaces of the Lie algebra t.
A simple invariant is the dimension of a subspace: if s is equivalent to w,
then dim(s) = dim(w). Two more invariants can be found by considering the
dimension of the intersection of a given subspace with any fully characteristic
ideal. Accordingly, since the centre

z = ⟨E4, E5⟩

and the subspace
c = ⟨E2, E3, E4, E5⟩

are both fully characteristic ideals (by Lemma 1 in the case of c), we have
that

dim(s ∩ z) = dim(w ∩ z) and dim(s ∩ c) = dim(w ∩ c).

whenever s and w are equivalent. The last scalar invariant is slightly more
involved.

Lemma 2. If s is equivalent to w, then

dim(s ∩ z ∩ [E1, s ∩ c]) = dim(w ∩ z ∩ [E1,w ∩ c]).

Proof. Let φ ∈ Aut(t) such that φ · s = w. Then there exists ψ ∈ Aut(t)
such that ψ · E1 = a1E1, a1 ̸= 0, ψ|c = φ|c, and ψ|z = φ|z (see Lemma 1).
Therefore

w ∩ z ∩ [E1,w ∩ c] = (φ · s) ∩ z ∩ [E1, (φ · s) ∩ c]

= φ · (s ∩ z) ∩ [E1, φ · (s ∩ c)]

= ψ · (s ∩ z) ∩
[

1
a1
ψ · E1, ψ · (s ∩ c)

]
= ψ · (s ∩ z ∩ [E1, s ∩ c])

and so dim(w ∩ z ∩ [E1,w ∩ c]) = dim(s ∩ z ∩ [E1, s ∩ c]).

With these invariants at hand, we now proceed to classify the subspaces
of t. In Table 1 we list the equivalence class representatives identified along-
side their associated values for the scalar invariants.

Theorem 1. Any proper subspace of the Lie algebra t is equivalent to exactly
one of the following

SA: ⟨E1⟩, ⟨E2⟩, ⟨E2, E3⟩, ⟨E1, E4⟩, ⟨E2, E5⟩, ⟨E2, E3, E4⟩, ⟨E1, E2, E4⟩
I: ⟨E4⟩, ⟨E2, E4⟩, ⟨E1, E4, E5⟩, ⟨E2, E4, E5⟩, ⟨E1, E2, E4, E5⟩

FCI: ⟨E4, E5⟩, ⟨E2, E3, E4, E5⟩
Gen: ⟨E1, E2, E3⟩, ⟨E1, E2, E3, E4⟩
S: ⟨E1, E2⟩, ⟨E1, E2, E5⟩.
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Subspace s dim(s) dim(s ∩ c) dim(s ∩ z) dim(s ∩ z ∩ [E1, s ∩ c])

⟨E1⟩
1

0 0 0

⟨E2⟩ 1 0 0

⟨E4⟩ 1 1 0

⟨E1, E2⟩

2

1 0 0

⟨E1, E4⟩ 1 1 0

⟨E2, E3⟩ 2 0 0

⟨E2, E5⟩ 2 1 0

⟨E2, E4⟩ 2 1 1

⟨E4, E5⟩ 2 2 0

⟨E1, E2, E3⟩

3

2 0 0

⟨E1, E2, E5⟩ 2 1 0

⟨E1, E2, E4⟩ 2 1 1

⟨E1, E4, E5⟩ 2 2 0

⟨E2, E3, E4⟩ 3 1 1

⟨E2, E4, E5⟩ 3 2 1

⟨E1, E2, E3, E4⟩
4

3 1 1

⟨E1, E2, E4, E5⟩ 3 2 1

⟨E2, E3, E4, E5⟩ 4 2 2

⟨E1, E2, E3, E4, E5⟩ 5 4 2 2

Table 1: Subspace equivalence class representatives for t with values for
scalar invariants
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Here, the subspaces are listed according to their class: subalgebras (SA),
ideals (I), fully characteristics ideals (FCI), bracket generating subspaces
(Gen), or subspaces (S) with none of these properties.

Proof. We treat a typical case for determining a class representative. Sup-
pose s is a subspace of the Lie algebra t with

dim(s) = 3. (1)

Further, suppose
dim(s ∩ z) = 1. (2)

Let X ∈ s ∩ z, X = x4E4 + x5E5. Then

φ =


1 0 0 0 0
0 x4 −x5 0 0
0 x5 x4 0 0
0 0 0 x4 −x5
0 0 0 x5 x4


is an automorphism such that φ ·E4 = X. Thus s is equivalent to a subspace
s̄ containing E4.

Now, by a simple dimensionality argument, 2 ≤ dim(s̄ ∩ c) ≤ 3. Let us
suppose

dim(s̄ ∩ c) = 2. (3)

Since E4 ∈ s̄∩c, there exists V̄ , W̄ ∈ s̄ such that ⟨W̄ , E4⟩ = s̄∩c, ⟨V̄ , W̄ , E4⟩ =
s̄ and V̄ /∈ c. This implies that v̄1 ̸= 0 and w̄1 = 0; here V̄ =

∑
v̄iEi and

W̄ =
∑
w̄iEi.

Finally, suppose that

dim(s̄ ∩ z ∩ [E1, s̄ ∩ c]) = 1. (4)

Then

1 =dim(⟨V̄ , W̄ , E4⟩ ∩ z ∩ [E1, ⟨V̄ , W̄ , E4⟩ ∩ ⟨E2, E3, E4, E5⟩])
= dim(⟨E4⟩ ∩ [E1, ⟨W̄ , E4⟩])
= dim(⟨E4⟩ ∩ [E1, ⟨W̄ ⟩])
= dim(⟨E4⟩ ∩ ⟨w̄2E4 + w̄3E5⟩)

and so it follows that w̄2 ̸= 0 and w̄3 = 0. Therefore

φ′ =


v̄1 0 0 0 0
v̄2 w̄2 0 0 0
v̄3 0 1 0 0
v̄4 w̄4 0 v̄1w̄2 0
v̄5 w̄5 0 0 v̄1
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is an automorphism such that φ′ · ⟨E1, E2, E4⟩ = ⟨V̄ , W̄ , E4⟩ = s̄. Thus s̄
(and therefore s) is equivalent to ⟨E1, E2, E4⟩.

By considering all other possible values of the invariants in (1), (2), (3),
and (4) one obtains all possible class representatives. As all representatives
obtained are differentiated by the set of scalar invariants (see Table 1), they
are mutually non-equivalent. Standard computations determine whether
each class representative is a subalgebra, ideal, fully characteristic or gener-
ating subspace.

Since the four scalar invariants identified evaluate distinctly for each
equivalence class (see Table 1), these invariants form a complete set.

Corollary 1. Two subspaces s and w of t are equivalent if and only if

dim(s) = dim(w),

dim(s ∩ z) = dim(w ∩ z),

dim(s ∩ c) = dim(w ∩ c), and

dim(s ∩ z ∩ [E1, s ∩ c]) = dim(w ∩ z ∩ [E1,w ∩ c]).

Here z = ⟨E4, E5⟩ and c = ⟨E2, E3, E4, E5⟩.

3 Sub-Riemannian structures on T

A left-invariant sub-Riemannian structure is a triple (G,D,g) where G is a
real, finite-dimensional, connected Lie group, D is a smooth bracket gener-
ating left-invariant distribution on G, and g is a left-invariant Riemannian
metric on D. Equivalently: D(1) is a bracket generating linear subspace
of the Lie algebra g of G with D(x) = d1Lx · D(1) for every x ∈ G, where
Lx : G → G, y 7→ xy; g1 is a positive definite, symmetric bilinear form on
D(1) with gx(d1Lx ·A, d1Lx ·B) = g1(A,B) for every A,B ∈ D(1).

An isometry between two left-invariant sub-Riemannian structures (G,D,g)
and (G′,D′,g′) is a diffeomorphism ϕ : G −→ G′ such that ϕ∗D = D′ and
g = ϕ∗g′; that is, dxϕ · D(x) = D′(ϕ(x)) for all x ∈ G and gx(X,Y ) =
g′
ϕ(x)(dxϕ · X, dxϕ · Y ) for all X,Y ∈ D(x). By definition, left translations
Lx are isometries. Isometries preserve the Carnot–Carathéodry distance
associated to the sub-Riemannian structure.

It turns out that for left-invariant sub-Riemannian structures on simply
connected nilpotent Lie groups, every isometry is the composition of a left-
translation and a Lie group isomorphism [16]. (Indeed in [16] this is proved
more generally for nilpotent metric Lie groups.) Therefore, since all left
translations are isometries, if two such structures are isometric then there
exists a Lie group isomorphism between them that realizes the isometry.
We note that there is a one-to-one correspondence between the Lie group
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automorphisms on a simply connected Lie group and the Lie algebra auto-
morphisms on its Lie algebra (see, e.g., [14]). Consequently, we have the
following simple algebraic characterization for two sub-Riemannian struc-
tures on a simply connected nilpotent Lie group G with Lie algebra g to be
isometric.

Proposition 1. (cf. [7, 9]) Two left-invariant sub-Riemannian structures
(G,D,g) and (G,D′,g′) on a simply connected nilpotent Lie group G are
isometric if and only if there exists an automorphism ψ ∈ Aut(g) such that

ψ · D(1) = D′(1) and g1 = ψ∗g′
1.

Here (ψ∗g′
1)(A,B) = g′

1(ψ ·A,ψ ·B) for A,B ∈ D(1).

Accordingly, the distribution D of any left-invariant sub-Riemannian
structure (T,D,g) on T, is isometric to a structure with distribution at
identity being one of the bracket generating subspaces listed in Theorem 1.
All that remains to be done is to normalize the metrics g by Lie algebra
automorphisms using Proposition 1. Doing this we arrive at the following
classification of left-invariant sub-Riemannian structures on T.

Theorem 2. Any left-invariant sub-Riemannian structure (T,D,g) is iso-
metric to exactly one of the following:

(T,H3,h
3) :

{
H3(1) = ⟨E1, E2, E3⟩

h3
1 = diag(1, 1, 1)

(T,H4,h
4,α) :

{
H4(1) = ⟨E1, E2, E3, E4⟩
h4,α
1 = α · diag(1, 1, 1, 1), α > 0

(T,H5,h
5,(α,β)) :

{
H5(1) = ⟨E1, E2, E3, E4, E5⟩

h
5,(α,β)
1 = diag(1, 1, 1, α, β), α ≥ β > 0.

Here the metrics are written with respect to the bases given for their respec-
tive distributions.

Remark. (T,H5,h
5,(α,β)) corresponds to the result in [15, Proposition 6] for

the classification of invariant Riemannian structures on T.

Proof. We treat the rank 4 structures (i.e., those with dimD(g) = 4, g ∈ T)
as a typical case. Let (T,D,g) be a rank 4 left-invariant sub-Riemannian
structure. By Theorem 1 there exists ψ0 ∈ Aut(t) such that ψ0 · D(1) =
H4(1). By Proposition 1, (T,D,g) is isometric to (T,H4,g

1) for some metric
g1 on H4.
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We can write g1
1 as a positive definite symmetric matrix with respect to

the basis (E1, E2, E3, E4) for H4(1):

g1
1 =


h1 a1 a2 a3
a1 h2 a4 a5
a2 a4 h3 a6
a3 a5 a6 h4

 .
Now

ψ1 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

− a3
h4

− a5
h4

− a6
h4

1 0

0 0 0 0 1


is an automorphism of t such that ψ−1

1 · H4(1) = H4(1) and g2
1 = (ψ1)

∗g1
1

has matrix

g2
1 =


h′1 a′1 a′2 0
a′1 h′2 a′4 0
a′2 a′4 h′3 0
0 0 0 h′4


with respect to (E1, E2, E3, E4) for some constants a′1, a

′
2, a

′
4, h

′
1, . . . h

′
4 ∈ R.

Note here that g1
1 = (ψ−1

1 )∗g2
1, or equivalently g2

1(A,B) = (ψ1)
∗g1

1(A,B) =
g1
1(ψ1 · A,ψ1 · B) for A,B ∈ H4(1). That is to say, (T,H4,g

1) is isometric
to (T,H4,g

2) by Proposition 1.
Continuing on in this way, we have

ψ2 =



1 0 0 0 0
a′1h

′
3−a′2a

′
4

a′4
2−h′

2h
′
3

1 − a′4
h′
2

0 0

a′2h
′
2−a′1a

′
4

a′4
2−h′

2h
′
3

0 1 0 0

0 0 0 1 − a′4
h′
2

0 0 0 0 1


∈ Aut(t), g3

1 = ψ∗
2 g

2
1 =


b1 0 0 0
0 b2 0 0
0 0 b3 0
0 0 0 b4



for some b1, . . . , b4 ∈ R. Note that a′4
2 − h′2h

′
3 ̸= 0 and h′2 ̸= 0 since g2

1 is
positive definite. Finally,

ψ4 = diag

(√
b2
b4
,

√
b1
b4
,

√
b1b2
b3b4

,

√
b1b2
b24

,

√
b1b22
b3b24

)

is an automorphism such that g4
1 = ψ∗

3 g
3
1 = b1b2

b4
I4 = h4,α

1 with α = b1b2
b4

. It

therefore follows by transitivity that (T,D,g) is isometric to (T,H4,h
4,α)

for some α > 0.
Now suppose (T,H4,h

4,α) and (T,H4,h
4,β) are isometric for some α, β >

0. By Proposition 1 there exists ψ ∈ Aut(t) such that ψ · H4(1) = H4(1)
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and h4,α = ψ∗h4,β. Utilizing Lemma 1 and computing these conditions in
coordinates, it is fairly straightforward to show that this implies that α = β.
Hence, each different α > 0 yields a non-isometric structure.

Since isometries preserving the identity element are automorphisms of
the group, it is not difficult to find the (linearized) isotropy subgroup of
identity (i.e., the subgroup of the isometry group fixing the identity).

Corollary 2. The associated isotropy subgroups of identity of the left-invariant
sub-Riemannian structures on T are given by

(i) Iso1(T,H3,h
3) ∼= Z2 × O(2),

(ii) Iso1(T,H4,h
4,α) ∼= Z2 × Z2 × Z2,

(iii) Iso1(T,H5,h
5,(α,β)) ∼= Z2 × Z2 × Z2, for α > β > 0,

Iso1(T,H5,h
5,(α,α)) ∼= Z2 × O(2) where α > 0.

Remark. The isotropy groups of (T,H5,h
5,(α,β)), α ≥ β > 0 correspond to

the result in [15, Proposition 7] for invariant Riemannian structures on T.
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