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Investigations of shock-induced cavitation within a droplet is highly challenged by the multiphase nature of the mech-
anisms involved. Within the context of heterogeneous nucleation, we introduce a thermodynamically well-posed mul-
tiphase numerical model accounting for phase compression and expansion, which relies on a finite pressure-relaxation
rate formulation. We simulate (i) the spherical collapse of a bubble in a free field, (ii) the interaction of a cylindrical
water droplet with a planar shock wave, and (iii) the high-speed impact of a gelatin droplet onto a solid surface. The
determination of the finite pressure-relaxation rate is done by comparing the numerical results with the Keller-Miksis
model, and the corresponding experiments of Sembian et al. and Field, Dear, and Ogren, respectively. For the latter
two, the pressure-relaxation rate is found to be µ = 3.5 and µ = 0.5, respectively. Upon validation of the determined
pressure-relaxation rate, we run parametric simulations to elucidate the critical Mach number from which cavitation
is likely to occur. Complementing simulations with a geometrical acoustic model, we provide a phenomenological
description of the shock-induced cavitation within a droplet, as well as a discussion on the bubble-cloud growth effect
on the droplet flow field. The usual prediction of the bubble cloud center, given in the literature, is eventually modified
to account for the expansion wave magnitude.

I. INTRODUCTION

The interaction of a liquid droplet with a shock wave, or the
impact of the droplet on a solid substrate, results in the trans-
mission of a confined shock to the droplet. Because of the
large acoustic impedance ratio between the surrounding gas
and the liquid, and so a poor gas-to-liquid energy transfer3,
the droplet interface acts as a nearly perfect mirror which traps
the transmitted wave energy within the droplet. The confined
shock therefore experiences near total reflections, as well as
focusing which results in the amplification of the shock lo-
cal interaction with the liquid4. The reflected wave of the
transmitted shock being an expansion wave, some regions of
the droplet are thus exposed to a tensile force which, under
some conditions, may generate hydrodynamic cavitation (i.e.,
isothermal inertia-driven phase change). Liquid rupture arises
when subject to tension exceeding a threshold value which de-
pends on the nature of the liquid and its purity. Pure liquids
cavitate when the random thermal motions of molecules cause
microscopic voids5. This process is usually referred to as ho-
mogeneous cavitation. When liquids are not pure, i.e. contain
pre-existing nuclei/impurities, cavitation results from the ex-
pansion of submicroscopic gas pockets trapped on particles
present in the liquid. The process of bubble formation by this
mechanism is referred to in the literature as heterogeneous nu-
cleation.

Shock-induced cavitation within a droplet, upon impact or
interaction with a shock wave, occurs in wide range of appli-

a)https://kevinschmidmayer.github.io/

cations, as a desired or adverse effect, ranging from raindrop
impact on aircraft6, to combustion and detonation of multi-
phase mixtures7, through ink-jet printing or liquid jet-based
physical cleaning8,9, to name but a few. The comprehension
of the bubble dynamics within the droplet is thus of major
importance to evaluate the erosion efficiency of the bubble-
compounded droplet, related to the collapse and jetting pro-
cesses of the cavitation bubbles. Given that the presence of
cavities inside the droplet alters its interfacial dynamics10,11,
under some conditions, changes in the fragmentation process
are to be expected.

The experimental characterization of shock-induced cavita-
tion within a droplet is particularly challenging11. By reduc-
ing the droplet to a water column, Sembian et al. and Field,
Dear, and Ogren however successfully imaged the growth of
a bubble cloud during the interaction of a cylindrical droplet
with a planar shock wave, and the high-speed impact of a
cylindrical droplet with a solid substrate, respectively. To
overcome the experimental limitations and address the shock-
induced cavitation within a droplet under near-reality condi-
tions, previous attempts to explicit the conditions for the bub-
bles to grow mostly relied on numerical simulations. As a first
approach, past numerical studies used numerical models not
accounting for phase change or phase expansion1,4,12–14. The
occurrence and intensity of the cavitation were evaluated by
probing the pressure field and comparing the low-pressure re-
gion magnitude to the cavitation threshold given by the classi-
cal nucleation theory for homogeneous cavitation (134 MPa at
300 K)15, or the Blake threshold pressure16. Recently, Kyr-
iazis, Koukouvinis, and Gavaises simulated the experiment
of Field, Dear, and Ogren, i.e. high-speed droplet impact,
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using a thermodynamically well-posed model incorporating
phase change. They successfully demonstrated that such mod-
els are well adapted to simulate the growth of bubbles and to
examine its effect on the droplet dynamics. However, a di-
rect comparison of the numerical results with the experimental
observations revealed that the numerical model significantly
overestimates the size of the bubble cloud. This is because of
the thermodynamic equilibrium assumption, corresponding to
an instantaneous equilibrium of pressures, temperatures and
velocities, in other words an analogous to infinite relaxation
rates for the pressures, temperatures and velocities, which en-
able the instantaneous expansion of the gas phase when sub-
jected to an tensile wave.

In this work, we introduce a multiphase numerical model,
in velocity equilibrium, with a finite pressure-relaxation rate,
µ , to address the over-expansion of the gas phase as previ-
ously reported for an infinite µ . The finite pressure-relaxation
rate is defined on the ]0,∞] range. Shock-induced cavita-
tion primary resulting from heterogeneous cavitation, we do
not account for phase change. The droplet containing pre-
existing nuclei is modelled as a liquid–gas mixture. Consid-
ering the difference in the acoustic impedance between both
phases, such a modelling enables to simulate each phase re-
sponse, within the mixture, to compression and expansion ef-
fects. We first simulate the spherical collapse of an air bub-
ble in a free field, over the µ range, and compare the results
with the solution of the Keller-Miksis equation to eliminate
µ values that do not agree with the theoretical bubble behav-
ior. Secondly, we simulate the experiment of Sembian et al.
with a Mach 2.4 shock wave for which, cavitation bubbles
have been imaged. After investigating the influence of µ on
the shock-induced cavitation, we calibrate the finite pressure-
relaxation rate against the experimental image, and eventu-
ally validate the calibrated value by computing the experiment
with a Mach 1.75 shock wave. A phenomenological analysis
of the shock-induced cavitation is eventually proposed by in-
terpreting the droplet internal wave pattern, computed from
the numerics, and complemented with the geometrical acous-
tic model of Biasiori-Poulanges and El-Rabii. We finally ex-
amine the sensitivity of µ on the material properties of the
liquid mixture constituting the droplet, by simulating the high-
speed droplet impact experiments of Field, Dear, and Ogren.

II. PROBLEM DESCRIPTION

The interaction of a confined fluid volume with a shock
wave is known to generate a complex time dependent wave
pattern. Accounting for the compression and expansion ef-
fects in a two-phase liquid–gas droplet, the canonical wave
structure is modified. Based on the droplet internal wave
structure, this section first gives a phenomenological descrip-
tion of the shock-induced cavitation within a liquid droplet. It
also introduces recent works on the analytical description of
the wave pattern, which has been interpreted using the classi-
cal ray-tracing approach to geometrical acoustics. Note that,
in this section, the description is based on the interaction of
a shock wave with a droplet, but the phenomenology is also

valid for the high-speed droplet impact.

A. Phenomenology

The phenomenology of the shock-induced cavitation within
a liquid droplet is sketched in Fig. 1, where the wave pattern
inside the droplet is drawn as time proceeds. The time ori-
gin, t = 0, corresponds to the instant at which the shock wave
interacts with the droplet. This interaction results in the trans-
mission of a shock to the droplet [Fig. 1(a)], while part of the
incident shock is diffracted around the droplet. The transmit-
ted shock is a compression wave that spherically propagates
in the stream direction. When the transmitted shock meets the
droplet boundary, and as a consequence of the large water-to-
air acoustic impedance ratio, the transmitted shock reflects at
the interface as an expansion wave [Fig. 1(a)], thereby form-
ing low pressure regions in the internal flow field. At the early
stage, the acoustic ray theory has shown this reflection to be a
two-segment wavefront. On reaching the downstream droplet
surface, the transmitted shock is completely reflected back
[Fig. 1(b)]. The only expansion wave remains and propagates
upstream by converging and amplifying due to the droplet
curvature. The low-pressure region generated by the expan-
sion wave thus locally exposes the liquid to a pulling force
which, under some conditions, results in the cavitation and
growth of bubbles [Fig. 1(a-d)]. Once the convergence of
the expansion wave is completed, it diverges by shaping an
horseshoe [Fig. 1(d)]. Before this transition, portion of the
expansion wave crosses at the droplet axis where the bubbles
eventually meet, and form a single bubble cloud. The bub-
ble cloud collapses over time [Fig. 1(d-f)], while the expan-
sion wave continues to propagate upstream. When the col-
lapse is completed, a spherical shock wave (CiS) originating
from the cloud center is emitted [Fig. 1(f)]. Upon reaching
the droplet interface, the CiS similarly reflects as an expan-
sion wave [Fig. 1(g)] which, under some conditions, may also
result in the cavitation and growth of bubbles. The wave pat-
tern drawn in Fig. 1(f) and Fig. 1(g) corresponds to some of
the successive reflections of the transmitted shock, i.e., the re-
flections of the TS reflection. Note that when the expansion
wave reflects at the droplet interface, it transforms into a com-
pression wave.

B. Analytical wave description

The wave pattern inside a spherical water droplet impacted
with a planar shock wave has recently been extensively ana-
lyzed. Within the context of ray theory, Biasiori-Poulanges
and El-Rabii described the time-dependent shape of the inter-
nal wavefront whose dominant feature has been shown to be
the existence of cusp singularities, and examined in details the
focusing of the singly-reflected wavefront. Authors also de-
rived the parametric equations for the transmitted wavefront
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FIG. 1: (a-g) Sketch of the internal wave pattern and phenomenology of the shock-induced cavitation within a liquid droplet.
Time is indicated with a red-to-blue colormap, with t = 0 the instant at which the incident shock reaches the droplet. Not all

internal reflections are drawn for the sake of clarity and educational purposes.

and its multiple internal reflections, which read

xM =[clt−nRd(1− cosα)−2(k−1)Rd cosθ ]cos(γk−θ)

−Rd cos(γk−2θ), (1a)

yM =[clt−nRd(1− cosα)−2(k−1)Rd cosθ ]sin(γk−θ)

−Rd sin(γk−2θ), (1b)

where k = 1 corresponds to the transmitted shock and k =
2,3, ... to the successive internal reflections, n is the water-to-
air sound speed ratio cl/cg and γk = 2kθ−α−(k−1)π . Rd is
the droplet radius. We denote Fk the wavefront associated to
the k-th reflection. The incident and refraction angles, α and
θ , are related by the fundamental law of refraction, sinθ =
nsinα .

As visible in Fig. 1, internal reflections are two-segment
fronts which exhibit a singular point. These points trace out
surfaces that are the caustics of the associated k-th reflection,
which also have a singular point (Fig. 2). From the singulari-
ties of the energy flux density of the refracted wave, Biasiori-
Poulanges and El-Rabii derived the parametric equations of
the caustic surface associated with the k-th reflected wave-
front, which are given by

xcaustic =Rd f (α)cosγk +Rd [ f (α)−1]cos(γk−2θ), (2a)

ycaustic =Rd f (α)sinγk +Rd [ f (α)−1]sin(γk−2θ), (2b)

where

f (α) =
1
2

2n2(k−1)sin2α− sin2θ

n2(2k−1)sin2α− sin2θ
. (3)

FIG. 2: Caustic traced out by the singular point (S ) of the
singly-reflected wavefront. The caustic exhibits a cusp (C ).

The red-to-blue colored segments are the singly-reflected
wavefronts as time proceeds.

The cuspidal point of the caustic is located on the droplet
axis yC = 0, while the x-coordinate has been found to be

xC =
(−1)kn

(2k−1)n−1
Rd . (4)
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TABLE I: Weber and Reynolds numbers associated to the
experiments of Sembian et al. and Field, Dear, and Ogren.

Configuration We Re
Shock–droplet1 ∼ 103 ∼ 106

High-speed impact2 ∼ 106 ∼ 106

C. Problem dimensions

The Mach number M of the shock wave, the Weber number
We, and the Reynolds number Re are defined as

M =
Us

c
, We =

ρU2d0

σ
and Re =

ρUd0

µ
. (5)

In the configuration of the shock–droplet interaction (resp.
high-speed droplet impact), Us is the incident shock wave ve-
locity (resp. impact velocity), c is the gas sound speed in the
pre-shocked state (resp. sound speed in the liquid), ρ is the
density of the post-shocked gas (resp. droplet density), U is
the post-shocked gas velocity (resp. impact velocity), µ is the
dynamic viscosity of the gas (resp. dynamic viscosity of the
liquid), σ is the surface tension coefficient and d0 is the diam-
eter of the cylindrical droplet.

Table I reports high values of We and Re indicating that, in
both experiments, the inertial forces dominate the flow over
the surface tension and the viscous forces, respectively.

In addition to the shock–droplet interaction and high-speed
droplet impact configurations, we herein also simulate the
spherical collapse of an air bubble in a free field. Viscous
and capillary effects are trivially shown to be also negligible
by computing the Rayleigh-Plesset equation. In this work, in-
viscid flows are therefore modelled and capillary effects are
not accounted for.

The phenomenology of the shock-induced cavitation within
a droplet is described using dimensionless parameters. Unless
otherwise specified, non-dimensionalization of the space and
time variables, L and T , is done using the initial droplet diam-
eter d0 and the sound speed in water cl

L̃ =
L
d0

and T̃ = T
cl

d0
, (6)

where ( ·̃) denotes a non-dimensional quantity.

III. NUMERICAL MODELLING

We use herein a slightly modified version of the modelling
proposed by Schmidmayer et al. 18 to simulate the compres-
sion and expansion of each phase within the liquid–gas mix-
ture, while ignoring phase change. The modification is only
related to the form of the pressure-relaxation terms (right-
hand side) and is detailed in Section III B.

A. Governing equations

The thermodynamically well-posed, pressure- and
temperature-disequilibrium, multi-component flow model
conserves mass, momentum and total energy. It reads for N
phases

∂αk

∂ t
+u ·∇αk = δ pk,

∂αkρk

∂ t
+∇ · (αkρku) = 0,

∂ρu
∂ t

+∇ · (ρu⊗u+ pI) = 0,
∂αkρkek

∂ t
+∇ · (αkρkeku)+αk pk∇ ·u =−pIδ pk,

(7)

where αk, ρk, pk and ek are the volume fraction, density, pres-
sure and internal energy of each phase, respectively, and for
which k indicates the phase index. The mixture density and
pressure are

ρ =
N

∑
k=1

αkρk and p =
N

∑
k=1

αk pk, (8)

while the mixture total energy is

E = e+
1
2
‖u‖2, (9)

where e is the mixture specific internal energy

e =
N

∑
k=1

Ykek (ρk, pk) . (10)

In (10), ek (ρk, pk) is defined via an equation of state (EOS)
and Yk are the mass fractions

Yk =
αkρk

ρ
. (11)

Herein, we consider two-phase mixtures of gas (g) and liquid
(l), for which the gas is modeled by the ideal-gas EOS

pg = ρg(γg−1)(eg− eg,ref), (12)

and the liquid is modeled by the stiffened-gas (SG) EOS

pl = ρl(γl−1)(el− el,ref)− γlπ∞, (13)

where γ , eref and π∞ are model parameters19. The interfacial
pressure is defined as

pI =
∑

N
k

(
pk ∑

N
j 6=k z j

)
(N−1)∑

N
k zk

, (14)

where zk = ρkck and ck are the acoustic impedance and speed
of sound of the phase k, respectively.

Since pressures are in disequilibrium here, the total energy
equation of the mixture is replaced by the internal-energy
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equation for each phase. Nevertheless, conservation of the
mixture total energy can be written in its usual form

∂ρE
∂ t

+∇ · [(ρE + p)u] = 0. (15)

We note that (15) is redundant when the internal energy equa-
tions are also computed. However, in practice, we include
it in our computations to ensure that the total energy is nu-
merically conserved, and thus preserve a correct treatment of
shock waves.

Based on the hyperbolic study, the mixture speed of sound,
also called frozen speed of sound, is derived as

c2 =
N

∑
k=1

Ykc2
k , (16)

which is found to be in agreement with previously reported
expression20.

We also recall that the model is in velocity equilibrium, re-
spects the second law of thermodynamics and is hyperbolic
with eigenvalues either equal to u or u± c, where u is the ve-
locity in the x-direction.

B. Expression of δ pk

For the pressure-relaxation terms between the phases, δ pk
reads under its general form

δ pk =
N

∑
j 6=k

µk, j (pk− p j) , (17)

where the relaxation coefficients µk, j, related to the k– j inter-
actions ( j are components different from k) and appearing in
the original form of the complete disequilibrium model21, can
be expressed under different forms.

In most if not all the literature, e.g. Schmidmayer et al. 18 ,
Saurel, Petitpas, and Berry 20 , Baer and Nunziato 22 , Saurel
and Abgrall 23 , the relaxation coefficients are taken as unique
and constant for all interactions, i.e. µk, j = µ .

Herein, we propose to use a different approach and to ex-
press them as µk, j = αkα jµ , where µ is a constant parameter.
This leads to

δ pk = µαk

N

∑
j 6=k

α j (pk− p j) . (18)

First, this expression is consistent for N phases, meaning
∑k δ pk = 0, and it does not alter the model properties (first
and second law of thermodynamics and hyperbolicity). Sec-
ond, the combination of the volume fractions allows specific
behaviours:

• a dilute phase takes time to reach equilibrium with the
carrier fluid,

• two phases with approximately the same volume frac-
tion (close to 0.5), e.g. interfaces, or bubbles or droplets
of approximately the size of the computational cells,
quickly reach equilibrium, and

• two dilute phases within a carrier fluid hardly communi-
cate and therefore take a significantly long time to reach
equilibrium through their own interactions.

Hence the local relaxation rate adapts over time to the volume-
fraction configuration within the computational cell. Note that
µ is a finite parameter which can be selected in the ]0,∞]
range. However, for a given mixture and flow regime, only
one value within this range accurately reproduces the physics.
This value change from one configuration to another and must
be determined by comparison with appropriated experimental
data.

C. Numerical method

We numerically solve Eq. (7) using a splitting procedure
between the left-hand-side terms associated with the flow and
the right-hand-side terms associated with our relaxation pro-
cedure.

The left-hand-side terms are solved by an explicit finite-
volume Godunov scheme where, to ensure the conservation
of total energy, a procedure correcting the non-conservative
terms of the internal-energy equations is required and it uses
the mixture total-energy relation (15). The method corrects
the total energy before the relaxation procedure, during the
flux computation of the hyperbolic step, and therefore allows
finite or infinite relaxations18.

The relaxation terms (system of ordinary differential equa-
tions) are integrated with a first-order, explicit, Euler scheme
with time-step subdivisions18. The number of subdivisions is
adapted at each time step to verify the volume-fraction and
pressure constraints. During this procedure, if the pressures
are completely relaxed, i.e. a unique pressure for all phases,
we terminate the Euler scheme and we perform from the initial
state an infinite-relaxation procedure20 to guarantee a unique
pressure and better estimate the solution. This also assures a
faster computation.

As a side note, after applying an infinite pressure relaxation
(µ = ∞), the model converges to the mechanical-equilibrium
model of Kapila et al. 24 and the effective mixture speed of
sound matches Wood’s

1
ρc2

w
=

N

∑
k=1

αk

ρkc2
k
. (19)

A second-order-accurate MUSCL scheme with two-step
time integration is used25, where the first step is a predictor
step for the second and the usual piece-wise linear MUSCL
reconstruction26 with the monotonized central (MC)27 slope
limiter is used for the primitive variables.

In order to resolve the wide range of spatial and temporal
scales of wavefronts and interfaces, an adaptive mesh refine-
ment technique is employed28. The cell i is refined when the
following criterion is fulfilled

|XNb(i, j)−Xi|
min(XNb(i, j)−Xi)

> ε, (20)
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where X is a given flow variable. The criterion is tested for
all neighboring cells, denoted by the subscript Nb(i, j), where
the j-th cell is the corresponding neighbor of the i-th cell. The
threshold is conservatively set to ε = 0.02. The above refine-
ment criterion is tested for density, velocity, pressure and vol-
ume fraction and refines the cell if the criterion is fulfilled for
any of these variables. In addition, neighboring cells of re-
fined cells are also refined to prevent oscillations as well as
loss of precision.

This modelling is implemented in ECOGEN25, which has
been validated, verified and tested for finite-relaxation rate in
various setups such as gas bubble dynamics problems, includ-
ing free-space and near-wall bubble collapses, and liquid–gas
shock tubes. Using infinite-relaxation rate, it has also been
validated for surface-tension problems as well as column and
droplet breakup due to high-speed flow (see, e.g.,18,29–33).

D. Computational setup

The determination of the pressure-relaxation rate µ is a
two-step approach. The first step consists in reducing the µ-
range by simulating the spherical collapse of a bubble in a free
field and determined µ values that agree with the predicted
bubble dynamics given by the Keller–Miksis equation34. The
second step consists in calibrating µ against the experiment
of Sembian et al., where a Mach 2.4 planar shock wave inter-
acts with a cylindrical water droplet. In this experiment, the
growth of a bubble cloud has been imaged. The calibrated µ

is eventually validated against a second experiment of Sem-
bian et al. with M = 1.75, for which no bubble cloud has
been recorded. This determination procedure is done for a
given fluid, that is water droplet. To evaluate the sensitiv-
ity of µ on the material properties of the mixture constituting
the droplet, the experiment of Field, Dear, and Ogren, also
showing shock-induced cavitation, is simulated. It consists
in a spherical gelatin droplet which is impacted by a metallic
slider at 110 m/s.

1. Spherical bubble collapse in a free field

This test case aims to present the behavior of the relax-
ation rate during the spherical collapse of a bubble in a free
field [Fig. 3(a)]. To reduce the computational cost, a one-
dimensional (1D) domain of 3 mm long is used with spherical
axi-symmetry to mimic a three-dimensional bubble31. The
domain consists in high-pressure water at p∞ = 50 atm with
density ρl = 1000 kg/m3. An air bubble is located at the
origin of the computational domain. The initial bubble ra-
dius is R0 = 0.1 mm. The bubble pressure and density are
pb = 3550 Pa (i.e., vapor pressure) and ρb = 0.027 kg/m3, re-
spectively. Initial velocities are nulls. One could note that this
configuration enforces an initial interface disequilibrium. A
non-reflecting boundary condition is used at the far field limit
while a symmetry boundary condition is used at the origin of
the domain. The mesh contains 150 cells from 0 to 0.3 mm,
which corresponds to 100 cells per bubble diameter, and then

the grid is stretched non-uniformly to accommodate the large
computational domain.

FIG. 3: (a) Volumetric representation of the spherical
collapse of a bubble in a free field. (b,c) Computational

setups corresponding to the experiments of Sembian et al.
and Field, Dear, and Ogren, respectively.

2. Cylindrical droplet interaction with a planar shock wave

The two-dimensional (2D) computational setup, corre-
sponding to Sembian et al. experiments, is shown in Fig. 3(b),
where the x-axis is the axis of symmetry on which the center
of the cylindrical droplet of radius Rd is located. Simulations
are performed in a [12Rd × 6Rd] rectangular computational
domain. A symmetric boundary condition is applied to the
bottom side of the computational domain, and non-reflective
boundary conditions are imposed to the remaining boundaries.
The droplet is initially located at the center, and is assumed to
be in mechanical equilibrium with the surrounding air. The
initial droplet is resolved by 100 cells per diameter. Adaptive
mesh refinement (AMR) composed out of three grid levels
and adapted to follow the flow discontinuities is used. The
AMR level is selected based on the analysis of the grid sensi-
tivity (see section III E). The shock wave is initialized inside
the domain, and travels from left to right in air at atmospheric
conditions. For the incident shock Mach number M, the ini-
tial flow field is determined from the Rankine–Hugoniot jump
relations using a downstream density of 1.204 kg/m3 and a
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1 atm pressure. The water has a density of 1028 kg/m3 and is
modelled using the SG EOS19,a with γ = 2.35 and π∞ = 109.
The initial air volume fraction in water is 10−6. This corre-
sponds to the preexisting nuclei in non-purified water. We re-
call that considering the difference in the acoustic impedance
between both phases, the modelling enables to simulate each
phase response, within the mixture, to compression and ex-
pansion effects, i.e. heterogeneous cavitation (without phase
change).

3. High-speed cylindrical droplet impact

The computational setup corresponding to Field, Dear, and
Ogren experiments is shown in Fig. 3(c). The spherical
droplet is modelled using a 2D formulation, where the y-axis
is the axis of symmetry on which the center of the droplet
of radius Rd is located. Simulations are performed in a
[6Rd× 6Rd] square computational domain. A wall boundary
condition and a symmetry boundary condition are applied to
the bottom and left sides of the computational domain, re-
spectively. Non-reflective boundary conditions are imposed
to the two remaining boundaries. The droplet moves down-
ward with a velocity ui = 110 m/s. The initial droplet is re-
solved by 100 cells per diameter and the three-grid level AMR
is used. In the experiments, the droplet is made of a 12 wt%
gelatin. It is modelled using the SG EOS13,35 with γ = 6.72
and π∞ = 3.70×108. Similarly to the previous computational
setup, the initial air volume fraction within the droplet is 10−6.
As a simplification of the experiments, the present setup does
not account for the material properties of the metallic slider,
used in the experiments, and simulates a droplet impacting a
wall at velocity 110 m/s17.

E. Grid convergence for finite pressure relaxation

To consider the spatial convergence of the numerical
method, a grid resolution study is performed by simulating
the interaction of the cylindrical water droplet with a Mach
2.4 plane shock wave at four different resolutions (Fig. 4).
Keeping constant the initial mesh size to 100 cells per di-
ameter, four AMR grid levels are used which eventually re-
sult in 100, 200, 400 and 800 cells per diameter. For this
study, the pressure-relaxation rate is chosen equal to µ = 10.
As time proceeds, the grid sensitivity is examined by com-
paring the growth and collapse of the shock-induced bubble
cloud, within the droplet. Note that in this work, the “shock-
induced bubble cloud” is a liquid–gas mixture. Figure 4 plots
the equivalent radius of the gas phase within the droplet, de-
noted R and defined as

R =

(
1
π

∫
Vd

αgdV
)1/2

, (21)

a The water density is calculated to agree with the sound speed in wa-
ter calculated from the experimental observations of Sembian et al. (≈
1512 m/s), when using the Eq. 13.

where Vd is the droplet volume.
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FIG. 4: Growth and collapse of the gas phase within the
droplet at four grid resolutions. The pressure-relaxation rate
is µ = 10. The droplet is initially resolved by 100 cells per

diameter.

One can observe convergence of the bubble-cloud radius.
We consider the solution with three levels of refinement to be
sufficiently converged for the purpose of the paper.

The rate of convergence is also presented in Figure 5 in
terms of the discrete L2-error ε as

ε =
1
Nt

Nt

∑
i=0

‖R(ti)−Rref(ti)‖
Rref(ti)

, (22)

where Nt is the number of time steps in the temporal win-
dow t̃ ∈ [0,3.25], R(ti) is the bubble radius at time ti of our
simulations and Rref is the reference solution, here chosen as
the solution of the simulation AMR level 3. We see that the
method converges at 1.7 order, matching the expected rate for
AMR simulations of flows mainly governed by tension waves
and exhibiting shocks and interfaces.

IV. RESULTS AND DISCUSSION

In this section, we discuss the results from the three-step
procedure for the determination of the pressure-relaxation
rate.

A. Spherical bubble collapse in a free field

The finite pressure-relaxation-based method allows for a in-
finite range of pressure-relaxation rate. As a first approach,
it is instructive to evaluate the sensitivity of µ by simulating
the spherical collapse of a bubble in free field [Fig. 3(a)] for
various orders of magnitude of µ , and compare the bubble
response to the analytical solution of the Keller–Miksis equa-
tion34; the compressible form of the Rayleigh–Plesset equa-
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FIG. 5: Convergence order of the numerical method. The
discrete L2-error, ε , representative of the convergence rate is

given by Eq. 22.

tion. Assuming a spherical collapse, the Keller–Miksis equa-
tion is based on an asymptotic expansion in Mach number of
the Bernoulli equation. The use of the Keller–Miksis equation
in the present work is predicated on larger measured relative
errors than errors related to the asymptotic expansion and the
inherent presumption of sphericity. This assumption is borned
out by the results displayed in Fig. 6, which discloses the com-
parison between numerical simulations and the Keller-Miksis
solution by plotting the radial bubble-wall evolution. In agree-
ment with the 1D formulation, the effective bubble radius, Rb,
is defined as

Rb =
N

∑
i=1

αg,iVc,i, (23)

where N is the number of grid cells, and αg,i and Vc,i are the
gas volume fraction and the volume of the i-th cell, respec-
tively. The dimensionless time is given by the ratio of the
dimensional time t with the Rayleigh collapse time,

tr = 0.915R0

√
ρl

p∞

, (24)

which is the nominal total collapse time, i.e. the time required
for the bubble to complete its collapse36. Note that the solu-
tions are only displayed until t = 1.05tc, right after the mini-
mum bubble radius is reached, since the subsequent rebounds
for large pressure ratios for the Keller–Miksis equation are
well-known to be physically inaccurate37. When comparing
the Keller-Miksis equation with our simulations, our results
are expected to converge towards the analytical solution up to
the first rebound because of the reducing diffusion. Beyond
the collapse, the solution of the Keller-Miksis equation is here
not accurate as the Mach of the interface is high at the time of
the collapse, and so the compressibility effects are important.
These conditions appear to be out of the validity domain on
which the Keller-Miksis equation has been derived (i.e. low
Mach number). The convergence should thus not occur.

TABLE II: Relative error, εr, between the numerics and the
Keller–Miksis solution on the minimum bubble radius.

µ 0.01 0.1 1 10 ∞

εr (%) 735 275 10 19 18

Figure 6 and Table II show that pressure-relaxation rates
1 . µ . ∞ are in satisfying agreement with theory, while
underestimating the minimum radius up to 19%. The best
agreement with theory is given for µ = 1, where the relative
error εr on the minimum bubble radius, with respect to the
Keller-Miksis solution, is 10%. Note that min(Rb/R0)|µ=10 ≈
min(Rb/R0)|µ=∞. One should also note that decreasing er-
rors is expected for refined grids and for three-dimensional
simulations, for which the non-conservative terms of the axi-
symmetry are absent. Major discrepancies are however re-
ported for µ . 0.1, which significantly overestimate the min-
imum bubble radius.

From this first sensitivity analysis on µ , the range of
pressure-relaxation rate can be restricted to ]0.1,∞]. Note that
this range can be extended when refining the mesh size, so
that µ ∈]a,∞] with a→ 0 for an infinitely small mesh size.
The µ-range ]0.1,∞] is here valid for a reasonable resolution
of 100 cells/diameter. In the following, we calibrate µ upon
experimental observations which is therefore expected to be
in the µ-domain here determined.

B. Cylindrical droplet interaction with a planar shock wave

In this section, we simulate the experiments of Sembian
et al. to first investigate the influence of µ on the droplet in-
ternal flow field, and then to calibrate and validate the corre-
sponding pressure-relaxation rate. Upon validation, paramet-
ric simulations are eventually run to evaluate the critical Mach
number from which, bubbles are likely to grow.

1. Influence of the pressure-relaxation rate

The effect of the pressure-relaxation rate is investigated
by comparing numerical results at four different rates, 1,
10, 100 and ∞, and by using the computational setup dedi-
cated to the shock–droplet interaction [Fig. 3(b)]. Figure 7
shows that larger values of R are reached for higher val-
ues of µ . The maximum radius asymptotically increases
with µ , so that max(R/R0)|µ=100 ≈ 2max(R/R0)|µ=10 and
R(µ = 100) ≈ R(µ = ∞). The simulation thus converges to
an infinite pressure-relaxation rate modelling as µ increases.
Conversely, smaller R are reported for lower values of µ . Nu-
merical results computed for µ = 1 seem to approximate sim-
ulations that do not account for cavitation.

The image sequences of Fig. 8 show the internal flow field
of the droplet and illuminate the various discontinuities us-
ing a numerical schlieren (i.e., exponential of the negative,
normalized density gradient32,38). Image sequences are dis-
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FIG. 6: (a) Radial bubble-wall evolution for a spherical bubble collapse with p∞/pb = 1427 and N = 100 cells, with (b) a
magnified view in the rebound region.
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FIG. 7: Effect of the pressure-relaxation rate on the growth
and collapse of the gas phase within the cylindrical droplet.

played for simulations with µ in the [1, 10, 100] range. For
µ = 1, the numerical schlieren images are overlaid with the
predicted wavefronts computed from Eq. 1 (solid red lines), as
well as the caustic associated to the singly-reflected wavefront
given by Eq. 2 (dashed red line). This superposition reveals
an excellent agreement between the simulation and the the-
ory. The parametric equations of the transmitted shock and the
k-th reflections being derived by assuming they propagate in
an homogeneous phase, this agreement indicates the absence
of bubble growth within the droplet. This is consistent with
Fig. 7, where the dimensionless ratio R/R0 does not increase
as time proceeds. Note that both the theoretical and numeri-
cal singular points (S ) well trace out the caustic associated
to the first reflection (k = 2).

Now considering the simulation results for µ = 10 and

µ = 100, Fig. 8 shows a very similar phenomenology. It how-
ever displays strong discrepancies with the simulation with
µ = 1, that the comparison of the theoretical wave pattern
with the numerical schlieren, along with Fig. 7, evidences to
be related to the growth of the gas phase within the droplet.
First, the transmitted shock propagates downstream. Upon in-
teraction with the droplet boundary, it reflects as an expansion
wave. As previously described, this wavefront consists in two
segment, F2,a and F2,b [see Fig. 8 at t̃ = 0.87 for µ = 1 and
µ = 10, and the schematics in Fig. 8(a)]. This expansion wave
generates a low pressure region which, under some conditions,
is likely to expand the gas phase within the droplet. When the
expansion wave is strong enough to generate a bubble cloud,
it modifies the canonical wave pattern observed in the simula-
tion with µ = 1. In this configuration, the forehead segment
F2,a initiates the growth of the gas phase which scatters the
incoming subsequent segment F2,b [see Fig. 8 from t̃ = 0.87
for µ = 100 and from t̃ = 1.21 for µ = 10, and the schematics
in Fig. 8(a-b)]. As a result of this scattering process, only F2,a
remains and continues to propagate while expanding the gas
phase within the droplet [see Fig. 8 at t̃ = 1.21 for µ = 10 and
µ = 100, and the schematics in Fig. 8(c)]. In this context and
assuming an infinite pressure-relaxation rate, the volume of
the bubble cloud corresponds to volume through which, seg-
ment F2,a propagates. The complete singly-reflected wave-
front (F2,a and F2,b) is known to be a spherically converging
wavefront whose intensity is amplified due to the focusing.
The maximum intensity is reached at the cuspidal point of the
caustic (C ). When the wavefront meets C , it then spherically
diverges by propagating upstream (Fig. 8 at t̃ = 1.56− 1.90
for µ = 1). However, due to the scattering of F2,b, the energy
collected at C decreases as µ increases. This is qualitatively
visible in Fig. 8 at time t̃ = 1.56, where a slight diverging
wave is observed for µ = 10 (light blue box), and no discon-
tinuity is detected for µ = 100. Note that the schlieren in
the light blue box has been post-processed with a contrast en-
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FIG. 8: Influence of µ on the internal flow field of a 22 mm-diameter cylindrical droplet interacting with a planar shock wave
propagating at M = 2.4. (a-c) Schematics of the bubble formation and the scattering process.

hancement algorithm to highlight the wavefront. In the case of
µ = 10, the diverging wavefront propagating upstream weak-
ens as travelling and reflects again at the droplet boundary
(Fig. 8 at t̃ = 1.90). The resulting multiple wavefronts are fi-

nally invisible on the numerical schlieren and other computed
flow fields. From time 1.56 to 2.56 (resp. 2.93), the simula-
tion with µ = 10 (resp. µ = 100) does not exhibit any flow
discontinuity related to the internal wave reflections. Between
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time 2.56 and 2.76 (resp. 2.93 and 3.28), the bubble cloud col-
lapse has been completed in the case µ = 10 (resp. µ = 100)
and the collapse-induced shock (CiS) has been emitted (Fig. 8
at t̃ = 2.76 for µ = 10). Upon collapse, the bubble cloud does
not experience an additional growth phase, which allows the
reflection of the CiS at the rear side of the droplet to propagate
upstream without being scattered (Fig. 8 at t̃ = 2.93 for µ = 10
and t̃ = 3.28 for µ = 100). The CiS is a compression wave,
which implies that its reflection is an expansion wave. This
expansion is strong enough to generate a new bubble cloud
as clearly visible with the third discontinuities at time 3.28
for µ = 100. This last phenomenon is consistent with Figs. 4
and 7, where a rebound in the time-dependent R/R0-ratio is
observed between t̃ = 3.00 and t̃ = 3.25.

2. Pressure-relaxation rate calibration with experiment

The pressure field within the droplet has been previously
shown to be dependent on the pressure-relaxation rate (Sec-
tion IV B 1). We now determine the pressure-relaxation rate
by calibrating the simulation against the experimental data of
Sembian et al.. We first compare and analyze three different
orders of magnitude of µ . For µ equals to 1, 10 and 100,
Fig. 9 displays a comparison of the numerical solutions with
an experimental schlieren photograph at same initial condi-
tions and time. The numerics plot the colored volume fraction
of air (yellow-to-black colormap) overlaid with the grayscale
schlieren. Note that the numerical schlieren can only con-
tour the interface between the gas and the liquid phase, while
an experimental schlieren photograph, sensitive to the first
derivative in density, images the line-path integrated volume
of the cloud (dark area).

Test case µ = 1 shows a very good agreement in both
shape and location of the internal wavefronts, but does not dis-
close the existence of a bubble cloud as evidenced by the vol-
ume fraction mapping and the lack of collapse-induced shock
(CiS). This suggests that µ = 1 underestimates the experi-
mental relaxation rate. The internal wave structure reported
for µ = 10 does not agree neither with the experiments nor
the theory, but however reveals a CiS generated by the previ-
ous growth and collapse of a bubble cloud. The absence of
the wavefront as predicted, and seen for µ = 1, results from
the early development of the cloud that scattered the segment
F2,b. Discrepancies are also observed by comparing the cen-
ter of the experimental bubble cloud and the origin of the
CiS. These observations indicate that µ = 10 overestimates
the experimental relaxation rate. The pressure-relaxation rate
µ = 100 is eventually simulated. As expected, it also over-
estimates the experimental relaxation rate. The internal wave
structure does not agree with the experiments due to the obvi-
ous growth of the gas phase which has not yet completed its
collapse. Finally, comparing simulation results for µ equals to
1, 10 and 100 indicates that the experimental relaxation rate
should be between 1 and 10.

To identify the pressure-relaxation rate exhibiting the better
agreement with the experiments of Sembian et al., we com-
pared the center of the bubble cloud and the collapse time, de-

noted xc and tc respectively, between the experiments and the
numerical simulations. The experimental center of the cloud
is determined by detecting the cloud contour on the lower
halves of Fig. 9 using an edge detection algorithm, and com-
puting the center-of-mass. The collapse time is determined
based on the image sequence available in Figure 8 in Sembian
et al. from which we assume the collapse to occur between
frame (e) and (f). Using the position of the internal and ex-
ternal wavefronts (see Fig. 11), and knowing the size of the
droplet as well as the shock wave Mach number, the dimen-
sional time of frames (e) and (f) has been determined. We
denote ∆tc the time interval between frames (e) and (f).

Figure 10 shows the functional dependency of xc and tc
on the pressure-relaxation rate which is estimated using non-
linear least square fits of the form aµb + c. The two plots
exhibit an asymptotic behavior as µ → ∞, which is consistent
with the analysis of Fig. 9.

Figure 12 plots the (xc, tc)-coordinates for various µ in the
[3,∞] range. The dark solid line corresponds to the experi-
mental xc-coordinate, and the gray filled area to ∆tc. It appears
that the dimensionless cloud center coordinate x̃c linearly de-
pends on the collapse time t̃c. The linear interpolation of the
(xc, tc)-coordinates intersects the experimental xc coordinate
on µ = 3.5, and within the ∆tc window.

Figure 13 shows the numerical results for µ = 3.5 com-
pared with the experimental schlieren image. The upper half
of Fig. 13(a) plots the volume fraction of air with a numerical
schlieren, and the upper half of Fig. 13(b) maps the mixture
pressure field overlaid with the numerical schlieren. Fig. 13(a)
reports an excellent agreement both on the internal wave struc-
ture (dashed red line), and the size and location of the bubble
cloud (solid red line). Within the region R delimited by the
dashed red line, one can note the growth of a second bub-
ble cloud. It results from the interaction of the 3-rd reflected
transmitted shock (F3, red dashed line) with the CiS reflec-
tion. It is evidenced by Fig. 13(b) which shows two regions
R1 and R2 with opposite curvatures and propagation direc-
tions. Region R1 is driven by the downstream propagation of
the F3 wavefront, while region R2 is induced by the upstream
propagation of the CiS reflection. The interplay between F3
and the CiS reflection results in a low pressure region at the
origin of the growth of a second bubble cloud. A closer look
at the experimental schlieren image (see the magnified view
in Fig. 13(b)) shows discontinuities, highlighted with dashed-
dotted white lines, which align with the upstream contour of
region R2 (white dashed line). We infer these discontinuities
to be the CiS reflection. In light of the comparison displays
in Fig. 13, the numerical simulation very well agrees with the
experiment of Sembian et al.b, thus validating the pressure-
relaxation rate µ = 3.5.

A descriptive comparison of the numerical simulations with
the experimental observations for µ ∈ [1,3.5,10], and differ-
ent times, is given in Appendix A.

b Note that Fig. 11 is plotted for µ = 3.5.
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FIG. 9: Comparison of the internal droplet structure, at t̃ = 2.72, between (top) numerical simulations at different µ and
(bottom) experiments of Sembian et al.. The upper-halves display the volume fraction of air (yellow-to-black colormap)

overlaid with numerical schlieren images (white). The lower-halves disclose experimental schlieren images which, for µ = 1, is
compared with the theoretical predictions given by Eqs. 1 for k ∈ [1,7]. Reproduced from S. Sembian, M. Liverts, N. Tillmark,

and N. Apazidis, “Plane shock wave interaction with a cylindrical water column”, Phys. Fluids, 28, 056102, 2016, with the
permission of AIP Publishing.
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FIG. 10: Dependence of x̃c and t̃c coordinates on µ . Both fits
are non-linear least square fits of the form aµb + c with (a)
a =−0.15, b =−0.90 and c = 0.36, and (b) a =−2.61,

b =−0.73 and c = 3.10.

3. Validation and critical Mach number

Sembian et al. carried out experiments at M = 2.4 and
M = 1.75. They observed the growth of a bubble cloud for

FIG. 11: Interaction of a planar shock wave at M = 2.4 with
a 22-mm diameter cylindrical water droplet. The upper half

is a numerical schlieren and the lower-half is a schlieren
photograph from Sembian et al.. Reproduced from S.

Sembian, M. Liverts, N. Tillmark, and N. Apazidis, “Plane
shock wave interaction with a cylindrical water column”,

Phys. Fluids, 28, 056102, 2016, with the permission of AIP
Publishing. The agreement in the internal and external wave

locations enables to calibrate the dimensional time of the
experiments. Both the numerics and the experiment image

the irregular Mach reflection over the droplet, which consists
in the reflected shock wave, the Mach stem, the slip surface
and the incident shock wave (not visible here) all connected

by the triple point. They also image the third internal
reflection, F3, of the transmitted shock.

M = 2.4, but they did not capture it for M = 1.75. We
thus simulate the experiments at M = 1.75 with µ = 3.5 to
assess the determined value of the pressure-relaxation rate.
Figure 14 plots the dimensionless equivalent radius of the
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FIG. 12: Identification of the pressure-relaxation rate
corresponding to the experiment of Sembian et al. and based

on the time and x-location of the cloud center.

cloud for various shock wave numbers. It shows that the
gas phase inside the droplet does not expand for M = 1.75,
which agrees with the experimental observations (max(R̃) ∼
10−10). Running the simulation for M = 1.75, but with
µ = ∞, however shows the significant expansion of the gas
phase, which is completely off the experimental observations.
Hence, we validate the value µ = 3.5. Note that similar
results than for (M,µ) = (1.75,∞) would also be expected
for thermodynamically-consistent, mechanical-equilibrium or
thermodynamical-equilibrium models. In addition, we also
run parametric simulations for M ∈ [1.75,2.4] to evaluate
the critical Mach number, Mc, from which cavitation occurs.
From Fig. 14, we estimate Mc to be in the [1.9,2.0] range
where max(R̃) varies from ∼ 10−9 to ∼ 10−8. For M = 1.9
(resp. M = 2.0), the minimum pressure behind the expansion
wave F2, measured from its total reflection to complete fo-
cusing, ranges from −0.37 MPa to −1.9 MPa (resp. from
−0.5 MPa to −2.4 MPa). This is consistent with the pressure
thresholds for the heterogeneous cavitation reported in the lit-
erature and found to be between −0.1 MPa and −1 MPa39.

C. High-speed droplet impact

We previously determined and validated the pressure-
relaxation rate for a water droplet impacted by a planar shock
wave. To evaluate the dependence of µ on the material prop-
erties, we now simulate the high-speed impact of a cylindrical
gelatin droplet on a solid substrate [Fig. 3(c)] and compare the
results to the experiment of Field, Dear, and Ogren.

After parametric investigation on the pressure-relaxation
rate and calibration on the experimental observations, the sim-
ulation which agrees best with the experiment uses µ = 0.5.
A comparison between the numerics and the experiment is
shown in Fig. 15. The left-hand side of Fig. 15(a) plots the
volume fraction of air, superposed with a numerical schlieren.

FIG. 13: Simulation results for µ = 3.5 compared with the
experimental schlieren image of Sembian et al.. Reproduced
from S. Sembian, M. Liverts, N. Tillmark, and N. Apazidis,

“Plane shock wave interaction with a cylindrical water
column”, Phys. Fluids, 28, 056102, 2016, with the

permission of AIP Publishing. The upper half shows (a) the
volume fraction of air with numerical schlieren and (b) the

mixture pressure field superposed with the numerical
schlieren.

The only numerical schlieren is plotted in Fig. 15(b). Fig-
ure 15(c) sheds light on common features reported on both
numerical and experimental images, used to validate the sim-
ulation. The dashed gray line corresponds to the contour of
the volume fraction of air as drawn in Fig. 15(a) with the
dashed white line. The red dashed lines are discontinuities
extracted form the photograph, while the white dashed lines
have been plotted from the numerical discontinuities. While
discrepancies in the shape and the location of all these dis-
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FIG. 14: Parametric simulations of the shock–droplet
interaction for various shock wave Mach numbers ranging
from 1.75 to 2.4. Labels indicate the (M,µ) combination

used in the simulations.

continuities are observed, numerics and experiments present a
very similar pattern. Among others, a very good agreement is
reported on the shape and location of the denser region of the
bubble cloud, i.e. the centered dark region on the schlieren
images. Finally, we plotted the contour of the bubble cloud
computed from the numerical simulation [white dashed line
in Fig. 15(d)]. Remember that the numerical schlieren only
contours the cloud. The palm-like shape of the bubble cloud
relatively well agrees with the experimental observation. The
location and the curvature of the stem perfectly match the
darker region in the experiments, while the top of the palm
connects the streamers experimentally observed.

V. LOCATION OF THE BUBBLE CLOUD

The location of the caustic’s cuspidal point, (xC ,yC ) has
been proven to be the highest density of shock-induced
cavitation40. This is because the density of rays tangent to
the caustic, which gives a relative measure of the focusing
strength over the caustic, is maximum at the intersection of the
caustic and the droplet axis (y = 0)4. Consequently, previous
research efforts on shock-induced cavitation within a cylindri-
cal droplet assumed the cavitation bubble cloud to appear at
the focus of the reflected wavefront (xC ,yC )

2,13. However, a
close examination of the bubble cloud center as seen in the
experimental observations shows discrepancies between the
theoretical xC value and experimental measurements, errors
of 42± 10% and 23± 5% for the shock–droplet interaction
and the high-speed droplet impact, respectively. As clearly
visible in Fig. 8, the center of the cloud on the x-axis does
not agree with the cuspidal point of the caustic (C ). In the
following, we denote xc,n the location of the cloud determined
from the numerical simulations. The top graph in Fig. 16 plots

the xc,n/xC ratio over the pressure-relaxation rate µ . It is ob-
vious that the theoretical value xC does not agree with the
numerical value xc,n. Note that, in the absence of the bub-
ble cloud growth (µ = 1), a very good match has nevertheless
been reported between xC and the focal point of the reflected
wave simulated. As µ decreases, the xc,n converges towards
xC , while an asymptotic behavior of the relative error between
xc,n and xC is reported when µ → ∞.

Three regimes of droplet shock-induced cavitation can be
defined: (i) no-cavitation regime, (ii) convergence-driven cav-
itation regime, and (iii) the immediate cavitation regime.
When the transmitted shock is not strong enough, the droplet
never experiences cavitation and bubble growth. This is the
no-cavitation regime. We note I1 the intensity of the trans-
mitted shock in this regime. In the other extreme, the strongest
transmitted shock instantaneously results in cavitation upon
the reflection of the transmitted shock as an expansion wave.
This corresponds to the immediate cavitation. We note I2 the
intensity of the transmitted shock in this regime. However,
for transmitted shock with intensity I1 < I < I2, cavita-
tion does not immediately occur upon reflection, but during
the convergence of the expansion wave which induces its am-
plification. This corresponds to the transitional convergence-
driven cavitation regime.

We denote, xt , the location of the expansion wave F2, dur-
ing its convergence, where the critical amplitude for the ex-
pansion wave to sufficiently expand the gas is reached. Lo-
cating the droplet center at the domain origin so that (x,y) =
(0,0), the xt -coordinate is bounded as xC < xt < Rd. Note that
xt = Rd is the condition for the immediate cavitation regime.
The diameter of the bubble cloud measured on the x-axis is
then given by xt − xC . Assuming a volumetric collapse of the
cloud, this implies that the cloud center ∆x is given by

∆x = xC +
xt − xC

2
(25)

The bottom graph in Fig. 16 plots the xc,n/∆x ratio over the
pressure-relaxation rate µ , and shows a very good agree-
ment between the bubble cloud center measured on the nu-
merical simulation and the computed ∆x. Note that the sec-
ond term in the right-hand side of the Eq. 25, xt − xC /2,
is a corrective term to Obreschkow et al.’s theory to esti-
mate the location of the cavitation region in the convergence-
driven cavitation regime. Eq. 25 agrees to locate the high-
est density of shock-induced cavitation at the caustic’s cus-
pidal point (limxt→xC

∆x = xC ). In the immediate cavitation
regime, ∆x = xC + (Rd− xC )/2. In agreement with the nu-
merical simulations and the experimental observations, and
using Eq. 4 for k = 2, the location of the bubble cloud center
during droplet shock-induced cavitation thus obeys

n
3n−1

≤ ∆x

Rd
≤ 1

2

(
1+

n
3n−1

)
(26)

Note that the analysis on the cloud center, here shown for the
configuration of Sembian et al., is also valid for the high-
speed droplet impact configuration.
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FIG. 15: Comparison of the numerical simulation (left) with the experiments of Field, Dear, and Ogren2 (right). Reproduced
from J. E. Field, J. P. Dear, and J. E. Ogren, “The effects of target compliance on liquid drop impact”, J. Applied Phys., 65,
533–540, 1989, with the permission of AIP Publishing. The numerical image shows (a) the colored volume fraction of air

overlaid with a schlieren image. (b) the numerical schlieren image alone. (c) is a magnified view of the bubble cloud observed
on (b). (d) is a second magnified view of the bubble cloud showing, in white dashed line, the bubble cloud contour computed

from the numerics.
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FIG. 16: Comparison between the bubble cloud center
measured from the numerical simulations and theoretical

predictions.

VI. CONCLUSION

In this paper, we introduce a multiphase numerical model,
in velocity equilibrium, using a finite pressure-relaxation rate.
In the context of heterogeneous cavitation, we demonstrate
the finite formulation to be more suitable and effective to sim-
ulate shock-induced cavitation. Based on the shock–droplet
interaction experiments of Sembian et al., where cavitation
bubbles within the droplet have been reported, we calibrate
and validate the pressure-relaxation rate, which is found to be
µ = 3.5. A parametric investigation on µ shows the effect of
the bubble cloud of the internal wave structure which, for a
significant growth, scatters the incoming wavefronts resulting
in their annihilation. For µ > 3.5, the size, the location and
the collapse time of the bubble cloud is overestimated as µ in-
creases, and conversely, these parameters are underestimated
when µ , below 3.5, decreases. We eventually determined the
critical shock Mach number Mc from which, shock-induced
cavitation is possible, to be 1.9 < Mc < 2.0. This is consis-
tent with Sembian et al. who observed cavitation at M = 2.4,
while no bubbles has been imaged at M = 1.75.

Complementing the phenomenological analysis, based on
the numerical results, with ray theory from geometrical acous-
tics, we discussed the theoretical location of the bubble cloud
center. Although usually approximated to be located at the fo-
cal point of the singly reflected wavefront, we actually show
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that it depends on the magnitude of the continuously ampli-
fying expansion wave, so that ∆x ≥ xC |k=2. The correction of
the ∆x is done by adding the (xt−xC )/2 term to the F2’s focal
point location xC . Future work should address the analytical
determination of the xt location, which is here numerically de-
termined.

To evaluate the sensitivity of the pressure-relaxation rate on
the material properties where the cavitation occurs, we then
simulated the experiment of Field, Dear, and Ogren consisting
in the impact of a solid surface onto a gelatin droplet. Field,
Dear, and Ogren observed the cavitation of bubbles under the
internal reflection of the water hammer shock. Our calibration
procedure identified µ = 0.5 to best match the experimental
observations. The droplet dependency on µ is consistent with
the previous observations in the simulation of Sembian et al.’s
configuration. Simulating the spherical collapse of a bubble in
a free field and comparing the bubble dynamics to the analyt-
ical solution of the Keller–Miksis equation, the ]0.1,∞] range
has been found to very well agree with theory. Encouragingly,
the two pressure-relaxation rates determined fits in this µ in-
terval. Note that, in this work, the calibrated values of µ are
only valid for the two configurations we have been concerned
with and for an initial gas volume fraction αg = 10−6. Ef-
fects of αg on the phenomenology of the shock-induced cav-
itation require additional research efforts based on comple-
mentary experiments, which are out of the scope of this paper.
However, to shed light on the possible influence of αg on the
physics and the calibrated µ , additional simulations have been
run and discussed in Appendix B.

Future works would be to integrate phase change in the
numerical model which would require to calibrate again the
pressure-relaxation rate along with the chemical-potential re-
laxation rate. A closer examination on the dependence of µ

on the material properties should also be considered. In this
work, we infer the difference in the µ values between the two
configurations investigated to be related to the changes in the
properties of the material constituting the droplet, i.e. water
versus gelatin. The present modelling and existing experimen-
tal datasets do not allow for the identification of the governing
parameters, while the viscoelasticity, the spatial arrangement
of molecules, the concentration and size of nuclei, or the equa-
tions of state should be considered. Additional experiments,
varying the material properties and the regimes, should be
conducted to independently investigate the influence of these
parameters on the cavitation dynamics.
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Appendix A: Time sequences of shock–droplet interaction

Figure 17 shows image sequences for the interaction of a
22-mm-diameter cylindrical droplet with a planar shock wave
propagating at Mach 2.4. The upper halves are the colored
volume fraction of air (yellow-to-black colormap) overlaid
with a numerical schlieren in grayscale. The lower-halves are
the experimental schlieren photographs from Sembian et al..
The comparison is disclosed for µ equals 1, 3.5 and 10. On
frames (a) and (b), the three simulations are in excellent agree-
ment with the experiments. The transmitted shock and the
expansion wave both agree on time and space. The simula-
tions do not exhibit the expansion of the gas phase within the
droplet, which is in accordance with the absence of bubble
cloud on the photographs. On frame (c), the three numerical
wave patterns are still in line with the experiments. However,
discrepancies on the volume fraction of air arise for µ = 10
(red box), which shows the growth of the gas phase down-
stream the expansion wave, while no bubble cloud is imaged
in the experiment. On frame (d), only µ = 1 and µ = 3.5
well simulate the diverging expansion wave, which is invisi-
ble in the simulations with µ = 10. Simulations with µ = 1
and µ = 3.5 also show an horseshoe-like shape bubble cloud
behind the expansion wave. It is difficult to discuss the va-
lidity of this cloud against the experiment, as the schlieren
photograph exhibits an intricate structure inside the horseshoe
shape which complicates the analysis of the image. However,
it is obvious that the size of the cloud simulated with µ = 10 is
significantly overestimated. On frame (e), experiments show
a bubble cloud (contoured with the red dashed line). In the
simulation with µ = 1, no cloud is visible. In addition, the
intensity of the numerical schlieren is the same for the various
internal reflections, while the F2 wavefront is significantly
stronger on the experimental schlieren. Note that these obser-
vations holds for frame (f). The wave pattern and the bubble
cloud observed in the simulation with µ = 3.5 are however in
a very good agreement, which is also true for frame (f). Al-
though the simulation with µ = 10 significantly fails to repro-
duce the wave pattern, we note that a relatively good match is
reported on the bubble cloud. However, on frame (f) and still
for µ = 10, the CiS reveals a late collapse of the bubble when
comparing with the discontinuities seen in the experiment [see
the magnified view in Fig. 13(b)].

Appendix B: Effect of the initial gas volume fraction

In this work, we are concerned with the growth and coll-
pase of the gas phase involved in the liquid–gas mixture ini-
tially constituting the droplet. This requires to set the initial
gas volume fraction, αg within the droplet. In the experiments
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FIG. 17: (a-f) Comparison of the internal droplet structure between (top) numerical simulations at different µ and (bottom) the
experiment of Sembian et al.. The upper-halves display the volume fraction of air (yellow-to-black colormap) overlaid with

numerical schlieren images (white). The lower-halves disclose experimental schlieren images. Reproduced from S. Sembian,
M. Liverts, N. Tillmark, and N. Apazidis, “Plane shock wave interaction with a cylindrical water column”, Phys. Fluids, 28,

056102, 2016, with the permission of AIP Publishing. The dashed red lines on frames (e) contour the bubble cloud as indicated
in Sembian et al..

of Sembian et al. and Field, Dear, and Ogren, αg, is an un-
known parameter. We therefore estimated αg to be equal to
10−6, which is assumed to be representative of purified water.
The calibrated pressure-relaxation rates for the two configura-
tions are thus only valid for simulations with αg = 10−6. To
assess the sensitivity of the pressure-relaxation rate on the ini-
tial gas volume fraction, we run additional simulations, corre-
sponding to the experiment of Sembian et al., with αg = 10−5

and αg = 10−7. Figure 18 plots the variation of the volume of
the gas phase within the droplet as time proceeds for various
(αg, µ) combinations. Comparing the results for the calibrated
µ = 3.50 with αg = 10−6, relative errors between 40% and
60% are reported on the maximal volume, which remain rela-
tively low when compared to the errors resulting from an infi-
nite pressure-relaxation rate (≈ 650%). The relative errors on
the numerical location of the bubble cloud center with respect
to the experiments are found to be ≈ 10% for both αg = 10−5

and αg = 10−7 with µ = 3.50. We then calibrated again the
pressure-relaxation rates for αg = 10−5 and αg = 10−7 and
found µ = 2.50 and µ = 4.60, respectively. It appears that
changing αg by one order of magnitude (lower or higher) does
not change the order of magnitude of the pressure-relaxation
rate.
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