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Single-cell RNA-sequencing measures the expression of genes cell by cell. A major

challenge in the analysis of these data is so-called dropouts, that are

indistinguishable from real zeros. And zeros can represent up to 95% of the data.

Single cell RNA
sequencing

QUESTIONS

How to efficiently build the tree

regression models in order to use the

algorithm in the Arboreto pipeline?

How to build tree-based models that

integrate measured values and handle

the uncertain origins of zeros?

Can we find a unique optimal value of

the parameter for all single-cell

datasets?
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We trained 100 random forest using the ssl criterion to choose the splits over the

dataset, with different ratio of unlabeled values and different values for the

parameter w.. As expected, the R² decreases when the number of labeled

examples increases, but performance remains extremely high across a wide range

of % unlabeled data. 
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Arboreto framework [1]
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Regression models built from single-cell data,

predicting the expression of one target gene from

the expression of transcription factors (TFs).

Feature ranking is computed for each model and

used to score the interaction between the TF

(the feature) and target gene.
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NEW PARAMETER
In this impurity definition, a new parameter is

introduced: w. Tuning this parameter might be an

issue, but according to the original paper [4] and the

early results we have, it is possible that the value of

the parameter will not have such a big influence in our

experimental setting. This is still an open question.

COMPUTATION

TIME
Scikit-learn implements a so-called

impurity proxy that has the same

monotony as the real impurity. This

reduces the time needed to find the

optimal split at each node. For now,

our implementation in scikit-learn [3]

does not come with such a proxy, but

finding and implementing one could

reduce the computational power

needed.

Reducing the number of features on

which to compute the second term is

also a possibility by using a random

subset of features. 

REAL SETTING
The implementation of this impurity measure still

needs to be tested in a realistic situation, to

reproduce the experiment presented in Section 2.

This is time-consuming but necessary to answer the

initial questions.
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Experiment on the DREAM5 dataset [2]. For each

curve, dropouts were added to a different part of

the data: TFs, non-TF genes, and the whole dataset.

Splits are composed of

two elements: the feature

and the threshold with

max reduction of the

impurity in child nodes. In

scikit-learn [3], the

Python library used in

Arboreto [1], the impurity

of a node is based on the

mean squared error.

Levatic et al. [4] proposed to implement semi-supervised learning for regression

trees by replacing the impurity computation with one that takes into account

unlabeled examples.

R²
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-4.41

For this experiment, we choose one feature to be the target

function, and we trained 100 regression forest for each

experimental setting decribed by the couple (Impurity measurement,

training data). On the figure is represented the mean R² score for

each experimental setting
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