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Diagnosis of PEMFC based on autoregressive model and voltage
fluctuation

Yunjin Ao∗, Salah Laghrouche, Daniel Depernet, Denis Candusso

Abstract— A novel diagnosis approach for proton exchange
membrane fuel cell (PEMFC) systems is proposed in this
paper. Different fault conditions can be classified based on the
patterns of stack voltage fluctuation, which can be extracted by
the autoregressive model (AR model). The proposed method
focuses on the stack voltage fluctuation over time, thus it is
more practical and less complex as only the stack voltage
needs to be collected. The AR model is employed to extract
voltage fluctuation features, and then several widely applied
classifiers are applied to classify fault conditions. Experiments
are carried out to demonstrate the effectiveness. Those faults
are introduced by the adjustment of anode stoichiometry,
cathode stoichiometry, relative humidity level, and the cooling
circuit temperature. The diagnostic accuracy for single-fault
conditions is 99%, while it is 93% for multi-fault conditions.
Also, compared to the singularity analysis method in our former
research, the proposed method is more time-saving. Moreover,
the voltage sampling frequency and sample window length are
adjusted to research the diagnosis effectiveness, which is studied
and discussed for the first time.

I. INTRODUCTION

As the target to cut down the carbon dioxide (CO2)
emissions has been emphasized by the whole world [1],
hydrogen fuel cells are considered as a promising alternative
to fossil fuels. Among all kinds of fuel cells, proton exchange
membrane fuel cell (PEMFC) is one of the most developed
and concerned technologies, thanks to its high efficiency and
ability to operate under normal temperature [2].

PEMFC has been applied to various fields, such as dis-
tributed power stations, mobile devices, and automobiles,
etc [3]. However, durability and reliability remain the biggest
challenges on the road of large-scale commercialization. The
performance and security of the PEMFC system will be
reduced when the operating conditions are different from
the nominal conditions [4]. Therefore, detecting the fault
operating conditions and taking actions to correct them at
the early stage is of great importance. For this purpose, the
diagnosis is necessary to guarantee the health and safety
of the PEMFC system, thus improving the reliability and
durability.

The output voltage was applied as diagnostic tools in
several studies, and a lot of classification methods have been
applied to PEMFC diagnosis, such as k-nearest neighbors
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(KNN) [5], artificial neural network (ANN) [6], extreme
learning machine (ELM) [7], support vector machine (SVM)
[8], extreme gradient boosting (XGBoost) [9], etc. In these
studies [6], the features are the voltages of each cell, i.e.,
{Vcell1 , Vcell2 , ...Vcelln}. From these features, the spatial dis-
tribution characteristic of voltage can be revealed because the
positions of the cells will greatly affect its voltage output.
However, the mechanism of the voltage spacial distribution is
still not clear, and it depends on the structure of the PEMFC
[10].

Except for the voltage spatial distribution, another in-
teresting and important information is the stack voltage
fluctuations over time, which is also called electrochemical
noise [11]. Therefore, the data applied in the diagnosis is the
stack voltage at different moments, i.e., {Vt1 , Vt2 , ...Vtk}. For
these time-series data, the voltage data sampled under high
frequency can be separated into voltage profiles by windows
of certain length, thus the diagnosis can be carried out for
each profile within a certain period.

The most common fluctuation observed in electrochemical
devices is the ”1/f noise”, because the noise intensity is
inversely proportional to frequency [12]. The voltage fluctua-
tion has been analyzed by different methods, such as wavelet
transformation [5], statistical features [14], power spectral
density [13], and high order moments [15], etc.

To achieve quantitative diagnosis based on voltage time
series data, D. Benouioua et al. [17] employed the singu-
larity analysis of the voltage time-series data for feature
extraction to distinguish the operating conditions. The sin-
gularity spectrum is the multifractal spectrum calculated by
wavelet transform-based multifractal formalism [5]. How-
ever, it needs about 4.5 minutes to obtain a voltage profile,
and the mathematical complexity of the method is relatively
high. Also, the accuracy of the fault classification can still
be improved. Rather than implementing singularity analysis,
we propose to look for other effective features that can be
more easily identified, and in a shorter time.

According to the reference [18], as the autoregressive
model (AR model) can represent the recurrence interval of
fluctuations, it is a useful tool to describe the fluctuation
patterns. To achieve a quick and accurate diagnosis based
on stack voltage fluctuation, a novel data-driven diagnosis
method is proposed. The main contributions of this paper
are as follows:

1) A novel PEMFC diagnosis method is proposed, in
which the stack voltage time-series data are applied.
The voltage fluctuation patterns are identified by AR



model, and the model coefficients are directly used
as the features to classify the different fault operating
conditions. The advantage of this method is that only
stack voltage data are needed, and the voltage profile
can be obtained every 1 second, thus it is quicker and
more practical.

2) The diagnostic method is experimentally demonstrated
under extensive fault operating conditions. 9 single
fault conditions and 8 multi-fault conditions are re-
searched, and those conditions relate to the fault of the
anode stoichiometry (SA), cathode stoichiometry (SC),
relative humidity level (RH), and the cooling circuit
temperature (T). The diagnosis is then carried out
by several classifiers (ANN, ELM, KNN, and SVM),
and both the accuracy and computational times are
compared.

3) For the first time, the quantitative effect of voltage
sampling frequency and sample window length on the
diagnosis accuracy is studied. It proves that a higher
sampling frequency or longer data profile is beneficial
to diagnosis accuracy.

II. DIAGNOSIS BASED ON AR MODEL

A. Overall diagnosis process based on AR model

The overall PEMFC diagnosis process based on output
voltage data and AR model can be concluded as figure 1.

1) Collect experiment data of different PEMFC conditions
for training. In this research, the voltage data are
measured under 3000 Hz frequency on a PEMFC stack,
and both single-fault and multi-fault conditions are
researched.

2) For the collected voltage data, intercept voltage profiles
by windows. There are 3000 data in each profile, and
140 profiles (70% of total profiles) for each condition.
This amount of data is enough for classification.

3) The AR model coefficients can be calculated for each
profile and the features for the diagnosis can be ob-
tained. It is explained in section II-B.

4) The classifiers can be trained based on the features.
Different classifiers (ANN, ELM, KNN, SVM) are
compared, and the hyperparameters of the classifiers
are also researched. The classifiers are explained in
section II-C

5) For the online period, firstly the detected stack voltage
data can be intercepted as profiles by the window, then
the features can be obtained and applied to the trained
classifiers. By comparing the diagnosis results with
the real conditions, the diagnosis accuracy of different
methods can be evaluated.

B. Feature extraction by AR model

1) Principle: The AR model can describe the develop-
ment of time series data [20], and it was applied to system
identification, future trend forecasting [21], system control
[22], etc.

Fig. 1. The diagnosis processes based on voltage data and AR model

In an AR model, the output data at time instant n can
be represented by the linear combination of p previous data,
which is shown as equation 1.

yn =

p∑
i=1

yn−i × ψi + en (1)

Where y is the time-series data, i.e., PEMFC voltage in
this study; n is the time index; p is the order of the AR model,
which should be artificially specified; ψi is the coefficient for
ith lag data. en is a white noise whose mean is 0.

The coefficients means the degree that the current output
is decided by former data, and the coefficients can be directly
applied as features for pattern identification, i.e., diagnosis
in our case.

2) Determination of model order: To have an accurate AR
model, the model order should correspond to the character-
istic of the data. The Bayesian information criterion (BIC) is
proposed to search for a balance between the fitting accuracy
and model complexity [24]. The BIC can be calculated by
equations 2.

BIC = k ln(m)− 2 ln(L) (2)

Where k is the number of model parameters, i.e., the order
of the AR model in this research; L is the likelihood function,
which can reflect the accuracy of the fitting; m is the number
of the sample data. We can decide the order by choosing the
model with the smallest BIC.

3) Calculation of model coefficients: When the order of
the model is determined, the coefficients of every lag in
the AR model can be obtained by solving the Yule-Walker
equation, as shown by equation 3.
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γk = E((yi − µ)(yi−k − µ)) (4)



Where the γk is the expectation of the auto-covariance for
k order lags; µ is the expectation of the series data. There
are a lot of methods to solve the Yule-Walker equation, such
as the least square method, covariance method, and Burg
method [25]. In this research, the Burg method is applied,
as it needs no assumption about the out-of-range data.

By the identification of the AR model, the coefficients of
every lags in equation 1 can be set as the feature vector of
the voltage profile.

C. Classification

With the identified features, the objective of diagnosis is
to find out the matchup relationship between the features and
operating conditions. Four widely used methods are applied
and compared in this research, including KNN, ANN, ELM,
and SVM.

1) K-nearest neighbors method: K-nearest neighbors
(KNN) is one of the simplest methods for classification [26].
The principle of KNN is to find the closest points of the aim
point and then classify it to the class that appears most times
around it.

2) Artificial neural network: The second method applied
in this research is the ANN method [27]. In the ANN method,
there are an input layer, an output layer, and several hidden
layers. In each layer, there are several nodes, which are called
neurons. The input of a neuron is the linear combination
of all the inputs, and the input is transferred by a certain
function. The parameters of the network are fitted according
to the training data, to make the output of this network closest
to the real output.

3) Extreme learning machine: Another widely used clas-
sification method is the extreme learning machine (ELM)
method. ELM is a particular training method that can be ap-
plied to a single hidden layer neural network [28]. Compared
with the traditional ANN training method, ELM can give
accurate results with less calculation. In traditional training
methods, the gradient descent methods are widely applied.
However, a big disadvantage of this kind of method is the
low efficiency. On the contrary, the ELM method can set the
parameters in a random way, thus it can give results with
fewer calculations.

4) Support vector machine: The SVM is also a widely
used classifier as it can give accurate results quickly [29].
The SVM method can give the maximum-margin hyperplane
of the samples, and classify the new samples based on it.
The aim of SVM is to find the optimal hyperplane with
the maximum distance from the nearest samples. To solve
linearly inseparable problems by SVM, the kernel functions
can be applied to transfer them into linear separable cases.
More details about the SVM method can be found in the
reference [29].

III. EXPERIMENTS AND CONDITIONS

A. Experiments

To develop diagnosis strategies for a new PEMFC ap-
plication so that to prevent operation faults and increase
the durability of the PEMFC system, the experiments have

been carried out using a test bench developed in FCLAB
(Belfort, France). The investigated stack is with 12 cells.
The characteristics and nominal operating parameters of the
stack are given in table I. More details about the test bench
can be found in the reference [17].

TABLE I
PARAMETERS OF THE INVESTIGATED PEMFC STACK AND REFERENCE

OPERATING CONDITIONS

Parameter Value

Number of cells 12
Electrode active surface 196 cm2

Gas distributor plates graphite
Fuel used during experiment 75% H2+25% CO2

Coolant flow (deionized water) 3 l/min
Anode stoichiometry (H2 and CO2 mix) 1.3

Cathode stoichiometry (air) 2
Anode inlet pressure 111 kPa

Air inlet pressure 106 kPa
Max. anode - cathode pressure gap 20 kPa
Temperature of the cooling circuit 70 ◦C

Anode relative humidity 50%
Cathode relative humidity 50%

Nominal current 80 A

B. Single-fault conditions

To study the fault conditions of the PEMFC system in the
experiments, different fault conditions have been reproduced
by adjusting four operation parameters, i.e., cathode stoi-
chiometry (SC), anode stoichiometry (SA), cooling circuit
temperature (T), and the relative humidity level (RH) (by
controlling the temperature of the humidifier). Both single-
fault conditions and multi-fault conditions have been tested.

8 experiments under single fault conditions were carried
out by setting the 4 parameters to higher or lower values than
those corresponding to the reference conditions. The detailed
operation parameters under different conditions are shown in
table II.

TABLE II
THE OPERATION PARAMETERS APPLIED TO SINGLE-FAULT CONDITIONS

Parameters Ref DFSCH DFSCL DFSAH DFSAL DTH DTL DRHH DRHL

SC 2 2.6 1.6 2 2 2 2 2 2
SA 1.3 1.3 1.3 1.5 1.2 1.3 1.3 1.3 1.3

T (◦C) 70 70 70 70 70 72 65 70 70
RH(%) 50 50 50 50 50 50 50 54 46

Ref: Reference/normal condition;
DFSCH: cathode flow fault, higher than normal;
DFSCL: cathode flow fault, lower than normal;
DFSAH: anode flow fault, higher than normal;
DFSAL: anode flow fault, lower than normal;
DTH: stack temperature fault, higher than normal;
DTL: stack temperature fault, lower than normal;
DRHH: relative humidity fault, higher than normal;
DRHL: relative humidity fault, lower than normal.

During the experiment, the stack voltage data is obtained
under a sampling frequency of 3000 Hz. As the fluctuations
of voltage can reflect the PEMFC state, high-frequency



detection of voltage can give more information that is not
available by low-frequency detection. In this research, sliding
windows are applied to obtain voltage profiles, and the length
of the window is set to 3000 points so that one voltage profile
can be obtained every second.

C. Multi-fault conditions

In addition to the single-fault conditions, some multi-
fault conditions are also studied. 8 multi-fault conditions are
considered and the detailed operation parameters are shown
in table III.

TABLE III
THE OPERATING PARAMETERS UNDER MULTI-FAULT CONDITIONS

Parameters Ref DFSC DFSA DT DRH DT+DFSC DT+DFSA DT+DRH

SC 2
2.6

1.6
2 2 2

2.6

1.6
2 2

SA 1.3 1.3
1.5

1.2
1.3 1.3 1.3

1.5

1.2
1.3

T (◦C) 70 70 70
72

65
70 65 65 65

RH(%) 50 50 50 50
54

46
50 50 54

Ref: reference/normal condition;
DFSC: cathode flow fault, higher or lower than normal;
DFSA: anode flow fault, higher or lower than normal;
DT: stack temperature fault, higher or lower than normal;
DRH: relative humidity fault, higher or lower than normal;
DT+DFSC: cathode flow fault with lower temperature fault;
DT+DFSA: anode flow fault with lower temperature fault;
DT+DRH: relative humidity fault with lower temperature fault;

IV. RESULTS AND ANALYSIS

In this section, the results obtained by the proposed
diagnosis method are presented, and different classifiers
are compared and analyzed. Both single-fault conditions
and multi-fault conditions are researched, and 200 voltage
profiles are applied for each condition.

To show the spatial distribution of features visually, prin-
cipal component analysis (PCA) is applied to find the most
representative features, and the 3 dimensions representation
of the main features of samples can be given as figure IV.
The samples under different conditions are represented by
different colors, and most of them can be separated accord-
ing to the features. Therefore, the AR model coefficients
are effective features that can represent different operating
conditions.

A. Accuracy for single-fault conditions

Both the SVM, KNN, ANN, and ELM methods with
different hyperparameters are researched and compared. 30%
data is set as test subset, i.e., 60 voltage profiles are tested
for each operating condition.

To quantitatively evaluate the diagnosis accuracy, the recall
rate, precision rate and F1 accuracy are introduced. The recall
rate is the ratio of the detected samples and all the existing
samples of the real condition. The precision rate is the ratio

Fig. 2. The condition clustering based on 3 main features

of the right detected samples and all detected samples for
a certain condition. To balance the recall rate and precision
rate, the F1 accuracy is the harmonic average of recall rate
and precision rate.

The recall rate, precision rate, and F1 accuracy of each
condition are given as table IV. The mean F1 accuracy is
99.44%, which proves that the proposed diagnosis method is
very accurate.

TABLE IV
THE CLASSIFICATION RECALL RATE, PRECISION RATE AND F1

ACCURACY FOR SINGLE-FAULT CONDITIONS BY SVM

Conditions Recall rate / % precision rate / % F1 / %

Ref 100 100 100
DFSCH 100 100 100
DFSCL 100 100 100
DFSAH 100 100 100
DFSAL 100 100 100
DTH 98.33 98.33 98.33
DTL 100 100 100
DHH 96.67 98.31 97.48
DHL 100 98.36 99.17
Average 99.44 99.44 99.44

The diagnosis is also carried out by different classifiers in
this research. For all four methods, the best F1 accuracy of
different methods are given as table V.

The SVM method can give the best result than other
methods, and the accuracy of the ANN method is almost
the same as SVM. However, all four classification methods
can give accuracy of more than 92 %, which also proves
that the features extracted by the AR model from voltage
fluctuation data can represent the operating conditions, and
it is very effective for the PEMFC diagnosis.

Also the computational burden is another important cri-
terion for PEMFC diagnosis because it will decide whether
the algorithm can be applied in a real application. In this
research, the different algorithms all run on a computer with
a processor AMD A8-4500M 1.90 GHz, and the computa-



tional time is also listed in table V. It can be seen that the
SVM is not the most time-saving, while the ELM method
is the fastest. However, the computational time is of little
importance compared to diagnosis accuracy, thus the SVM
and ANN methods are the most suitable for the proposed
PEMFC diagnosis algorithm.

TABLE V
THE F1 ACCURACY AND COMPUTATIONAL TIME OF DIFFERENT

CLASSIFICATION METHODS

method accuracy / % computational time (s)

KNN 96.86 0.0425
ANN 99.26 0.0893
ELM 92.1 0.0327
SVM 99.44 0.0756
literature [17] 95.5

The same problem was also studied by another method
in literature [17], in which the singularity of the voltage
fluctuation data was applied as features. The singularity is an
important feature for time-series data calculated by wavelet
analysis, and the fault operating conditions are classified by
the KNN method. In the research, the diagnosis accuracy is
95.5%, thus the accuracy of the proposed method is higher
than the literature, meaning that the AR model coefficients
are very effective features.

B. Classification accuracy for multi-fault conditions
The same method is also applied to multi-fault conditions.

The accuracy and computational time of the 4 methods are
listed in table VI. Similar to single fault conditions, the ANN
and SVM can give the most accurate result. However, the
ANN method is a little more accurate than SVM in this
case, and the performance of the KNN and ELM methods is
poor, showing that different methods are suitable for different
problems.

TABLE VI
THE BEST F1 ACCURACY AND CORRESPOND COMPUTATIONAL TIME BY

DIFFERENT CLASSIFICATION METHODS FOR MULTI-FAULT CONDITION

method accuracy / % computational time (s)

KNN 85.75 0.0748
ANN 93.18 0.0385
ELM 80.8 0.0590
SVM 91.77 0.0756
literature [17] 90

For multi-fault conditions, the different fault operating
conditions may result in similar health problems in PEMFC
and affect each other, thus the situation is more complex and
the voltage fluctuation is less regular. Therefore, the accuracy
of the multi-fault conditions is a little lower than single-fault
conditions. However, the accuracy of the proposed method
is 93.18 %, and it is superior compared to the diagnosis
accuracy of literature [17], which is 90%. Therefore, the
proposed method can provide better diagnostic accuracy for
both single-fault conditions and multi-fault conditions.

TABLE VII
THE CLASSIFICATION RECALL RATE, PRECISION RATE AND F1

ACCURACY FOR MULTI-FAULT CONDITIONS

Conditions Recall rate / % precision rate / % F1 / %

Ref 85.71 80.00 82.76
DFSC 94.17 94.17 94.17
DFSA 94.78 90.83 92.77
DTH 92.86 97.50 95.12
DH 96.61 95.00 95.80
DT+DFSC 99.17 99.17 99.17
DT+DFSA 89.60 93.33 91.43
DT+DH 92.74 95.83 94.26
Average 93.20 93.23 93.18

V. DISCUSSIONS

The quantitative research about the effect of sampling
frequency and window length on the diagnosis accuracy has
not been studied yet. By applying the voltage data with
different frequencies and different window lengths in the
proposed diagnosis algorithm, the diagnosis accuracy can be
obtained as figure 3. According to the figure, the longer is the
window length and the higher is the sampling frequency, the
higher is the diagnosis accuracy. It also proves that high-
frequency sampling is meaningful for PEMFC diagnosis.
This is because more data can include more information
about the system health state.

Fig. 3. The diagnosis accuracy under different sampling frequencies and
different window lengths

VI. CONCLUSIONS

In this paper, a novel PEMFC diagnosis method is pro-
posed based on the voltage fluctuation data, where the
features are extracted by the AR model. The conclusions
can be given as follows:

1) The AR model coefficients are first time applied as fea-
tures to classify the PEMFC operating conditions. The
AR model can well describe the voltage time-series
data and provide information for voltage fluctuation



patterns. The stack voltage can be applied to diagnosis
directly.

2) With the proposed diagnosis method, 9 single fault
operating conditions and 8 multi-fault conditions of
the PEMFC system can be classified accurately, and
the data acquirement time is only 1 second, which is
very important for early fault detection.

3) A higher detection frequency and a wider sample
window can increase diagnostic accuracy. Therefore,
increasing the sampling frequency can help to obtain
enough data for accurate diagnosis within a shorter
measure time, which is beneficial for timely diagnosis
and treatment.
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