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Abstract—Similarity caching allows requests for an item i to be
served by a similar item i′. Applications include recommendation
systems, multimedia retrieval, and machine learning. Recently,
many similarity caching policies have been proposed, but still we
do not know how to compute the hit rate even for the simplest
policies, like SIM-LRU and RND-LRU that are straightforward
modifications of classical caching algorithms. This paper proposes
the first algorithm to compute the hit rate of similarity caching
policies under the independent reference model for the request
process. In particular, our work shows how to extend the popular
TTL approximation from classic caching to similarity caching.
The algorithm is evaluated on both synthetic and real world
traces.

Index Terms—Caching, TTL approximation, performance
evaluation.

I. INTRODUCTION

Many applications require to retrieve items similar to a
given user’s request. For example, in content-based image
retrieval [1] systems, users can submit an image to obtain
other visually similar images. A similarity cache may intercept
the user’s request, perform a local similarity search over the
set of locally stored items, and then, if the search result is
evaluated satisfactory, provide it to the user. The cache thus
may speed up the reply and reduce the load on the server,
at the cost of providing items less similar than those the
server would provide. Originally proposed for content-based
image retrieval [1] and contextual advertising [2], similarity
caches are now a building block for a large variety machine
learning based inference systems for recommendations [3],
image recognition [4], [5] and network traffic [6] classification.
In these cases, the similarity cache stores past queries and the
respective inference results to serve future similar requests.

Motivated by the large number of applications, re-
cently much effort has been devoted to formalize similarity
caching [7], [8] as well as to propose new caching policies [9]–
[11]. Despite this research, to the best of our knowledge, we
still do not know how to compute basic performance metrics—
like the percentage of requests satisfied by the cache—even for
the simplest similarity caching policies, like SIM-LRU and
RND-LRU, which were proposed in the seminal paper [2].
SIM-LRU and RND-LRU are variants of the basic LRU policy,
but are much more challenging to analyze than LRU due to
strong coupling across items in the cache. In fact, in classic
caching, an item in the cache only contributes to serve requests
for the very same item, while in similarity caching, the same
item can serve requests for a set of similar items as far as
neither them, nor their most similar items, are stored in the
cache. It follows that, in similarity caching, the number of

TABLE I: Table of notation

Variable Description
Basic parameters

I set of items
N = |I| catalogue size
C cache capacity
S state of cache; set of cached items
λn arrival rate of requests to item n

Similarity cache parameters
dis(·, ·) function measuring the dissimilarity between items
d threshold similarity
N (n) neighbours of item n
N [n] neighbours of item n including n
Ni(n) items in N (n) strictly closer to n than i
Ni[n] items in N [n] strictly closer to n than i
qn(i) probability of an approximate hit for i by n

Inferred variables
λe
n insertion rate of item n; rate at which it enters the cache

λr
n refresh rate of item n

tC characteristic time
Key metrics of interest

hn probability of an approximate hit of a request for item n
on fraction of time that item n is cached
H cache hit probability

requests satisfied by an item in the cache depends in general
on the whole cache state.

In this paper, we introduce the first algorithm to estimate
SIM-LRU and RND-LRU hit rate under the independent
reference model (IRM) [12] for the request process. The
algorithm alternates between two steps. In the first step, given
a tentative estimate of the rate of requests served by each
item when present in the cache, the occupancy probability of
each item (i.e., the probability that the item is in the cache) is
computed relying on the well-known TTL approximation [12],
[13] (also known as Che’s approximation), which has been
successfully used to study classic caching policies. In the
second step, the current vector of occupancy probabilities, and
similarity relations across items, are used to update the rate
of requests served by each item. Our experiments both on
synthetic traces and a realistic trace for a recommendation
system show that our algorithm provide accurate estimates
of the hit rate, definitely more precise than other intuitive
approaches one could think about.

The paper is organized as follows: background and notation
are introduced in Sec. II, our algorithm for computing the hit
rate for SIM-LRU and RND-LRU is presented in Sec. III,
its performance is evaluated on both synthetic and real word
traces in Sec. IV and Sec. V concludes.



II. BACKGROUND, NOTATION AND ASSUMPTIONS

A. Similarity Caching

In similarity search systems users can request to a remote
server, storing a set of items I , the k most similar items to
a given item n, given a specific definition of similarity. In
practice items are often represented by vectors in Rd (called
embeddings) [14] so that the dissimilarity cost, dis(., .) : I2 −→
R+, can be selected to be an opportune distance between the
embeddings, e.g., the Euclidean one. A cache, that stores a
small fraction of the catalog I , could be deployed next to
the users to reduce the fetching cost of similarity searches.
The seminal papers [1], [2] suggest the cache may answer a
request using a local subset of items potentially different from
the true closest neighbors to further reduce the fetching cost
while still maintaining an acceptable dissimilarity cost. They
refer to such caches as similarity caches.

One of the popular dynamic similarity caching policies is
SIM-LRU [2]. This policy maintains an ordered list of C key-
value pairs. Each key is the embedding of an item n requested
in the past and its corresponding value is a list containing
the k′ ≥ k closest items to n in I . We denote by S the set
of keys stored in the cache. Upon a similarity search for an
item n, SIM-LRU selects the closest local key to n, i.e., n̂ ≜
argminm∈S dis(n,m). If the dissimilarity cost between n and
n̂ is smaller than a threshold d > 0 (dis(n, n̂) ≤ d), the
request experiences an approximate hit:1 the cache replies to
the request for n selecting the k closest items to n among the
k′ values stored for n̂ and moves n̂’s key-value pair to the
front of the list. Otherwise, the request experiences a miss: it
is forwarded to the original server to retrieve the k′ closest
items to n, out of which the closest k are provided to the
user. The cache then adds the new key-value pair for n to the
front of the list and evicts the key-value pair at the bottom of
the list. We observe how the use of key-value pairs in SIM-
LRU essentially converts the search of k closest items into the
search of the closest key in the cache. For simplicity’s sake,
from now on we will just identify the items, their keys and
the corresponding values and say for example that the cache
replies to a request for n with the closest item n̂ in the cache.

RND-LRU [2] is a generalization of SIM-LRU, where n̂ is
used to reply to a query for n with a probability qn̂(n) which
decreases with their dissimilarity, and it is in any case null for
dis(n̂, n) > d. We retrieve the behaviour of SIM-LRU when
qn̂(n) = 1 if dis(n̂, n) ≤ d.

B. Our Assumptions

We assume that requests follow a Poisson process with
request rate λn for item n, and each request is independent
from the previous ones, i.e., requests follow the Independent
Reference Model (IRM) [12]. Under SIM-LRU or RND-
LRU, a request for item n could be served by any item
closer than d to n. We denote the set of such items as
N [n] ≜ {m ∈ I : dis(n,m) ≤ d}. We call the elements

1Note that we have an exact hit if n̂ = n.

in N [n] distinct from n the neighbours of n and we denote
their set as N (n) ≜ N [n]\{n}. For the sake of simplicity, we
assume that items in N (n) can be strictly ordered according
to their dissimilarity wrt n, i.e., for any (i, j) ∈ N (n) and
i ̸= j, we have dis(n, i) ̸= dis(n, j). If this is not the
case, we can introduce an arbitrarily order for items with
the same dissimilarity. For convenience, we also define in a
similar way the sets Ni(n) and Ni[n], subsets of N (n) and
N [n], resp., designating items that are closer to n than i,
i.e. Ni(n) ≜ {m ∈ N (n) : dis(n,m) < dis(n, i)} and
Ni[n] ≜ {m ∈ N [n] : dis(n,m) < dis(n, i)}.

C. TTL Approximation for LRU Cache
The hit rate of an LRU cache under the IRM model can

be estimated using what is referred to in the literature as the
TTL approximation [12], [13]. The approximation considers
that any cached item n, if not requested, will stay in an LRU
cache with capacity C for a time tC that is deterministic and
independent of n; tC is called the cache ‘characteristic time’.
This approximation has been later supported by theoretical
arguments in [15], [16]. Under the TTL approximation, a hit
occurs for an item if the inter arrival time between two requests
for the same item is smaller than tC . Thus, the hit probability
hn can be approximated as:

hn ≈ 1− e−λntC . (1)

Since the flow of arrivals is Poisson, the “Poisson Arrivals
See Time Averages” (PASTA) property implies that the prob-
ability on that an item n is in the cache (i.e., the occupancy
probability, or simply occupancy) is equal to the probability
that a request for that same item experiences a hit, i.e.
hn = on. The cache capacity constraint is given in expectation
by the following equality:∑

n∈I

on = C , (2)

The above expression allows us to deduce tC , e.g., by means
of a bisection method. The hit rate H can be simply computed
as H =

∑
n λnhn with hn computed as in (1).

III. TTL APPROXIMATION FOR SIMILARITY CACHING

Analogously to LRU, TTL approximation for RND-LRU
assumes that the time an item stays in the cache if it is not
serving any requests is deterministic and independent of n
and we denote it as tC . The hit rate for an item n (i.e., the
rate of requests incurring an approximate hit) can no longer
be computed as in (1) as the request for n can be satisfied
even if n is not in the cache. Let S denote the current state
of the cache, i.e., the set of items it stores. For RND-LRU,
an approximate hit for item n occurs if at least one of the
items in N [n] is present in the cache. When the closest item
to n present in the cache is i ∈ N [n], i.e. S ∩ Ni(n) = ∅
and i ∈ S, i serves the request for n with probability qi(n).
Taking advantage of the PASTA property, it follows that hn

for RND-LRU can be expressed as:

hn =
∑

i∈N [n]

qi(n) · Pr (S ∩Ni(n) = ∅, i ∈ S) . (3)



In what follows, we provide an alternative approach to com-
pute the occupancies for an LRU cache, under the TTL
approximation, that is complementary to that presented in
Sec. II-C. Then, we identify the differences between RND-
LRU and LRU and compute its occupancies in a similar way.

A. Occupancies and Hit Rates

To derive the occupancy of an item n, we first observe
that the instants when item n is evicted from the cache are
regeneration points for a renewal process [17]. A renewal cycle
consists of two consecutive time periods: a time period of
duration TOff

n , that starts immediately after item n is evicted
from the cache and ends when it re-enters the cache, and a time
period of duration TOn

n , that ends when item n is evicted again
from the cache. From the renewal theorem, the occupancy can
be computed as:

on =
E
[
TOn
n

]
E [TOff

n ] + E [TOn
n ]

. (4)

a) Expectation of TOff
n : TOff

n is the waiting time for a
miss for n after n has been evicted from the cache. For LRU,
under the IRM model, thanks to the memoryless property
of the exponential distribution the residual interarrival time
TOff
n is exponentially distributed with rate λn, implying that

E
[
TOff
n

]
= 1/λn.

For RND-LRU, when a request for n finds none of item n’s
neighbours in the cache, a miss occurs with probability 1. If
instead a request for n finds i to be the closest neighbour of
n in the cache, i.e. Ni(n) ∩ S = ∅, i ∈ S, the probability of
a miss is 1− qi(n). Let pen(i) be the probability that i is the
closest neighbour to n in the cache, and that a miss occurs,
namely:

pen(i) ≜ (1− qn(i)) Pr (S ∩Ni(n) = ∅, i ∈ S | n /∈ S) . (5)

The probability pen of a miss for n is then:

pen ≜ Pr (S ∩N (n) = ∅ | n /∈ S) +
∑

i∈N (n)

pen(i) . (6)

Consequently, when item n is not cached, the rate at which
item n re-enters the cache is:

λe
n = λnp

e
n . (7)

Similarly to the case of LRU, we write E
[
TOff
n

]
= 1/λe

n.
b) Expectation of TOn

n : For LRU, the time spent by an
item in the cache is at least tC , under TTL approximation.
Each time the interarrival time between requests for item n is
smaller than tC , there is a hit, and n is moved to the top of
the queue. In this case, item n is refreshed, i.e., its timer is
re-initialized. On the other hand, when this interarrival time
is larger than tC , n is evicted from the cache. Time interval
TOn
n is the sum of a random number F of time intervals with

duration shorter than tC (corresponding to F consecutive hits)
and tC (the time between the last hit and item’s eviction). It
follows that

TOn
n ≈

∑
j∈[1..F ]

Xj + tC , (8)

where (Xj)j∈[1..F ] are the interarrival times between requests
for item n such that Xj < tC for all j ∈ [1..F ]. Since we
have:

E [Xj |Xj < tC ] =
1

λn
− tC

exp(λntC)− 1
, (9)

E [F ] = exp(λntC)− 1 , (10)

we conclude from Wald’s identity and (8) that:

E
[
TOn
n

]
≈ eλntC − 1

λn
. (11)

For RND-LRU, item n is not only refreshed by its own
requests but also by requests for its neighbours. More specif-
ically, if item i ∈ N [n] is requested and item n is the closest
neighbour to i among all cached items, then item n first 1)
serves the request for i with probability qn(i) and then 2) is
refreshed in the cache. In such a case, the state of the cache
verifies S ∩ Nn[i] = ∅. TOn

n can still be written as in (8).
However, the refresh rate for random variables Xj is no longer
λn but a higher rate λr

n expressed as:

λr
n =

∑
i∈N [n]

prn(i)λi, (12)

prn(i) = qn(i) · Pr (S ∩Nn[i] = ∅ | n ∈ S) . (13)

(Notice that Nn[n] = ∅ and then prn(n) = 1.) Similarly to
(11), the expected value of TOn

n can be computed as

E
[
TOn
n

]
≈ eλ

r
ntC − 1

λr
n

. (14)

c) Computing the occupancy: Replacing the expressions
for E

[
TOff
n

]
and E

[
TOn
n

]
in (4), we derive the occupancy.

For LRU, we obtain the knonw result in (1) (remember that
hn = on for LRU). For RND-LRU, we obtain

on ≈
(

1

λe
n

· λr
n

eλ
r
ntC − 1

+ 1

)−1

. (15)

d) Computing pen, prn(i) and the hit rate: Under the
classic TTL approximation for LRU, items are coupled only
through the value of the characteristic time tC . Conditioned
on tC , events related to the presence of items in the cache are
independent, e.g., Pr (n,m ∈ S) = Pr (n ∈ S) · Pr (m ∈ S).
We maintain this independence also for RND-LRU. Then, (6),
(5), and (13) can be written as follows:

pen(i) = (1− qi(n)) · oi
∏

m∈Ni(n)

(1− om) , (16)

pen =
∏

m∈N (n)

(1− om) +
∑

i∈N (n)

pen(i) , (17)

prn(i) = qn(i)
∏

m∈Nn[i]

(1− om) . (18)

Under the independence assumption, RND-LRU’s hit rate hn

for item n’s requests in (3) can be computed as:

hn =
∑

i∈N [n]

qi(n) · oi
∏

m∈Ni(n)

(1− om) . (19)



Algorithm 1: Fixed point method
Input: C, λ⃗, dis(., .), d, (qn(i))(n,i)∈I2 , stopping condition
Output: Estimation o⃗, h⃗, tC

Initialization:
1: Obtain tC(0) such that

∑
n∈I

(
1− e−λn·tC(0)

)
= C

2: o⃗(0)← 1− e−λ⃗·tC(0)

3: h⃗(0)← fh(o⃗(0))
4: j ← 1
5: while Stopping condition not satisfied do
6: λ⃗e(j)← fe(o⃗(j − 1)) (See (20))
7: λ⃗r(j)← fr(o⃗(j − 1)) (See (21))
8: Obtain tC(j) such that :

∑
n∈I(f

o(λ⃗e(j), λ⃗r(j), tC(j)))n = C
(See (23),(22))

9: o⃗(j)← (fo(o⃗(j − 1), tC(j)) + o⃗(j − 1))/2
10: h⃗(j) = fh(o⃗(j)) (See (24))
11: j ← j + 1
12: end while
13: return h⃗(j), o⃗(j), tC(j)

B. Algorithm for Finding Hit Probabilities

Next, our goal is to propose an algorithm to compute
hit probabilities. To this aim, we solve the following set of
equations:

λ⃗e = fe(o⃗) , (20)

λ⃗r = fr(o⃗) , (21)

o⃗ = fo(λ⃗r, λ⃗e, tC), (22)∑
n∈I

on = C, (23)

h⃗ = fh(o⃗) . (24)

Equation (20) follows from (7), (16), and (17), and computes
the vector of insertion rates for all items. Equation (21) follows
from (12) and (18) and computes the vector of refresh rates.
Equation (22) is the vector form of (15): given λ⃗r and λ⃗e,
and the characteristic time tC , it computes all occupancies.
Equation (23) expresses the capacity constraint. Combining
(20)–(23), we obtain a system of 3N +1 equations in 3N +1
unknowns, from which we can obtain in particular the oc-
cupancies and the characteristic time tC . Finally, once the
occupancies are known Equation (24) computes the vector of
hit rates according to (19).

To solve the system of equations (20)-(23), we rely on
an iterative fixed point method (see Algorithm 1). We begin
by guessing occupancies o⃗. In particular, we initialize them
using occupancies for LRU, i.e., o⃗(0) = 1 − e−λ⃗·tC(0) where
tC(0) verifies (2) (

∑
n∈I on(0) = C) (lines 1-2). Then, we

obtain λ⃗e(1) and λ⃗r(1) using equations (20) and (21), resp.
(lines 5-7). Next we find the new estimation of the occu-
pancies o⃗(1) = fo(λ⃗e(j), λ⃗r(j), tC(1)) where tC(1) verifies∑

n∈I on(1) = C (lines 8-9). Finally, a new estimate of the
vector of occupancies is computed (line 9): averaging the new
prediction and the previous value is a practical trick to improve
the convergence. The same procedure is then repeated for
the next iterations until a stopping condition is reached, e.g.,
the difference between o⃗ computed at consecutive iterations

becomes smaller than a given threshold, or the maximum
number of iterations is reached (j ≤ niterations).

C. Benchmarks and Alternative Approaches

In what follows, we compare hit rate estimates provided by
RND-LRU or SIM-LRU using Algorithm 1 with the hit rate
estimations for LRU and for the optimal static allocation. We
also propose an alternative approach to estimate RND-LRU’s
hit rate.

LRU. The hit rate and the occupancy for an item n are
computed using Eq. (1) and tC is deduced using the cache
capacity constraint given by Eq. (2).

Optimal Static Allocation. The maximum hit rate ob-
tainable by a static allocation under similarity caching can
be obtained solving a maximum weighted coverage problem.
We consider, as in SIM-LRU, that each item can be used to
satisfy any request for items closer than d. The maximum
weighted coverage problem takes as input a capacity C, a
set of items I , with N = |I|, their corresponding weights
W = (wi)i∈I and a set of sets R = {R1, . . . , RN} such that
Ri ⊂ I . The objective is to find a set σ∗ ⊂ {1, . . . , N} such
that: σ∗ = argmaxσ⊂{1,...,N}:|σ|≤C

∑
i∈∪j∈σRj

wi. Finding
the best static allocation is equivalent to solving a maximum
weighted coverage problem, with weights wi = λi for i ∈ I ,
C the cache capacity, and R the set of neighbours for each
item, i.e., R = {N [n]}n∈I . The maximum weighted coverage
problem is known to be NP-hard. In practice, a popular greedy
algorithm guarantees a (1− 1/e) approximation ratio [18].

The greedy algorithm chooses at the first step the set with
the largest coverage cm = maxn∈I

∑
i∈R0

n=Rn
pi. If R0

o is
the set chosen at the first iteration, at the next iteration all the
sets are updated in such a away that they do not contain any
item in the set R0

o, i.e. R1
n = R0

n \R0
o. The same procedure is

repeated until C sets are collected or all the sets are chosen.
LRU with aggregate requests. Under SIM-LRU an item

is refreshed by the requests for all its neighbours. A naive
approach to study a SIM-LRU cache is then to consider that
it operates as a LRU cache with equivalent request rates for
each item equal to the sum of the request rates for all items
in its neighborhood. One can then use the TTL approximation
for LRU, leading to the following formulas:

hn = 1− e−
∑

i∈N [n] λi·tC , on = hn . (25)
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Fig. 1: Synthetic traces: Spatial popularity distribution.
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(a) Synthetic trace, α = 2.5, d = 1,
25 iterations

20 40 60 80 100 120 140 160
capacity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Hi
t r

at
e

Greedy
Exp-SIM
Ours-SIM
Exp-RND
Ours-RND
LRU
LRU-agg

(b) Synthetic trace, α = 1.4, d = 2,
15 iterations
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(c) Amazon trace, d = 300, 40 iterations

Fig. 2: Hit rate versus cache capacity.

IV. NUMERICAL EVALUATION

We evaluate the efficiency of the proposed fix point method
(Algorithm 1) to predict the hit rate on synthetic traces and
on an Amazon trace [10]. For the synthetic traces, each item
corresponds to two features, characterized by a point in a
grid, I = [0..99]2 (e.g. Fig. 1). The total number of items
is |I| = 104, and the dissimilarity function between items
dis(·, ·) is the Euclidean distance. Neighbours of item (x, y) at
the same distance are ordered counterclockwise starting from
the item to the right, i.e., from (x + a, y) with a > 0. Note
that for similarity thresholds d ∈ {1, 2} the proposed distance
produces an ordering equivalent to Manhattan distance (MD),
with MD ties broken in such a way that items in same row or
column have higher distance than their counterparts.

We generate a stream of r requests for items in I in an IRM
fashion [12], r = 2 · 105. The popularity distribution for an
item n = (x, y) is given by

p(x,y) ∼ (min {dis(n, (24, 24)),dis(n, (74, 74))}+ 1)
−α

,
(26)

where α is a parameter controlling the skew of the popularity
distribution. Fig. 1 illustrates the cases α ∈ {1.4, 2.5}.

For the Amazon trace, [14] proposes a scheme to embed
the images of Amazon products in a 100-dimensional space,
where the Euclidean distance reflects dissimilarity between
two items. Then, [10] reports the number of reviews per
product, and equates it to product request rates. Inspired by this
methodology, we leverage the empirical request probabilities,
and use it to generate a corresponding IRM stream of requests.

Given the workloads, we evaluate similarity cache mech-
anisms employing SIM-LRU with threshold similarity d ∈
{1, 2} for the synthetic traces and d = 300 for the Amazon
trace. For the synthetic trace with d = 2, we also eval-
uate RND-LRU where the probabilities qn(i) are mapped
to dis(n, i) as

([
1, 1

2 ,
1
4

]
,
[
1,
√
2, 2

])
. The 95% confidence

intervals were smaller than 1.2 · 10−3 in all the considered
synthetic experiments for the hit rate computation. In all
experiments, we refer to the empirical hit rates for SIM-LRU
and RND-LRU as ‘Exp-SIM’ and ‘Exp-RND’, respectively.

For all the theoretical computations of the hit rate, the arrival
rates λ⃗ for items are taken equal to the corresponding request
probabilities. Our approach uses Algorithm 1 to compute

TABLE II: Parameters of the experiments

Variable Synthetic traces Amazon trace

I [0..99]2 Products
N = |I| 104 ≈ 104

λn (26) Empirical
dis(·, ·) Euclidean distance Euclidean distance
d 1 and 2 300
Number of requests r 2 · 105 ≈ 105

95% confidence intervals ≈ 10−3 —
Number of iterations 25 and 15 40

the hit rates for each item, h⃗, and then deduces the cache
hit rate H . We refer to the latter estimate, for SIM-LRU
and RND-LRU, as ‘Ours-SIM’ and ‘Ours-RND’, respectively.
Alternative methods that could be used to estimate the hit rate
are presented in Sec. III-C. We refer to the TTL approximation
for LRU as ‘LRU’, LRU with aggregate requests as ‘LRU-
agg’, and the greedy algorithm as ‘Greedy’. The numerical
values used for all the experiments are summarized in Table II.

In Fig. 2, we show the empirical hit rate along with its
predictions, including those predictions obtained with our
approach, for the two synthetic settings and for the Amazon
trace. In the considered settings, ‘Greedy’ overestimates the
hit rate. ‘LRU’ and ‘LRU-agg’, in contrast, underestimate it.

‘Ours-SIM’ and ‘Ours-RND’ clearly outperform all the
alternative approaches presented in Sec. III-C in estimating
the empirical hit rate, while tending to underestimate it. ‘LRU’
does not take into account the similarity between items, hence
the gap between ‘LRU’ and ‘Exp-SIM’ shows us the benefits
of similarity caching over exact caching. For the synthetic
settings in Figs. 2a and 2b, ‘LRU’ and ‘LRU-agg’ achieve
similar hit rates. This is possibly due to the choice of the
popularity distribution (see (26)) where a popular item n and
its neighbours have similar popularities: λ̃n =

∑
i∈N [n] λi ≈

|N [n]|λn, implying that ⃗̃
λ ≈ f(d)λ⃗, which corresponds to

the case wherein it is equivalent to computate hn using either
‘LRU’ or ‘LRU-agg’.

To shed further insight on why our approach underestimates
the hit rate, Fig. 3 shows the empirically estimated occupancy
vector and the one produced by Algorithm 1. The proposed
algorithm broadly captures the empirical occupancy patterns,
but with subtleties regarding symmetries. In particular, the



0 20 40 60 80 99X

99

80

60

40

20

0

Y
Occupancy experimental

10 5

10 3

10 1

(a) r = 2 · 105

0 20 40 60 80 99X

99

80

60

40

20

0

Y

Occupancy theory

10 5

10 3

10 1

(b) 25 iterations

Fig. 3: Synthetic trace occupancies: C = 500, d = 1, α = 2.5.
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Fig. 4: Characteristic time tC and hit rate in different iterations
of Algorithm 1 for SIM-LRU.

zoom on Fig. 3b shows that our approach produces a regular
chess board pattern. Some items are predicted to stay almost
all the time in the cache while their 4 neighbours are predicted
to spend virtually no time in it. The corresponding empirical
occupancy on Fig. 3a shows a less symmetric pattern, implying
that in this setup SIM-LRU is able to satisfy a group of
requests using a smaller number of cache slots when compared
against what is predicted by our approach. This, in turn, par-
tially explains why our approach underestimates the hit rate.

Fig. 4 shows the evolution of characteristic time tC and
hit rate H over different iterations. We observe that estimates
of H and tC by our algorithm converge in few iterations
(less than 50), under all the considered scenarios. Note that
tC(0), the value of tC at iteration 0, is also the value of
tC for ‘LRU’ (see Eqs. (1) and (2)). In addition, across all
experiments, tC for SIM-LRU using Algorithm 1 converges to
a value larger than tC(0). Indeed, under ‘LRU’, tC is bounded
by the time required for C distinct items to be requested.
For SIM-LRU and RND-LRU, in contrast, after C distinct
items are requested, an item previously in cache can remain
there, despite not serving any requests. This occurs due to
approximate hits, explaining why tC is larger for SIM-LRU
than ‘LRU’.

V. CONCLUSION

We proposed the first algorithm to estimate the hit rate for
popular and simple dynamic policies for similarity caching:
SIM-LRU and RND-LRU, under the IRM model. Our ex-
perimental benchmark shows that our approach outperforms
simple methods one can think of to predict the hit rate. Our
approach builds on solving a system of equations using a fixed

point method. Although our algorithm converged in our exper-
iments, the study of the conditions for convergence is deferred
for future work. In addition, note that when using SIM-LRU
or RND-LRU two items whose dissimilarity is smaller than d
can not be simultaneously cached. We envision to modify our
algorithm to take this fact into account. Furthermore, we aim
to investigate the asymptotics of the TTL approximation error,
similarly to what was done in [15], [16] for classical caches.
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