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ABSTRACT

One key prediction of General Relativity is that gravitational waves are emitted with two independent polarizations. Any
observation of extra polarization mode, spin-1 or spin-0, is consequently considered a smoking gun for deviations from General
Relativity. In this paper, we show that the velocity of merging binaries with respect to the observer gives rise to spin-1 polarization
in the observer frame even in the context of General Relativity. These are pure projection effects, proportional to the plus and
cross polarizations in the source frame, hence they do not correspond to new degrees of freedom. We demonstrate that the spin-1
modes can always be rewritten as pure spin-2 modes coming from an aberrated direction. Since gravitational waves are not
isotropically emitted around binary systems, this aberration modifies the apparent orientation of the binary system with respect
to the observer: the system appears slightly rotated due to the source velocity. Fortunately, this bias does not propagate to other
parameters of the system (and therefore does not spoil tests of General Relativity), since the impact of the velocity can be fully

reabsorbed into new orientation angles.

Key words: gravitational waves —cosmology: theory.

1 INTRODUCTION

Binary systems of compact objects, like neutron stars or black holes,
are predicted by General Relativity to emit gravitational waves (GW)
with spin-2 polarizations. These spin-2 modes have been observed for
the first time by the interferometer LIGO and Virgo in 2015 (Abbott
et al. 2016) and from subsequent GW events (Abbott et al. 2019a,
2021a; The LIGO Scientific Collaboration 2021a, ¢). From a theoret-
ical point of view, it is of crucial importance to model the expected
signal as precisely as possible, in order to use these GW events to
probe, on one hand, the physics of binary systems (Chen 2021), and,
on the other hand, the validity of General Relativity (Abbott et al.
2019b, 2021b; The LIGO Scientific Collaboration 2021d). A lot of
effort has been devoted to calculate GW waveforms accounting for
the relative velocity of the two objects in the binary, up to high order
in the post-Newtonian expansion (see e.g. Blanchet 2014; Isoyama,
Sturani & Nakano 2021; Sturani 2021; Zhao et al. 2021 for a more
recent review). However, these frameworks usually neglect the fact
that the centre of mass of the binary is itself moving with respect to
the observer, due to the gravitational interaction with the host galaxy,
host cluster, and the large-scale structure of the Universe.

Recently, several studies have started exploring the effect of the bi-
nary peculiar velocity on the waveform of a GW signal. In particular,
it has been found that the variation of the velocity during the time of
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observation modifies the waveform in a non-negligible way, an effect
that is relevant for an interferometer like LISA, that will follow GW
signals during months and even years (see e.g. Bonvin et al. 2017;
Tamanini et al. 2020; Toubiana et al. 2021; Sberna et al. 2022). Other
authors have addressed the impact of the binary peculiar motion for
cosmological studies (Mukherjee et al. 2021). However, all these
works focus on kinematic distortions of the amplitude and phase of
the wave, assuming that the two emitted polarizations are affected
in the same way by kinematic effects, i.e. effectively neglecting
the spin-2 (tensorial) nature of the wave and treating the two wave
polarizations as scalar waves. This is of course an approximation, as
we know that a GW is in fact a spin-2 quantity, which consequently
transforms as a rank-2 tensor under a Lorentz boost.

In this paper, we study the effect of the binary peculiar velocity
on the observed signal, accounting for the full polarization structure
of the GW. We show that the component of the binary velocity
orthogonal to the line of sight (hereafter transverse velocity)
generates additional apparent spin-1 contributions to the signal
detected by an interferometer. Moreover, for a network of detectors,
the transverse velocity changes also the time delay between
interferometers (or similarly the phase shift). In Fig. 1, we plot
the effect of various wave polarizations on a ring of test particles.
Spin-1 polarizations give a vectorial deformation of the ring along
the direction of propagation of the wave.

We then show that since the spin-1 modes have the same time
dependence as the spin-2 modes, they can always be rewritten
as spin-2 modes coming from an aberrated direction, and with
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Figure 1. Effect of different wave polarizations on a sphere of test particles.
The arrows indicate the direction of propagation of the wave. Inspired from
de Rham (2014).

a mixing of the two polarizations. Moreover, we show that the
time delay between different interferometers can be rewritten in
terms of the same aberrated direction. This means that only the
aberrated direction and the aberrated polarizations can be measured.
Importantly, the aberrated direction which allows us to re-absorb
spin-1 modes into spin-2 modes is the same as the aberrated
direction inferred from the propagation of electromagnetic signals
emitted by moving sources. As a consequence, detecting a luminous
counterpart would not help in reconstructing the spin-1 modes, nor
measuring the binary transverse velocity.

Since GW emission is not isotropic, aberration and the mixing of
polarizations have a direct impact on the amplitude of the detected
signal. When reconstructing the parameters of the binary system
from the detected signal, we find that the angles describing the
orientation of the binary system are biased by the transverse peculiar
velocity: the system appears rotated with respect to the observer.
Fortunately, this effect has no impact on the other parameters of
the system, like the luminosity distance or the chirp mass,' since the
transverse velocity can be fully reabsorbed into an aberrated direction
and mixed polarizations. As a consequence transverse velocities
do not invalidate reconstruction of cosmological and astrophysical
parameters with GWs.

The rest of the paper is structured as follows: after an overview
of general concepts in Section 2, we present a detailed derivation of
velocity-induced effects on the polarization structure of the wave in
Section 3. In Section 4, we show how spin-1 components can be re-
written as spin-2 components coming from an aberrated direction and
in Section 5 we demonstrate that the time-delay is proportional to this
same aberrated direction. In Section 6, we discuss the observational
impact of aberration and we conclude in Section 7 where we discuss
differences with Torres-Orjuela et al. (2019) and Torres-Orjuela,
Chen & Amaro Seoane (2021a). Technical derivations are presented
in a series of appendices.

Notation: We work with units where the speed of light is set to one,
¢ = 1. With v, and v, we denote projections of the source peculiar
velocity orthogonal to the line of sight, and with v3 the component
along the line of sight. We denote with a tilde quantities in the source

I These quantities are of course affected by the longitudinal component of the
velocity through Doppler effects, but there are not affected by the transverse
velocity that aberrates the signal and mixes the polarizations.
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frame, and without tilde quantities in the observer frame (that we
will also refer to as aberrated frame). Moreover, since typically we
expect peculiar velocities to be non-relativistic, in our computation
we keep only linear order terms in v/c. This leads to simpler formulas
whose physical interpretation is more transparent.

2 GENERAL CONCEPTS

We start by reviewing the standard result of detector armlength
variation induced by an incoming GW emitted by a source which
is at rest with respect to the interferometer. This will serve as a
basis for Section 3 where we show how this derivation is modified
if the source is moving. We use the following assumptions in our
derivation: we consider GWs propagating on a flat background and
in vacuum. We work in the TT gauge and exploit the freedom to
fix it in either reference frame, including the moving one. Since
observations are independent on gauge choices, this does not impact
our conclusions. Our result, though presented for a monochromatic
plane wave for simplicity, remains valid for any signal that can be
written as a superposition of plane waves, with common direction of
propagation. Since such a superposition of plane waves can be used
to describe any GW signal far from the source (in the so-called wave
zone) our conclusions are quite general.

We consider two test particles in free fall, i.e. moving on nearby
geodesics. The vector connecting these two geodesics, £, obeys the
geodesic deviation equation

D"
D12

where 7 is the proper time of the particles and u* is their four velocity.

In the frame of the particles, which we call ‘observer frame,” we

have by construction u* = (— 1, 0, 0, 0), and the geodesic deviation
equation becomes

— R0 ()

d2§i .

s —S;;€7. (2)
Here,  is the coordinate time, which is related to the proper time by
u® = —dt/dt = —1, and S is the driving force matrix, defined as

Sij = Roioj » 3)

where i, j span the spatial coordinates x, y, z.

The passage of a GW affects the Riemann tensor and consequently
the driving force matrix. We perturb the Minkowski metric as g,, =
Nuv + hy. Atlinear order in the perturbation /,,,,, the Riemann tensor
is given by R"", = —26“‘6[,,}1”(],] which is manifestly invariant

under an infinitesimal gauge transformation g,, — g.» — 0,.&, —
0,&,. From (3) the linear order driving force matrix reads

1
Sij == (_aiajhoo + 000hoi — 0000h;; + aiaoh()j) . 4

2

Usually, one assumes that the source emitting a GW is at rest with
respect to the observer. In the wave zone, the metric can be written in
the transverse traceless (TT) gauge, where hgy = ho; = hi = 0 and
0;h;; = 0. With this choice, and assuming that the wave propagates
in vacuum? the driving force matrix reduces to

L.
Sy =—=h"

ShiT )

2Note that in a more general space—time S;; would contain other contributions
(see Flanagan & Hughes 2005).
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leading to
e 1
wr =i ©

with dots denoting differentiation with respect to ¢. For example, for a
given Fourier mode with energy E in the observer frame, propagating
along the z-direction, the driving force matrix reads

g2 [(he i O
S,'j = 7 ]’lx —h+ 0 5 (7)
0 0 0

where i, and h, denote the two polarizations of the GW.

The signal observed in an interferometer (called the strain and
denoted by k) is directly proportional to the difference in length
between its two arms. This is obtained by integrating twice equation
(6) to find the change in length induced by the passing of the GW.
For an interferometer with arms pointing in direction 1 and f, in the
long-wavelength regime,* one finds that the strain is given by

) BN
h = E(lilj — ;) Py, (8)
where
2

The E? factor comes from the double integration over time when
solving for &%. We see that the dimensionless driving force matrix,
Pj;, is the quantity that directly drives the amplitude of the detected
GW signal. Note that for a monochromatic wave, the dimensionless
driving force matrix is directly given by the metric in TT gauge:
Py = hTT.

3 MOVING SOURCES

Let us now generalize these results to the case in which the source has
a non-vanishing peculiar velocity with respect to the observer frame.
In this case, we need to distinguish between quantities calculated in
the observer frame, and quantities calculated in a frame comoving
with the source (hereafter ‘source frame’). Quantities in the source
frame are denoted with a tilde. We denote by v the velocity of the
source with respect to the observer.

3.1 The dimensionless driving force matrix

We start by calculating the dimensionless driving force matrix. Since
observations are performed in the observer frame, we write the
geodesic deviation equation in this frame, such that equations (2)
and (3) remain valid. In this frame, as before, the driving force
matrix can be written in terms of the metric perturbations, #,,, in the
observer frame, i.e.

1 ( %hoo(x)

Sij(x)= 2\ oxioxi

Phoi(x)  hij(x)  ho;(x) (10)
ox00x/ 9x00x0 oxiox0 |’

where we have explicitly written the partial derivatives to keep track
that those are related to the coordinates in the observer frame. We

3For simplicity, we assume that the long-wavelength approximation is valid,
i.e. we ignore the effect of finite traveltime of the photon. We note that this
will not be acceptable for LISA and therefore one would need to properly
account for the time delays in the response function. It is worth noting that
an extra complication would be the much longer observation time at the mHz
frequencies where the impact of the source’s velocity and acceleration would
be even more important.

MNRAS 525, 476-488 (2023)

then need to relate the metric in the observer frame, to the one in the
source frame. Since the observer is moving with velocity —v with
respect to the source, we have

() = A (=) A F (—0)lgp(R) . (1)

where A denotes the boost transformation. We then use the gauge
freedom to write the metric in the source frame in the TT gauge,
i.e. we have fg(¥) = hi(¥) = 0. Note that this is a choice that is
convenient for our calculation, since waveforms for binary systems
have been calculated in the TT gauge in the source frame.

Keeping only terms that are linear in the velocity, we obtain (see
Appendix A for details)

hoo(x) =0, (12a)
hoi(x) = Vnhi (%), (12b)
hij(x) = Eij()z)- (12¢)

Inserting equations (12) into equation (10), we obtain

27 ~
d hmi<x>> )

" dxidx0

1 [ 0%hi;(%)
$ijx) = 2 <_ 0x%9x0 t

Note that here S; depends on x, but also on % through the metric
in the source frame. However, ¥ is itself related to x by a boost:
# = %(x). Let us assume that  is a plane wave in the source frame.
For a monochromatic wave, we have

hij(®) = Ay (k) exp (ik, 5") + Ay k) exp (—ik, &) . (14

02 (%)
" dxidx0

where k* = (—E, k') and #* = (—%, ¥'). Since k,&" = k,x", the
partial derivatives are handled using that 9,,0,, brings a factor
—k,k,. With E = kj the energy in the observer frame, we get

0%hy;(%) 27 o
W =—F hij(x), (153)

0%, (%) ~
UmW = —UmkiEhij(x)s (15b)

leading to

1 ~ ~ =
Sii = 5 (Ehij(®) = Evakilin(6) = Evakjfi(®) - (16)
The geodesic deviation equation in the observer frame is therefore
directly affected by the peculiar velocity of the source. Note that in
equation (16), E is shifted with respect to the energy in the source
frame, E, by the velocity along the direction of propagation

E=E(1+v-@), (17)

where 7i is a unit vector along the direction of propagation: i = k/k.

As before, the geodesic deviation equation must be solved to find
the length difference between the two arms of an interferometer.
Since /1 wv in equation (16) depends on the proper time of the source,
7, we first rewrite equation (2) in terms of ¥ using that df = dr and
thatdr = E/E df (see Appendix C for a derivation of this equality).
We obtain

d2 i E 2 )
dfz =- (E) S;E . (18)

Using equations (16) and (14), and integrating twice over proper
time, we find that the dimensionless driving force matrix is given by

2 (E\’ 2
P,'j = ﬁ <E) S,‘j = ESU . (]9)
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We see that the 1/ E? factor coming from the integration of h wv I
equation (14) over proper time 7 cancels the E? factor in equation
(18). Note that the same result can be found by rewriting fl;w in
terms of quantities in the observer frame, using that E,Li" = k,x",
and then integrating equation (2) directly over the proper time of the
observer. Here for simplicity we have derived equation (19) for a
monochromatic plane wave. However, using the second method, it
is easy to show that the same dimensionless driving form matrix P;;
is found for any waveform that can be written as a superposition of
plane waves with same direction 7 but different energies E.

As an example, let us compute P; for a wave propagating along
the z-direction (in the source frame), i.e. i = (0, 0, 1). Using that
at zeroth order in the velocity k; = En; = Efi;, leading to Ev,k; =
E2v,,i1;, and inserting equation (16) into (19) we obtain

h fo  —viiy — vy
Pj=|  hc  —he vt (20)
—Uchy — v h—vohy +vyhy 0

where /i, and &, are the plus and cross polarizations in the source
frame. Comparing equation (20) with equation (7), we see that the
relative motion of the source with respect to the observer generates
contributions to the dimensionless driving force matrix that are
not transverse to the GW direction 7. P; in equation (20) has
indeed non-zero contributions in direction zx and zy. In the next
section, we determine the observable impact of these non-transverse
contributions.

In general, for a wave propagating in arbitrary direction, we define
a set of orthonormal vectors, adapted to the incoming direction of
the wave in the source frame

i = (sinf cos @, sin@ sin @, cos ), (21a)
&(it) = (sing, —cos §,0), (21b)
é,(it) = (cos 0 cos @, cos O sinp, —sinf). (21c)

With respect to these vectors, the metric in the TT gauge can be
decomposed as

E;T,-T = E+(Eliélj - 521‘52_,‘) + I, (51,‘52_; + EZiélj) , (22)

where it is implied that 2, = &, (#). Inserting this into equations
(16) and (19), and using as before that at linear order in the velocity
Ev,k; = E*v,,ii;, we obtain

P = h+(51i51j - 52i52j) + hx(éliEZj +52i51j)

+ hy (ﬁ,-élj —+ Eliﬁ_;) + hy (ﬁiEZj + Eziﬁj) , (23)
where
hy = ﬁ+,
hy = hy,
h = —vlﬁ+ — vyhy,
hy = —vihy +vohy, (24)

and we have defined the velocity component along the orthonormal
set

U]Ev'él, UzEU'éQ, v3zv-ﬁ. (25)

As before, we see that the source velocity generates contributions to
P;; that are longitudinal: /; and h, are indeed along the direction of
propagation 7i.

Before moving to the calculation of the strain, let us comment on
the relation between the dimensionless driving force matrix and the
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metric in the TT gauge. In the case of non-moving sources we saw
that the dimensionless driving force matrix is equal to the metric
in the TT gauge. For a moving source we note that the symmetry
between source and observer reference frames is broken. Hence,
fixing the TT gauge in one frame is no longer preserved under
transformation on to the other frame. The dimensionless driving
force matrix Pj is therefore no longer equal to the metric in TT
gauge in the source frame. However, we can apply another gauge
transformation to the metric /,,, to bring it in the TT gauge in the
observer frame. In that case, we show in Appendix B that the resulting
metric (B6) becomes equal to the dimensionless driving form
matrix (20).

3.2 The strain

We now project the dimensionless driving force matrix P; onto the
arms of an interferometer [ and i to obtain the strain

| BN
I’l = E(lll, - rh,mJ)P,,
= FL(@hs + Fx(Mhy + Fi(h + F2()h,, (26)

where the antenna patterns are given by

(
5 (Ll; — i) (i 8y + &xifi ) - 27

As an example let us consider the strain response of an interfer-
ometer with arms pointing in the x and y directions: / = (1, 0, 0) and
m = (0, 1, 0). We obtain

1 .. h ~ -
h = E(l,-l_,- — i) Py = —% (cos®d + 1) cos 2
+ hy cosOsin2¢ — (vihy + vahy) sinf sin2¢
— (vihyx — voh ) sinf cosf cos 24 . (28)

From equation (28) we see that the transverse velocity of the source,
namely the components v; and v,, generates contributions to the
signal which are not proportional to the spin-2 antenna patterns

F (1) = —%(cosz 6+ 1)cos2¢, (292)

F,(it) = cos O sin2¢ . (29b)
These new contributions are proportional instead to spin-1 antenna
patterns F; and F,.

In equations (26) and (28), we have identified spin-2 modes as
the contributions that are transverse to the direction of propagation
of the GW, i1, in the source frame. This definition is somewhat
arbitrary, since we do not observe i directly: we reconstruct it from
the antenna patterns F(72) and F (i1). We can therefore wonder if
there exists a direction z such that the strain would contain only spin-
2 polarizations with respect to that direction. In the next section, we
show that this is indeed the case, and that this new direction n is
nothing else than the aberrated direction obtained by applying the
boost transformation on k* (and extracting the spatial part of the
resulting vector).

MNRAS 525, 476-488 (2023)
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4 ABERRATED REFERENCE FRAME

As for electromagnetic signals, we can define an aberrated momen-
tum k* by applying the boost A% on k*. The spatial part of k* is
given by

K= Ak =E (7' +0') (30)
leading to
nzm:ﬁ+v—v3ﬁ:ﬁ+vh 31)

where the transverse velocity v is defined as
vV, =v—usit. 32)

Note that this velocity is transverse to both r and ii since we neglect
contributions quadratic in the velocity.

Let us start by calculating the strain for a detector with arms along
Xy, given by equation (28). From equation (31), we find that the
aberrated angles are related to angles at the source by

0=0+680=0+v,, (33a)

Vg

p=¢+p=0— (33b)

sin@
The apparent divergence at 6§ = 0 is an artefact of the coordinate
singularity there. The right ascension ¢ is indeed ambiguous at § =
0. Inserting this into equation (28), we obtain for the strain

1 .. 0s 6

. . - c
h = E(lilj —mm) Py = hy {F+(n) + ZvlﬂFx(n)
3 9
+ | Falm) — 20, o mm} . (34)
sin 6

We see that the source velocity induces a mixing between the two
polarizations, proportional to F, and F. Defining the polarization
angle

Y = —vy C?—SG , (35)
sin 6

we can rewrite equation (34) as
h = %(i,-l} — ;) Py

e [F+(n) cos(28v) — Fyu(n) sin(Zéw)]

T+ iy [Fx(n)cos(281/f) + Fi(n) sin(25w)]

= hy(m)Fy(n) + hy(n)Fy(n), (36)
where we have defined
hyo(n) = h (i) cos(28v) + h (i) sin(28) , (37a)
hy(n) = hy (1) cos(28v) — () sin(28v) . (37b)

With respect to the aberrated direction, the strain contains therefore
only spin-2 modes, proportional to the spin-2 antenna patterns F
and F.

As aconsequence, at linear order in the velocity there is a complete
degeneracy between a signal propagating along direction 72 with
spin-2 modes, spin-1 modes and polarization angle W, and a signal
propagating in direction n with spin-2 modes and polarization angle
W. Fig. 2 shows the two strains associated with the directions i,
equation (28), and n, equation (36), of a simulated GW signal with
[v| = 0.1 (see caption for more details). As expected, the two signals
differ only at order O(|v|?).

MNRAS 525, 476-488 (2023)
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Figure 2. The first and second panels show two signals constructed for a
GW signal from a binary with 30 M —30 Mg at a distance of 500 Mpc and
with v = (0.1, 0, 0). In the first panel, we construct the strain as the sum of
two spin-1 (orange line) and spin-2 signals (blue line) using the direction 7
and the polarization angle . In the second panel, we construct the signal
using the aberrated direction n and aberrated polarization angle ¥ and only
spin-2 modes. The third panel shows the difference between the two signals
which is of the order of O(|v|?), as our framework is defined at the first
order in peculiar motion. The detector is taken with arms i= (1,0,0) and
m = (0, 1,0).

v Source

n

Observer

Figure 3. The transverse peculiar velocity of the source aberrates the
direction of propagation: the observer sees the source in the correction
position n, but he receives the signal emitted in direction # in the frame
of the source.

This complete degeneracy means that parameter estimations from
the GW signal (36) done using standard spin-2 templates will
inevitably infer (1) the aberrated direction of propagation, rn and
(2) the two ‘mixed’ spin-2 polarization modes /i, and /1. Since the
transverse peculiar velocity of the source is unknown, the mixing
angle (35) is unknown, hence the two intrinsic polarizations /.,
and &, cannot be reconstructed. We stress that, since the geodesic
relating the observer to the source is not affected by the motion of
the source, the measured aberrated direction n represents the true
position of the source. However, equations (36) and (37) indicate
that the signal that is received from direction n corresponds to the
one emitted in direction 7t in the frame of the source, as is depicted in
Fig. 3. Because GWs emission is not isotropic around the source, the
signal emitted in direction 7 differs from the one emitted in direction
n, and this will impact the measurement of the source parameters,
as will be discussed in Section 6. This calculation demonstrates that
source velocities impact GWs in the same way as electromagnetic
signals: the signal received in the observer frame in fact corresponds

20z Iudy |z uo 3senB AQ 9/1602L/9.Y/1/SZS/RI0IME/SEIUW/W0D dNO"0lWapEDE//:SARY WO POPEOIUMOQ



to a signal that has been emitted in a different direction in the source
frame.*

Equation (36) has been derived in the specific case of a detector
with arms pointing in the xy directions. We could wonder if having
detectors with arms pointing in different directions could help us
break the degeneracy between the source velocity and the true
polarizations, and measure the direction at emission ii. We can show
that this is not the case, since the degeneracy exists for all cases. At
linear order in the velocity, we can indeed rewrite equations (23) and
(24) as

P = [(5” —vifi;)(81j — vifij) — (€x — V2f1;)(é2j — Uzﬁj)] hy
+ [(Eu —v171;)(82; — vofij) + (&1 — vi7i ;) (€ — U2ﬁi)]ﬁx
(38)

We see that, working to linear order in velocity, the boosted
dimensionless driving force matrix is equivalent to the one of an
unboosted gravitational wave with polarization axes

(2] :él —Ulfl, (393.)

€, = éz — szl . (39b)

It is clear that these two polarization vectors are orthogonal, and they
correspond to the polarization axes of a wave coming from direction

n=e Ne,=n+vié +vé =in+v,, 40)

which is nothing else than the aberrated direction defined in equation
(31). The polarization axes e; and e, are not the natural ones
associated to the direction n, as defined in equations (21). We can
easily see that the natural axes are related to e; and e; by

. cos 6

e =€ — V€, (41a)
sin 6

. cos 6

& =e+vi—e, (41b)
sin

This is the infinitesimal form of a rotation in two dimensions

é,=RPle,, (42)
where the rotation matrix is

p [ cos(8y) sin(dvy)\ 1 5y
R, = <— sin(8yr) cos(&/x)) - (—Sw 1 ) ’ “3)

and 8¢ is defined in equation (35). Inserting equations (41) into
equation (38), we obtain

P = hy (éliélj - éZiéZj) +hy (éliéZj + éZiélj) , (44)

1
h =

= 5(21}- — )Py = Fr(mhy + Fy(mhy (45)

4We stress that this is in contrast with what happens when the observer has
a peculiar motion with respect to the source rest frame: in this situation,
aberration implies that the observer reconstructs a wrong source localization.
Indeed, mathematically, one needs to solve the geodesic equation for the emit-
ted radiation with zero-velocity initial conditions. However, when extracting
the spatial part of the wavevector at the observer, one has to project on the
spatial plane associated with the moving observer, which differs from the one
of an observer at rest (comoving). The spatial component of the wavevector
is therefore aberrated, hence the inferred source location is aberrated as well.
We will get back to this difference in Section 6.
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where /1, and /i, are given by equations (37) and the antenna patterns
are given by

Fi(n) = *(lAz - ﬁlimj) (éliélj - ézl'ézj) ,

~.

Fy(n) = E(i,-i,- — i) (81:825 + exié1;) - (46)
From this we see that the response of any interferometer can be
written in terms of the two standard antenna patterns F(n) and
F . (n) associated with the aberrated direction n. The two inferred
polarizations /., and &, are modified by the source velocity. Equation
(45) tells us that, even for a network of detectors with different
orientations, the spin-1 modes that are generated by the velocity
of the source can be re-absorbed into spin-2 modes with aberrated
direction r and mixed polarizations /.. and /.. One could however
wonder if by actively searching for vector modes, i.e. by including
spin-1 antenna patterns in the modelling of the signal, one could
measure the amplitude of these new modes, as well as the direction
at emission 2. This turns out to be impossible, since there is no unique
way of splitting the signal into spin-2 modes and spin-1 modes, see
Appendix D for details.

Another manner to understand this total degeneracy is to consider
the geometric interpretation of the transformation of the dimension-
less driving force matrix from the source frame to the observer frame.
Let us consider the rotation vector A;_,, = a(fi A 9,), where « is
the angle between 7i and 7 and (i A ) is a unit vector orthogonal
to them. The rotation around A;_,, carries 2 along a great circle to
n. Its components are
R’ =exp (—A]f

n—n

ekl.j) ~ 8 — il + v, @7)

and the transformation rules (39) are directly seen as the effect of this
latter infinitesimal rotation since they are equivalent to e;; = R,-" é1j
and ey = R,’&,;. Therefore, equation (38) is simply

Pj(n) = R"R/ Ppy(it), (48)

with B, = fziTjT. We recognize the transformation rule of a tensor on
the unit sphere under a rotation R. Hence, the driving force matrix is
also transformed by the infinitesimal rotation which transports ii on
to n. Note that this transformation is equivalent to a parallel transport
of the driving force along the great circle connecting 7 and n, as by
construction both vectors lie in the equatorial plane of vectors normal
to Ajin-

However, even though in the source frame we chose for con-
venience to use the vectors naturally associated with the spherical
components (equations 21b and 21c), the rotated ones, e; and e,
are not directly the unit vectors naturally associated with spherical
coordinates in the observer frame: €; and €,. Both sets being
orthonormal and normal to n, they are related by a rotation around
n of angle 8, that is equation (42), with R ? related to R;’ through
Rab = ééebi = éZRijébj.

Therefore, from the simple transformation rule (48), the spherical
basis components of the driving force, which are P, = Efl E{, 13,, and
Puy = &2} P,

;> are related through

Puy(n) = RER) Peg(i) . (49)

This is yet another way to write the transformation rule of a tensor on
the unit sphere under a rotation, which translates into equations (37)
for the polarization components. In short, the mixing of polarizations
is essentially a consequence of the fact that the basis used to define
polarizations, the natural spherical basis, is not parallel transported
along the great circle connecting # to n, whereas the driving force
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S

Figure 4. Geometrical configuration used to calculate the time delay.

matrix is parallel transported. The only exception is when the great
circle connecting 7 to n is either the equator or a meridian of
the spherical coordinates system. For infinitesimal transformations
that we have considered here, the natural spherical basis is also
(infinitesimally) parallel transported whenever the direction (initial
or final, this is equivalent for infinitesimal transformations) is on
the equator, even if the transformation direction is not tangential
to the equator. That is whenever the conditions 8 = 7/2 (emitting
direction on the equator) or v; = 0 (an aberration along a meridian)
are satisfied, the natural spherical basis is infinitesimally parallel
transported, and we can check that indeed §y = O under these
conditions.

Also, one should bear in mind that the rotation (47) which accounts
for the effect of the transverse velocity depends on fi and is not a
unique global rotation. Therefore, a source with a transverse velocity
is degenerate from a source without velocity but rotated with R, only
because we can observe a single emission direction. Finally, let us
highlight that the transformation of the driving force matrix due to a
transverse velocity, seen as rotation or as parallel transport, is similar
to the transformation of the CMB polarization tensor which is also
a spin-2 quantity (see e.g. section III of Challinor & van Leeuwen
2002).

5 TIME DELAY FROM A NETWORK OF
DETECTORS

For a network of interferometers, in addition to the signal measured
by each detector, the time delay between the different detectors due
to their different position with respect to the source is measured.
This time delay depends directly on the direction of the source, and
provides therefore a precise way of measuring this direction (more
precise than from the antenna patterns, since the phase of the GW
is measured with a better precision than the amplitude of the two
polarizations). We will see that in the case of a moving source the
time delay depends on the aberrated direction r and not on the
direction at emission f.

We consider the geometry plotted in Fig. 4. In the reference frame
of the source (denoted by tilde), the source emits a GW at time
7, = Oand at position R, = (0, 0, 0). The first interferometer receives
the wave at time 7; and position R\, where R, =17, (let us recall
that we work in units ¢ = 1). The observer, who is moving with
a velocity —v with respect to the source, sees boosted coordinates
x, =, R)=A ,ffu, where A is defined in Appendix A. At linear
order in the velocity the time of emission and reception are given by
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t,=1t+v-R, =0, (50a)

t1:I~1+v-R1:R1+U-R1. (50b)

The same calculation applies to the second interferometer. The
difference in arrival time between the two detectors is therefore given
by

AtEtz—tl=R2—R1+U~(R2—R1). (&28)
Defining A as the vector connecting the two detectors:
A=R,- R, (52)

we see from Fig. 4 that

At = Rlz + ﬁ% — 2R Rycos BB, (53a)
R} =R} + A2 — 2R Acosf, (53b)
leading to

Rycosp—R = —Acosa=A-ii. 54)

We are interested in situations where the distance to the source
is much larger than the distance between the detectors, such that
cos B =~ 1. The time delay becomes then

At=A-(i+v). (55)

The distance between the two detectors in the source frame, A, can
be related to the distance in the observer frame using that

R = (A_l)i#xm =—vit; + Ry;, (56)
and similarly for Ry;. This leads to
A=A—-v Ar. (67

Inserting this in equation (55) and keeping only terms at linear order
in the velocity, we obtain

At=A-(i+v—uviii)=A-(i+v.)=A n. (58)

The time delay is therefore proportional to the aberrated direction n.

In practice, one often measures the phase shift between the
waveform detected by two detectors at a fixed reference time, rather
than the time delay. We can easily show that the phase shift is affected
in the same way as the time delay by the source velocity. The phases
at time ¢ and positions R, and R, are given by

o, Ry) = —k'*xyy =E(t—R;-n), (59a)

(¢, Ry) = —k"xp =E(t — Ry -n), (59b)
where k* = E(— 1, n). The phase shift is given by
A®P=-EA-n. (60)

As expected, the phase shift is therefore also proportional to the
aberrated direction n.

This calculation of the time delay (and the phase shift) shows that
a network of detectors also measures the aberrated direction n and
not the intrinsic one 7 in the source frame.

6 OBSERVATIONAL IMPACT OF THE SOURCE
VELOCITY

We have seen that the source velocity affects the strain in two ways:
(1) it aberrates the direction of the source, both in the antenna patterns
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Figure 5. Sketch of the effect of aberration for a binary which is edge-on
with respect to the observer.

and in the time delay and (2) it mixes the two polarizations of the
wave. The first effect is common to any signal emitted by a moving
source. In particular, it affects in the exact same way electromagnetic
signals. The second effect on the other hand is specific to the fact that
a GW is a spinned quantity. This effect is therefore absent in standard
optical or radio surveys, where we measure the intensity (which is a
spin-zero quantity) of the electromagnetic field.’ These two effects
have a direct impact on the measurement of the parameters of the
binary.

As explained in Section 4, aberration means that we do not receive
the GW that have been emitted in the observed direction n, but rather
the GW that have been emitted in a different direction 1. As depicted
in Fig. 5, the source appears therefore in the correct position, but the
form of the wave corresponds to the one emitted in direction 7. Since
GW are not isotropically emitted by the binary system, aberration has
a direct impact on the amplitude of the detected signal. In particular,
even though the signal seems to come from direction n, the inclination
angle that governs the amplitude of the signal is the one associated
with the direction 7i. The relation between 7, defined as the angle
between i and the normal to the plane of the binary in the frame of
the source N (see Fig. 5), and the true inclination angle ¢ that we
would have if there would be no velocity (i.e. the angle between n
and N) directly follows from the relation between n and i and is
therefore linear in the transverse velocity v, . The polarizations /..
and &, in equations (37) depend however not directly on 7 but on its
cosine, which is related to the one in absence of velocity by

cosT=cost—N-v, . (61)

We see that the effect vanishes for a binary that is face-on, since in
this case N is parallel to z, which is perpendicular to v, (note that
this does not hold at higher order in the velocity). On the contrary
the effect is maximum for a binary which is edge-on, and with v
orthogonal to the plane of the binary, as illustrated in Fig. 5. The fact
that the amplitude of the effect depends on NV, i.e. on the orientation
of the plane with respect to the observer, is directly linked to the fact
that the amplitude of the polarizations scales with cos 7. For ¢ = 0, the
change is quadratic in 8¢: cos(?) = cos(0 + 8t) ~ 1 — 8:2/2, whereas
for « = /2 the change is linear: cos(?) = cos(7t/2 + 6t) =~ —6t.

5Tt would however be present if we were to measure directly the electromag-
netic field, which is a spin-1 quantity.
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In Fig. 5, we show for illustration the case where the effect of
aberration is maximum. In this configuration, if the source were not
moving, we would receive only the /. polarization, since only /A is
emitted along n (cos t = 0 meaning that 4, = 0). However, since the
source is moving, we do not receive the GWs that have been emitted
in direction n but rather the GWs that have been emitted in direction
71 (and that we see coming from direction n). Along iz, both 4, and
hy are produced and therefore we observe these two polarizations.
From this we wrongly conclude that the plane of the binary is slightly
inclined with respect to us, i.e. that the binary is not edge-on.

The second effect, the mixing of polarizations, simply means that
the true polarization of the source cannot be inferred, but that one
measures instead a wrong polarization

- cos6
\I-’:\I/—IM

sinf 62)
Like for aberration, this means that the plane of the binary appears
slightly turned (this time around n) with respect to the observer.

We see therefore that the source velocity biases the measurement
of the angles describing the orientation of the binary system with
respect to the observer. However, since these intrinsic parameters are
unknown and randomly distributed over the population of sources,
having a wrong measurement of them has no direct observational
impact. In particular, the other parameters like the luminosity
distance and the chirp mass are not affected by aberration and by the
change in polarization, since the source velocity is fully reabsorbed
into the new direction 7 and the new polarization V. This can be
mathematically seen with the Fisher formalism. The measured strain
h depends on a set of parameters ®. The Fisher matrix associated
with these parameters is given by

i _ [ Oh(©)|0h(©)
FL(a(a,v a@)j)’ (63)
where the scalar product is defined as
e a(f)*b(f)
b) = 4R —————df, 64
(alb) e{/ﬁw S(7) f (64)

where S(f) is the detector power spectral density (PSD), f is the
GW frequency, * indicates the complex conjugate, * the Fourier
components, fiow 1S a low frequency cut-off given by the detector
sensitivity and fi;sn an high-frequency cut-off given by the sampling
rate of data. The bias induced on the parameters ® by the source
velocity is then given by

o _ p-tyij [ 9h(©) _7
A® =T ),< %, ‘h(@) h(@)), (65)

where / is the strain that we would have in the absence of velocity. In
our case, the difference between /4 and & can be fully reabsorbed into
a different polarization and different inclination angle. The observed
strain (36) is found from the transformation rules (37) which are
equivalent to (49), that is to a rotation of the source with R. Hence, we
can write that 2(®) = h(R~'(®)), where R~ (®) are the parameters
characterizing a source with initial parameters © and subsequently
rotated with R~!. That is, if © defines a binary plane orthogonal to
N;, then R~!(®) defines a rotated binary plane orthogonal to R;” 1 N;.
Defining the parameters shifts by §@ = ® — R~!(®), the only non-
zero components of §@® are W and §(cos ¢) since they characterize
the orientation of the binary plane. Taylor expanding around © we
then obtain

0h(®)

h®) = h(®) - ==

50k, (66)
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leading to
, e 0
A® = (I7hH MO)| OMO) ;e
20; | 96,
= (" HIr;80F =50 . (67)

Hence, we see that the only parameters that are biased by the trans-
verse velocity of the source are the polarization and the inclination
angle. In particular, the source transverse velocity has no impact on
the luminosity distance and the chirp mass.

Let us conclude this section by noting that while the difference
between n and 72 depends on the relative velocity between the source
and the observer and is therefore the same if the source moves with
velocity v, with respect to the observer or if the observer moves
with velocity —v,; with respect to the source, the observational
consequences are different in these two cases. In the case of a
moving source, the incoming direction of the GW in the observer
frame is not affected by the motion. As a consequence n denotes
the true direction of the source, and 7 is the direction of emission
in the source frame, as depicted in Fig. 5. The source velocities
have therefore no impact on the observed position of sources in
the sky. The velocity only affects the part of the source that the
observer sees. On the other hand, in the case of a moving observer,
the emitted direction of the GW in the source frame is not affected
by the motion. Consequently, 72 denotes the true direction of the
source, and n the apparent direction, seen by the moving observer.
The observed positions of sources in the sky are therefore affected
by the observer velocity. More precisely, the observer velocity with
respect to a frame were sources are on average at rest generates
a dipole in the source distribution, as computed for example in
Mastrogiovanni et al. (2023) for GW events or in Domenech et al.
(2022) and Dalang, Durrer & Lacasa (2023) for galaxy counts. In
the CMB, the observer velocity not only leaves a dipole which
has been observed (Kogut et al. 1993; Lineweaver et al. 1996),
but also distinctive off-diagonal correlations of both intensity and
polarization which allow to constrain independently its magnitude
(Kosowsky & Kahniashvili 2011) and direction (Amendola et al.
2011; Aghanim et al. 2014; Mukherjee, De & Souradeep 2014; Saha
et al. 2021).

7 CONCLUSIONS

In this paper, we showed that the peculiar motion of a gravitational
wave source with respect to the observer rest frame, induces a
distortion in the observed waveform. In particular, the presence of a
(non-zero) component of the peculiar velocity transverse to the line
of sight gives rise to apparent vector polarizations in the observer
frame. These are pure projection effects, proportional to the plus
and cross polarizations in the source frame. They share therefore the
same time dependence as the spin-2 modes and do not correspond
to new degrees of freedom. We have shown that this implies that the
spin-1 modes can always be rewritten as spin-2 modes coming from
an aberrated direction, and with a slightly different polarization.
One could however wonder if by actively searching for vector
modes, i.e. by including spin-1 antenna patterns in the modelling of
the strain, one could measure the amplitude of these new modes, as
well as the direction of emission at the source. Comparing this with
the aberrated direction obtained from the time-delay, one could then
measure the transverse velocity. We showed that unfortunately, this
is not feasible since, without knowing the peculiar velocity, there
is no unique/preferred way of splitting the signal into spin-2 modes
and spin-1 modes. The only meaningful solution is therefore the one
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with no spin-1 mode. This is indeed the only solution for which the
direction inferred from the waveform and the direction inferred from
time delay are the same.

A direct consequence of the aberration of GW sources is that
the parameters encoding the orientation of the binary system with
respect to the observer are biased. For example, a binary that is edge-
on, for which we should only detect a A polarization, will appear
slightly inclined since we will receive both 4. and A, polarizations.
The inclination angle and the polarization angle that we measure
are therefore not the true ones. Since these angles are unknown
and are independent of other parameters, like the chirp mass or the
luminosity distance, this bias has no direct impact on astrophysical
or cosmological constraints inferred from GW measurements such
as Finke et al. (2021), The LIGO Scientific Collaboration (2021b),
Finke et al. (2022), Leyde et al. (2022), and Mancarella, Genoud-
Prachex & Maggiore (2022). However, it might impact studies
aiming at constraining the inclination distribution of binaries (Vitale,
Biscoveanu & Talbot 2022).

We stress that the same effect is present in the case of an
astrophysical source emitting spin-1 waves: if we look at the electric
field emitted by such a source we find that the direction of propagation
of the spin-1 wave is aberrated and that the only effect on the source
parameters is an apparent rotation (i.e. the intrinsic angles defining
the source orientation are biased). For example, for gamma-ray burst
sources, if one defines an angle ¢ between the line of sight and the
normal to the rotation plane, the effect of a transverse velocity is
given by a change in the source orientation due to aberration given
by equation (61), and a mixing of the two spin-1 polarizations of the
emitted electromagnetic radiation.

We observe that our findings significantly differ from the conclu-
sions of Torres-Orjuela et al. (2019, 2021a, b). The authors of these
references compute distortions in the antenna pattern function of a
GW detector, induced by a peculiar motion of the observer frame
with respect to the frame of emission. Such peculiar motion could be
far from negligible for a binary system orbiting a supermassive black
hole. They find that a velocity component orthogonal to the line of
sight gives a non-monotonic modification of the detected amplitude
of the wave. The authors argue that an additional rotation of the GW
polarization in its plane, which is not taken into account by aberration,
is responsible for this effect. However, as we have explicitly shown
here, and in agreement with appendix C of Boyle (2016), the
effect of a peculiar velocity can always be recast as a direction
dependent rotation. This has a profound impact on the resulting
signal. Indeed, contrary to what is concluded in Torres-Orjuela
et al. (2019), we find that the impact of transverse velocities on
GWs is completely analogous to the one on electromagnetic signals,
i.e. it can be fully explained in terms of Lorentz transformations
without the need of invoking additional corrections. We also find that
transverse velocities do not produce spurious non-GR-like signals
nor modifications in the source luminosity distance, unlike what
is claimed in that reference. In Appendix E, we detail what in
our view were mistakes made in these studies that led to some
misinterpretations about the impact of peculiar motion on GWs
signals.

We conclude with a final remark: one might be tempted to assume
that the large-scale correlations of the (cosmic-flow) velocity across
the sky would induce correlations between the inclination angle of
different sources. Measuring such a correlation would then provide
a direct way of measuring the transverse cosmological velocity.
Unfortunately, the correlation of inclination angle turns out to be
always vanishing: the change in inclination §t =7 — does not
depend directly on the transverse velocity v, but on the projection of
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v, on a random variable N. This completely removes the correlation
(see Appendix F for details). We stress that even if we would
correlate cos: with another quantity, e.g. galaxy number density,
the correlation would also vanish. Aberration can therefore not be
used to measure the transverse velocity of sources.
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APPENDIX A: TRANSFORMATIONS OF THE
METRIC TENSOR

We now consider how metric perturbation in four dimensions
transforms under boost of velocity —v (since the observer moves
with velocity —v with respect to the source). The metric perturbation
transforms as

Buy = ASA P g

h' = A" AR (A
where
AOO =V, AOt = AiO = —YV,
2
Alj = 8; =+ mv’vj N
A=y, Ad=A"=ypv,
A =8+ 1 yviv’, (A2)

with y~2 =1 — vjv’ and 2 = v;v'.

Let us start with upper indices
00 _ A0 AO 7B

= A AR
0i 0 i 7«

h" = A A pheP

Wi = A AR (A3)
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Now we assume that in the non-tilde frame (frame comoving with
the source) we are in TT gauge, implying A% = 1% = 0.

hOO — AOmAOnﬁmn — y2vmvnﬁmn ,

WO — AOmAinﬁmn = —y U, (5; + 14 vivn) ﬁmn ,
14

W= A AR

— (s v i j v’ j Tmn
= m+1+yvvm 8n+mv v, | ™. (A4)

At linear order in the velocity

h? =0
WO — _vmﬁmi ,
A (A5)

In flat space it follows that

hoo =0,
hOi = vmﬁmi s

The wave in the observer frame (without a tilde) is not in the TT gauge
anymore. However, it is possible to fix the TT gauge with respect to
the observer by performing the set of transformations detailed in the
next appendix.

APPENDIX B: GAUGE TRANSFORMATION TO
PURELY SPATIAL PERTURBATION

Suppose we have a general plane gravitational wave of the form
hap = Hyp f(k“x,)  with k%%, = 0.

Without loss of generality we choose spatial axes such that the
gravitational wave is propagating in the Z direction, so that k, =
(1,0, 0, 1). We now consider a gauge transformation of the form

&4 =B F(kx,), B1)

where F(u) is the integral of flu), i.e. dF/du = flu). A gauge
transformation of this form leads to a transformation of the metric
perturbation

R = WO — 9,8, — Dy,

= Hy" f(kx,), (B2)
in which
28 E(E, E,+E
w o 00 B
HY = Hy — z, 0 0 z, (B3)
8.+ 8 B B, 2B,
Making the choice
~ 1 1
B, = EHO(% Hy,, Hy,, _EHOO + Hy, (B4)

reduces the metric perturbation to purely spatial form

0 0 0 0
new __ 0 Hxx ny _HOX
Ha™ = 0 H, H,, —Hy, (BS)

0 _H()x _HO_V sz + HO() — 2H02
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For the particular metric components given in equation (A6), this
gauge transformation gives

Hy" =
0 0 0 0
0 /. ﬁxy —v iy — vyﬁxy
0 iy fy vy 4 Uyl (B6)
0 —vihyy — Vyhyy Vyhyy — Vil 0

in which we have used %, = —/,, and hgy = ho, = h,, = 0. We
see that this gauge transformation makes the purely spatial part of
the metric equal to the electric components of the Riemann tensor,
justifying the assumptions made in Section 3.2.

APPENDIX C: RELATION BETWEEN PROPER
TIMES

To relate the proper time in the source frame df to the proper time
in the observer frame dt, we proceed in the following way. We first
relate the 4-momentum of the GW in the source and observer frame
to the phase ®°

- 0

k, = ST P (CD
= o C2
“__aTu . (C2)

Since GWs propagate along null geodesics, the phase is conserved
during propagation:

0
oxH
Let us now consider two GWs emitted subsequently: the first one
at time 7 with phase (%) and the second one at time 7 4 d¥ with
phase ®(7 4 df). The observer receives these GWs at time t and ©
+ dt, respectively, and since the phase is conserved we have

kik, = -k —@=0. (C3)

P(T 4+ df) — P(F) = (v +dr) — P(7). (C4)
Using that

do ., 0P e
O(T 4+ dT) — ¢(F) =dTf — = dTi* — = dTi“k, = —Ed7,

d? ox«

(C5)

and similarly at the observer, we find
Edf = Edr . (C6)

APPENDIX D: VECTOR AND TENSOR MODE
SPLITTING

One could wonder if by actively searching for vector modes, i.e. by
including spin-1 antenna patterns in the modelling of the signal, one
could measure the amplitude of these new modes, as well as the true
direction fi. Comparing this with the aberrated direction obtained
from the time-delay, one could then measure the transverse velocity
v, . We show here that this turns out to be impossible, since there is
no unique way of splitting the signal into spin-2 modes and spin-1
modes.

‘We start from the dimensionless driving force matrix computed in
equation (23) and we split the transverse velocity of the source as

v, =W —w)+w, (DD

6Since ® is a scalar, it is invariant under a boost: ® = .
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where w is an arbitrary transverse velocity with amplitude w; < 1
such that we can work at linear order in the velocities. The aberrated
direction related to the transverse velocity w is given by

N :ﬁ—|—wlél+w2é2. (D2)

Following equations (39), we define the two natural polarization axes
associated to s:

n _ _ G-
fi=¢ —w1"—w12?;9-ez, (D3a)
N .

I _ez—w2n+w1°5§’:§el. (D3b)

Inserting this into (23), we find for the dimensionless driving force
matrix

P = H, (fliflj - ﬁiﬁj) + A, (ﬁiij + fm‘ﬁj)
(s

+ Hi(si fij + fus;) + Ha(si foj + faisy) (D4)
where
N . cosf .
Ay =hy — 2w ——h (D5a)

sin 6

Ay = hy + 2w 20, (D5b)
1'}1 = _(Ul — wl)fz+ — (Uz — U)Z)]’NZX . (DSC)
H = —( — w)hy + (02 — wo)hy . (D5d)

From this we see that there is an infinite number of ways of splitting
the signal into spin-2 and spin-1 modes with associated aberrated
direction s. There is no way to determine which splitting corresponds
to the true velocity v and therefore the only meaningful solution is
the one with no spin-1 modes. This is indeed the only solution for
which the direction inferred from the waveform and the direction
inferred from time delay are the same.

APPENDIX E: COMPARISON WITH PREVIOUS
STUDIES

We discuss here references Torres-Orjuela et al. (2019, 2021a, b),
which find results that are in contradiction with our study.

In Torres-Orjuela et al. (2021a), the authors detail the claim made
in Torres-Orjuela et al. (2019) that when considering aberration and
polarization rotation, the GW signal emitted changes in a way which
cannot be reabsorbed into a redefinition of the source’s intrinsic
orientation. They deduce that this allows the detection of the constant
motion of a source. This is in direct contradiction with what we have
shown explicitly in this article. Their proof is based on the deter-
mination of the transformation matrix that relates multipoles in the
source frame to multipoles in the observer frame. Their equation (37)
can be seen as such a transformation when using a multi-index
notation L = (£, m), as it is of the form 3, VEH! = H'*, with
y,% a matrix, similar to the Dy, ¢,,» of Gualtieri et al. (2008) relating
the Weyl scalar multipoles. When they reach their equation (38), they
claim that it is in contradiction with their initial assumption (33) that
aberration is a remapping of the directions of the gravitational fields
emitted. They therefore conclude that the effect of a boost cannot be
simply described as a remapping of the source orientation, in contrast
with what happens in electromagnetism. However, this conclusion
is based on a series of mistakes that lead to equation (39). First,
equation (38) just determines the components of the transformation
matrix, i.e. yf;;‘“ — 8185 o Cy(¢, k, m), where Cy(£, k, m) are some
given coefficients for s = —1, 0, 1. There is no contradiction when
realizing that the ths of equation (38) is also of the form Y, VEHE;
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hence, the extraction of coefficients is immediate when choosing
sources such that H%™ = §¢8™.7 In addition, the expressions of
these coupling coefficients C; are also not correct.® This is related to
the fact that the authors have exchanged 04 and 9y when obtaining
their equation (27) from their equation (25). Furthermore, when
using the angular momentum raising and lowering operators of their
equation (6) one finds 2i9, = e~'*J, — ¢ J_, hence

0y (" yom) = B2 (=@ F T ) yortle

—SCTrmE+1= m)SY‘fvm—'ew) . (E1)

This expression is not equal to (H“"/2)A(£, m),Y>™, which is the
result used in Torres-Orjuela et al. (2021a), because (Y& "+ le¥i £
sY4™. Also they found that the angle «, which is usually referred to
as the spin phase, appears only at second order in the boost velocity,
hence it was removed from their equation (25). However, the spin
phase is due to the non-parallel transport of the spherical basis, and
appears at linear order in the velocity, as seen in equation (B25) of
Gualtieri et al. (2008), and corresponds to the angle 1 in the present
article.” These mistakes also explain why the authors of Torres-
Orjuela et al. (2021a) find in equation (32) that all modes £ are
excited by a boost at linear order in the velocity from a mode ¢ in the
source frame, whereas it is only the case for modes satisfying ¢ — 1 <
£ < £+ 1 (see section I11.C.2 of Gualtieri et al. 2008). All subsequent
results, namely sections VI and VII of Torres-Orjuela et al. (2021a),
are affected as they are based on the use of equation (32). The exact
same mistakes plague equations (7)—(10) of Torres-Orjuela et al.
(2021b) which are the basis of the subsequent analysis.

Note that the problem of finding how the multipoles of a signal are
transformed by a boost, that is finding the V%, has already been solved
for spin-0 and spin-2 quantities in the context of CMB temperature
and polarization in e.g. Challinor & van Leeuwen (2002), Dai &
Chluba (2014), Yasini & Pierpaoli (2017), or appendix G of Cusin,
Pitrou & Uzan (2017). Both problems are related because the corre-
lation of spin-1 fields with null momentum (the photons) generates
a spin-2 structure, also with null momentum, which describes the
linear polarization of a photon bath (see e.g. Pitrou 2021). In any

"To illustrate the contradiction, they consider the special case of a source with
only £ = 2 and m = 2 and obtain equation (39). However, when replacing
by such particular source one must use H%" = 8585", hence in equation (39)
the first 1 should be replaced by 6,38,21, and it lacks a factor 87" in front of
Coy, a factor 6’2’”'1 in front of C and a factor 82"_] in front of C_, that is
equation (39) allows to determine separately the individual components of
the transformation matrix y,f;zz_x — 8,%6? x Cs(2,k,2—s)fors=—1,0, 1.
81t can be easily checked on a special case, using the notation and equa-
tion numbers of Torres-Orjuelaetal. (2021a). Let us consider a source velocity
along the azimuthal direction, which from equations (54) and (55) implies
Ci(l, k, m) = 0 since vy = 0. If in addition the source has an azimuthal
symmetry (m = 0), then Co(¢, k, 0) = 0, from the pre-factor m of expression
(53). One would then deduce that no extra mode is generated in the observer
frame. However in the simple case of a source with only £ =2 and m = 0 the
observer must see a mode with £ = 3 and m = 0 as detailed in section III1.C.2
of Gualtieri et al. (2008).

°In equation (B25) of Gualtieri et al. (2008), we read a spin phase which ex-
pressed in our notation is x = — cot(6/2)v;. However, this has been obtained
in application of equation (3.12) of Newman & Penrose (1966) that allows to
obtain the spin phase for the Cartesian basis in the complex plane related by
a stereographic projection. Since this Cartesian basis is related to the natural
spherical basis by a rotation in the plane with an angle ¢ [see explanation after
equation (3.7) of the latter article] we rather find, using equation (33b), that
the spin phaseis 89 = x + ¢ — ¢ = — (cot(8/2) — cscH) v; = —vj cotd,in
agreement with equation (35).
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case, the crucial point is that since we are observing from a single
position, we cannot see the change in the multipoles due to the source
velocity. We can only sample the GW field in one direction, and as
we have demonstrated in this paper, the boosted field in one direction
is fully degenerate with the unboosted one in a different direction.

APPENDIX F: ZERO CORRELATION OF
ORIENTATION ACROSS THE SKY

In this appendix, we schematically prove that the two-point correla-
tion function of the source orientation across the sky is vanishing.
We assume to have two pixels across the sky, each one containing a
set of GW binary systems, with random orientations N in the first
pixel and N} in the second one.

When we correlate two different pixels in the sky, we get

(cosTjcosiy) = —(cosi N, - vi) — (cost, N, - vi)

+{costj costy) + (N1 - v Ny - 02), (FD)
where the mean has to be interpreted as an ensemble average when
acting on stochastic velocities and as a geometric mean over a bunch

of sources when acting on geometric quantities. This can be rewritten
as

(cosT) cosTy) = —(costy)(Na - v}) — (cos ) (N, - v!)
+{(cost;){cos tp) + (N{N{)(UL vij) ) (F2)

It is apparent that the first three terms on the right-hand side vanish.
However, the last vanishes as well due to

(N{N{) = (N})(N]) =0, (F3)

which states that the orientation in two different pixels is not
correlated, and the orientations inside each pixel are randomly
distributed.

Notice that if one takes the limit 1 — 2 in (F2), it appears that
cosmological velocities give a modification in the variance of the
velocity field. This is due to the fact that when computing the
aberration angle, we kept only the first order term in the velocity.
However, we need to make sure that unit vectors have unit norm, as an
incorrect normalization brings biases when estimating the variance
of cos . Explicitly, for the aberrated direction, one has to consider

ii = ntv (F4)

V1+v? '
Now, we use that the average of a direction vector is such that
(NI‘N/‘) = (1/3)é;;; hence, {(cos1)?) = (n - n)/3 = 1/3. Then, we
compute

2 ((cos t)?) + (N -v,)?) _ %"‘% _1
(cos D) = T = =3 (F5)

Hence, ((cos?)?) = ((cost)?), showing that the variance of the
orientation is also not affected by a global velocity flow.

This paper has been typeset from a TeX/I&TEX file prepared by the author.
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