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A B S T R A C T 

One key prediction of General Relativity is that gravitational waves are emitted with two independent polarizations. Any 

observation of extra polarization mode, spin-1 or spin-0, is consequently considered a smoking gun for deviations from General 
Relativity. In this paper, we show that the velocity of merging binaries with respect to the observer gives rise to spin-1 polarization 

in the observer frame even in the context of General Relativity. These are pure projection effects, proportional to the plus and 

cross polarizations in the source frame, hence they do not correspond to new degrees of freedom. We demonstrate that the spin-1 

modes can al w ays be rewritten as pure spin-2 modes coming from an aberrated direction. Since gravitational waves are not 
isotropically emitted around binary systems, this aberration modifies the apparent orientation of the binary system with respect 
to the observer: the system appears slightly rotated due to the source velocity . Fortunately , this bias does not propagate to other 
parameters of the system (and therefore does not spoil tests of General Relativity), since the impact of the velocity can be fully 

reabsorbed into new orientation angles. 

Key w ords: gravitational w aves – cosmology: theory. 
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 I N T RO D U C T I O N  

inary systems of compact objects, like neutron stars or black holes,
re predicted by General Relativity to emit gravitational waves (GW)
ith spin-2 polarizations. These spin-2 modes have been observed for

he first time by the interferometer LIGO and Virgo in 2015 (Abbott
t al. 2016 ) and from subsequent GW events (Abbott et al. 2019a ,
021a ; The LIGO Scientific Collaboration 2021a , c ). From a theoret-
cal point of view, it is of crucial importance to model the expected
ignal as precisely as possible, in order to use these GW events to
robe, on one hand, the physics of binary systems (Chen 2021 ), and,
n the other hand, the validity of General Relativity (Abbott et al.
019b , 2021b ; The LIGO Scientific Collaboration 2021d ). A lot of
ffort has been devoted to calculate GW waveforms accounting for
he relative velocity of the two objects in the binary, up to high order
n the post-Newtonian expansion (see e.g. Blanchet 2014 ; Isoyama,
turani & Nakano 2021 ; Sturani 2021 ; Zhao et al. 2021 for a more
ecent re vie w). Ho we ver, these frame works usually neglect the fact
hat the centre of mass of the binary is itself moving with respect to
he observer, due to the gravitational interaction with the host galaxy,
ost cluster, and the large-scale structure of the Universe. 
Recently, several studies have started exploring the effect of the bi-

ary peculiar velocity on the waveform of a GW signal. In particular,
t has been found that the variation of the velocity during the time of
 E-mail: camille.bonvin@unige.ch 

 

d  

a  

Published by Oxford University Press on behalf of Royal Astronomical Socie
Commons Attribution License ( http://cr eativecommons.or g/licenses/by/4.0/), whi
bservation modifies the waveform in a non-negligible way, an effect
hat is rele v ant for an interferometer like LISA, that will follow GW
ignals during months and even years (see e.g. Bonvin et al. 2017 ;
amanini et al. 2020 ; Toubiana et al. 2021 ; Sberna et al. 2022 ). Other
uthors have addressed the impact of the binary peculiar motion for
osmological studies (Mukherjee et al. 2021 ). Ho we ver, all these
orks focus on kinematic distortions of the amplitude and phase of

he wave, assuming that the two emitted polarizations are affected
n the same way by kinematic ef fects, i.e. ef fecti v ely ne glecting
he spin-2 (tensorial) nature of the wave and treating the two wave
olarizations as scalar waves. This is of course an approximation, as
e know that a GW is in fact a spin-2 quantity, which consequently

ransforms as a rank-2 tensor under a Lorentz boost. 
In this paper, we study the effect of the binary peculiar velocity

n the observed signal, accounting for the full polarization structure
f the GW. We show that the component of the binary velocity
rthogonal to the line of sight (hereafter transverse velocity)
enerates additional apparent spin-1 contributions to the signal
etected by an interferometer. Moreo v er, for a network of detectors,
he transv erse v elocity changes also the time delay between
nterferometers (or similarly the phase shift). In Fig. 1 , we plot
he effect of various wave polarizations on a ring of test particles.
pin-1 polarizations give a vectorial deformation of the ring along

he direction of propagation of the wave. 
We then show that since the spin-1 modes have the same time

ependence as the spin-2 modes, they can al w ays be rewritten
s spin-2 modes coming from an aberrated direction, and with
© 2023 The Author(s). 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 
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Figure 1. Effect of different wave polarizations on a sphere of test particles. 
The arrows indicate the direction of propagation of the wave. Inspired from 

de Rham ( 2014 ). 
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 mixing of the two polarizations. Moreo v er, we show that the
ime delay between different interferometers can be rewritten in 
erms of the same aberrated direction. This means that only the 
berrated direction and the aberrated polarizations can be measured. 
mportantly, the aberrated direction which allows us to re-absorb 
pin-1 modes into spin-2 modes is the same as the aberrated 
irection inferred from the propagation of electromagnetic signals 
mitted by moving sources. As a consequence, detecting a luminous 
ounterpart would not help in reconstructing the spin-1 modes, nor 
easuring the binary transverse velocity. 
Since GW emission is not isotropic, aberration and the mixing of

olarizations have a direct impact on the amplitude of the detected 
ignal. When reconstructing the parameters of the binary system 

rom the detected signal, we find that the angles describing the 
rientation of the binary system are biased by the transverse peculiar 
elocity: the system appears rotated with respect to the observer. 
ortunately, this effect has no impact on the other parameters of

he system, like the luminosity distance or the chirp mass, 1 since the
ransv erse v elocity can be fully reabsorbed into an aberrated direction 
nd mixed polarizations. As a consequence transverse velocities 
o not invalidate reconstruction of cosmological and astrophysical 
arameters with GWs. 
The rest of the paper is structured as follows: after an o v erview

f general concepts in Section 2 , we present a detailed deri v ation of
elocity-induced effects on the polarization structure of the wave in 
ection 3. In Section 4 , we show how spin-1 components can be re-
ritten as spin-2 components coming from an aberrated direction and 

n Section 5 we demonstrate that the time-delay is proportional to this
ame aberrated direction. In Section 6 , we discuss the observational 
mpact of aberration and we conclude in Section 7 where we discuss
ifferences with Torres-Orjuela et al. ( 2019 ) and Torres-Orjuela, 
hen & Amaro Seoane ( 2021a ). Technical deri v ations are presented

n a series of appendices. 
Notation: We work with units where the speed of light is set to one,

 = 1. With v 1 and v 2 we denote projections of the source peculiar
elocity orthogonal to the line of sight, and with v 3 the component
long the line of sight. We denote with a tilde quantities in the source
 These quantities are of course affected by the longitudinal component of the 
elocity through Doppler effects, but there are not affected by the transverse 
elocity that aberrates the signal and mixes the polarizations. 

S

2

(

rame, and without tilde quantities in the observer frame (that we
ill also refer to as aberr ated fr ame ). Moreo v er, since typically we
 xpect peculiar v elocities to be non-relativistic, in our computation
e keep only linear order terms in v/ c . This leads to simpler formulas
hose physical interpretation is more transparent. 

 G E N E R A L  CONCEPTS  

e start by re vie wing the standard result of detector armlength
ariation induced by an incoming GW emitted by a source which
s at rest with respect to the interferometer. This will serve as a
asis for Section 3 where we show how this derivation is modified
f the source is moving. We use the following assumptions in our
eri v ation: we consider GWs propagating on a flat background and
n vacuum. We work in the TT gauge and exploit the freedom to
x it in either reference frame, including the moving one. Since
bservations are independent on gauge choices, this does not impact 
ur conclusions. Our result, though presented for a monochromatic 
lane wave for simplicity, remains valid for any signal that can be
ritten as a superposition of plane waves, with common direction of
ropagation. Since such a superposition of plane waves can be used
o describe any GW signal far from the source (in the so-called wave
one) our conclusions are quite general. 

We consider two test particles in free fall, i.e. moving on nearby
eodesics. The vector connecting these two geodesics, ξμ, obeys the 
eodesic deviation equation 

D 

2 ξμ

Dτ 2 
= −R 

μ
νρσ ξρu 

νu 

σ , (1) 

here τ is the proper time of the particles and u μ is their four velocity.
n the frame of the particles, which we call ‘observer frame,’ we
ave by construction u μ = ( − 1, 0, 0, 0), and the geodesic deviation
quation becomes 

d 2 ξ i 

d t 2 
= −S ij ξ

j . (2) 

ere, t is the coordinate time, which is related to the proper time by
 

0 = −d t /d τ = −1, and S is the driving force matrix , defined as 

 ij ≡ R 0 i0 j , (3) 

here i , j span the spatial coordinates x , y , z. 
The passage of a GW affects the Riemann tensor and consequently

he driving force matrix. We perturb the Minkowski metric as g μν =
μν + h μν . At linear order in the perturbation h μν , the Riemann tensor

s given by R 

μν
ρσ = −2 ∂ [ μ∂ [ ρh 

ν] 
σ ] which is manifestly invariant

nder an infinitesimal gauge transformation g μν → g μν − ∂ μξν −
 νξμ. From ( 3 ) the linear order driving force matrix reads 

 ij = 

1 

2 

(−∂ i ∂ j h 00 + ∂ 0 ∂ j h 0 i − ∂ 0 ∂ 0 h ij + ∂ i ∂ 0 h 0 j 

)
. (4) 

sually, one assumes that the source emitting a GW is at rest with
espect to the observer. In the wave zone, the metric can be written in
he transverse traceless (TT) gauge, where h 00 = h 0 i = h 

i 
i = 0 and

 i h ij = 0. With this choice, and assuming that the wave propagates
n vacuum 

2 the driving force matrix reduces to 

 ij = −1 
ḧ 

TT 
ij , (5) 
MNRAS 525, 476–488 (2023) 

2 

 Note that in a more general space–time S ij would contain other contributions 
see Flanagan & Hughes 2005 ). 
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eading to 

d 2 ξ i 

d t 2 
= 

1 

2 
ḧ 

TT 
ij ξ

j , (6) 

ith dots denoting differentiation with respect to t . For example, for a
iv en F ourier mode with energy E in the observer frame, propagating
long the z-direction, the driving force matrix reads 

 ij = 

E 

2 

2 

⎛ ⎝ 

h + 

h × 0 
h × −h + 

0 
0 0 0 

⎞ ⎠ , (7) 

here h + 

and h × denote the two polarizations of the GW. 
The signal observed in an interferometer (called the strain and

enoted by h ) is directly proportional to the difference in length
etween its two arms. This is obtained by integrating twice equation
 6 ) to find the change in length induced by the passing of the GW.
or an interferometer with arms pointing in direction ̂  l and ˆ m , in the

ong-wav elength re gime, 3 one finds that the strain is giv en by 

 = 

1 

2 
( ̂ l i ̂  l j − ˆ m i ˆ m i ) P ij , (8) 

here 

 ij ≡ 2 

E 

2 
S ij . (9) 

he E 

2 factor comes from the double integration over time when
olving for ξ i . We see that the dimensionless driving force matrix,
 ij , is the quantity that directly drives the amplitude of the detected
W signal. Note that for a monochromatic wave, the dimensionless
riving force matrix is directly given by the metric in TT gauge:
 ij = h 

TT 
ij . 

 M OV I N G  S O U R C E S  

et us now generalize these results to the case in which the source has
 non-vanishing peculiar velocity with respect to the observer frame.
n this case, we need to distinguish between quantities calculated in
he observer frame, and quantities calculated in a frame comoving
ith the source (hereafter ‘source frame’). Quantities in the source

rame are denoted with a tilde. We denote by v the velocity of the
ource with respect to the observer. 

.1 The dimensionless driving force matrix 

e start by calculating the dimensionless driving force matrix. Since
bservations are performed in the observer frame, we write the
eodesic deviation equation in this frame, such that equations ( 2 )
nd ( 3 ) remain valid. In this frame, as before, the driving force
atrix can be written in terms of the metric perturbations, h μν in the

bserver frame, i.e. 

 ij ( x )= 

1 

2 

( 

−∂ 2 h 00 ( x ) 

∂ x i ∂ x j 
+ 

∂ 2 h 0 i ( x ) 

∂ x 0 ∂ x j 
− ∂ 2 h ij ( x ) 

∂ x 0 ∂ x 0 
+ 

∂ 2 h 0 j ( x ) 

∂ x i ∂ x 0 

) 

, (10) 

here we hav e e xplicitly written the partial deri v ati ves to keep track
hat those are related to the coordinates in the observer frame. We
NRAS 525, 476–488 (2023) 

 For simplicity, we assume that the long-wavelength approximation is valid, 
.e. we ignore the effect of finite traveltime of the photon. We note that this 
ill not be acceptable for LISA and therefore one would need to properly 

ccount for the time delays in the response function. It is worth noting that 
n extra complication would be the much longer observation time at the mHz 
requencies where the impact of the source’s velocity and acceleration would 
e even more important. 

W

U  

t

P

hen need to relate the metric in the observer frame, to the one in the
ource frame. Since the observer is moving with velocity −v with
espect to the source, we have 

 μν( x) = 	 

α
μ ( −v ) 	 

β
ν ( −v ) ̃  h αβ( ̃  x ) . (11) 

here 	 denotes the boost transformation. We then use the gauge
reedom to write the metric in the source frame in the TT gauge,
.e. we have ˜ h 00 ( ̃  x ) = 

˜ h 0 i ( ̃  x ) = 0. Note that this is a choice that is
onvenient for our calculation, since waveforms for binary systems
ave been calculated in the TT gauge in the source frame. 
Keeping only terms that are linear in the velocity, we obtain (see

ppendix A for details) 

 00 ( x) = 0 , (12a) 

 0 i ( x) = v m ̃

 h mi ( ̃  x ) , (12b) 

 ij ( x) = ̃

 h ij ( ̃  x ) . (12c) 

nserting equations (12) into equation ( 10 ), we obtain 

 ij ( x ) = 

1 

2 

( 

−∂ 2 ˜ h ij ( ̃  x ) 

∂ x 0 ∂ x 0 
+ v m 

∂ 2 ˜ h mj ( ̃  x ) 

∂ x i ∂ x 0 
+ v m 

∂ 2 ˜ h mi ( ̃  x ) 

∂ x j ∂ x 0 

) 

. (13) 

ote that here S ij depends on x , but also on ˜ x through the metric
n the source frame. Ho we ver, ˜ x is itself related to x by a boost:
˜  = ˜ x ( x). Let us assume that ˜ h is a plane wave in the source frame.
or a monochromatic wave, we have ˜ 
 ij ( ̃  x ) = A ij ( ̃ k ) exp 

(
i ̃  k μ ˜ x μ

) + A 

∗
ij ( ̃ k ) exp 

(−i ̃  k μ ˜ x μ
)

, (14) 

here ˜ k μ = ( − ˜ E , ̃  k i ) and ˜ x μ = ( − ˜ τ , ̃  x i ). Since ˜ k μ ˜ x μ = k μx μ, the
artial deri v ati ves are handled using that ∂ x μ∂ x ν brings a factor
k μk ν . With E ≡ k 0 the energy in the observer frame, we get 

∂ 2 ˜ h ij ( ̃  x ) 

∂ x 0 ∂ x 0 
= −E 

2 ˜ h ij ( ̃  x ) , (15a) 

 m 

∂ 2 ˜ h mj ( ̃  x ) 

∂ x 0 ∂ x i 
= −v m 

k i E ̃

 h ij ( ̃  x ) , (15b) 

eading to 

 ij = 

1 

2 

(
E 

2 ˜ h ij ( ̃  x ) − Ev m 

k i ̃  h mj ( ̃  x ) − Ev m 

k j ̃  h mi ( ̃  x ) 
)

. (16) 

he geodesic deviation equation in the observer frame is therefore
irectly affected by the peculiar velocity of the source. Note that in
quation ( 16 ), E is shifted with respect to the energy in the source
rame, ˜ E , by the velocity along the direction of propagation 

 = 

˜ E 

(
1 + v · ˜ n 

)
, (17) 

here ˜ n is a unit vector along the direction of propagation: ˜ n ≡ ˜ k / ̃ k .
As before, the geodesic deviation equation must be solved to find

he length difference between the two arms of an interferometer.
ince ˜ h μν in equation ( 16 ) depends on the proper time of the source,

˜ , we first rewrite equation ( 2 ) in terms of ˜ τ using that d t = d τ and
hat d τ = 

˜ E /E d ̃  τ (see Appendix C for a deri v ation of this equality).
e obtain 

d 2 ξ i 

d ̃  τ 2 
= −

( ˜ E 

E 

)2 

S ij ξ
j . (18) 

sing equations ( 16 ) and ( 14 ), and integrating twice over proper
ime, we find that the dimensionless driving force matrix is given by 

 ij = 

2 
˜ E 

2 

( ˜ E 

E 

)2 

S ij = 

2 

E 

2 
S ij . (19) 
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e see that the 1 / ̃  E 

2 factor coming from the integration of ˜ h μν in
quation ( 14 ) o v er proper time ˜ τ cancels the ˜ E 

2 factor in equation
 18 ). Note that the same result can be found by rewriting ˜ h μν in
erms of quantities in the observer frame, using that ˜ k μ ˜ x μ = k μx μ,
nd then integrating equation ( 2 ) directly o v er the proper time of the
bserver. Here for simplicity we have derived equation ( 19 ) for a
onochromatic plane wave. Ho we ver, using the second method, it

s easy to show that the same dimensionless driving form matrix P ij 

s found for any waveform that can be written as a superposition of
lane waves with same direction ˜ n but different energies ˜ E . 
As an example, let us compute P ij for a wave propagating along

he z-direction (in the source frame), i.e. ˜ n = (0 , 0 , 1). Using that
t zeroth order in the velocity k i = En i = E ̃  n i , leading to Ev m 

k i =
 

2 v m ̃

 n i , and inserting equation ( 16 ) into ( 19 ) we obtain 

 ij = 

⎛ ⎝ 

˜ h + 

˜ h × −v x ̃  h + 

− v y ̃  h ×
˜ h × − ˜ h + 

−v x ̃  h × + v y ̃  h + 

−v x ̃  h + 

− v y ̃  h ×−v x ̃  h × + v y ̃  h + 

0 

⎞ ⎠ , (20) 

here ˜ h + 

and ˜ h × are the plus and cross polarizations in the source 
rame. Comparing equation ( 20 ) with equation ( 7 ), we see that the
elative motion of the source with respect to the observer generates 
ontributions to the dimensionless driving force matrix that are 
ot transverse to the GW direction ˜ n . P ij in equation ( 20 ) has
ndeed non-zero contributions in direction zx and zy . In the next
ection, we determine the observable impact of these non-transverse 
ontributions. 

In general, for a wave propagating in arbitrary direction, we define 
 set of orthonormal vectors, adapted to the incoming direction of
he wave in the source frame 

˜ 
 = ( sin ˜ θ cos ˜ φ, sin ˜ θ sin ˜ φ, cos ˜ θ ) , (21a) 

˜ 
 1 ( ̃  n ) = ( sin ˜ φ, − cos ˜ φ, 0) , (21b) 

˜ 
 2 ( ̃  n ) = ( cos ˜ θ cos ˜ φ, cos ˜ θ sin ˜ φ, − sin ˜ θ ) . (21c) 

ith respect to these vectors, the metric in the TT gauge can be
ecomposed as 

˜ 
 

TT 
ij = 

˜ h + 

(
˜ e 1 i ̃  e 1 j − ˜ e 2 i ̃  e 2 j 

) + 

˜ h ×
(

˜ e 1 i ̃  e 2 j + ˜ e 2 i ̃  e 1 j 
)
, (22) 

here it is implied that ˜ h + , × = 

˜ h + , ×( ̃  n ). Inserting this into equations
 16 ) and ( 19 ), and using as before that at linear order in the velocity
 v m 

k i = E 

2 v m ̃

 n i , we obtain 

 ij = h + 

(
˜ e 1 i ̃  e 1 j − ˜ e 2 i ̃  e 2 j 

) + h ×
(

˜ e 1 i ̃  e 2 j + ˜ e 2 i ̃  e 1 j 
)

+ h 1 

(
˜ n i ̃  e 1 j + ˜ e 1 i ̃  n j 

) + h 2 

(
˜ n i ̃  e 2 j + ˜ e 2 i ̃  n j 

)
, (23) 

here 

 + 

= 

˜ h + 

, 

 × = 

˜ h ×, 

h 1 = −v 1 ̃  h + 

− v 2 ̃  h ×, 

h 2 = −v 1 ̃  h × + v 2 ̃  h + 

, (24) 

nd we have defined the velocity component along the orthonormal 
et 

 1 ≡ v · ˜ e 1 , v 2 ≡ v · ˜ e 2 , v 3 ≡ v · ˜ n . (25) 

s before, we see that the source velocity generates contributions to 
 ij that are longitudinal: h 1 and h 2 are indeed along the direction of
ropagation ˜ n . 
Before moving to the calculation of the strain, let us comment on

he relation between the dimensionless driving force matrix and the 
etric in the TT gauge. In the case of non-moving sources we saw
hat the dimensionless driving force matrix is equal to the metric
n the TT gauge. For a moving source we note that the symmetry
etween source and observer reference frames is broken. Hence, 
xing the TT gauge in one frame is no longer preserved under

ransformation on to the other frame. The dimensionless driving 
orce matrix P ij is therefore no longer equal to the metric in TT
auge in the source frame . Ho we ver, we can apply another gauge
ransformation to the metric h μν , to bring it in the TT gauge in the
bserver frame. In that case, we show in Appendix B that the resulting
etric ( B6 ) becomes equal to the dimensionless driving form
atrix ( 20 ). 

.2 The strain 

e now project the dimensionless driving force matrix P ij onto the
rms of an interferometer ̂  l and ˆ m to obtain the strain 

 = 

1 

2 
( ̂ l i ̂  l j − ˆ m i ˆ m j ) P ij 

= F + 

( ̃  n ) h + 

+ F ×( ̃  n ) h × + F 1 ( ̃  n ) h 1 + F 2 ( ̃  n ) h 2 , (26) 

here the antenna patterns are given by 

 + 

( ̃  n ) = 

1 

2 

(
ˆ l i ̂  l j − ˆ m i ˆ m j 

)(
˜ e 1 i ̃  e 1 j − ˜ e 2 i ̃  e 2 j 

)
, 

 ×( ̃  n ) = 

1 

2 

(
ˆ l i ̂  l j − ˆ m i ˆ m j 

)(
˜ e 1 i ̃  e 2 j + ˜ e 2 i ̃  e 1 j 

)
, 

 1 ( ̃  n ) = 

1 

2 

(
ˆ l i ̂  l j − ˆ m i ˆ m j 

)(
˜ n i ̃  e 1 j + ˜ e 1 i ̃  n j 

)
, 

 2 ( ̃  n ) = 

1 

2 

(
ˆ l i ̂  l j − ˆ m i ˆ m j 

)(
˜ n i ̃  e 2 j + ˜ e 2 i ̃  n j 

)
. (27) 

As an example let us consider the strain response of an interfer-
meter with arms pointing in the x and y directions: ̂  l = (1 , 0 , 0) and

ˆ 
 = (0 , 1 , 0). We obtain 

 = 

1 

2 
( ̂ l i ̂  l j − ˆ m i ˆ m j ) P ij = −

˜ h + 

2 

(
cos 2 ˜ θ + 1 

)
cos 2 ̃  φ

+ 

˜ h × cos ˜ θ sin 2 ̃  φ − (
v 1 ̃  h + 

+ v 2 ̃  h ×
)

sin ˜ θ sin 2 ̃  φ

− (
v 1 ̃  h × − v 2 ̃  h + 

)
sin ˜ θ cos ˜ θ cos 2 ̃  φ . (28) 

rom equation ( 28 ) we see that the transverse velocity of the source,
amely the components v 1 and v 2 , generates contributions to the
ignal which are not proportional to the spin-2 antenna patterns 

 + 

( ̃  n ) = −1 

2 
( cos 2 ˜ θ + 1) cos 2 ̃  φ , (29a) 

 ×( ̃  n ) = cos ˜ θ sin 2 ̃  φ . (29b) 

hese new contributions are proportional instead to spin-1 antenna 
atterns F 1 and F 2 . 
In equations ( 26 ) and ( 28 ), we have identified spin-2 modes as

he contributions that are transverse to the direction of propagation 
f the GW, ˜ n , in the source frame. This definition is somewhat
rbitrary, since we do not observe ˜ n directly: we reconstruct it from
he antenna patterns F + 

( ̃  n ) and F ×( ̃  n ). We can therefore wonder if
here exists a direction n such that the strain would contain only spin-
 polarizations with respect to that direction . In the next section, we
how that this is indeed the case, and that this new direction n is
othing else than the aberrated direction obtained by applying the 
oost transformation on ˜ k μ (and extracting the spatial part of the 
esulting vector). 
MNRAS 525, 476–488 (2023) 
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Figure 2. The first and second panels show two signals constructed for a 
GW signal from a binary with 30 M �−30 M � at a distance of 500 Mpc and 
with v = (0.1, 0, 0). In the first panel, we construct the strain as the sum of 
two spin-1 (orange line) and spin-2 signals (blue line) using the direction ˜ n 
and the polarization angle ˜ ψ . In the second panel, we construct the signal 
using the aberrated direction n and aberrated polarization angle ψ and only 
spin-2 modes. The third panel shows the difference between the two signals 
which is of the order of O( | v| 2 ), as our framework is defined at the first 
order in peculiar motion. The detector is taken with arms ˆ l = (1 , 0 , 0) and 
ˆ m = (0 , 1 , 0). 

Figure 3. The transverse peculiar velocity of the source aberrates the 
direction of propagation: the observer sees the source in the correction 
position n , but he receives the signal emitted in direction ˜ n in the frame 
of the source. 
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 ABERRATED  REFERENCE  FRAME  

s for electromagnetic signals, we can define an aberrated momen-
um k μ by applying the boost 	 

μ
ν on ˜ k μ. The spatial part of k μ is

iven by 

 

i = 	 

i 
μ

˜ k μ = 

˜ E 

(
˜ n i + v i 

)
, (30) 

eading to 

 ≡ k 
| k | = 

˜ n + v − v 3 ̃  n = 

˜ n + v ⊥ 

, (31) 

here the transverse velocity v ⊥ 

is defined as 

 ⊥ 

= v − v 3 ̃  n . (32) 

ote that this velocity is transverse to both n and ˜ n since we neglect
ontributions quadratic in the velocity. 

Let us start by calculating the strain for a detector with arms along
y , given by equation ( 28 ). From equation ( 31 ), we find that the
berrated angles are related to angles at the source by 

= 

˜ θ + δθ = 

˜ θ + v 2 , (33a) 

= 

˜ φ + δφ = 

˜ φ − v 1 

sin θ
. (33b) 

he apparent divergence at θ = 0 is an artefact of the coordinate
ingularity there. The right ascension φ is indeed ambiguous at θ =
. Inserting this into equation ( 28 ), we obtain for the strain 

 = 

1 

2 
( ̂ l i ̂  l j − ˆ m i ˆ m j ) P ij = 

˜ h + 

[
F + 

( n ) + 2 v 1 
cos θ

sin θ
F ×( n ) 

]
+ 

˜ h ×

[
F ×( n ) − 2 v 1 

cos θ

sin θ
F + 

( n ) 

]
. (34) 

e see that the source velocity induces a mixing between the two
olarizations, proportional to F + 

and F ×. Defining the polarization
ngle 

ψ = −v 1 
cos θ

sin θ
, (35) 

e can rewrite equation ( 34 ) as 

 = 

1 

2 
( ̂ l i ̂  l j − ˆ m i ˆ m j ) P ij 

= 

˜ h + 

[ 
F + 

( n ) cos (2 δψ) − F ×( n ) sin (2 δψ) 
] 

+ 

˜ h ×
[ 
F ×( n ) cos (2 δψ) + F + 

( n ) sin (2 δψ) 
] 

= 

ˆ h + 

( n ) F + 

( n ) + 

ˆ h ×( n ) F ×( n ) , (36) 

here we have defined 

ˆ 
 + 

( n ) ≡ ˜ h + 

( ̃  n ) cos (2 δψ) + 

˜ h ×( ̃  n ) sin (2 δψ) , (37a) 

ˆ 
 ×( n ) ≡ ˜ h ×( ̃  n ) cos (2 δψ) − ˜ h + 

( ̃  n ) sin (2 δψ) . (37b) 

ith respect to the aberrated direction, the strain contains therefore
nly spin-2 modes, proportional to the spin-2 antenna patterns F + 

nd F ×. 
As a consequence, at linear order in the velocity there is a complete

e generac y between a signal propagating along direction ˜ n with
pin-2 modes, spin-1 modes and polarization angle ˜ � , and a signal
ropagating in direction n with spin-2 modes and polarization angle
. Fig. 2 shows the two strains associated with the directions ˜ n ,

quation ( 28 ), and n , equation ( 36 ), of a simulated GW signal with
 v | = 0.1 (see caption for more details). As expected, the two signals
iffer only at order O( | v | 2 ). 
NRAS 525, 476–488 (2023) 
This complete de generac y means that parameter estimations from
he GW signal ( 36 ) done using standard spin-2 templates will
nevitably infer (1) the aberrated direction of propagation, n and
2) the two ‘mixed’ spin-2 polarization modes ˆ h + 

and ˆ h ×. Since the
ransverse peculiar velocity of the source is unknown, the mixing
ngle ( 35 ) is unknown, hence the two intrinsic polarizations ˜ h + 

nd ˜ h × cannot be reconstructed. We stress that, since the geodesic
elating the observer to the source is not affected by the motion of
he source, the measured aberrated direction n represents the true
osition of the source. Ho we ver, equations ( 36 ) and (37) indicate
hat the signal that is received from direction n corresponds to the
ne emitted in direction ˜ n in the frame of the source , as is depicted in
ig. 3 . Because GWs emission is not isotropic around the source, the
ignal emitted in direction ˜ n differs from the one emitted in direction
 , and this will impact the measurement of the source parameters,
s will be discussed in Section 6 . This calculation demonstrates that
ource velocities impact GWs in the same way as electromagnetic
ignals: the signal received in the observer frame in fact corresponds
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o a signal that has been emitted in a different direction in the source
rame. 4 

Equation ( 36 ) has been derived in the specific case of a detector
ith arms pointing in the xy directions. We could wonder if having
etectors with arms pointing in different directions could help us 
reak the de generac y between the source velocity and the true
olarizations, and measure the direction at emission ˜ n . We can show 

hat this is not the case, since the de generac y e xists for all cases. At
inear order in the velocity, we can indeed rewrite equations ( 23 ) and
 24 ) as 

 ij = 

[ 
( ̃ e 1 i − v 1 ̃  n i )( ̃ e 1 j − v 1 ̃  n j ) − ( ̃ e 2 i − v 2 ̃  n i )( ̃ e 2 j − v 2 ̃  n j ) 

] 
˜ h + 

+ 

[ 
( ̃ e 1 i − v 1 ̃  n i )( ̃ e 2 j − v 2 ̃  n j ) + ( ̃ e 1 j − v 1 ̃  n j )( ̃ e 2 i − v 2 ̃  n i ) 

] 
˜ h × . 

(38) 

e see that, working to linear order in velocity, the boosted 
imensionless driving force matrix is equivalent to the one of an 
nboosted gravitational wave with polarization axes 

 1 = 

˜ e 1 − v 1 ̃  n , (39a) 

 2 = 

˜ e 2 − v 2 ̃  n . (39b) 

t is clear that these two polarization vectors are orthogonal, and they
orrespond to the polarization axes of a wave coming from direction 

 = e 1 ∧ e 2 = 

˜ n + v 1 ̃  e 1 + v 2 ̃  e 1 = 

˜ n + v ⊥ 

, (40) 

hich is nothing else than the aberrated direction defined in equation 
 31 ). The polarization axes e 1 and e 2 are not the natural ones
ssociated to the direction n , as defined in equations (21). We can
asily see that the natural axes are related to e 1 and e 2 by 

ˆ 
 1 = e 1 − v 1 

cos θ

sin θ
e 2 , (41a) 

ˆ 
 2 = e 2 + v 1 

cos θ

sin θ
e 1 , (41b) 

his is the infinitesimal form of a rotation in two dimensions 

ˆ 
 a = R 

b 
a e b , (42) 

here the rotation matrix is 

 

b 
a = 

(
cos ( δψ) sin ( δψ) 

− sin ( δψ) cos ( δψ) 

)
� 

(
1 δψ 

−δψ 1 

)
, (43) 

nd δψ is defined in equation ( 35 ). Inserting equations (41) into
quation ( 38 ), we obtain 

 ij = 

ˆ h + 

(
ˆ e 1 i ̂  e 1 j − ˆ e 2 i ̂  e 2 j 

) + 

ˆ h ×
(

ˆ e 1 i ̂  e 2 j + ˆ e 2 i ̂  e 1 j 
)
, (44) 

 = 

1 
( ̂ l i ̂  l j − ˆ m i ˆ m j ) P ij = F + 

( n ) ̂  h + 

+ F ×( n ) ̂  h × , (45) 

2 

 We stress that this is in contrast with what happens when the observer has 
 peculiar motion with respect to the source rest frame: in this situation, 
berration implies that the observer reconstructs a wrong source localization. 
ndeed, mathematically, one needs to solve the geodesic equation for the emit- 
ed radiation with zero-velocity initial conditions. Ho we ver, when extracting 
he spatial part of the wav ev ector at the observ er, one has to project on the 
patial plane associated with the mo ving observ er, which differs from the one 
f an observer at rest (comoving). The spatial component of the wavevector 
s therefore aberrated, hence the inferred source location is aberrated as well. 

e will get back to this difference in Section 6 . 

R

 

b
P

P

T  

t  

f
i  

p
a  
here ˆ h + 

and ˆ h × are given by equations (37) and the antenna patterns
re given by 

 + 

( n ) = 

1 

2 

(
ˆ l i ̂  l j − ˆ m i ˆ m j 

)(
ˆ e 1 i ̂  e 1 j − ˆ e 2 i ̂  e 2 j 

)
, 

 ×( n ) = 

1 

2 

(
ˆ l i ̂  l j − ˆ m i ˆ m j 

)(
ˆ e 1 i ̂  e 2 j + ˆ e 2 i ̂  e 1 j 

)
. (46) 

rom this we see that the response of any interferometer can be
ritten in terms of the two standard antenna patterns F + 

( n ) and
 ×( n ) associated with the aberrated direction n . The two inferred
olarizations ̂  h + 

and ̂  h × are modified by the source velocity. Equation 
 45 ) tells us that, even for a network of detectors with different
rientations, the spin-1 modes that are generated by the velocity 
f the source can be re-absorbed into spin-2 modes with aberrated
irection n and mixed polarizations ˆ h + 

and ˆ h ×. One could ho we ver
onder if by actively searching for vector modes, i.e. by including

pin-1 antenna patterns in the modelling of the signal, one could
easure the amplitude of these new modes, as well as the direction

t emission ̃  n . This turns out to be impossible, since there is no unique
ay of splitting the signal into spin-2 modes and spin-1 modes, see
ppendix D for details. 
Another manner to understand this total de generac y is to consider

he geometric interpretation of the transformation of the dimension- 
ess driving force matrix from the source frame to the observer frame.
et us consider the rotation vector A ˜ n → n = α( ̃  n ∧ 

ˆ v ⊥ 

), where α is
he angle between ˜ n and n and ( ̃  n ∧ 

ˆ v ⊥ 

) is a unit vector orthogonal
o them. The rotation around A ˜ n → n carries ˜ n along a great circle to
 . Its components are 

 

j 

i ≡ exp 
(
−A 

k 
˜ n → n ε

j 

ki 

)
� δ

j 

i − ˜ n i v 
j + v i ̃  n 

j , (47) 

nd the transformation rules (39) are directly seen as the effect of this
atter infinitesimal rotation since they are equi v alent to e 1 i = R 

j 

i ˜ e 1 j 
nd e 2 i = R 

j 

i ˜ e 2 j . Therefore, equation ( 38 ) is simply 

 ij ( n ) = R 

p 

i R 

q 

j 
˜ P pq ( ̃  n ) , (48) 

ith ˜ P ij = 

˜ h 

TT 
ij . We recognize the transformation rule of a tensor on

he unit sphere under a rotation R . Hence, the driving force matrix is
lso transformed by the infinitesimal rotation which transports ˜ n on 
o n . Note that this transformation is equi v alent to a parallel transport
f the driving force along the great circle connecting ˜ n and n , as by
onstruction both vectors lie in the equatorial plane of vectors normal
o A ˜ n → n . 

Ho we ver, e ven though in the source frame we chose for con-
enience to use the vectors naturally associated with the spherical 
omponents (equations 21b and 21c ), the rotated ones, e 1 and e 2 ,
re not directly the unit vectors naturally associated with spherical 
oordinates in the observer frame: ˆ e 1 and ˆ e 2 . Both sets being 
rthonormal and normal to n , they are related by a rotation around
 of angle δψ , that is equation ( 42 ), with R 

b 
a related to R 

j 

i through
 

b 
a ≡ ˆ e i a e bi = ˆ e i a R 

j 

i ˜ e bj . 
Therefore, from the simple transformation rule ( 48 ), the spherical

asis components of the driving force, which are ˜ P ab ≡ ˜ e i a ̃  e 
j 

b 
˜ P ij and 

 ab ≡ ˆ e i a ̂  e 
j 

b P ij , are related through 

 ab ( n ) = R 

c 
a R 

d 
b 

˜ P cd ( ̃  n ) . (49) 

his is yet another way to write the transformation rule of a tensor on
he unit sphere under a rotation, which translates into equations (37)
or the polarization components. In short, the mixing of polarizations 
s essentially a consequence of the fact that the basis used to define
olarizations, the natural spherical basis, is not parallel transported 
long the great circle connecting ˜ n to n , whereas the driving force
MNRAS 525, 476–488 (2023) 
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Figure 4. Geometrical configuration used to calculate the time delay. 
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atrix is parallel transported. The only exception is when the great
ircle connecting ˜ n to n is either the equator or a meridian of
he spherical coordinates system. For infinitesimal transformations
hat we have considered here, the natural spherical basis is also
infinitesimally) parallel transported whenever the direction (initial
r final, this is equi v alent for infinitesimal transformations) is on
he equator, even if the transformation direction is not tangential
o the equator. That is whenever the conditions θ = π /2 (emitting
irection on the equator) or v 1 = 0 (an aberration along a meridian)
re satisfied, the natural spherical basis is infinitesimally parallel
ransported, and we can check that indeed δψ = 0 under these
onditions. 

Also, one should bear in mind that the rotation ( 47 ) which accounts
or the effect of the transverse velocity depends on ˜ n and is not a
nique global rotation. Therefore, a source with a transverse velocity
s degenerate from a source without velocity but rotated with R , only
ecause we can observe a single emission direction. Finally, let us
ighlight that the transformation of the driving force matrix due to a
ransv erse v elocity, seen as rotation or as parallel transport, is similar
o the transformation of the CMB polarization tensor which is also
 spin-2 quantity (see e.g. section III of Challinor & van Leeuwen
002 ). 

 TIME  DELAY  F RO M  A  N E T WO R K  O F  

E T E C TO R S  

or a network of interferometers, in addition to the signal measured
y each detector, the time delay between the different detectors due
o their different position with respect to the source is measured.
his time delay depends directly on the direction of the source, and
rovides therefore a precise way of measuring this direction (more
recise than from the antenna patterns, since the phase of the GW
s measured with a better precision than the amplitude of the two
olarizations). We will see that in the case of a moving source the
ime delay depends on the aberrated direction n and not on the
irection at emission ˜ n . 
We consider the geometry plotted in Fig. 4 . In the reference frame

f the source (denoted by tilde), the source emits a GW at time
˜ 
 e = 0 and at position ˜ R e = (0 , 0 , 0). The first interferometer receives
he wave at time ˜ t 1 and position ˜ R 1 , where ˜ R 1 = 

˜ t 1 (let us recall
hat we work in units c = 1). The observer, who is moving with
 velocity −v with respect to the source, sees boosted coordinates
 μ = ( t, R ) = 	 

ν
μ ˜ x ν , where 	 is defined in Appendix A . At linear

rder in the velocity the time of emission and reception are given by
NRAS 525, 476–488 (2023) 
 e = 

˜ t e + v · ˜ R e = 0 , (50a) 

 1 = 

˜ t 1 + v · ˜ R 1 = 

˜ R 1 + v · ˜ R 1 . (50b) 

The same calculation applies to the second interferometer. The
if ference in arri v al time between the two detectors is therefore given
y 

t ≡ t 2 − t 1 = 

˜ R 2 − ˜ R 1 + v · ( ̃  R 2 − ˜ R 1 ) . (51) 

efining ˜ A as the vector connecting the two detectors: 

˜ A = 

˜ R 2 − ˜ R 1 , (52) 

e see from Fig. 4 that 

˜ A 

2 = 

˜ R 

2 
1 + 

˜ R 

2 
2 − 2 ̃  R 1 ˜ R 2 cos ˜ β , (53a) 

˜ R 

2 
2 = 

˜ R 

2 
1 + 

˜ A 

2 − 2 ̃  R 1 ˜ A cos ˜ β , (53b) 

eading to 

˜ 
 2 cos ˜ β − ˜ R 1 = − ˜ A cos ̃  α = 

˜ A · ˜ n . (54) 

e are interested in situations where the distance to the source
s much larger than the distance between the detectors, such that
os ˜ β � 1. The time delay becomes then 

t = 

˜ A · ( ̃  n + v ) . (55) 

he distance between the two detectors in the source frame, ˜ A , can
e related to the distance in the observer frame using that 

˜ 
 1 i = 

(
	 

−1 
) μ

i 
x 1 μ = −v i t 1 + R 1 i , (56) 

nd similarly for ˜ R 2 i . This leads to 

˜ A = A − v · �t . (57) 

nserting this in equation ( 55 ) and keeping only terms at linear order
n the velocity, we obtain 

t = A · ( ̃  n + v − v 3 ̃  n ) = A · ( ̃  n + v ⊥ 

) = A · n . (58) 

he time delay is therefore proportional to the aberrated direction n .
In practice, one often measures the phase shift between the

aveform detected by two detectors at a fixed reference time, rather
han the time delay. We can easily show that the phase shift is affected
n the same way as the time delay by the source velocity. The phases
t time t and positions R 1 and R 2 are given by 

 ( t, R 1 ) = −k μx μ1 = E ( t − R 1 · n ) , (59a) 

 ( t, R 2 ) = −k μx μ2 = E ( t − R 2 · n ) , (59b) 

here k μ = E ( − 1, n ). The phase shift is given by 

� = −E A · n . (60) 

s expected, the phase shift is therefore also proportional to the
berrated direction n . 

This calculation of the time delay (and the phase shift) shows that
 network of detectors also measures the aberrated direction n and
ot the intrinsic one ˜ n in the source frame. 

 OBSER  VAT I O NA L  I MPA  C T  O F  T H E  S O U R C E  

ELOCI TY  

e have seen that the source velocity affects the strain in two ways:
1) it aberrates the direction of the source, both in the antenna patterns
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Figure 5. Sketch of the effect of aberration for a binary which is edge-on 
with respect to the observer. 
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nd in the time delay and (2) it mixes the two polarizations of the
ave. The first effect is common to any signal emitted by a moving

ource. In particular, it affects in the exact same way electromagnetic 
ignals. The second effect on the other hand is specific to the fact that
 GW is a spinned quantity. This effect is therefore absent in standard
ptical or radio surv e ys, where we measure the intensity (which is a
pin-zero quantity) of the electromagnetic field. 5 These two effects 
ave a direct impact on the measurement of the parameters of the
inary. 
As explained in Section 4 , aberration means that we do not receive

he GW that have been emitted in the observed direction n , but rather
he GW that have been emitted in a different direction ˜ n . As depicted
n Fig. 5 , the source appears therefore in the correct position, but the
orm of the wave corresponds to the one emitted in direction ˜ n . Since
W are not isotropically emitted by the binary system, aberration has 
 direct impact on the amplitude of the detected signal. In particular,
ven though the signal seems to come from direction n , the inclination 
ngle that go v erns the amplitude of the signal is the one associated
ith the direction ˜ n . The relation between ˜ ι, defined as the angle
etween ˜ n and the normal to the plane of the binary in the frame of
he source ˜ N (see Fig. 5 ), and the true inclination angle ι that we
ould have if there would be no velocity (i.e. the angle between n

nd ˜ N ) directly follows from the relation between n and ˜ n and is
herefore linear in the transv erse v elocity v ⊥ 

. The polarizations ˜ h + 

nd ˜ h × in equations (37) depend ho we ver not directly on ̃  ι but on its
osine, which is related to the one in absence of velocity by 

cos ̃  ι = cos ι − ˜ N · v ⊥ 

. (61) 

e see that the effect vanishes for a binary that is face-on, since in
his case ˜ N is parallel to n , which is perpendicular to v ⊥ 

(note that
his does not hold at higher order in the velocity). On the contrary
he effect is maximum for a binary which is edge-on, and with v ⊥ 

rthogonal to the plane of the binary, as illustrated in Fig. 5 . The fact
hat the amplitude of the effect depends on ˜ N , i.e. on the orientation
f the plane with respect to the observer, is directly linked to the fact
hat the amplitude of the polarizations scales with cos ̃  ι. For ι = 0, the
hange is quadratic in δι: cos ( ̃ ι) = cos (0 + δι) � 1 − δι2 / 2, whereas
or ι = π /2 the change is linear: cos ( ̃ ι) = cos ( π/ 2 + δι) � −δι. 
 It would ho we ver be present if we were to measure directly the electromag- 
etic field, which is a spin-1 quantity. 

t  

t

h

In Fig. 5 , we show for illustration the case where the effect of
berration is maximum. In this configuration, if the source were not
oving, we would receive only the h + 

polarization, since only h + 

is
mitted along n (cos ι = 0 meaning that h × = 0). Ho we ver, since the
ource is moving, we do not receive the GWs that have been emitted
n direction n but rather the GWs that have been emitted in direction
˜ 
 (and that we see coming from direction n ). Along ˜ n , both h + 

and
 × are produced and therefore we observe these two polarizations. 
rom this we wrongly conclude that the plane of the binary is slightly

nclined with respect to us, i.e. that the binary is not edge-on. 
The second effect, the mixing of polarizations, simply means that 

he true polarization of the source cannot be inferred, but that one
easures instead a wrong polarization 

 = 

˜ � − v 1 
cos θ

sin θ
. (62) 

ike for aberration, this means that the plane of the binary appears
lightly turned (this time around n ) with respect to the observer. 

We see therefore that the source velocity biases the measurement 
f the angles describing the orientation of the binary system with
espect to the observer. Ho we ver, since these intrinsic parameters are
nknown and randomly distributed o v er the population of sources,
aving a wrong measurement of them has no direct observational 
mpact. In particular, the other parameters like the luminosity 
istance and the chirp mass are not affected by aberration and by the
hange in polarization, since the source velocity is fully reabsorbed 
nto the new direction n and the new polarization �. This can be
athematically seen with the Fisher formalism. The measured strain 
 depends on a set of parameters � . The Fisher matrix associated
ith these parameters is given by 

 

ij = 

(
∂ h ( � ) 

∂ � i 

∣∣∣∂ h ( � ) 

∂ � j 

)
, (63) 

here the scalar product is defined as 

 a| b) = 4 R e 

[ ∫ f high 

f low 

ˆ a ( f ) ∗ ˆ b ( f ) 

S( f ) 
d f 

] 

, (64) 

here S ( f ) is the detector power spectral density (PSD), f is the
W frequency, ∗ indicates the complex conjugate, ˆ · the Fourier 

omponents, f low is a low frequency cut-off given by the detector
ensitivity and f high an high-frequency cut-off given by the sampling 
ate of data. The bias induced on the parameters � by the source
elocity is then given by 

� 

i = ( � 

−1 ) ij 
(
∂ h ( � ) 

∂ � j 

∣∣∣h ( � ) − ˜ h ( � ) 

)
, (65) 

here ˜ h is the strain that we would have in the absence of velocity. In
ur case, the difference between h and ˜ h can be fully reabsorbed into
 different polarization and different inclination angle. The observed 
train ( 36 ) is found from the transformation rules (37) which are
qui v alent to ( 49 ), that is to a rotation of the source with R . Hence, we
an write that ˜ h ( � ) = h ( R 

−1 ( � )), where R 

−1 ( � ) are the parameters
haracterizing a source with initial parameters � and subsequently 
otated with R 

−1 . That is, if � defines a binary plane orthogonal to

 i , then R 

−1 ( � ) defines a rotated binary plane orthogonal to R 

−1 
i 

j 
N j .

efining the parameters shifts by δ� = � − R 

−1 ( � ), the only non-
ero components of δ� are δ� and δ(cos ι) since they characterize
he orientation of the binary plane. Taylor expanding around � we
hen obtain 

˜ 
 ( � ) � h ( � ) − ∂ h ( � ) 

∂ � 

k 
δ� 

k , (66) 
MNRAS 525, 476–488 (2023) 
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eading to 

� 

i = ( � 

−1 ) ij 
(
∂ h ( � ) 

∂ � j 

∣∣∣∂ h ( � ) 

∂ � k 

)
δ� 

k 

= ( � 

−1 ) ij � jk δ� 

k = δ� 

i . (67) 

ence, we see that the only parameters that are biased by the trans-
 erse v elocity of the source are the polarization and the inclination
ngle. In particular, the source transverse velocity has no impact on
he luminosity distance and the chirp mass. 

Let us conclude this section by noting that while the difference
etween n and ˜ n depends on the relative velocity between the source
nd the observer and is therefore the same if the source moves with
elocity v ⊥ 

with respect to the observer or if the observer moves
ith velocity −v ⊥ 

with respect to the source, the observational
onsequences are different in these two cases. In the case of a
oving source, the incoming direction of the GW in the observer

rame is not affected by the motion. As a consequence n denotes
he true direction of the source, and ˜ n is the direction of emission
n the source frame, as depicted in Fig. 5 . The source velocities
ave therefore no impact on the observed position of sources in
he sky. The velocity only affects the part of the source that the
bserver sees. On the other hand, in the case of a moving observer,
he emitted direction of the GW in the source frame is not affected
y the motion. Consequently, ˜ n denotes the true direction of the
ource, and n the apparent direction, seen by the moving observer.
he observed positions of sources in the sky are therefore affected
y the observ er v elocity . More precisely , the observ er v elocity with
espect to a frame were sources are on average at rest generates
 dipole in the source distribution, as computed for example in
astrogiovanni et al. ( 2023 ) for GW events or in Dom ̀enech et al.

 2022 ) and Dalang, Durrer & Lacasa ( 2023 ) for galaxy counts. In
he CMB, the observer velocity not only leaves a dipole which
as been observed (Kogut et al. 1993 ; Lineweaver et al. 1996 ),
ut also distinctive off-diagonal correlations of both intensity and
olarization which allow to constrain independently its magnitude
Kosowsky & Kahniashvili 2011 ) and direction (Amendola et al.
011 ; Aghanim et al. 2014 ; Mukherjee, De & Souradeep 2014 ; Saha
t al. 2021 ). 

 C O N C L U S I O N S  

n this paper, we showed that the peculiar motion of a gravitational
ave source with respect to the observer rest frame, induces a
istortion in the observed waveform. In particular, the presence of a
non-zero) component of the peculiar v elocity transv erse to the line
f sight gives rise to apparent vector polarizations in the observer
rame. These are pure projection effects, proportional to the plus
nd cross polarizations in the source frame. They share therefore the
ame time dependence as the spin-2 modes and do not correspond
o new degrees of freedom. We have shown that this implies that the
pin-1 modes can al w ays be rewritten as spin-2 modes coming from
n aberrated direction, and with a slightly different polarization. 

One could ho we ver wonder if by acti v ely searching for v ector
odes, i.e. by including spin-1 antenna patterns in the modelling of

he strain, one could measure the amplitude of these new modes, as
ell as the direction of emission at the source. Comparing this with

he aberrated direction obtained from the time-delay, one could then
easure the transverse velocity. We showed that unfortunately, this

s not feasible since, without knowing the peculiar velocity, there
s no unique/preferred way of splitting the signal into spin-2 modes
nd spin-1 modes. The only meaningful solution is therefore the one
NRAS 525, 476–488 (2023) 
ith no spin-1 mode. This is indeed the only solution for which the
irection inferred from the waveform and the direction inferred from
ime delay are the same. 

A direct consequence of the aberration of GW sources is that
he parameters encoding the orientation of the binary system with
espect to the observer are biased. For example, a binary that is edge-
n, for which we should only detect a h + 

polarization, will appear
lightly inclined since we will receive both h + 

and h × polarizations.
he inclination angle and the polarization angle that we measure
re therefore not the true ones. Since these angles are unknown
nd are independent of other parameters, like the chirp mass or the
uminosity distance, this bias has no direct impact on astrophysical
r cosmological constraints inferred from GW measurements such
s Finke et al. ( 2021 ), The LIGO Scientific Collaboration ( 2021b ),
inke et al. ( 2022 ), Leyde et al. ( 2022 ), and Mancarella, Genoud-
rachex & Maggiore ( 2022 ). Ho we ver, it might impact studies
iming at constraining the inclination distribution of binaries (Vitale,
isco v eanu & Talbot 2022 ). 
We stress that the same effect is present in the case of an

strophysical source emitting spin-1 waves: if we look at the electric
eld emitted by such a source we find that the direction of propagation
f the spin-1 wave is aberrated and that the only effect on the source
arameters is an apparent rotation (i.e. the intrinsic angles defining
he source orientation are biased). F or e xample, for gamma-ray burst
ources, if one defines an angle ι between the line of sight and the
ormal to the rotation plane, the effect of a transverse velocity is
iven by a change in the source orientation due to aberration given
y equation ( 61 ), and a mixing of the two spin-1 polarizations of the
mitted electromagnetic radiation. 

We observe that our findings significantly differ from the conclu-
ions of Torres-Orjuela et al. ( 2019 , 2021a , b ). The authors of these
eferences compute distortions in the antenna pattern function of a
W detector, induced by a peculiar motion of the observer frame
ith respect to the frame of emission. Such peculiar motion could be

ar from negligible for a binary system orbiting a supermassive black
ole. They find that a velocity component orthogonal to the line of
ight gives a non-monotonic modification of the detected amplitude
f the wave. The authors argue that an additional rotation of the GW
olarization in its plane, which is not taken into account by aberration,
s responsible for this ef fect. Ho we ver, as we have explicitly shown
ere, and in agreement with appendix C of Boyle ( 2016 ), the
ffect of a peculiar velocity can al w ays be recast as a direction
ependent rotation. This has a profound impact on the resulting
ignal. Indeed, contrary to what is concluded in Torres-Orjuela
t al. ( 2019 ), we find that the impact of transv erse v elocities on
Ws is completely analogous to the one on electromagnetic signals,

.e. it can be fully explained in terms of Lorentz transformations
ithout the need of invoking additional corrections. We also find that

ransv erse v elocities do not produce spurious non-GR-like signals
or modifications in the source luminosity distance, unlike what
s claimed in that reference. In Appendix E , we detail what in
ur view were mistakes made in these studies that led to some
isinterpretations about the impact of peculiar motion on GWs

ignals. 
We conclude with a final remark: one might be tempted to assume

hat the large-scale correlations of the (cosmic-flow) velocity across
he sky would induce correlations between the inclination angle of
ifferent sources. Measuring such a correlation would then provide
 direct way of measuring the transverse cosmological velocity.
nfortunately, the correlation of inclination angle turns out to be

l w ays vanishing: the change in inclination δι = ̃  ι − ι does not
epend directly on the transverse velocity v ⊥ 

but on the projection of
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 ⊥ 

on a random variable ˜ N . This completely remo v es the correlation
see Appendix F for details). We stress that even if we would
orrelate cos ι with another quantity, e.g. galaxy number density, 
he correlation would also vanish. Aberration can therefore not be 
sed to measure the transverse velocity of sources. 
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PPENDI X  A :  T R A N S F O R M AT I O N S  O F  T H E  

ETRI C  TENSOR  

e now consider how metric perturbation in four dimensions 
ransforms under boost of velocity −v (since the observer moves 
ith velocity −v with respect to the source). The metric perturbation

ransforms as 

 μν = 	 

α
μ 	 

β
ν
˜ h αβ , 

 

μν = 	 

μ
α	 

ν
β
˜ h 

αβ , (A1) 

here 

 

0 
0 = γ , 	 

0 
i = 	 

i 
0 = −γ v i , 

	 

i 
j = δi 

j + 

γ 2 

1 + γ
v i v j , 

 0 
0 = γ , 	 0 

i = 	 i 
0 = γ v i , 

	 i 
j = δ

j 

i + 

γ 2 

1 + γ
v i v 

j , (A2) 

ith γ −2 = 1 − v i v 
i and β2 ≡ v i v 

i . 
Let us start with upper indices 

 

00 = 	 

0 
α	 

0 
β
˜ h 

αβ , 

h 

0 i = 	 

0 
α	 

i 
β
˜ h 

αβ , 

h 

ij = 	 

j 
α	 

j 
β
˜ h 

αβ . (A3) 
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ow we assume that in the non-tilde frame (frame comoving with
he source) we are in TT gauge, implying ̃  h 

00 = ̃

 h 

0 i = 0. 

 

00 = 	 

0 
m 

	 

0 
n ̃

 h 

mn = γ 2 v m 

v n ̃  h 

mn , 

h 

0 i = 	 

0 
m 

	 

i 
n ̃

 h 

mn = −γ v m 

(
δi 
n + 

γ 2 

1 + γ
v i v n 

)˜ h 

mn , 

h 

ij = 	 

i 
m 

	 

j 
n ̃

 h 

mn 

= 

(
δi 
m 

+ 

γ 2 

1 + γ
v i v m 

)(
δj 
n + 

γ 2 

1 + γ
v j v n 

)˜ h 

mn . (A4) 

t linear order in the velocity 

 

00 = 0 , 

h 

0 i = −v m ̃

 h 

mi , 

h 

ij = 

˜ h 

ij . (A5) 

n flat space it follows that 

 00 = 0 , 

h 0 i = v m ̃

 h mi , 

h ij = 

˜ h ij . (A6) 

he wave in the observer frame (without a tilde) is not in the TT gauge
nymore. Ho we ver, it is possible to fix the TT gauge with respect to
he observer by performing the set of transformations detailed in the
ext appendix. 

PPENDIX  B:  G AU G E  TRANSFORMATION  TO  

URELY  SPATIAL  P E RTU R BAT I O N  

uppose we have a general plane gravitational wave of the form 

 ab = H ab f ( k 
a x a ) with k a k a = 0 . 

ithout loss of generality we choose spatial axes such that the
ra vitational wa ve is propagating in the ˆ z direction, so that ˆ k a =
1 , 0 , 0 , 1). We now consider a gauge transformation of the form 

a = � 

a F ( k a x a ) , (B1) 

here F ( u ) is the integral of f ( u ), i.e. dF/d u = f ( u ). A gauge
ransformation of this form leads to a transformation of the metric
erturbation 

 

new 
ab = h 

old 
ab − ∂ a ξb − ∂ b ξa 

= H 

new 
ab f ( k a x a ) , (B2) 

n which 

 

new 
ab = H ab −

⎛ ⎜ ⎜ ⎝ 

2 � 0 � x � y � z + � 0 

� x 0 0 � x 

� y 0 0 � y 

� z + � 0 � x � y 2 � z 

⎞ ⎟ ⎟ ⎠ 

. (B3) 

aking the choice 

 a = 

(
1 

2 
H 00 , H 0 x , H 0 y , −1 

2 
H 00 + H 0 z 

)
(B4) 

educes the metric perturbation to purely spatial form 

 

new 
ab = 

⎛ ⎜ ⎜ ⎝ 

0 0 0 0 
0 H xx H xy −H 0 x 

0 H xy H yy −H 0 y 

0 −H 0 x −H 0 y H zz + H 00 − 2 H 0 z 

⎞ ⎟ ⎟ ⎠ 

. (B5) 
NRAS 525, 476–488 (2023) 
or the particular metric components given in equation ( A6 ), this
auge transformation gives 

H 

new 
ab = ⎛ ⎜ ⎜ ⎝ 

0 0 0 0 
0 ˜ h xx 

˜ h xy −v x ̃  h xx − v y ̃  h xy 

0 ˜ h xy 
˜ h yy −v x ̃  h xy + v y ̃  h xx 

0 −v x ̃  h xx − v y ̃  h xy v y ̃  h xx − v x ̃  h xy 0 

⎞ ⎟ ⎟ ⎠ 

(B6) 

n which we have used ˜ h yy = − ˜ h xx and ˜ h 00 = 

˜ h 0 z = 

˜ h zz = 0. We
ee that this gauge transformation makes the purely spatial part of
he metric equal to the electric components of the Riemann tensor,
ustifying the assumptions made in Section 3.2 . 

PPENDI X  C :  RELATI ON  BETWEEN  PROPER  

I MES  

o relate the proper time in the source frame d ̃  τ to the proper time
n the observer frame d τ , we proceed in the following way. We first
elate the 4-momentum of the GW in the source and observer frame
o the phase � 

6 

˜ 
 μ = − ∂ 

∂ ̃  x μ
� (C1) 

 μ = − ∂ 

∂ x μ
� . (C2) 

ince GWs propagate along null geodesics, the phase is conserved
uring propagation: 

˜ 
 

μ ˜ k μ = − ˜ k μ
∂ 

∂ ̃  x μ
� = 0 . (C3) 

et us now consider two GWs emitted subsequently: the first one
t time ˜ τ with phase � ( ̃  τ ) and the second one at time ˜ τ + d ̃  τ with
hase � ( ̃  τ + d ̃  τ ). The observer receives these GWs at time τ and τ
 d τ , respectively, and since the phase is conserved we have 

 ( ̃  τ + d ̃  τ ) − � ( ̃  τ ) = � ( τ + d τ ) − � ( τ ) . (C4) 

sing that 

 ( ̃  τ + d ̃  τ ) − � ( ̃  τ ) = d ̃  τ
d � 

d ̃  τ
= d ̃  τ ˜ u 

α ∂ � 

∂ ̃  x α
= d ̃  τ ˜ u 

α ˜ k α = − ˜ E d ̃  τ , 

(C5) 

nd similarly at the observer, we find 

˜ 
 d ̃  τ = Ed τ . (C6) 

PPENDI X  D :  V E C TO R  A N D  TENSOR  M O D E  

PLITTING  

ne could wonder if by actively searching for vector modes, i.e. by
ncluding spin-1 antenna patterns in the modelling of the signal, one
ould measure the amplitude of these new modes, as well as the true
irection ˜ n . Comparing this with the aberrated direction obtained
rom the time-delay, one could then measure the transv erse v elocity
 ⊥ 

. We show here that this turns out to be impossible, since there is
o unique way of splitting the signal into spin-2 modes and spin-1
odes. 
We start from the dimensionless driving force matrix computed in

quation ( 23 ) and we split the transverse velocity of the source as 

 ⊥ 

= ( v ⊥ 

− w ⊥ 

) + w ⊥ 

, (D1) 



Aberration of gravitational waveforms 487 

w  

s  

d

s

F
a

I  

m

P

w

H

H

H

H

F  

t
d  

t  

t  

w
i

A
S

W  

w
 

i  

p
c
o
m  

s  

m
s  

c
n  

Y  

t
c  

a  

e  

s
w
i  

e
m  

g  

r  

h
s  

t  

t
t
u
e

∂

T  

r  

s  

a  

h  

p  

a  

G  

a
O  

e  

s
�  

r  

a  

s
(

 

t  

f  

a  

C  

P  

l
a
l  

7 To illustrate the contradiction, they consider the special case of a source with 
only � = 2 and m = 2 and obtain equation (39). Ho we ver, when replacing 
by such particular source one must use H 

�,m = δ� 
2 δ

m 
2 , hence in equation (39) 

the first 1 should be replaced by δ2 
k δ

2 
n , and it lacks a factor δm 

2 in front of 
C 0 , a factor δm + 1 

2 in front of C + and a factor δm −1 
2 in front of C −, that is 

equation (39) allows to determine separately the individual components of 
the transformation matrix Y 

2 , 2 
k, 2 −s − δ2 

k δ
0 
s ∝ C s (2 , k, 2 − s) for s = −1, 0, 1. 

8 It can be easily checked on a special case, using the notation and equa- 
tion numbers of Torres-Orjuela et al. ( 2021a ). Let us consider a source velocity 
along the azimuthal direction, which from equations (54) and (55) implies 
C ±( � , k , m ) = 0 since v ± = 0. If in addition the source has an azimuthal 
symmetry ( m = 0), then C 0 ( � , k , 0) = 0, from the pre-factor m of expression 
(53). One would then deduce that no extra mode is generated in the observer 
frame. Ho we ver in the simple case of a source with only � = 2 and m = 0 the 
observer must see a mode with � = 3 and m = 0 as detailed in section III.C.2 
of Gualtieri et al. ( 2008 ). 
9 In equation (B25) of Gualtieri et al. ( 2008 ), we read a spin phase which ex- 
pressed in our notation is χ = − cot ( θ/ 2) v 1 . Ho we ver, this has been obtained 
in application of equation (3.12) of Newman & Penrose ( 1966 ) that allows to 
obtain the spin phase for the Cartesian basis in the complex plane related by 
a stereographic projection. Since this Cartesian basis is related to the natural 
spherical basis by a rotation in the plane with an angle φ [see explanation after 
equation (3.7) of the latter article] we rather find, using equation ( 33b ), that 
the spin phase is δψ = χ + 

˜ φ − φ = − ( cot ( θ/ 2) − csc θ ) v 1 = −v 1 cot θ , in 
agreement with equation ( 35 ). 
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here w ⊥ 

is an arbitrary transv erse v elocity with amplitude w ⊥ 

	 1
uch that we can work at linear order in the velocities. The aberrated
irection related to the transverse velocity w ⊥ 

is given by 

 = 

˜ n + w 1 ̃  e 1 + w 2 ̃  e 2 . (D2) 

ollowing equations (39), we define the two natural polarization axes 
ssociated to s : 

ˆ f 1 = 

˜ e 1 − w 1 ̃  n − w 1 
cos ̃ θ
sin ̃ θ

˜ e 2 , (D3a) 

ˆ f 2 = 

˜ e 2 − w 2 ̃  n + w 1 
cos ̃ θ
sin ̃ θ

˜ e 1 . (D3b) 

nserting this into ( 23 ), we find for the dimensionless driving force
atrix 

 ij = 

ˆ H + 

(
ˆ f 1 i ˆ f 1 j − ˆ f 2 i ˆ f 2 j 

) + 

ˆ H ×
(

ˆ f 1 i ˆ f 2 j + 

ˆ f 2 i ˆ f 1 j 
)

+ 

ˆ H 1 

(
s i ˆ f 1 j + 

ˆ f 1 i s j 
) + 

ˆ H 2 

(
s i ˆ f 2 j + 

ˆ f 2 i s j 
)
, (D4) 

here 

ˆ 
 + 

= 

˜ h + 

− 2 w 1 
cos ˜ θ

sin ˜ θ
˜ h × , (D5a) 

ˆ 
 × = 

˜ h × + 2 w 1 
cos ̃ θ
sin ̃ θ

˜ h + 

, (D5b) 

ˆ 
 1 = −( v 1 − w 1 ) ̃  h + 

− ( v 2 − w 2 ) ̃  h × , (D5c) 

ˆ 
 2 = −( v 1 − w 1 ) ̃  h × + ( v 2 − w 2 ) ̃  h + 

. (D5d) 

rom this we see that there is an infinite number of ways of splitting
he signal into spin-2 and spin-1 modes with associated aberrated 
irection s . There is no way to determine which splitting corresponds
o the true velocity v and therefore the only meaningful solution is
he one with no spin-1 modes. This is indeed the only solution for
hich the direction inferred from the waveform and the direction 

nferred from time delay are the same. 

PPENDIX  E:  C O M PA R I S O N  WITH  P R E V I O U S  

TUDIES  

e discuss here references Torres-Orjuela et al. ( 2019 , 2021a , b ),
hich find results that are in contradiction with our study. 
In Torres-Orjuela et al. ( 2021a ), the authors detail the claim made

n Torres-Orjuela et al. ( 2019 ) that when considering aberration and
olarization rotation, the GW signal emitted changes in a way which 
annot be reabsorbed into a redefinition of the source’s intrinsic 
rientation. They deduce that this allows the detection of the constant 
otion of a source. This is in direct contradiction with what we have

hown explicitly in this article. Their proof is based on the deter-
ination of the transformation matrix that relates multipoles in the 

ource frame to multipoles in the observer frame. Their equation (37)
an be seen as such a transformation when using a multi-index 
otation L = ( � , m ), as it is of the form 

∑ 

L Y 

L 
K 

H 

L = H 

′ K , with
 

L 
K 

a matrix, similar to the D �m,� ′ m 

′ of Gualtieri et al. ( 2008 ) relating
he Weyl scalar multipoles. When they reach their equation (38), they 
laim that it is in contradiction with their initial assumption (33) that
berration is a remapping of the directions of the gravitational fields
mitted. They therefore conclude that the effect of a boost cannot be
imply described as a remapping of the source orientation, in contrast 
ith what happens in electromagnetism. Ho we ver, this conclusion 

s based on a series of mistakes that lead to equation (39). First,
quation (38) just determines the components of the transformation 
atrix, i.e. Y 

�,m + s 
k,m 

− δ� 
k δ

s 
0 ∝ C s ( �, k, m ), where C s ( � , k , m ) are some

i ven coef ficients for s = −1, 0, 1. There is no contradiction when
ealizing that the rhs of equation (38) is also of the form 

∑ 

Y 

L 
K 

H 

L ;
L 
ence, the extraction of coefficients is immediate when choosing 
ources such that H 

�,m = δ� 
L δ

m 

M 

. 7 In addition, the expressions of
hese coupling coefficients C s are also not correct. 8 This is related to
he fact that the authors have exchanged ∂ φ and ∂ θ when obtaining 
heir equation (27) from their equation (25). Furthermore, when 
sing the angular momentum raising and lowering operators of their 
quation (6) one finds 2 i ∂ θ = e −iφJ + 

− e iφJ −, hence 

 θ

(
H 

�m 

s Y 

�,m 

) = 

H 

�m 

2 

(√ 

( � − m )( � + 1 + m ) s Y 

�,m + 1 e −iφ

−√ 

( � + m )( � + 1 − m ) s Y 

�,m −1 e iφ
)

. (E1) 

his expression is not equal to ( H 

� m /2) A ( � , m ) s Y 

� , m , which is the
esult used in Torres-Orjuela et al. ( 2021a ), because s Y 

� , m ± 1 e ∓i φ �=
 

Y 

� , m . Also they found that the angle α, which is usually referred to
s the spin phase, appears only at second order in the boost velocity,
ence it was remo v ed from their equation (25). Ho we ver, the spin
hase is due to the non-parallel transport of the spherical basis, and
ppears at linear order in the velocity, as seen in equation (B25) of
ualtieri et al. ( 2008 ), and corresponds to the angle δψ in the present

rticle. 9 These mistakes also explain why the authors of Torres- 
rjuela et al. ( 2021a ) find in equation (32) that all modes � 

′ 
are

xcited by a boost at linear order in the velocity from a mode � in the
ource frame, whereas it is only the case for modes satisfying � − 1 ≤
 

′ ≤ � + 1 (see section III.C.2 of Gualtieri et al. 2008 ). All subsequent
esults, namely sections VI and VII of Torres-Orjuela et al. ( 2021a ),
re affected as they are based on the use of equation (32). The exact
ame mistakes plague equations (7)–(10) of Torres-Orjuela et al. 
 2021b ) which are the basis of the subsequent analysis. 

Note that the problem of finding how the multipoles of a signal are
ransformed by a boost, that is finding the Y 

L 
K 

, has already been solved
or spin-0 and spin-2 quantities in the context of CMB temperature
nd polarization in e.g. Challinor & van Leeuwen ( 2002 ), Dai &
hluba ( 2014 ), Yasini & Pierpaoli ( 2017 ), or appendix G of Cusin,
itrou & Uzan ( 2017 ). Both problems are related because the corre-

ation of spin-1 fields with null momentum (the photons) generates 
 spin-2 structure, also with null momentum, which describes the 
inear polarization of a photon bath (see e.g. Pitrou 2021 ). In any
MNRAS 525, 476–488 (2023) 
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ase, the crucial point is that since we are observing from a single
osition, we cannot see the change in the multipoles due to the source
elocity. We can only sample the GW field in one direction, and as
e have demonstrated in this paper, the boosted field in one direction

s fully degenerate with the unboosted one in a different direction. 

PPENDIX  F:  ZERO  C O R R E L AT I O N  O F  

R I E N TAT I O N  AC RO SS  T H E  SKY  

n this appendix, we schematically pro v e that the two-point correla-
ion function of the source orientation across the sky is vanishing.

e assume to have two pixels across the sky, each one containing a
et of GW binary systems, with random orientations ˜ N 

i 
1 in the first

ixel and ˜ N 

i 
2 in the second one. 

When we correlate two different pixels in the sky, we get 

 cos ̃  ι1 cos ̃  ι2 〉 = −〈 cos ι1 ˜ N 2 · v 2 ⊥ 

〉 − 〈 cos ι2 ˜ N 2 · v 1 ⊥ 

〉 
+〈 cos ι1 cos ι2 〉 + 〈 ̃  N 1 · v 1 ⊥ 

˜ N 2 · v 2 ⊥ 

〉 , (F1) 

here the mean has to be interpreted as an ensemble average when
cting on stochastic velocities and as a geometric mean o v er a bunch
f sources when acting on geometric quantities. This can be rewritten
s 

 cos ̃  ι1 cos ̃  ι2 〉 = −〈 cos ι1 〉〈 ̃  N 2 · v 2 ⊥ 

〉 − 〈 cos ι2 〉〈 ̃  N 2 · v 1 ⊥ 

〉 
+〈 cos ι1 〉〈 cos ι2 〉 + 〈 ˜ N 

i 
1 

˜ N 

j 

2 〉〈 v 1 ⊥ i 
v 2 ⊥ j 

〉 . (F2) 

t is apparent that the first three terms on the right-hand side vanish.
o we ver, the last vanishes as well due to 
NRAS 525, 476–488 (2023) 
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˜ N 

i 
1 

˜ N 

j 

2 〉 = 〈 ˜ N 

i 
1 〉〈 ˜ N 

j 

2 〉 = 0 , (F3) 

hich states that the orientation in two different pixels is not
orrelated, and the orientations inside each pixel are randomly
istributed. 
Notice that if one takes the limit 1 → 2 in ( F2 ), it appears that

osmological velocities give a modification in the variance of the
elocity field. This is due to the fact that when computing the
berration angle, we kept only the first order term in the velocity.
o we ver, we need to make sure that unit v ectors hav e unit norm, as an

ncorrect normalization brings biases when estimating the variance
f cos ι. Explicitly, for the aberrated direction, one has to consider 

˜ n = 

n + v ⊥ √ 

1 + v 2 ⊥ 

. (F4) 

ow, we use that the average of a direction vector is such that
 

˜ N i 
˜ N j 〉 = (1 / 3) δij ; hence, 〈 (cos ι) 2 〉 = ( n · n )/3 = 1/3. Then, we

ompute 

 ( cos ̃  ι) 2 〉 = 

〈 ( cos ι) 2 〉 + 〈 ( ˜ N · v ⊥ 

) 2 〉 
1 + v 2 ⊥ 

= 

1 
3 + 

v 2 ⊥ 
3 

1 + v 2 ⊥ 

= 

1 

3 
. (F5) 

ence, 〈 ( cos ̃  ι) 2 〉 = 〈 ( cos ι) 2 〉 , showing that the variance of the
rientation is also not affected by a global velocity flow. 
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