Xavier Bultel

Ashley Fraser

Elizabeth A Quaglia

Improving the Efficiency of Report and Trace Ring Signatures

Ring signatures allow signers to produce verifiable signatures and remain anonymous within a set of signers (i.e., the ring) while doing so. They are well-suited to protocols that target anonymity as a primary goal, for example, anonymous cryptocurrencies. However, standard ring signatures do not ensure that signers are held accountable if they act maliciously. Fraser and Quaglia (CANS'21) introduced a ring signature variant that they called report and trace ring signatures which balances the anonymity guarantee of standard ring signatures with the need to hold signers accountable. In particular, report and trace ring signatures introduce a reporting system whereby ring members can report malicious message/signature pairs. A designated tracer can then revoke the signer's anonymity if, and only if, a ring member submits a report to the tracer. Fraser and Quaglia present a generic construction of a report and trace ring signature scheme and outline an instantiation for which it is claimed that the complexity of signing is linear in the size of the ring |R|. In this paper, we introduce a new instantiation of Fraser and Quaglia's generic report and trace ring signature construction. Our instantiation uses a pairing-based variant of ElGamal that we define. We demonstrate that our instantiation is more efficient. In fact, we highlight that the efficiency of Fraser and Quaglia's instantiation omits a scaling factor of λ where λ is a security parameter. As such, the complexity of signing for their instantiation grows linearly in λ • |R|. Our instantiation, on the other hand, achieves signing complexity linear in |R|. We also introduce a new pairing-free report and trace ring signature construction reaching a similar signing complexity. Whilst this construction requires some additional group exponentiations, it can be instantiated over any prime order group for which the Decisional Diffie-Hellman assumption holds.

Introduction

In the context of distributed systems, it is often necessary to balance the competing goals of anonymity and accountability. On the one hand, there is an expectation of privacy by the system's users; on the other, the system must be able to hold misuse accountable. The need to balance these goals is particularly true for cryptocurrencies, which are typically deployed atop a distributed ledger. Indeed, several cryptocurrencies target user anonymity as a primary security goal [START_REF] Bonneau | Mixcoin: Anonymity for bitcoin with accountable mixes[END_REF][START_REF] Fauzi | Quisquis: A new design for anonymous cryptocurrencies[END_REF][START_REF] Maxwell | Coinjoin: Bitcoin privacy for the real world[END_REF][START_REF] Noether | Ring confidential transactions[END_REF][START_REF] Ben Sasson | Zerocash: Decentralized anonymous payments from bitcoin[END_REF], ensuring that users can transact without revealing their identity. In particular, Monero [START_REF] Noether | Ring confidential transactions[END_REF] uses a ring signature [START_REF] Ronald L Rivest | How to leak a secret[END_REF], a cryptographic tool that allows users to sign transactions within a group of users known as the ring, thus ensuring that the signer is anonymous within the ring. However, using a standard ring signature means that tracing a fraudulent transactor is difficult. As such, Monero cannot provide a guarantee of accountability.

The notion of a standard ring signature has been extended to incorporate accountability. Specifically, Xu and Yung introduced accountable ring signatures [31], which introduce a designated tracer that can revoke the anonymity of signers. More recently, Fraser and Quaglia presented report and trace ring (RTR) signatures [START_REF] Fraser | Report and trace ring signatures[END_REF]. This new ring signature variant builds upon the functionality of accountable ring signatures, requiring that the designated tracer can revoke anonymity only if a ring member first sends a report of malicious behaviour to the designated tracer 4 .

Report and Trace Ring Signatures. Similar to standard ring signatures, RTR signatures allow signers to generate signatures with respect to a group (i.e., ring) of users, and the signer is anonymous within the ring. Additionally, RTR signatures provide a mechanism whereby ring members can produce a report for a signed message. Upon receiving a report, a designated tracer can trace the signer's identity. Fraser and Quaglia defined report and trace ring signatures in [START_REF] Fraser | Report and trace ring signatures[END_REF], and provided a complete security model for the primitive. Accompanying this formalisation, the authors present a provably secure generic construction and concrete instantiation of an RTR signature.

With respect to the instantiation, we note two drawbacks that we aim to address. Firstly, the instantiation is not as efficient as claimed. In fact, during signing, the instantiation uses Stadler's zero-knowledge proof [START_REF] Stadler | Publicly verifiable secret sharing[END_REF] to prove correct encryption of a reporter token. Stadler's proof must be repeated λ times to be secure, where λ is the security parameter. As such, the complexity of the proof is linear in the security parameter. The efficiency analysis of the instantiation presented in [START_REF] Fraser | Report and trace ring signatures[END_REF] omits the security parameter. That is, signing is claimed to be linear in the size of the ring |R| but is, in fact, linear in λ • |R|. Secondly, the instantiation relies on a number theoretical group. As a consequence, the instantiation does not reap the efficiency benefits of the most efficient groups such as those based on elliptical curves.

Our Contributions. This work addresses the limitations of the existing RTR signature instantiation. Namely, we introduce a new instantiation of the generic construction in [START_REF] Fraser | Report and trace ring signatures[END_REF] (Section 4) that is more efficient than the instantiation in [START_REF] Fraser | Report and trace ring signatures[END_REF] with respect to signing. Then, we introduce a new RTR signature scheme construction (Section 5) that can be instantiated with any group for which the Decisional Diffie-Hellman assumption holds. Here, we provide a brief overview of our results.

In the generic construction of [START_REF] Fraser | Report and trace ring signatures[END_REF], during signing, the signer generates a reporter token that is encrypted to each ring member. The signer also generates a proof of correct encryption of the reporter token. In the instantiation of [START_REF] Fraser | Report and trace ring signatures[END_REF], this functionality is realised with standard ElGamal encryption and Stadler's zero-knowledge proof [START_REF] Stadler | Publicly verifiable secret sharing[END_REF]. In this paper, we introduce a new instantiation which relies on a bespoke pairing-based variant of the ElGamal public-key encryption scheme. Furthermore, we demonstrate that the zero-knowledge proof of correct encryption, which requires proof of equality of pairings for our new variant, can be instantiated using the Fiat-Shamir transformation [START_REF] Fiat | How to prove yourself: Practical solutions to identification and signature problems[END_REF] on the variant of the Schnorr protocol from [START_REF] Chaum | Wallet databases with observers[END_REF]. Accordingly, the complexity of signing for our instantiation grows linearly only in the size of the ring, improving upon the efficiency of the instantiation from [START_REF] Fraser | Report and trace ring signatures[END_REF]. In Section 3, we introduce our new pairing-based public-key encryption scheme and demonstrate how to prove correctness of encryption for our new scheme. We also discuss the security and efficiency of our instantiation.

We then propose a new RTR signature scheme construction in Section 5. This new scheme follows the syntax of an RTR signature, as outlined in Section 2, but differs from existing constructions, namely, the construction of [START_REF] Fraser | Report and trace ring signatures[END_REF]. Our new construction is pairing-free and can be instantiated with any group in which the Decisional Diffie Hellman assumption holds. Thus, our new construction allows for the use of more efficient and standard prime order groups (e.g., elliptic curves) than our instantiation (Section 4) and Fraser and Quaglia's instantiation [START_REF] Fraser | Report and trace ring signatures[END_REF]. We demonstrate that our new construction is secure and can be instantiated using standard cryptographic protocols from the literature. We conclude with a brief discussion of its efficiency, showing that although it requires more group exponentiations for signing and produces signatures that contain more group elements than our instantiation in Section 3, it achieves signing complexity that is linear in the size of the ring.

Other Related Work. Several ring signatures [START_REF] Ronald L Rivest | How to leak a secret[END_REF] variants aim to balance anonymity with accountability. As mentioned in introduction, accountable ring signatures [31,[START_REF] Bootle | Short accountable ring signatures based on ddh[END_REF] allow signers to generate ring signatures and remain anonymous within the ring, unless a designated tracer reveals the signer's identity. Moreover, linkable [START_REF] Joseph K Liu | Linkable spontaneous anonymous group signature for ad hoc groups[END_REF] and traceable [START_REF] Fujisaki | Traceable ring signature[END_REF] ring signatures allow tracers to determine whether two signatures are generated by the same, or different, users. Addressing the balance of anonymity and accountability has frequently arisen with respect to other cryptographic protocols. Notably, many group signature [START_REF] Chaum | Group signatures[END_REF] variants introduce measures whereby signer anonymity can be revoked [START_REF] Kiayias | Traceable signatures[END_REF][START_REF] Kohlweiss | Accountable metadata-hiding escrow: A group signature case study[END_REF][START_REF] Sakai | Group signatures with message-dependent opening[END_REF]. Additionally, anonymity and accountability has been discussed in relation to end-to-end encryption [30] and systems that permit the reporting of malicious, and perhaps criminal, behaviour [START_REF] Arun | Finding safety in numbers with secure allegation escrows[END_REF][START_REF] Hevia | Implementing secure reporting of sexual misconduct-revisiting whotoo[END_REF][START_REF] Kuykendall | Cryptography for# metoo[END_REF][START_REF] Rajan | Callisto: A cryptographic approach to detecting serial perpetrators of sexual misconduct[END_REF].

Preliminaries

In this section, we define the notations and the tools that we use in this paper. More detailed and formal definitions are given in Appendix A. Non-Interactive Zero-Knowledge Proof of Knowledge (NIZKP). Let R be a binary relation and let L be a language such that s ∈ L ⇔ (∃w, (s, w) ∈ R). According to the Camenisch-Stadler notation [START_REF] Camenisch | Proof systems for general statements about discrete logarithms[END_REF], NIZK{w : (s, w) ∈ R} denotes a NIZKP of w for the langage L. A NIZKP is said to be extractable when there exists a PPT knowledge extractor that efficiently extracts a witness w from any PPT algorithm that forges valid proofs of knowledge for a given statement s such that (s, w) ∈ R. Moreover, a NIZKP is said to be zero-knowledge when there exists a PPT simulator that takes a statement s as input and that produces proofs that are indistinguishable from those outputted by the real NIZKP protocol on s.

The

Signature of Knowledge (SoK).

A SoK [START_REF] Chase | On signatures of knowledge[END_REF] on a message m, denoted by SoK m {w : (s, w) ∈ R}, is similar to a NIZKP except that the message m is embedded in the proof. w is seen as a secret key and s as the corresponding public key. Since the knowledge of w is required to generate a valid SoK on a message m, a SoK is unforgeable, which is the standard security requirement the digital signatures.

We also recall the ElGamal encryption scheme and the IND-CPA security definition in Appendix A.

Syntax and Security Model

We recall the syntax and security model of a report and trace ring (RTR) signature scheme as presented in [START_REF] Fraser | Report and trace ring signatures[END_REF]. In an RTR signature, users sign messages with respect to a ring. The signer cannot be identified (i.e., is anonymous within the ring) unless a ring member generates an anonymous report and transmits the report to the designated tracer, who can then reveal the signer's identity. We adopt the notation conventions of [START_REF] Fraser | Report and trace ring signatures[END_REF], writing T to denote the tracer and U to denote a user from a set of users U.

Definition 1 (RTR signature). An RTR signature scheme is a tuple of algorithms (Setup, T.KGen, U.KGen, Sign, Verify, Report, Trace, VerTrace) defined as follows:

Setup(1 λ) → pp: On input security parameter 1 λ , outputs public parameters pp.

T.KGen(pp) → (pk T , sk T): On input pp, outputs a tracer public key pk T and secret key sk T . U.KGen(pp) → (pk U , sk U): On input pp, outputs a user public key pk U and secret key sk U . Sign(pp, sk U , pk T , m, R) → σ: On input pp, sk U , pk T , message m and ring R, outputs a signature σ. Verify(pp, pk T , m, R, σ) → {0, 1}: On input pp, pk T , m, R and σ, outputs 1 if σ is a valid signature on m with respect to R, and 0 otherwise. Report(pp, pk T , sk U , m, R, σ) → Rep: On input pp, pk T , sk U , m, R and σ, outputs a reporter token Rep. Trace(pp, sk T , m, R, σ, Rep) → (pk U , Tr, ρ t): On input pp, sk T , m, R, σ and Rep, outputs the signer's identity pk U , auxiliary information Tr consisting of the reporter token, and a proof of correct trace ρ t . VerTrace(pp, pk T , m, R, σ, pk U , Tr, ρ t) → {0, 1}: On input pp, pk T , m, R, σ, pk U , Tr and ρ t , outputs 1 if the trace is valid, and 0 otherwise. An RTR signature must satisfy correctness and trace correctness. Informally, correctness requires that algorithm Verify outputs 1 if the signature is the output of algorithm Sign (and setup/key generation is honestly executed) with overwhelming probability. Trace correctness necessitates that algorithm VerTrace outputs the correct signer's identity for a signature output by algorithm Sign with overwhelming probability. Correctness and trace correctness for RTR signatures are introduced and formally defined in [START_REF] Fraser | Report and trace ring signatures[END_REF], and we recall the formal definitions in Appendix B.

Security Model

RTR signatures must satisfy anonymity, unforgeability, non-frameability, trace soundness and reporter anonymity. These properties are defined in [START_REF] Fraser | Report and trace ring signatures[END_REF]. Here, we provide an overview of these properties, and present the full formal security model in Appendix B for reference. The security experiments model an attacker that can register and corrupt/control users (i.e., obtain their honestly-generated secret keys/generate keys on their behalf), and generate signatures, reports and traces through access to several oracles. We present these oracles in full in Appendix B alongside the formal definition of the security model.

Anonymity. Anonymity requires that, on the condition that a signature is not reported and the signer traced, a signature does not reveal the signer's identity. Anonymity for RTR signatures, as defined in [START_REF] Fraser | Report and trace ring signatures[END_REF], adjusts the definition of anonymity against adversarially generated keys in [START_REF] Bender | Ring signatures: Stronger definitions, and constructions without random oracles[END_REF]. In doing so, it is assumed that the attacker can control users and reporters. However, the tracer is assumed to be honest. In the anonymity experiment, the adversary outputs a message, ring and two potential signers (who are assumed to be honest). The adversary obtains a signature and outputs a bit to indicate which signer produced the signature. An RTR signature is anonymous if the adversary cannot determine which of the two potential signers generated the signature.

Unforgeability. Unforgeability for RTR signatures is adapted from the standard definition of unforgeability for ring signatures presented in [START_REF] Bender | Ring signatures: Stronger definitions, and constructions without random oracles[END_REF]. It requires that an attacker cannot produce a valid ring signature on behalf of a member of an honest ring. An attacker is assumed to control the tracer, and can corrupt and control users. In the security experiment, the adversary outputs a message, ring and signature (which is not obtained via a signing oracle). If the signature is valid, we say that the adversary has produced a valid forgery. An RTR signature scheme satisfies unforgeability if the adversary cannot construct a valid forgery.

Non-frameability. Intuitively, non-frameability captures the property that a nonsigner cannot be identified as the signer by the designated tracer. The formal non-frameability experiment models an attacker that can control the tracer, and can corrupt and control signers. The adversary outputs a message, ring, signature and trace, where the traced signer is assumed to be honest. An RTR signature scheme satisfies non-frameability if algorithm VerTrace returns 0.

Trace soundness. In [START_REF] Bootle | Short accountable ring signatures based on ddh[END_REF], trace soundness was introduced as a new security property for accountable ring signatures. Trace soundness states that the signer identified by the tracer must be unique. In other words, two users can be verifiably identified as signers. In [START_REF] Fraser | Report and trace ring signatures[END_REF], the trace soundness property is adapted to the syntax of an RTR signature, and, like the original definition in [START_REF] Bootle | Short accountable ring signatures based on ddh[END_REF], models an attacker that controls the tracer and can corrupt and control all signers. In the formal security experiment, the adversary outputs two traces (where each trace identifies a different ring member as the signer) alongside a message, ring and signature. The trace soundness property is satisfied if algorithm VerTrace does not output 1 for both traces.

Reporter Anonymity. Reporter anonymity requires that a report does not reveal the ring member that produced it, if it is assumed that the reporter is honest. The attacker can control the tracer and corrupt/control a subset of users. In the reporter anonymity experiment, the adversary outputs a message, ring, signature and the two ring members (i.e., two potential reporters). The adversary obtains a report and outputs a bit to indicate which reporter generated the report. An RTR signature satisfies reporter anonymity if the adversary cannot determine which reporter produced the report.

An Efficient Instantiation of Fraser and Quaglia's Protocol

Fraser and Quaglia present a generic construction for an RTR signature in [START_REF] Fraser | Report and trace ring signatures[END_REF].

We provide a brief intuition into their construction here and refer the reader to [START_REF] Fraser | Report and trace ring signatures[END_REF] for full details. During key generation, users (i.e., ring members) and the tracer generate a keypair for a public-key encryption (PKE) scheme. To sign a message, signers generate a fresh key pair for a PKE scheme. The fresh secret key is known as the reporter token. The reporter token is encrypted under the public key of each ring member. Then, the signer encrypts their identity under the public key of the tracer and then again under the fresh public key. The signer also constructs a zero-knowledge proof (NIZK) that the reporter token is encrypted to all ring members, and a signature of knowledge (SoK) that the signer's identity is encrypted to the tracer. Ring members can report signatures by decrypting the reporter token using their decryption key for the PKE scheme. A tracer can decrypt the signer's identity using their decryption key and the reporter token.

Fraser and Quaglia also present a concrete instantiation of their construction. A central requirement of their construction is that the signer must prove that a ciphertext encrypts a secret key (i.e., the reporter token) that corresponds to a given public key. Fraser and Quaglia propose to instantiate their construction with the original ElGamal cryptosystem and Stadler's zero-knowledge proof [START_REF] Stadler | Publicly verifiable secret sharing[END_REF], which ensures that an ElGamal ciphertext encrypts a discrete logarithm in a zero-knowledge way. However, this approach has two drawbacks. Firstly, Stadler's proof has complexity linear in the security parameter as the proof must be repeated λ times. Secondly, the proof only works for number-theoretic groups of prime order, and cannot be extended to groups based on elliptic curves.

In what follows, we propose an instantiation of Fraser and Quaglia's construction using a variant of ElGamal based on bilinear maps, overcoming the first drawback (we address the second drawback in Section 5). Our new instantiation differs from Fraser and Quaglia's instantiation in the following respect. We use our ElGamal variant to generate the reporter token and encrypt the signer's identity under the reporter token. Then, we modify the zero-knowledge proof for our ElGamal variant. In all other respects, our instantiation is identical. In particular, we use a one-way function to generate the signer's public identity, the SoK of [START_REF] Bootle | Short accountable ring signatures based on ddh[END_REF], and we use standard ElGamal encryption to encrypt the reporter token to the ring members and the signer's identity to the tracer. Now, we introduce our new ElGamal variant, and then discuss the security and efficiency of our new instantiation.

A Pairing-Based ElGamal Variant

Let G 1 , G 2 and G t be groups of prime order p, g 1 ∈ G 1 and g 2 ∈ G 2 be generators, and e : G 1 × G 2 → G t be a type-3 bilinear pairing. We first recall the standard ElGamal cryptosystem in G 1 , which is used by each ring member to generate their key pair and is specified as follows.

-Choose secret key sk PKE ∈ Z * p and let public key

pk PKE = g sk PKE 1 . -To encrypt a message m with randomness r, run PKE.Enc(pk PKE , m; r), which retruns (c 1 , c 2) = (g r 1 , pk r PKE • m). -To decrypt, run PKE.Dec(sk PKE , (c 1 , c 2)), which returns m = c2 c sk PKE 1 .
Our new ElGamal variant, used by the signer during the signature algorithm to generate a fresh PKE key pair, is defined as follows.

-Generate fresh secret key sk Sign ∈ G 1 and define the fresh public key as pk Sign = e(sk Sign , g 2).

-PKE.Enc(pk Sign , m; r) returns (c 1 , c 2) = (g r 2 , pk r Sign • m).
-PKE.Dec(sk Sign , c) returns m = c2 e(sk Sign ,c1) . Note that anyone can transform a ciphertext (c 1 , c 2) = (g r 2 , pk r Sign •m) of this ElGamal variant into a standard ElGamal ciphertext in G t by computing (e(g 1 , c 1), c 2).

We show the following result. Proof. Assume that there exists a Probabilistic Polynomial Time (PPT) adversary A that breaks the IND-CPA security of our ElGamal variant with a non-negligible advantage A (λ). We show how to build a PPT adversary B that breaks the DDH assumption in G 2 with a non-negligible advantage B (λ) (where λ is the security parameter used to generate G 2).

B receives the DDH challenge (X, Y, Z) = (g x 2 , g y 2 , g z b 2
) and picks b $ ← {0, 1}. It sets pk Sign ← e(g 1 , X) and sends it to A, which returns a pair of chosen plaintexts (m 0 , m 1).

B computes c 1 ← Y and c 2 = e(g 1 , Z) • m b . It sends (c 1 , c 2) to A, which returns b . If b = b , then B returns 0, else it returns 1.
We remark that c 1 = Y = g y 2 , and

c 2 = e(g 1 , Z)•m b = e(g 1 , g 2) z b •m b . If b = 0, then c 2 = e(g 1 , g 2) x•y •m b = e(g 1 , g x 2) y •m b = e(g 1 , X) y •m b = pk y Sign •m b . In this case, the IND-CPA experiment is perfectly simulated for A, so A returns b = b with the non-negligible advantage A (λ). If b = 1, then c 2 = e(g 1 , g 2) z1
•m b seems to be random from the point of view of A. In this case, A has no information about b , so it returns b = b with probability 1/2 (its advantage is null). Finally,

B (λ) = A (λ)/2, so B (λ) is non-negligible, which concludes the proof.
We will now show how to prove that an ElGamal ciphertext in G 1 encrypts a secret key of our ElGamal variant in a zero-knowledge way. We consider the key pair of our ElGamal variant sk Sign ∈ G 1 and pk Sign = e(sk Sign , g 2), and the ciphertext (c 1 , c 2) = (g r 1 , pk r PKE • sk Sign) ∈ G 2 1 which encrypts sk Sign with the public key pk PKE .

We have to prove that pk Sign = e (PKE.Dec(pp PKE , sk PKE , (c 1 , c 2)), g 2). We have the following equivalences:

pk Sign = e (PKE.Dec(pp PKE , sk PKE , (c 1 , c 2)), g 2) ⇔pk Sign = e c 2 c sk PKE 1 , g 2 = e (c 2 , g 2) e c sk PKE 1 , g 2 = e (c 2 , g 2) e g r•sk PKE 1 , g 2 = e (c 2 , g 2) e (pk PKE , g 2) r ⇔e (pk PKE , g 2) r = e (c 2 , g 2) pk Sign
On the other hand, we have e(c 1 , g 2) = e(g r 1 , g 2) = e(g 1 , g 2) r . Finally, in order to prove that the ElGamal ciphertext in G 1 encrypts the secret key of our ElGamal variant in zero-knowledge, we have to prove the following relation, knowing r:

NIZK r : e(c 1 , g 2) = e(g 1 , g 2) r ∧ e (pk PKE , g 2) r = e (c 2 , g 2) pk Sign (1)
This is a proof of discrete logarithm equality in G t . This zero-knowledge proof can be instantiated with the Fiat-Shamir transform [START_REF] Fiat | How to prove yourself: Practical solutions to identification and signature problems[END_REF] on the variant of the Schnorr protocol given in [START_REF] Chaum | Wallet databases with observers[END_REF].

Discussion

We propose to use the above encryptions and NIZK proof to build an efficient RTR signature scheme following the generic construction in [START_REF] Fraser | Report and trace ring signatures[END_REF]. We recall that in a type 3 pairing, the DDH assumption holds in G 1 , G 2 , and G t , which implies that any construction based on the discrete logarithm assumption, the computational Diffie-Hellman assumption, or the decisional Diffie-Hellman assumption remains secure in each of these groups. The construction of Fraser and Quaglia uses only discrete logarithm-based building blocks, so it remains secure in our new pairing setup. Moreover, in order to prove relations among different elements of the signature, this construction uses Schnorr-based proofs of discrete logarithm relation and discrete logarithm knowledge, which work in any group of prime order, even when the relation is proved over different groups of the same order. Since our new encryption instantiation keep the structure of ElGamal, the other zero-knowledge proofs can be instantiated as in [START_REF] Fraser | Report and trace ring signatures[END_REF].

The NIZK proof outlined above is more efficient than the NIZK used in the instantiation in [START_REF] Fraser | Report and trace ring signatures[END_REF]. More specifically, the above NIZK proof requires a constant number of group exponentiations and pairings 5 (2 and 3, respectively) to prove. Similarly, verification of the NIZK proof requires 4 group exponentiations and 3 pairings. The size of the proof is also constant in size: it consists of 2 group elements and 1 field element. Comparatively, the size of the NIZK proof used in Fraser and Quaglia's instantiation, and the computational costs associated with proving and verification, are linear in |R| • λ (where λ is the security parameter). With respect to other costs associated with signing and verification, the two instantiations are identical, as shown above. As such, with respect to signature generation and verification, our instantiation has linear space and time complexity in the size of the ring. Therefore, our approach implies that the generic construction can be instantiated more efficiently than originally proposed, i.e., avoiding the linear increase in the security parameter.

To conclude, as a consequence of the security proofs for the generic construction in [START_REF] Fraser | Report and trace ring signatures[END_REF], our pairing instantiation is secure if our new ElGamal variant satisfies IND-CPA security [START_REF] Goldwasser | Probabilistic encryption & how to play mental poker keeping secret all partial information[END_REF] and our zero-knowledge proof of correct encryption (Equation 1) satisfies completeness, knowledge soundness and zero-knowledge, as defined in [START_REF] Groth | Perfect non-interactive zero knowledge for np[END_REF]. As such, our instantiation satisfies the RTR signature security model.

A New RTR Signature Construction

In this section, we present a new RTR signature construction. We describe our protocol and present an instantiation. We conclude this section with a security analysis of our protocol and a brief discussion of its efficiency.

Description of Our Protocol

We outline our protocol following the syntax of an RTR scheme introduced in Definition 1.

Setup and Key Generation. Our construction uses ElGamal-based keys. Each ElGamal encryption key ek is provided together with a proof of knowledge π of the corresponding secret key sk. We will see why these proofs of knowledge are required later in this section. The public key is the pair pk = (ek, π) and the secret key is sk. We use the part ek of the user public key as their identity. Setup(1 λ): Generates a prime order group setup pp = (G, p, g) such that the Decisional Diffie-Hellman assumption holds in G. T.KGen(pp):

Picks sk T $ ← Z * p , sets ek T ← g sk T , sets π T ← NIZK sk T : ek T = g sk T and outputs pk T ← (ek T , π T). U.KGen(pp): Picks sk U $ ← Z * p , sets ek U ← g sk U , sets π U ← NIZK sk U : ek U = g sk U and outputs pk U ← (ek U , π U).
Signature Generation and Verification. The idea of the signature is to separate the public key ek of the signer into two shares S 1 and S 2 such that S 1 • S 2 = ek. The signer picks a coin α at random and uses it to encrypt (using ElGamal) S 2 for each public encryption key ek i in the ring, outputting |R| ciphertexts denoted c i . The signer then encrypts S 1 for the tracer encryption key ek T , outputting ciphertext c. The signer then proves that the ring members' ciphertexts encrypt the same message in zero-knowledge. Note that due to the homomorphic properties of ElGamal, each c i • c encrypts S 1 • S 2 = ek. Finally, the signer signs the message using a signature of knowledge that proves in zero-knowledge that it knows the secret key sk i for a secret index i (which is its own secret key sk i = sk U) that decrypts c i • c on the message ek i = ek U . Sign(pp, sk U , pk T , m, R): Parses pk T as (ek T , π T). Sets n ← |R|, parses R as {pk i } n i=1 and each pk i as (ek i , π i). Verifies each π i (this step preempts a subtle attack on anonymity that we will detail later). If there are two indices i and j such that pk i = pk j and ek i = ek j , or if there is no index i such that pk U = pk i , then it aborts and returns the failure symbol ⊥. Picks α

$ ← Z * p and sets h ← g α . Picks S 1 $ ← G and sets S 2 ← ek U /S 1 . Note that S 1 and S 2 are two shares of the secret identity ek U = S 1 • S 2 . Sets c ← ek α T • S 1 . For each i ∈ n : -Sets c i ← ek α i • S 2 . -If i > 1, sets π i ← NIZK α : h = g α ∧ ci ci-1 = eki eki-1 α , else π i ←⊥.
The proofs π i ensure that each ElGamal ciphertext (h, c i) encrypts the same message. Note that (h, c • c i) is the ElGamal encryption of S 1 • S 2 = ek U for the public key (ek T • ek i). Sets M ← (pp, pk T , m, R, h, c, (c i , π i) n i=1), and sets σ M ← SoK M (α, sk U) :

n i=1 h = g α ∧ c•ci eki = (ek T • ek i) α ∧ ek i = g sk U .
The signature of knowledge σ M ensures that (h, c • c i) is an ElGamal encryption of one ek i , and that the signer knows the secret key corresponding to ek i , which means that ek i is the identity of the signer. Finally, the algorithm returns σ = (h, c, (c i , π i) n i=1 , σ M). Verify(pp, pk T , m, R, σ): Verify each π i and σ M . Note that, if the keys are honestly generated, the probability that the signature aborts because two encryption keys ek i and ek j are equal is negligible.

Report and Trace. To report a signature, a user decrypts the ciphertext c i that corresponds to their public key in order to learn S 2 , and proves the correctness of the decryption using a zero-knowledge proof. To trace the signature, the tracer decrypts c in order to learn S 1 , proves the correctness of the decryption using a zero-knowledge proof, and returns the identity that corresponds to the encryption key ek = S 1 • S 2 . Report(pp, pk T , sk U , m, R, σ): Verifies the signature σ. Sets n ← |R|, parses R as {pk i } n i=1 and each pk i as (ek i , π i). Let j be the index that verifies pk j = (ek U , π j). Parses σ as (h, c,

(c i , π i) n i=1 , σ M). Sets S 2 ← c j /h sk U and π Rep ← NIZK sk U : n i=1 ci S2 = h sk U ∧ ek i = g sk U .
The proofs π Rep ensures that one (h, c i) encrypts S 2 . This algorithm returns Rep ← (S 2 , π Rep) Trace(pp, sk T , m, R, σ, Rep): Verifies the signature σ. Parses Rep as (S 2 , π Rep) and σ as (h, c, (c i , π i) n i=1 , σ M). Verifies the proof π Rep . Sets S 1 ← c/h sk T , and π ρt ← NIZK sk T : c S1 = h sk T ∧ ek T = g sk T . The proof π ρt ensures that one (h, c) encrypts S 1 . This algorithm returns ρ t ← (S 1 , π ρt) VerTrace(pp, pk T , m, R, σ, pk U , Tr, ρ t): Sets n ← |R|, parses R as {pk i } n i=1 and each pk i as (ek i , π i). Verifies π Rep and π ρt . If one of these proofs is not valid, then it returns the failure symbol ⊥, else it returns the key pk i that verifies

ek i = S 1 • S 2 .

Instantiation

In the following, we propose an instantiation for each of the proofs and signatures of knowledge used in our protocol. The proof NIZK {x : h = g x } used in π U and π T can be instantiated with the Fiat-Shamir transform on the Schnorr protocol [START_REF] Schnorr | Efficient signature generation by smart cards[END_REF]. The proof NIZK {x :

h 1 = g x 1 ∧ h 2 = g x 2 }
used in π ρt and each π i can be instantiated with the Fiat-Shamir transform on the variant of the Schnorr protocol given in [START_REF] Chaum | Wallet databases with observers[END_REF]. The proof NIZK x :

n i=1 h i,1 = g x i,1 ∧ h i,2 = g x i,2
used in π Rep can be instantiated with the Cramer-Damgård-Schoenmakers transform [START_REF] Cramer | Proofs of partial knowledge and simplified design of witness hiding protocols[END_REF] (which transforms a zero-knowledge proof of a statement into a zero-knowledge proof of 1-out-of-n statements) and the Fiat-Shamir transform applied on the variant of the Schnorr protocol given in [START_REF] Chaum | Wallet databases with observers[END_REF]. Finally, the proof NIZK (x, y) :

n i=1 h i,1 = g x i,1 ∧ h i,2 = g x i,2 ∧ h i,3 = g y i,3
used in σ M can be instantiated with the Fiat-Shamir transform and the Cramer-Damgård-Schoenmakers transform [START_REF] Cramer | Proofs of partial knowledge and simplified design of witness hiding protocols[END_REF] applied on the successive executions of the Schnorr protocol [START_REF] Schnorr | Efficient signature generation by smart cards[END_REF] and the variant of the Schnorr protocol given in [START_REF] Chaum | Wallet databases with observers[END_REF]. To transform this proof into a signature of knowledge, it suffices to add the message to the hashed elements during the creation of the challenge (this method works with any protocol resulting from the Fiat-Shamir transform [START_REF] Chase | On signatures of knowledge[END_REF]).

All these proofs of knowledge use only group operations and do not require any specific tool to be instantiated. The non-interactive version of the proofs and the signature of knowledge require a hash function modeled by a random oracle.

Security Analysis

Our new construction satisfies the security properties for an RTR signature scheme and, as such, we obtain Theorem 2. The formal proof of this theorem is given in Appendix C and we informally explain why these properties hold here.

Theorem 2. Our protocol instantiated with extractable and zero-knowledge proofs and signatures of knowledge is unforgeable, anonymous, non-frameable, trace sound, and reporter anonymous under the Decisional Diffie-Hellman assumption in the standard model.

Unforgeability: To forge a signature, an adversary must forge a signature of knowledge σ M , which requires the knowledge of one of the secret keys of the ring, which is the discrete logarithm of one of the public encryption keys. If an adversary produces such a signature, then the extractor of the signature of knowledge can be used to break the discrete logarithm assumption (which is hard under the Decisional Diffie-Hellman assumption). Anonymity: To deduce the identity of the signer, the share S 1 of the signer identity is required by the adversary. This share is encrypted using the ElGamal encryption on the honest tracer public key. Thus, breaking the anonymity is at least as difficult as breaking the IND-CPA security of ElGamal, which depends on the Decisional Diffie-Hellman assumption. Trace soundness: The proofs and signatures of knowledge ensure that the identity of the signer ek is actually S 1 • S 2 (from σ M), each c i encrypts the same S 2 (from π i), the reporter returns S 2 (from π Rep), and the tracer returns S 1 (from π ρt). If an adversary is able to report the same signature for two different identities, then it forges a proof on a false statement that cannot be correctly extracted, which contradicts the extractability. Non-frameability: As it is shown for the trace soundness, the proofs ensure that the report and trace mechanism are sound. Thus, to attack non-frameability the adversary must produce a fresh valid and traceable signature for an honest user. As for unforgeability, such an adversary can be used to extract the discrete logarithm of the public encryption key of an honest user, which is hard under the Decisional Diffie-Hellman assumption.

Reporter anonymity: Each reporter returns the same S 2 (according to the proofs of knowledge that we use in the protocol), and a zero-knowledge proof that gives no information about their identity. Therefore, an adversary cannot deduce the identity of the reporter. The role of the zero-knowledge proofs on the public keys. We recall that each public key is associated with a proof of correctness, and that these proofs are verified before each signature. In what follows, we will show that this mechanism avoids a subtle attack on anonymity. Assume that the users do not prove the knowledge of their secret keys (i.e. pk = ek). In this case, an attacker A can break the anonymity of our construction using the following attack. A chooses the public keys (pk 0 , pk 1) of two honest users, picks sk 2 $ ← Z * p , sets ek 2 ← g sk2 , and sets pk 2 ← ek 2 . A then picks γ $ ← Z * p , sets ek 3 ← ek γ T , and sets pk 3 ← ek 3 . A chooses a message m, sets R ← {pk 0 , pk 1 , pk 2 , pk 3 } sends (m, R, pk 0 , pk 1 , st) to the challenger, and receives a signature σ = (h, c, (c i , π i) n i=1 , σ M). Since σ has been generated correctly, we have that c = ek α T • S 1 and ∀ i, c i = ek α i • S 2 (where α denotes the discrete logarithm of h). A computes S 2 ← c 2 /h sk2 and

S 1 ← c/ c3 S2 1 γ . If S 1 • S 2 = ek 0 , then A returns 0, else if S 1 • S 2 = ek 1 , then A returns 1.
We observe that:

S 1 = c c3 S2 1 γ = ek α T • S 1 ek α 3 •S2 S2 1 γ = ek α T • S 1 (ek α 3) 1 γ = ek α T • S 1 ((ek γ T) α) 1 γ = ek α T • S 1 ek α• γ γ T = ek α T • S 1 ek α T = S 1 .
Thus, S 1 • S 2 gives the identity of the signer with probability 1.

Efficiency of our protocol and comparison. Similarly to our instantiation in Section 4, the protocol presented in Section 5.1, when instantiated as in Section 5.2, has space and time complexity that is linear in the size of the ring. More explicitly, a signature can be computed with 11|R|-3 group exponentiations and verified with 10|R| -4 group exponentiations. A signature consists of 6|R| group elements and 4|R|-2 field elements. On the other hand, in our instantiation in Section 4, a signature can be computed with 5|R| + 21 group exponentiations and 4 pairings, and verified with 3|R| + 23 group exponentiations and 3 pairings. A signature consists of 2|R| + 20 group elements and |R| + 7 field elements. Thus, our instantiation from Section 4 requires less group exponentiations, moreover, it generates reporter tokens of constant size, while the size of the tokens grows linearly with the number of users in the new construction. In return, our new construction can be instantiated with any prime order group, including pairingfree groups based on elliptic curves, which are known to optimize the size of the group elements and the computation cost of the operations for an equivalent level of security.

Concluding Remarks

We introduced a new instantiation of an RTR signature scheme that follows the generic construction in [START_REF] Fraser | Report and trace ring signatures[END_REF]. Our instantiation has space and time complexity linear in the size of the ring. Consequently, our instantiation significantly increases the efficiency of the construction in [START_REF] Fraser | Report and trace ring signatures[END_REF], but requires pairings. We also introduce a new RTR signature construction with similar complexity that does not require pairings and can be instantiated with any prime order group. In return, our construction requires more group exponentiations than our instantiation of [START_REF] Fraser | Report and trace ring signatures[END_REF].

An interesting open question is whether it is possible to design an RTR signature that simultaneously reaps the benefits of our instantiation and new construction.

That is, we ask, is it possible to design an RTR signature that is (at least) as efficient as our instantiation of the construction from [START_REF] Fraser | Report and trace ring signatures[END_REF] and can be instantiated with any group?

A Building Blocks

We recall the formal definition of the building blocks we need in our construction, as well as some well-known properties.

Definition 2 (Discrete Logarithm assumption (DL)). Let G be a group of prime order p and g ∈ G be a generator. The discrete logarithm assumption states that there is no PPT algorithm that takes a random element X $ ← G as input and that returns x ∈ Z * p such that g x = X.

Definition 3 (Decisional Diffie-Hellman assumption (DDH)). Let G be a group of prime order p and g ∈ G be a generator. Let x, y, and z 0 be three random elements picked in the uniform distribution on Z * p . We set z 1 = x • y. The Decisional Diffie-Hellman assumption states that there is no PPT algorithm that distinguishes (g x , g y , g z0) from (g x , g y , g z1) with non-negligible advantage (i.e. with a probability significantly different from 1/2). Lemma 1. The DL assumption holds under the DDH assumption.

Definition 4 (Non-Interactive Zero-Knoledge Proof (NIZKP)). Let R be a binary relation and let L be a language such that s ∈ L ⇔ (∃w, (s, w) ∈ R). A non-interactive ZKP (NIZKP) for the language L is a couple of algorithms (NIZK, NIZK.Verify) such that: NIZK{w : (s, w) ∈ R}. This algorithm outputs a proof π. NIZK.Verify(s, π). This algorithm outputs a bit b. A NIZKP proof has the following properties: Corectness. For any s, w, R such that (s, w) ∈ R, and π ← NIZK{w : (s, w) ∈ R, NIZK.Verify(s, π) returns 1. Soundness. There is no polynomial time adversary A such that A(L) outputs (s, π) such that NIZK.Verify(s, π) = 1 and s ∈ L with non-negligible probability. Extractability. There exists a PPT knowledge extractor Ext and a negligible function NIZK such that for any algorithm A Sim(•) (λ) having access to a simulator that forges signatures for chosen statement and that outputs a fresh pair (s, π) with NIZK.Verify(s, π) = 1, the extractor Ext A (λ) outputs w such that (s, w) ∈ R having access to A(λ) with probability at least 1 -NIZK (λ). Zero-knowledge. A proof π leaks no information, i.e., there exists a polynomial time algorithm Sim (called the simulator) such that NIZK{w : (s, w) ∈ R} and Sim(s) follow the same probability distribution.

Signatures of Knowledge (SoK) are defined in a similar way, except that each proof is associated with a message m: SoK m {w : (s, w) ∈ R}. This algorithm outputs a proof π. SoK.Verify(m, s, π). This algorithm outputs a bit b.

Definition 5 (ElGamal Encryption). The ElGamal Encryption on pp = (G, g, p) where G = g is a group of prime order p is a public key encryption scheme (Gen, Enc, Dec) defined as follows: Gen(pp): picks sk

B Security Model for Report and Trace Ring Signatures

Throughout this section, λ denotes the security parameter.

Definition 7 (Correctness). An RTR signature is correct if, for any n = poly(λ), j ∈ [n] and message m, there exists a negligible function such that,

Pr      pp ← Setup(1 λ); (pk T ,sk T) ← T.KGen(pp); for i = 1,...,n : (pk U i ,sk U i) ← U.KGen(pp); R = {pk U 1 ,...,pk Un }; σ ← Sign(pp,sk U j ,pk T ,m,R); b ← Verify(pp,pk T ,m,R,σ) : b = 1      ≥ 1 -(λ).

Definition 8 (Trace correctness

). An RTR signature satisfies trace correctness if for any n = poly(λ), j, k ∈ [n] where j = k, and message m, there exists a negligible function such that,

Pr        pp ← Setup(1 λ); (pk T ,sk T) ← T.KGen(pp); for i = 1,...,n : (pk U i ,sk U i) ← U.KGen(pp); R = {pk U 1 ,...,
: b = 1        ≥ 1 -(λ).
Oreg()

(pk U , skU) ← U.KGen(pp) Qreg ← Qreg ∪ {pkU} L ← L ∪ {(pk U , skU)} return pk U Ocorrupt(pk U) if (pk U , •) / ∈ L return ⊥ Qcorr ← Qcorr ∪ {pkU} return skU Osign(pk U , pk T , m, R) if (pk U , •) / ∈ L return ⊥ σ ← Sign(pp, skU, pk T , m, R ∪ {pkU}) Qsign ← Qsign ∪ {(pk T , pk U , m, R, σ)} return σ Oreport(pk U , m, R, σ) if pk U / ∈ R ∨ (pk U , •) / ∈ L return ⊥ Rep ← Report(pp, pk T , skU, m, R, σ) Qreport ← Qreport ∪ {(pk U , m, R, σ)} return Rep Otrace(m, R, σ, Rep) (pk U , Tr, ρt) ← Trace(pp, skT, m, R, σ, Rep) Qtrace ← Qtrace ∪ {(m, R, σ)} return (pk U , Tr, ρt)
Fig. 1: Oracles for the report and trace ring signature security model from [START_REF] Fraser | Report and trace ring signatures[END_REF].

Definition 9 (Anonymity). An RTR signature is anonymous with respect to adversarially generated keys if, for any probabilistic, polynomial-time (PPT) adversary A, there exists a negligible function such that,

Pr        pp ← Setup(1 λ); L, Qreg, Qcorr, Qsign, Qreport, Qtrace ← ∅; (pk T ,sk T) ← T.KGen(pp); (m,R,pk U 0 ,pk U 1 ,st) ← A Oreg,Ocorrupt,Osign,Oreport,Otrace (pp,pk T); b ← {0,1}; σ ← Sign(pp,sk U b ,pk T ,m,R ∪ {pk U 0 ,pk U 1 }); b ← A Oreg,Ocorrupt,Osign,Oreport,Otrace (σ,st) : b = b ∧ (m,R,σ) / ∈ Qtrace ∧ pk U 0 ∈ Qreg\Qcorr ∧ pk U 1 ∈ Qreg\Qcorr        -1 2 ≤ (λ).
Definition 10 (Unforgeability). An RTR signature scheme is unforgeable if, for any PPT adversary A, there exists a negligible function such that,

Pr pp ← Setup(1 λ); L, Qreg, Qcorr, Qsign, Qreport ← ∅; (pk T ,m,R,σ) ← A Oreg,Ocorrupt,Osign,Oreport (pp)
:

Verify(pp,pk T ,m,R,σ) = 1 ∧ R ⊆ Qreg\Qcorr ∧ (pk T ,•,m,R,σ) / ∈ Qsign ≤ (λ).
Definition 11 (Non-frameability). An RTR signature is non-frameable if for any PPT adversary A, there exists a negligible function such that,

Pr    pp ← Setup(1 λ); L, Qreg, Qcorr, Qsign, Qreport ← ∅; (pk T ,m,R,σ,pk U ,Tr,ρ t) ← A Oreg,Ocorrupt,Osign,Oreport (pp); b ← VerTrace(pp,pk T ,m,R,σ,pk U ,Tr,ρ t) : b = 1 ∧ pk U ∈ Qreg\Qcorr ∧ Verify(pp,pk T ,m,R,σ) = 1 ∧ (pk T ,pk U ,m,R,σ) / ∈ Qsign    ≤ (λ).
Definition 12 (Trace soundness). An RTR signature satisfies trace soundness if for any PPT adversary A, there exists a negligible function such that,

Pr      pp ← Setup(1 λ); L, Qreg, Qcorr, Qsign, Qreport ← ∅; (pk T ,m,R,σ,pk U i ,Tr i ,ρ t i ,pk U j ,Tr j ,ρ t j) ← A Oreg,Ocorrupt,Osign,Oreport (pp) b 1 ← VerTrace(pp,pk T ,m,R,σ,pk U i ,Tr i ,ρ t i); b 2 ← VerTrace(pp,pk T ,m,R,σ,pk U j ,Tr j ,ρ t j) : b 1 = 1 ∧ b 2 = 1 ∧ pk U i = pk U j      ≤ (λ).
Definition 13 (Reporter anonymity). An RTR signature is reporter anonymous if, for any PPT adversary A, there exists a negligible function such that,

Pr       pp ← Setup(1 λ); L, Qreg, Qcorr, Qsign, Qreport ← ∅; (pk T ,m,R,σ,pk U 0 ,pk U 1 ,st) ← A Oreg,Ocorrupt,Osign,Oreport (pp); b ← {0,1}; Rep ← Report(pp,pk T ,sk U b ,m,R,σ); b ← A Oreg,Ocorrupt,Osign,Oreport (σ,st) : b = b ∧ pk U 0 ∈ (R ∩ Qreg)\Qcorr ∧ pk U 1 ∈ (R ∩ Qreg)\Qcorr ∧ (m,R,σ,pk U 0) / ∈ Qreport ∧ (m,R,σ,pk U 1) / ∈ Qreport       -1 2 ≤ (λ).

C Proofs

In what follows, we prove Theorem 2 by proving each of the claimed properties. Each of the following lemmas corresponds to one of these properties (namely correctness and trace correctness, unforgeability, anonymity, non-frameability, trace soundness, and reporter anonymity).

Lemma 3. If the NIZKP and the SoK are correct, then the protocol is correct and trace correct.

Proof. First, assume that the signature algorithm does not return a failure. In this case, the correctness follows trivialy from the correctness of the proofs and signatures of knowledge, and from the correctness of the ElGamal encryption, and the probability of success is 1. We deduce that the probability of failure of correctness is the same as the probability of failure of the signature algorithm (when used honestly with honestly generated keys). The signature algorithm returns a failure if and only if there is two encryption keys ek i and ek j that are equals (ek i = ek j). The encryption keys come from the uniform distribution on G, thus according to the birthday paradox, this probability is (λ) = 1 -

n-1 i=0 1 -i |G| and is negligible in λ (we recall that n is polynomial in λ ans |G| is exponential in λ).
Lemma 4. If the NIZKP and the SoK are extractable and zero-knowledge, then the protocol is unforgeable under the discrete logarithm assumption.

Proof. Let A be a PPT adversary that breaks the unforgeability of our scheme with probability A (λ). We will show how to use it to break the discrete logarithm assumption. Let NIZK (λ) be the maximum knowledge error among all the non-interactive proofs and signatures of knowledge used in the protocol. We use the following sequence of games: Game G 0 : This game is the unforgeability experiment as described in Definition 10 on our protocol. We have:

A (λ) = Pr[A wins G 0]
Game G 1 : This game is similar to G 0 except that the challenger sets an empty dictionary SIG at the beginning of the experiment, and each time that the challenger generates a signature σ for a tracer key pk T message m and a ring R with the secret key sk U , it stores the element α ∈ Z * p (according to the notation we use in the definition of the signature algorithm) and sk U at the key (pk T , m, R, σ) of the dictionary SIG:

SIG[(pk T , m, R, σ)] ← (α, sk U).
This modification does not alter the advantage of A:

Pr[A wins G 0] = Pr[A wins G 1]
Game G 2 : This game is similar to G 1 except that each time that the challenger verifies a valid signature σ on a message m and the ring R forged by A, it uses the knowledge extractor on each proof of knowledge and each signature of knowledge in σ (or the challenger retrieves the corresponding witness if it has previously produced the same proof/signature during the game) in order to recover α and sk U , and stores the witness extracted from the signature of knowledge in the dictionary at the key (pk T , m, R, σ):

SIG[(pk T , m, R, σ)] ← (α, sk U).
If one extraction returns a false witness, the challenger aborts the game and returns 0. Let n be the number of registered users, and q r be the number of calls to the oracle Oreport. Each signature contains n proofs/signatures of knowledge. The challenger verifies (q r + 1) signatures (one for each call to the oracle Oreport and one during the experiment), so the probability that the challenger aborts the game is the probability that the extractor fails on a valid proof, which is at most (q r + 1) • NIZK (λ). We deduce that:

|Pr[A wins G 1] -Pr[A wins G 2]| ≤ (q r + 1) • n • NIZK (λ).
Game G 3 : Let (pk T , m, R, σ) be the values returned by the adversary. At this step, if the challenger does not abort the game, then it knows the key sk U and α (from the extraction of the signature of knowledge in σ) such that, parsing σ as (h, c, (c i , π i) n i=1 , σ M), R as {pk i } n i=1 , and each pk i as (ek i , π i):

∃j, h = g α and c • c i ek j = (ek T • ek j) α and ek j = g sk U
Moreover, R ⊆ Qreg\Qcorr, so pk j ∈ Qreg\Qcorr.

Let n be the number of registered users (i.e., the number of queries to the oracle Oreg), and let pk i = (ek i , π i) be the public key generated at the i th query. At the beginning of the experiment the challenger picks θ $ ← n . If ek θ = ek j , then the challenger aborts the game and returns 0. We have that:

1 n • Pr[A wins G 2] = Pr[A wins G 3] .
Game G 4 : In this game, the challenger simulates each proof and signature of knowledge using the corresponding simulators. Since the proofs and signatures of knowledge are perfectly zero-knowledge, we have:

Pr[A wins G 3] = Pr[A wins G 4] .
At this step, the challenger does not need to know the secret key corresponding to pk θ for simulating the signature oracle Osign.

Game G 5 : This game is the same as G 4 except that each time the adversary sends a query (pk U , pk T , m, R, σ) to the oracle Oreport such that σ is valid, the challenger retrieves (α, sk U) ← SIG[(pk T , m, R, σ)] and computes S 2 as follows, using the same notation as in the description of the protocol:

S 2 ← c j pk α U .
Since:

c j pk α U = c j g α•sk U = c j h sk U ,
we deduce that:

Pr[A wins G 4] = Pr[A wins G 5] .
At this step, the challenger does not need to know the secret key corresponding to pk θ (which is its discrete logarithm) for simulating the signature oracle Osign and the report oracle Oreport, so it never uses this secret key in the game G 5 .

Let dl (λ) be the probability of the best algorithm that solves the discrete logarithm problem. We claim that:

Pr[A wins G 5] ≤ dl (λ).
We prove this claim by reduction. Assume that A has a non-negligible probability of winning the game G 5 . We will show how to build a PPT algorithm B that breaks the discrete logarithm assumption with a similar probability. B receives the group element X. It simulates perfectly the game G 5 to A except that it replaces ek θ by X and sk θ by ⊥.

Let (pk T , m, R, σ) be the values returned by the adversary. At the end of the game, B sets N ← |R|, parses R as {pk i } N i=1 , pk i as (ek i , π i) for all indexes i, and σ as (h, c, (c i , π i) N i=1 , σ M). According to the unforgeability experiment, for all pk we have (pk T , pk, m, R, σ) / ∈ Qsign, so the challenger has never produced the signature of knowledge σ M on the message M = (pp, pk T , m, R, h, c, (c i , π i) n i=1) during the experiment, which implies that if the game has not been aborted by B, then there exists a key sk that has been extracted from σ M during the experiment such that there exists j such that g sk = ek j = ek θ = X. Finally, If B does not abort the game, then it returns sk, which is the discrete logarithm of X. This concludes the proof of the claim.

is the probability that the extractor fails on a valid proof, which is at most (q r + q t) • n • NIZK (λ). We deduce that:

|Pr[A wins G 1] -Pr[A wins G 2]| ≤ (q r + q t) • n • NIZK (λ).
Game G 3 : In this game, the challenger simulates each proof and signature of knowledge using the corresponding simulators. Since the proofs and signatures of knowledge are perfectly zero-knowledge, we have:

Pr[A wins G 2] = Pr[A wins G 3] .
Game G 4 : This game is the same as G 3 except that each time the adversary sends a query (pk U , pk T , m, R, σ) to the oracle Otrace such that σ is valid, the challenger retrieves (α, sk U) ← SIG[(pk T , m, R, σ)] and computes S 1 as follows, using the same notation as in the description of the protocol:

S 1 ← c pk α Trace . Since: c pk α Trace = c g α•sk Trace = c h sk Trace ,
we deduce that:

Pr[A wins G 4] = Pr[A wins G 5] .
At this step, the challenger does not need to know the secret key corresponding to pk Trace for simulating the trace oracle Otrace. Game G 5 : This game is the same as G 4 except that each time the challenger build a signature on a ring :

for each public key pk i = (ek i , π i) in R = {pk i } n i=1 , if pk i ∈ Qreg, then it uses the knowledge extractor on π i in order to retrieve sk i such that pk i = g sk i . If the extraction fails, the challenger aborts the game and returns 0 with probability 1/2. -The challenger computes c i ← h ski •S 2 instead of c i ← ek i α •S 2 (using the same notation as in the description of the protocol). Note that h ski = g α•ski = ek i α , so this does not impact the simulation of the game. Besides that, the challenger simulates the signatures as in the previous game.

Let n be the number of users, and q s be the number of call to the oracle Osign. The challenger builds (q s + 1) signatures (one for each call to the oracle Osign and one during the experiment). The probability that the challenger aborts the game is the probability that the extractor fails on a valid proof, which is at most (q s + 1) • n • NIZK (λ). We deduce that:

|Pr[A wins G 4] -Pr[A wins G 5]| ≤ (q s + 1) • n • NIZK (λ).
At this step, the challenger no longer needs to know the discrete logarithm of h to build a valid signature except for computing c.

Let EG (λ) be the advantage of the best algorithm that breaks the IND-CPA security of the ElGamal encryption EG = (Gen, Enc, Dec). We claim that:

|Pr[A wins G 5] -1/2| ≤ EG (λ).
We prove this claim by reduction. Assume that A has a non-negligible advantage on the game G 5 . We will show how to build a PPT algorithm B that breaks the IND-CPA security of ElGamal with a similar advantage. B receives the public key pk. It simulates perfectly the game G 5 to A except that it replaces ek T by pk and sk T by ⊥, and builds the signature σ ← Sign(pp, sk U b , pk T , m, R ∪ {pk U0 , pk U1 }) as follows:

- -It sets SIG[(pk T , m, R, σ)] ← ⊥ Besides that, the challenger simulates the signatures as in the previous game. We observe that:

B picks S 2 $ ← G, sets S 1,0 ← pk 0 S2 and S 1,1 ← pk 1 S2 . -B sends (S 1,0 , S
c = h sk T • S 1,b .
We also recall that the challenger aborts the game on the signature (m, R, σ), so B will never use SIG[(pk T , m, R, σ)]. Finally, B perfectly simulates the game G 5 and wins its IND-CPA attack with the same probability that A wins the game G 5 , which concludes the proof of the claim.

Conclusion: Finally, we have:

A (λ) ≤ (q r + q t + q s + 1) • n • NIZK (λ) + EG (λ).

We deduce that A (λ) is negligible, which concludes the proof.

Lemma 6. If the NIZKP and the SoK are extractable and zero-knowledge, then the protocol is non-frameable under the discrete logarithm assumption.

Proof. Let A be a PPT adversary that breaks the non-frameability of our scheme with probability A (λ). We will show how to use it to break the discrete logarithm assumption. Let NIZK (λ) be the maximum knowledge error among all the non-interactive proofs and signatures of knowledge used in the protocol. We use the following sequence of games:

Game G 0 : This game is the non-frameability experiment as described in Definition 11 on our protocol. We have:

A (λ) = Pr[A wins G 0]
Game G 1 : This game is similar to G 0 except that the challenger sets an empty dictionary SIG at the beginning of the experiment, and each time that the challenger generates a signature σ for a tracer key pk T , a message m and a ring R with the secret key sk U , it stores the element α ∈ Z * p (according to the notation we use in the definition of the signature algorithm) and sk U at the key (pk T , m, R, σ) of the dictionary SIG: SIG[(pk T , m, R, σ)] ← (α, sk U). This modification does not alter the advantage of A:

Pr[A wins G 0] = Pr[A wins G 1]
Game G 2 : This game is similar to G 1 except that each time that the challenger verifies a valid signature σ on a message m and the ring R forged by A, it uses the knowledge extractor on each proof of knowledge and each signature of knowledge in σ (or the challenger retrieves the corresponding witness if it has previously produced the same proof/signature during the game) in order to recover α and sk U , and stores the witness extracted from the signature of knowledge in the dictionary at the key (pk T , m, R, σ):

SIG[(pk T , m, R, σ)] ← (α, sk U).
If one extraction returns a false witness, the challenger aborts the game and returns 0 with probability 1/2. Let n be the number of users, and q r be the number of call to the oracle Oreport. Each signature contains n proofs/signatures of knowledge. The challenger verifies (q r + 1) signatures (one for each call to the oracle Oreport and one during the experiment), so the probability that the challenger aborts the game is the probability that the extractor fails on a valid proof, which is at most (q r + 1) • n • NIZK (λ). We deduce that:

|Pr[A wins G 1] -Pr[A wins G 2]| ≤ (q r + 1) • n • NIZK (λ).
Game G 3 : Let (pk T , m, R, σ, pk U , Tr, ρ t) be the values returned by the adversary. Let n be the number of registered users (i.e., the number of queries to the oracle Oreg), and let pk i = (ek i , π i) be the public key generated at the i th query. At the beginning of the experiment the challenger picks θ $ ← n . If pk θ = pk U , then the challenger aborts the game and returns 0. We have that:

1 n • Pr[A wins G 2] = Pr[A wins G 3] .
Game G 4 : Let (pk T , m, R, σ, pk U , Tr, ρ t) be the values returned by the adversary. This game is the same as G 3 except that if ∃pk such that (pk T , pk, m, R, σ) ∈ Qsign, then the challenger aborts the game and returns 0. We recall that if the challenger does not abort the game, then all the relations proved by the zero-knowledge proofs and the signatures of knowledge are valid. We set N ← |R|, and we parse R as pk i N i=1 , pk i as (ek i , π i) for all indexes i, Tr as (S 2 , π Rep), ρ t as (S 1 , π ρt), and σ as (h, c, (c i , π i) N i=1 , σ M). Let i be the index of the key ek i such that ek i = ek θ (we recall that pk θ = (ek θ , π θ) = (ek U , π U) = pk U , otherwise the game would have been aborted). The proofs of knowledge π ρt , π Rep , and {π i } N i=1 ensure that there exists α such that h = g α and:

c i = ek α i • S 2 , so ci , so for all j and j in 1, N , We observe that:

c • c j ek j = ek T • ek j α ⇔ ek α T • S 1 • ek α j • S 2 ek j = ek α T • ek α j ⇔ S 1 • S 2 = ek j .
Since VerTrace(pp, pk T , m, R, σ, pk U , Tr, ρ t) = 1, we deduce that S 1 • S 2 = ek U = ek θ . Since S 1 • S 2 = ek j , we deduce that ek j = ek U . According to the correctness of our protocol, since the challenger correctly simulates the oracle Osign, if ∃pk such that (pk T , pk, m, R, σ) ∈ Qsign, then pk = pk U . In this case the challenger aborts the game according to the non-frameability experiment. We deduce that: At this step, the challenger does not need to know the secret key corresponding to pk θ for simulating the signature oracle Osign.

Game G 6 : This game is the same as G 5 except that each time the adversary sends a query (pk U , pk T , m, R, σ) to the oracle Oreport such that σ is valid and pk θ = pk U , the challenger retrieves (α, sk U) ← SIG[(pk T , m, R, σ)] and computes S 2 as follows, using the same notation as in the description of the protocol: Proof. Let A be a PPT adversary against the reporter anonymity of our scheme with advantage A (λ). Let NIZK (λ) be the maximum knowledge error among all the non-interactive proofs and signatures of knowledge used in the protocol. We use the following sequence of games:

Game G 0 : This game is the reporter anonymity experiment as described in Definition 13 on our protocol. We have:

A (λ) = |Pr[A wins G 0] -1/2|
Game G 1 : This game is similar to G 0 except that the challenger sets an empty dictionary SIG at the beginning of the experiment, and each time that the challenger generates a signature σ for a tracer key pk T , a message m and a ring R with the secret key sk U , it stores the element α ∈ Z * p (according to the notation we use in the definition of the signature algorithm) and sk U at the key (pk T , m, R, σ) of the dictionary SIG: SIG[(pk T , m, R, σ)] ← (α, sk U). This modification does not alter the advantage of A:

Pr[A wins G 0] = Pr[A wins G 1]
Game G 2 : This game is similar to G 1 except that each time that the challenger verifies a valid signature σ on a message m and the ring R forged by A, it uses the knowledge extractor on each proof of knowledge and each signature of knowledge in σ in order to recover α and sk U , and stores the witness extracted from the signature of knowledge in the dictionary at the key (pk T , m, R, σ): SIG[(pk T , m, R, σ)] ← (α, sk U).

If one extraction returns a false witness, the challenger aborts the game and returns 0 with probability 1/2. Let n be the number of users, and q r be the number of call to the oracle Oreport. Each signature contains n proofs/signatures of knowledge. The challenger verifies q r signatures, so the probability that the challenger aborts the game is the probability that the extractor fails on a valid proof, which is at most q r • n • NIZK (λ). We deduce that:

|Pr[A wins G 1] -Pr[A wins G 2]| ≤ q r • n • NIZK (λ).
At this step, if the challenger does not abort the game, then all the proofs and signatures prove valid statements. Let σ = (h, c, (c i , π i) N i=1 , σ M) be a valid signature on a message m and the ring R = {pk i } N i=1 , where pk i = (ek i , π i) for all indexes i. The proofs of knowledge {π i } N i=1 ensure that there exists α such that h = g α and for all There exists α such that h = g α and for all i ∈ 2, N :

c i c i-1 = ek i ek i-1 α .

 Decisional Diffie-Hellman (DDH) assumption. Let G = g be a group of prime order p. Picking b $ ← {0, 1} and (x, y, z 1) $ ← (Z * p) 3 , and setting z 0 = a•b and (X, Y, Z) = (g x , g y , g z b), the DDH assumption in G states that no Probabilistic Polynomial Time (PPT) algorithm is able to return b on input (X, Y, Z) with non-negligible advantage.

Theorem 1 .

 1 The proposed variant of ElGamal satisfies IND-CPA security under the Decisional Diffie-Hellman (DDH) assumption in G 2 .

$ 1 .Lemma 2 .

 12 ← Z * p , sets pk ← g sk and returns (pk, sk). End(pp, pk, m): picks r $ ← Z * p , sets c 1 ← g r , c 2 ← pk r • m, and returns c ← (c 1 , c 2). Dec(pp, sk, c): returns m ← c 2 /c sk Definition 6 (IND-CPA security). An encryption scheme (Gen, Enc, Dec) on a public parameter pp is said to be IND-CPA when there exists a negligible function (λ) such that for any pair of PPT algorithms A = (A 1 , A 2): Pr (pk,sk)←Gen(pp); (m0,m1,st)←A1(pp,pk); b $ ←{0,1}; c←Enc(pp,pk,m b); b ←A2(pp,pk,st,c); : b = b -ElGamal is IND-CPA secure under the DDH assumption.

1 , 1

 11) to its challenger and receives the ciphertext e = (e 1 , e 2), which is the ElGamal encryption of S 1,b for a random bit b. -B sets h ← e 1 and c ← e 2 .

= S 2 .

 2 c = ek α T • S 1 .-For all j ∈ 2, N ,

= S 2 ,

 2 we deduce that for all j ∈ 1, N , we havecj ek α j = S 2 , so c j = ek α j • S 2 .The signature of knowledge σ M ensures that there exists sk such that: ∃j, c • c j ek j = ek T • ek j α and ek j = g sk

Pr[A wins G 3]Game G 5 :

 35 = Pr[A wins G 4] . In this game, the challenger simulates each proof and signature of knowledge using the corresponding simulators. Since the proofs and signatures of knowledge are perfectly zero-knowledge, we have: Pr[A wins G 4] = Pr[A wins G 5] .

Lemma 8 .

 8 wins G 5] = Pr[A wins G 6] . If the NIZKP and the SoK are extractable and zero-knowledge, then the protocol is reporter anonymous.

 30. Nirvan Tyagi, Ian Miers, and Thomas Ristenpart. Traceback for end-to-end encrypted messaging. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pages 413-430, 2019. 31. Shouhuai Xu and Moti Yung. Accountable ring signatures: A smart card approach. In Smart Card Research and Advanced Applications VI, pages 271-286. Springer, 2004.

This author was funded by EPSRC under the DECaDE project P/T022485/1.

For simplicity, we also consider a single designated tracer in this work. We note, however, that this role can be distributed using standard secret sharing techniques, making it more suitable for decentralised applications.

According to[START_REF] Chatterjee | On instantiating pairing-based protocols with elliptic curves of embedding degree one[END_REF], type 3 pairings are more efficient than type 1 and 2 pairings, and the computation time of a type 3 pairing is equivalent to 4 exponentiations for the best implementation.

Conclusion: Finally, we have:

We deduce that A (λ) is negligible, which concludes the proof. Lemma 5. If the NIZKP and the SoK are extractable and zero-knowledge, then the protocol is anonymous under the IND-CPA security of ElGamal in a prime order group.

Proof. Let A be a PPT adversary that breaks the anonymity of our scheme with advantage A (λ). We will show how to use it to break the IND-CPA security of the ElGamal encryption. Let NIZK (λ) be the maximum knowledge error among all the non-interactive proofs and signatures of knowledge used in the protocol. We use the following sequence of games: Game G 0 : This game is the anonymity experiment as described in Definition 9 on our protocol. We have:

Game G 1 : This game is similar to G 0 except that the challenger sets an empty dictionary SIG at the beginning of the experiment, and each time that the challenger generates a signature σ for a tracer key pk T , a message m and a ring R with the secret key sk U , it stores the element α ∈ Z * p (according to the notation we use in the definition of the signature algorithm) and sk U at the key (pk T , m, R, σ) of the dictionary SIG:

This modification does not alter the advantage of A:

Game G 2 : This game is similar to G 1 except that each time that the challenger verifies a valid signature σ on a message m and the ring R forged by A, it uses the knowledge extractor on each proof of knowledge and each signature of knowledge in σ in order to recover α and sk U , and stores the witness extracted from the signature of knowledge in the dictionary at the key (pk T , m, R, σ):

If one extraction returns a false witness, the challenger aborts the game and returns 0 with probability 1/2. Let n be the number of users, q r be the number of call to the oracle Oreport, and q t be the number of call to the oracle Otrace. Each signature contains n proofs/signatures of knowledge. The challenger verifies (q r + q t) signatures, so the probability that the challenger aborts the game At this step, the challenger does not need to know the secret key corresponding to pk θ (which is its discrete logarithm) for simulating the signature oracle Osign and the report oracle Oreport, so it never uses this secret key in the game G 6 .

Let dl (λ) be the probability of the best algorithm that solves the discrete logarithm problem. We claim that:

We prove this claim by reduction. Assume that A has a non-negligible probability of winning the game G 6 . We will show how to build a PPT algorithm B that breaks the discrete logarithm assumption with a similar probability. B receives the group element X. It simulates perfectly the game G 6 to A except that it replaces ek θ by X and sk θ by ⊥.

We recall that if the challenger does not abort the game, then all the relations proved by the zero-knowledge proofs and the signatures of knowledge are valid. Let (pk T , m, R, σ, pk U , Tr, ρ t) be the values returned by the adversary. At the end of the game, B sets N ← |R|, parses R as pk i N i=1 , pk i as (ek i , π i) for all indexes i, Tr as (S 2 , π Rep), ρ t as (S 1 , π ρt), and σ as (h, c, (c i , π i) N i=1 , σ M). Let i be the index of the key ek i such that ek i = ek θ (we recall that ek θ = ek U , otherwise the game would have been aborted). The proofs/signatures of knowledge π ρt , π Rep , {π i } N i=1 , and σ M ensure that there exists α and sk such that h = g α and:

As it is shown on the game G 4 , since VerTrace(pp, pk T , m, R, σ, pk U , Tr, ρ t) = 1, we can deduce that S 1 • S 2 = ek U = ek θ = X. Since S 1 • S 2 = ek j and ek j = g sk , we deduce that X = g sk , so sk is the discrete logarithm of X. B retrieves (α, sk) ← SIG[(pk T , m, R, σ)]. If sk =⊥, then σ has been produced by the oracle Osign on input (pk U , pk T , m, R), so (pk T , pk U , m, R, σ) ∈ Qsign, and B aborts as in the real game G 5 . Else, according to game G 4 , for all pk we have (pk T , pk, m, R, σ) / ∈ Qsign, so the challenger has never produced the signature of knowledge σ M on the message M = (pp, pk T , m, R, h, c, (c i , π i) n i=1) during the experiment, which implies that sk has been extracted from σ M .

Finally, B returns sk. It perfectly simulates the game G 6 to A, and if A wins the simulated game G 6 , then B returns the discrete logarithm of X, which concludes the proof of the claim.

Conclusion: Finally, we have:

We deduce that A (λ) is negligible, which concludes the proof. Lemma 7. If the NIZKP and the SoK are extractable, then the protocol is sound.

Proof. We claim that if the adversary returns two (pk T , m, R, σ, pk Ui , Tr i , ρ ti , pk Uj , Tr j , ρ tj) such that VerTrace(pp, pk T , m, R, σ, pk Ui , Tr i , ρ ti) = VerTrace(pp, pk T , m, R, σ, pk Uj , Tr j , ρ tj) = 1 and pk Ui = pk Uj , then it produces a valid proof/signature of knowledge on a false statement (which appends with negligible probability since the proofs/signatures are extractable). To prove this claim, we prove its contraposition: if all the valid proofs/signatures of knowledge are on true statements and VerTrace(pp, pk T , m, R, σ, pk Ui , Tr i , ρ ti) = VerTrace(pp, pk T , m, R, σ, pk Uj , Tr j , ρ tj) = 1, then pk Ui = pk Uj .

We set N ← |R|, and we parse R as {pk l } N l=1 , pk i as (ek l , π l) for all indexes l, Tr i as (S 2,i , π Rep,i), ρ ti as (S 1,i , π ρt i), Tr j as (S 2,j , π Rep,j), ρ tj as (S 1,j , π ρt j), and σ as (h, c, (c l , π l) N l=1 , σ M). Since VerTrace(pp, pk T , m, R, σ, pk Ui , Tr i , ρ ti) = VerTrace(pp, pk T , m, R, σ, pk Uj , Tr j , ρ tj) = 1, the proofs/signatures of knowledge (π l) N l=1 , σ M , π Rep,i , π Rep,j , π ρt i , and π ρt j ensure that: -There exists α such that h = g α and for all l ∈ 2, N :

and there exists

-There exists i such that pk i = pk Ui , c i S2,i = h sk i and c S1,i = h sk T . -There exists j such that pk j = pk Uj , c j S2,j = h sk j and c S1,j = h sk T . Assume, without loss of generality, that i < j . We deduce:

c S1,i = h sk T and c S1,j = h sk T ⇒ S 1,i = S 1,j . -c i S2,i = h sk i and c j S2,j = h sk j ⇒ S 2,i = c i h sk i and S 2,j = c j h sk j , so:

-For all l ∈ 2, N :

Finally, ek Ui = S 1,i • S 2,i = S 1,j • S 2,j = ek Uj , so pk Ui = pk Uj , which concludes the proof of the claim. Conclusion: Let A be a PPT adversary against the reporter anonymity of our scheme with advantage A (λ). Let NIZK (λ) be the maximum knowledge error among all the non-interactive proofs and signatures of knowledge used in the protocol. We have:

A (λ) ≤ NIZK (λ). We deduce that A (λ) is negligible, which concludes the proof. We deduce that for all i ∈ 2, N :

Since for all i ∈ N , ek α i = g ski•α = h ski , we deduce that:

Game G 3 : In this game, the challenger simulates each proof and signature of knowledge using the corresponding simulators. Since the proofs and signatures of knowledge are perfectly zero-knowledge, we have:

Game G 4 : This game is the same as G 3 except that instead of computing Rep ← Report(pp, pk T , sk U b , m, R, σ), the challenger retrieves (α, sk U) ← SIG[(pk T , m, R, σ)], parses R as {pk i } n i=1 and each pk i as (ek i , π i), finds the index j such that pk j = pk U b and computes S 2 as follows, using the same notation as in the description of the protocol: In G 4 , the bit b is ever used by the challenger, which implies that:

Pr[A wins G 4] = 1/2.

Conclusion: Finally, we have:

A (λ) ≤ q r • n • NIZK (λ).

We deduce that A (λ) is negligible, which concludes the proof.