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Featured Application: Libraries of the R programming language, including RStoolbox, raster
and terra, were used to classify Landsat OLI-TIRS satellite images by k-means clustering and
NDVI computation for comparative vegetation mapping of tropical rainforests for the period of
2013–2022 in the three target areas (Bumba, Basoko, Kisangani) of the middle Congo River Basin,
central Africa, D.R.C.

Abstract: In this paper, an image analysis framework is formulated for Landsat-8 Operational Land
Imager and Thermal Infrared Sensor (OLI/TIRS) scenes using the R programming language. The
libraries of R are shown to be effective in remote sensing data processing tasks, such as classification
using k-means clustering and computing the Normalized Difference Vegetation Index (NDVI). The
data are processed using an integration of the RStoolbox, terra, raster, rgdal and auxiliary packages of
R. The proposed approach to image processing using R is designed to exploit the parameters of image
bands as cues to detect land cover types and vegetation parameters corresponding to the spectral
reflectance of the objects represented on the Earth’s surface. Our method is effective at processing
the time series of the images taken at various periods to monitor the landscape dynamics in the
middle part of the Congo River basin, Democratic Republic of the Congo (DRC). Whereas previous
approaches primarily used Geographic Information System (GIS) software, we proposed to explicitly
use the scripting methods for satellite image analysis by applying the extended functionality of R.
The application of scripts for geospatial data is an effective and robust method compared with the
traditional approaches due to its high automation and machine-based graphical processing. The
algorithms of the R libraries are adjusted to spatial operations, such as projections and transformations,
object topology, classification and map algebra. The data include Landsat-8 OLI-TIRS covering the
three regions along the Congo river, Bumba, Basoko and Kisangani, for the years 2013, 2015 and 2022.
We also validate the performance of graphical data handling for cartographic visualization using
R libraries for visualising changes in land cover types by k-means clustering and calculation of the
NDVI for vegetation analysis.

Keywords: image processing; remote sensing; Landsat; R language; programming; cartography;
mapping; data visualization; NDVI; Africa

PACS: 91.10.Da; 91.10.Jf; 91.10.Sp; 91.10.Xa; 96.25.Vt; 91.10.Fc; 95.40.+s; 95.75.Qr; 95.75.Rs; 42.68.Wt

MSC: 86A30; 86-08; 86A99; 86A04

JEL Classification: Y91; Q20; Q24; Q23; Q3; Q01; R11; O44; O13; Q5; Q51; Q55; N57; C6; C61

1. Introduction

Satellite image processing is a fundamental problem in remote sensing data analysis
and is a key step towards the automatic visualization of the Earth’s landscapes. The
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significance of the satellite images for visualising the Earth is that they incorporate rich
information about the land cover types, which can be derived from the interpretation of the
pixels. The brightness of pixels in the satellite images correspond to the spectral reflectance
of various surfaces and objects: built-up urban areas, bare soil, deserts, forest and various
vegetation types, water areas, etc. Since the absorption of solar radiation varies in these
objects, their spectral reflection is different. Such fundamental properties of optics of the
materials form a basis for the environmental applications of satellite imagery generated by
the sensors onboard the satellites [1]. The differences in spectral signatures of the surfaces
are detectable in bands, or channels, of the satellite imagery and digital numbers (DNs) of
the pixels in bitmap images, which can be used for land cover mapping [2].

Satellite images processed by remote sensing tools are often used to visualise landscape
dynamics as a way to detect land cover changes by exploiting the similarities and differences
in pixels of the images from Landsat [3,4] or Sentinel [5–7] or their integration [8,9]. Some
of the methods of image processing use time series analysis using fine spatial resolution
imagery [10,11], topological data extraction by spectral analysis derived from Synthetic
Aperture Radar (SAR) [12,13], photogrammetry or Light Detection and Ranging (LiDAR)
processing to analyse forest canopy by collecting 3D data [14]. Additionally, image
processing may use a supervised classification approach, which includes automated
extraction of the training samples and reference maps [15], regression tree analysis for
canopy height modelling [16], or statistical methods to analyse forest degradation [17].

The spectral bands that comprise the satellite imagery consist of a matrix of pixels.
Different intensities of the wavelengths of light of the pixels are visible on the image
as colours of various hues and shadowing. The Landsat OLI/TIRS consists of 11 bands,
including spectral bands: ultra violet (UV), visual, near-infrared (NIR), short-wave infrared
(SWIR) and thermal infrared (TIR). Red and NIR bands, which correspond to channels
4 and 5, are specifically useful for vegetation analysis and forest mapping, as has been
demonstrated in related works [18–20]. This is explained by the chlorophyll reflectance of
plants in the red/NIR zones, which can be used as an arithmetic combination of bands 4–5
for computing the Normalized Difference Vegetation Index (NDVI) [21] or other vegetation
indices [22,23] as indicators of vegetation health, vigour, and plant phenology, as reported
earlier [24–27].

The modelling, reconstruction and prognosis of tropical forest degradation in Africa
poses a challenge for both environmental research as well as socio-economic applications,
since deforestation affects the current land use policies and agro-industrial development of
central African countries [28,29]. In addition to climate factors, selected human activities,
such as timber production, road expansion, logging and manufacturing, contribute to
deforestation [30–32]. Another factor includes the high consumption of wood by local
population through agriculture and woodcutting [33]. At the same time, deforestation and
the unbalanced functioning of forest ecosystems have wider effects and environmental
consequences including land degradation, desertification, the loss of wildlife habitat and
soil erosion [34]. Analysis of deforestation is possible by comparing forest areas on older
maps with those detected on the remote sensing data [35–37] or landscape dynamics
evaluated by time series of images [38]. Other approaches include continuous metrics to
measure the degree of forest degradation [39]

While the techniques of the remote sensing data acquisition and image processing by
Geographic Information System (GIS) have demonstrated advances over recent decades [40,41],
the algorithms of geospatial data modelling are not as straightforward regarding handling
the data automatically. At the same time, the required automation is possible using the
programming approaches. A large number of methods focused on forest monitoring by
the remotely sensed data have been proposed over recent years [42–46]. Popular cases
include the use of multi-source data, such as a fusion of LiDAR, radar and optical data, very
high-resolution satellite images and unmanned aerial vehicles (UAV) [47], as well as the
application of Land Use/Land Cover (LULC) change [48], classification and clustering [49],
and integration of the remote sensing data with reference maps for change detection [50].
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Typically, methods of forest mapping are based on the use of Landsat imagery [51–53],
though others utilize SAR [54–58] or Moderate Resolution Imaging Spectroradiometer
(MODIS) scenes [59,60] for land cover classification in forest areas.

Compared with GIS, the use of programming languages for image processing presents
new possibilities in mapping through the extended functionality of algorithms and has received
much attention in the geoscience community [61–65]. As previous work shows [66–68],
integrating spatial information from the satellite images using various perceptual tasks,
such as object recognition, location, classification and interpretation, are necessary for
disambiguating visually similar land cover classes of the Earth’s surface representing the
landscapes. The automatic recognition of the diverse land cover classes on various periods
facilitates the recognition of the environmental changes. However, misclassifications
remain in challenging situations with similar classes with human-based interpretation
using supervised classification GIS for image analysis [69–71]. This requires us to recognise
and classify all possible occurrences of pixels in the scenes automatically, which is a
computationally effective task using programming algorithms.

In this paper, we propose an application of R programming language [72] as a means
to process and classify satellite images. Specifically, we presented the unsupervised
classification of the Landsat-8 OLI/TIRS data and calculation of the Normalized Difference
Vegetation Index (NDVI) based on RSToolbox, raster and terra packages. Motivated by
recent reports regarding the environmental changes in rainfall tropical forests of central
Africa [10,73–77], we applied multi-temporal data covering identical selected regions along
the middle Congo River Basin with a time span of 2013 to 2022. The practical aim is to
demonstrate the dynamics of the landscapes within a decade using Landsat satellite images.
Our methods apply k-means automated clustering and calculate the NDVI index using the
R libraries RStoolbox [78], terra [79], and raster [80] and auxiliary graphical packages such
as RColorBrewer [81] and viridis [82].

2. Study Area

The dataset contains satellite images obtained for the region of the Democratic Republic
of Congo (DRC) with the three target areas located in the middle region of the Congo River
Basin, according to the regional division [83]. The surroundings of the towns Bumba, Basoko
and Kisangani are located on the Congo River, which serves as the main transportation
artery in the region (Figure 1).

Kisangani is the capital of the Tshopo province, situated at the confluence of the rivers
Congo, Lualaba, Tshopo, and Lindi. It is strategically located at the crossroads between
the eastern and western parts of Congo. Basoko town is situated in the confluence of the
Aruwimi tributary into the Congo River. Bumba is a small town and a river port in the
Mongala Province, which is in the northern part of the DRC. As a part of the Congo River
Basin, these cities have a tropical monsoon climate with a dry winter period and humid
summer-autumn seasons with heavy precipitation and periodically flooded areas [84].
Such a climate setting, characterised by rainfalls interspersed with a dry season climate, in
the Congo Basin creates favourable conditions for the distribution of the world’s largest
tropical humid forests [85].

The importance of the study area is explained by the crucial environmental role of
the Congo River Basin. It contains over half of the African tropical moist forests, with
Salonga National Park being the largest rain forest park in the world [86], and it largely
contributes to the Earth’s atmosphere’s circulation on the planetary scale. Furthermore,
the tropical rainforests of Congo are a key factor in producing oxygen and regulating
global temperature through the absorption of solar radiation by forest massifs. Moreover,
forest resources offer critical and principal support to the welfare of rural livelihoods and
the socioeconomic wellbeing of the local population [87], which includes forest-related
practices such as forest clearing. As a result, land use and shifting agriculture have become
the major causes of the hydrological flow regime, environmental changes from the regional
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to global scale [88], as well as deforestation, along with the increased population density
and associated urban growth [89].

At the same time, primary forests are essential ecosystems that play a key role in
mitigating climate change, which raises the need to take action by mitigating the effects from
deforestation and resilient development in forest degradation [90,91]. Efforts to conserve
natural resources in Congo tropical rainforests recently launched global initiatives, such as
Reducing Emissions from Deforestation and Forest Degradation (REDD+) [92,93] and the
Global Rain Forest Mapping (GRFM) project [94]. On a regional and local level, practicing
agroforests serve as ecosystem services responding to the climate change mitigation
strategy [95]. Nevertheless, the Congo River Basin remains the least studied region in Africa
and in the global tropics [96]. The approach we present here contributes to the development
of methods for the environmental analysis of the selected regions of the Congo River Basin
using remote sensing data and R programming.

Figure 1. Study area with the location of the three target cities in Congo River Basin, DCR. Cartography:
Generic Mapping Tools (GMT). Data source: GEBCO/SRTM. Map source: authors.

3. Materials and Methods

This article proposes a general, fully automated method for classifying satellite images
using R libraries by machine-based k-means clustering, which requires no prior information

https://www.fao.org/redd/overview/en/
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and no learning on land cover classes. On one hand, the nature of land cover types is
captured by considering the spectral attributes of the pixels in the respective Landsat bands.
By carefully analysing these attributes, we reveal and demonstrate that the irregularity of
the spectrum in the wavelength corresponding to the landscape properties is highly related
to the reflectance of the surface, which results in the brightness of pixels in the image. Thus,
we applied the computational model of R to effectively capture and visualise this irregularity
and transfer it from the frequency optical domain to the geo-information domain.

3.1. Research Design

Within the scope of the current study, the functionality of R is focused on the K-means
clustering classification algorithm of RStoolbox to process the satellite images, with the aim
of visualising and comparing the extent of vegetation in the central Congo River Basin for
different years using a general workflow approach, as seen in Figure 2. The Landsat satellite
images taken in 2013, 2015 and 2022 were used to visualise change detection between land
cover or forest types. Thus, the algorithms of R support the operational monitoring of the
dynamics of land cover types derived from the images. However, the packages of R can also
be applied to additional applications of geospatial data analysis where automated image
classification is needed. Examples of such cases include monitoring the desertification
using time series of images, analysis of urban growth using retrospective data overlaid
with current maps and actual images, or forest fire monitoring.

Figure 2. Workflow of the study project summarising general steps of the study, including aim and
objectives, methodology and results used in a framework of R application for remote sensing data
processing and land cover change detection by unsupervised classification (k-means clustering) of
Landsat satellite images for selected regions of Congo, D.R.C.

The functionality of R programming presents a set of modular functions for the
automation of image classification applications from Earth observation, spatial and remote
sensing data, as seen in Figure 3.

The packages of ‘terra’ and ‘raster’ include the functionality of pre- and post-processing
of both data types (vector and raster), as well as extensible features for spatial data analysis.
Raster data analysis includes reading the information on the spectral reflectance of the image
bands, automated processing of the stacked bands, feature extraction for unsupervised
classification using clustering, creating multi-layer colour composites, performing map
algebra using raster bands, visualising the thematic maps as overlays, classification and
basic statistical analysis, such as histograms.
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Figure 3. The functionality of R packages used for satellite image processing and classification
in this study. Major packages include terra, raster, Rstoolbox, rgdal, rgeos, cluster, graphics,
and RColorBrewer.

R operates with major features of spatial data, such as dimensions, resolution, reading
data extent (min/max analysis), plotting the data, manipulating with Coordinate Reference
Systems (CRS), reprojecting the data, assigning the CRS and transforming the data. An
important function of R ‘terra’ package consists of creating the SpatRaster objects, which
are a class of raster data with a longitude/latitude CRS as spatial parameters and a specific
geometry of the file (cells are arranged in the rows/columns of the internal grid). Moreover,
the ‘terra’ package enables the cartographic visualization of continuous fields, including
topographic elevation, vegetation based on the classified land cover types, and climate data
in a spatial context (regional variations in temperature and precipitation). Furthermore, R
enables us to perform data clipping using an overlay of spatial data and imagery over their
area of interest.

3.2. Data

The first step in the workflow included downloading data from the USGS GloVis data
repository, which offers a global coverage of the publicly available satellite images with
open access. We selected the three areas of Bumba, Basoko and Kisangani and collected the
Landsat-8 OLI/TIRS imagery for the dates 2013 and 2022. The exact Landsat Product IDs are
summarised in Table 1. The main characteristics of the imagery are summarised in Table 2.

Table 1. Landsat-8 OLI/TIRS Product ID and Scene ID.

Region, Year Landsat Product ID Landsat Scene ID

Basoko, 2013 LC08_L1TP_177059_20131216_20200912_02_T1 LC81770592013350LGN01
Basoko, 2022 LC08_L1TP_177059_20220208_20220212_02_T1 LC81770592022039LGN00
Bumba, 2013 LC08_L1TP_178058_20131223_20200912_02_T1 LC81780582013357LGN01
Bumba, 2022 LC08_L1TP_178058_20220130_20220204_02_T1 LC81780582022030LGN00
Kisangani, 2013 LC08_L1TP_176060_20130413_20200913_02_T1 LC81760602013103LGN02
Kisangani, 2015 LC08_L1TP_176060_20150113_20200910_02_T1 LC81760602015013LGN01
Kisangani, 2022 LC08_L1TP_176060_20220217_20220302_02_T1 LC81760602022048LGN00

The common technical parameters for all the scenes are as follows: spacecraft ID—
Landsat 8; origin: USGS; station ID—LGN; sensor ID—OLI_TIRS; processing level—L1TP;
collection number—2; collection category—T1; output format—GEOTIFF; WRS type—2;
datum and ellipsoid—WGS84; data source elevation—GLS2000; GCP version—5.

https://glovis.usgs.gov/app


Appl. Sci. 2022, 12, 12554 7 of 26

Table 2. Main technical characteristics of the Landsat-8 OLI/TIRS imagery.

Parameters
Basoko
(2013)

Basoko
(2022)

Bumba
(2013)

Bumba
(2022)

Kisangani
(2013)

Kisangani
(2015)

Kisangani
(2022)

Date 16 Decem-
ber 2013

8 February
2022

23 Decem-
ber 2013

30 January
2022

13 April 2013 13 January
2015

17 February
2022

TWRS P. 177 177 178 178 176 176 176
WRS Row 59 59 58 58 60 60 60
WRS Path 177 177 178 178 176 176 176
Cloudiness 0.00 0.00 0.04 0.00 5.85 1.36 0.48
UTM Zone 34 34 34 34 35 35 35

Abbreviations used in Table 2: SA—sun zzimuth. Date stands for the acquisition date of the scene; GCP Ver.—GCP
version; TWRS P.—target WRS path; GCP Mod.—GCP model; GRMSEM—geometric RMSE model.

The used images are categorised by the L1TP Level 1 Precision Terrain (corrected),
which are the DNs in a 16-bit integer format, converted to the top-of-atmosphere (TOA)
spectral reflectance (Bands 1–9) or radiance (Bands 1–11) using scaling factors [97]. The
L1TP images include radiometric, geometric, and precision correction and use a digital
elevation model (DEM) to correct errors caused by the local topographic relief; the accuracy
of the precision/terrain-corrected product depends on the ground control points (GCPs)
obtained from the GLS2000 dataset and the resolution of the DEM. Thus, the geometric
accuracy of the L1TP Landsat images is valiadated using the ground control points (GCP),
which are derived from the GLS2000 library. These data are used for computing the RMSE
of the geometric residuals on the terrain-corrected images [97].

An additional image for 2015 was selected for Kisangani due to the higher cloud
coverage in 2013. The geographic map in Figure 1 has been plotted using the generic
mapping tools (GMT) defined by scripts following the existing methodology [98–100]. The
study area encompasses the middle Congo river basin with the three specific towns of
Bumba, Basoko, and Ksangani, located in consecutive order southwards. The collected
data were inspected for metadata using R Listing 1.

Listing 1: R code used for data inspection by rGDAL and raster libraries; here a case of Basoko town
applied for all other images.

1 l i b r a r y ( rgdal )
2 l i b r a r y ( r a s t e r )
3 # S e t up working d i r e c t o r y
4 setwd ( " / Users / polinalemenkova /Documents /R / 53_UC_k_means / Basoko_LC08_L1TP_ 177059 _ 20131216 _

20200912 _02_T1 " )
5 # I m p o r t i n g d a t a : Landsa t OLI / TIRS image f o r Basoko , Congo ( 2 0 1 3 ) :
6 Landsat _Basoko2013 <− l i s t . f i l e s ( " / Users / polinalemenkova /Documents /R / 53_UC_k_means / Basoko

_LC08_L1TP_ 177059 _ 20131216 _ 20200912 _02_T1 " )
7 # P r i n t i n g t h e l i s t
8 l i s t . f i l e s ( )
9 # Reading in f i l e s a s S p a t i a l G r i d D a t a F r a m e o b j e c t s :

10 BasokoBand1 <− readGDAL( " LC08_L1TP_ 177059 _ 20131216 _ 20200912 _02_T1_B1 . TIF " )
11 BasokoBand2 <− readGDAL( " LC08_L1TP_ 177059 _ 20131216 _ 20200912 _02_T1_B2 . TIF " )
12 BasokoBand3 <− readGDAL( " LC08_L1TP_ 177059 _ 20131216 _ 20200912 _02_T1_B3 . TIF " )
13 BasokoBand4 <− readGDAL( " LC08_L1TP_ 177059 _ 20131216 _ 20200912 _02_T1_B4 . TIF " )
14 BasokoBand5 <− readGDAL( " LC08_L1TP_ 177059 _ 20131216 _ 20200912 _02_T1_B5 . TIF " )
15 BasokoBand6 <− readGDAL( " LC08_L1TP_ 177059 _ 20131216 _ 20200912 _02_T1_B6 . TIF " )
16 BasokoBand7 <− readGDAL( " LC08_L1TP_ 177059 _ 20131216 _ 20200912 _02_T1_B7 . TIF " )
17 # V i s u a l i z i n g and c h e c k i n g t h e c l a s s o f random bands
18 plot ( BasokoBand1 )
19 r es ( BasokoBand1 )
20 c l a s s ( BasokoBand5 )
21 ## [ 1 ] " S p a t i a l G r i d D a t a F r a m e "
22 ## a t t r ( , " p a c k a g e " )
23 ## [ 1 ] " sp "
24 slotNames ( BasokoBand5 )
25 # [ 1 ] " d a t a " " g r i d " " bbox " " p r o j 4 s t r i n g "
26 summary ( BasokoBand5@data )
27 # Min . : 6637
28 # 1 s t Qu. : 1 4 9 5 5
29 # Median :15669
30 # Mean :15752
31 # 3 rd Qu. : 1 6 5 7 9
32 # Max . :27433
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33 # NA’ s :17221239
34 # Check t h e t o p o l o g y o f t h e c l a s s
35 s t r ( BasokoBand5@grid )
36 # Formal c l a s s ’ Gr idTopo logy ’ [ p a c k a g e " sp "] wi th 3 s l o t s
37 # . . @ c e l l c e n t r e . o f f s e t : Named num [ 1 : 2 ] 696300 43500
38 # . . . . − a t t r ( * , "names " )= c h r [ 1 : 2 ] "x" "y"
39 # . . @ c e l l s i z e : num [ 1 : 2 ] 30 30
40 # . . @ c e l l s . dim : i n t [ 1 : 2 ] 7591 7741
41 # Check up s p a t i a l d imens i on
42 BasokoBand5@grid@cellcentre . o f f s e t
43 # x y
44 # 696300 43500
45 BasokoBand5@grid@cellsize
46 # [ 1 ] 30 30
47 BasokoBand5@bbox
48 # min max
49 # x 696285 924015
50 # y 43485 275715
51 BasokoBand5@proj4string
52 # g e n e r a t i n g R a s t e r L a y e r s o f Landsa t bands
53 BasokoB1 <− r a s t e r ( " LC08_L1TP_ 177059 _ 20131216 _ 20200912 _02_T1_B1 . TIF " )
54 BasokoB2 <− r a s t e r ( " LC08_L1TP_ 177059 _ 20131216 _ 20200912 _02_T1_B2 . TIF " )
55 BasokoB3 <− r a s t e r ( " LC08_L1TP_ 177059 _ 20131216 _ 20200912 _02_T1_B3 . TIF " )
56 BasokoB4 <− r a s t e r ( " LC08_L1TP_ 177059 _ 20131216 _ 20200912 _02_T1_B4 . TIF " )
57 BasokoB5 <− r a s t e r ( " LC08_L1TP_ 177059 _ 20131216 _ 20200912 _02_T1_B5 . TIF " )
58 BasokoB6 <− r a s t e r ( " LC08_L1TP_ 177059 _ 20131216 _ 20200912 _02_T1_B6 . TIF " )
59 BasokoB7 <− r a s t e r ( " LC08_L1TP_ 177059 _ 20131216 _ 20200912 _02_T1_B7 . TIF " )
60 # C r e a t i n g a f a c e t t e d s t a c k from t h e Landsa t OLI−TIRS bands :
61 image <− s tack ( BasokoB1 , BasokoB2 , BasokoB3 , BasokoB4 , BasokoB5 , BasokoB6 , BasokoB7 )
62 # V i s u a l i z i n g t h e image with s e p a r a t e d bands :
63 plot ( image )
64 # Check m e t a d a t a :
65 nlayers ( image )
66 r es ( image )
67 # C r e a t i n g t h e o b j e c t o f R a s t e r L a y e r c l a s s f o r one random band ( h e r e : Band 2)
68 Basoko2013_B2 <− r a s t e r ( Landsat _Basoko2013 [ 2 ] )
69 Basoko2013_B2
70 # P l o t t i n g one randon band
71 plot ( Basoko2013_B2 ,
72 main = " Landsat OLI / TIRS 2013 band 2 \ nBasoko , c e n t r a l Congo" ,
73 col = gray ( 0 : 1 0 0 / 100) )

We explored the ‘rgdal’ library of R to retrieve the coordinates and check the topology
and spatial dimensions of the dataset stored in the SpatialGridDataFrame class. AThetopol-
ogy refers to the arrangement of the images that defines the coincident geometry of the
feature classes from the Landsat dataset. It reads the contextual information from the
structure data based on spatial relationships, specifically the adjacency of the coordinates
and connectivity of overlapping images. The RasterLayers were generated as the arrays
of pixels from the individual bands of the Landsat scenes. Afterwards, a facetted stack
was created using the Landsat OLI-TIRS bands via the stack() function. To this end, the
‘raster’ R library was applied to concatenate the multiple bands into a single bitmap image,
which used the data on the origin of the coordinates of each band. The resulting image was
visualized by the plot() function of R. The number of layers of and spatial dimension in the
new multi-layer object of R were inspected by the ’raster’ library. The resolution of all the
layers was 30 m, except for the panchromatic band (15 m) and the two last TIRS layers, with
a coarser resolution of 100 m. The selected band was plotted in a grayscale monochrome
visualization. The data analysis and inspection was performed using Listing 1.

3.3. Plotting Band Composites

We explored the structure of the Landsat bands by inspecting the metadata. The
image of all the bands is visualized as a representation of the monochrome multi-facetted
plot in Figure 4. The majority of the multispectral bands have 30 m resolution, while the
panchromatic band (B8) has a higher resolution (15 m), and the two TIRS (B10 and B11) have
a coarse 100 m resolution. Generating colour composites by a combination of various band
triplets provides more information, which can be effectively exploited using the ‘raster’ and
’terra’ libraries of R. Here the idea of the machine-assisted classifier by R packages consists
of the identification of the spectral reflectance of the pixels constituting the 11 bands for
thematic mapping.
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The sensor instruments of Landsat-8 OLI-TIRS record more channels of data than are
actually needed for vegetation applications. For instance, to calculate the NDVI, we only
need the Red and NIR bands (4 and 5, respectively). However, combining the bands in
various RGB triplets enables us to highlight diverse objects on the surface to discriminate
and capture information on a wider variety of objects. Thus, the composition of red, green
and blue colours creates images with varied hue, saturation and intensity representations
owing to the pixel brightness as the spectral reflectance of the objects and surfaces on the
Earth. Therefore, the bands were mixed to form various colour composites and inspect the
land cover types. The selected and most representative band composites for the three main
studied regions were plotted as natural and false colour composites, respectively, which
were generated using the ’raster’ library. A relevant code snippet is given for the town
of Basoko and was applied similarly for the rest of the Landsat-8 OLI-TIRS scenes with
changed parameters, as per Listing 2.
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Figure 4. Composite of monochrome 11 bands: Landsat-8 OLI/TIRS C1 for Basoko region (Arowumi
and Congo rivers). Multi-spectral image ’LC81770592022039LGN00’: ultra blue (B1), blue (B2), green
(B3), red (B4), near infrared (NIR) (B5), shortwave infrared (SWIR) 1 (B6), shortwave infrared (SWIR)
2 (B7), panchromatic (B8), cirrus (B9), thermal infrared (TIRS) 1 (B10), TIRS2 (B11). Plotting: R.

The multi-facetted plot of the individual bands of the Landsat OLI/TIRS image has
been plotted using libraries ’raster’ and ’terra’ (version 1.2.11), by the code in Listing 3.
Here the case is given for the image covering Basoko (2022), applied for other scenes.

Figure 4. Composite of monochrome 11 bands: Landsat-8 OLI/TIRS C1 for Basoko region (Arowumi
and Congo rivers). Multi-spectral image ’LC81770592022039LGN00’: ultra blue (B1), blue (B2), green
(B3), red (B4), near infrared (NIR) (B5), shortwave infrared (SWIR) 1 (B6), shortwave infrared (SWIR)
2 (B7), panchromatic (B8), cirrus (B9), thermal infrared (TIRS) 1 (B10), TIRS2 (B11). Plotting: R.

The multi-facetted plot of the individual bands of the Landsat OLI/TIRS image has
been plotted using libraries ‘raster’ and ‘terra’ (version 1.2.11), by the code in Listing 3.
Here the case is given for the image covering Basoko (2022), applied for other scenes.
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Listing 2: R code used for colour composites by libraries raster and terra; here a case of Bumba town
applied likewise for all the other images.

1 setwd ( " / Users / polinalemenkova /Documents /R / 53_UC_k_means /Bumba_LC08_L1TP_ 178058 _ 20131223 _
20200912 _02_T1 " )

2 # I m p o r t i n g d a t a
3 Landsat _Bumba2013 <− l i s t . f i l e s ( " / Users / polinalemenkova /Documents /R / 53_UC_k_means /Bumba_

LC08_L1TP_ 178058 _ 20131223 _ 20200912 _02_T1 " )
4 # P r i n t i n g t h e l i s t
5 l i s t . f i l e s ( )
6 # c r e a t i n g S p a t R a s t e r o b j e c t
7 l andsat <− r a s t ( Landsat _Bumba2013 )
8 # c h e c k p r o p e r t i e s
9 l andsat

10 # combining bands f o r n a t u r a l c o l o u r c o m p o s i t e , h e r e us ing bands 4 , 3 and 2 .
11 landsatRGB <− l andsat [ [ c ( 4 , 3 , 2 ) ] ]
12 # c h e c k up m e t a d a t a
13 landsatRGB
14 # v i s u a l i s i n g n a t u r a l c o l o u r c o m p o s i t e on s c r e e n
15 plotRGB ( landsatRGB , r =1 , g=2 , b=3 , axes=FALSE , s t r e t c h=" l i n " )
16 # p l o t t i n g and s a v i n g t h e f i l e
17 plot ( landsatRGB , col=colors , font . main = 1 , main = "NDVI f o r Landsat−8 OLI / TIRS C1 image

LC08_L1TP_ 178058 _ 20131223 _ 20200912 _02_T1 : Bumba , Congo" , cex . main =0 .9 , axes=FALSE)
18 # combining bands f o r f a l s e c o l o u r c o m p o s i t e , h e r e us ing bands 5 , 4 and 3 .
19 landsatFCC <− l andsat [ [ c ( 5 , 4 , 3 ) ] ]
20 # v i s u a l i s i n g f a l s e c o l o u r c o m p o s i t e on s c r e e n
21 plotRGB ( landsatFCC , r =1 , g=2 , b=3 , axes=FALSE , s t r e t c h=" l i n " )
22 # p l o t t i n g and s a v i n g t h e f i l e
23 plot ( landsatRGB , col=colors , font . main = 1 , main = "NDVI f o r Landsat−8 OLI / TIRS C1 image

LC08_L1TP_ 177059 _ 20131216 _ 20200912 _02_T1_B : Basoko , c e n t r a l Congo" , cex . main =0 .9 ,
axes=FALSE)

Listing 3: R code used for the monochrome individual bands of the image Landsat OLI/TIRS.

1 l i b r a r y ( r a s t e r )
2 l i b r a r y ( t e r r a )
3 # Setup working d i r e c t o r y
4 setwd ( " / Users / polinalemenkova /Documents /R / 53_UC_k_means / Basoko_LC08_L1TP_ 177059 _ 20220208 _

20220212 _02_T1 " )
5 b1 <− r a s t ( ’LC08_L1TP_ 177059 _ 20220208 _ 20220212 _02_T1_B1 . TIF ’ ) # U l t r a Blue / A e r o s o l
6 b2 <− r a s t ( ’LC08_L1TP_ 177059 _ 20220208 _ 20220212 _02_T1_B2 . TIF ’ ) # Blue
7 b3 <− r a s t ( ’LC08_L1TP_ 177059 _ 20220208 _ 20220212 _02_T1_B3 . TIF ’ ) # Green
8 b4 <− r a s t ( ’LC08_L1TP_ 177059 _ 20220208 _ 20220212 _02_T1_B4 . TIF ’ ) # Red
9 b5 <− r a s t ( ’LC08_L1TP_ 177059 _ 20220208 _ 20220212 _02_T1_B5 . TIF ’ ) # Near I n f r a r e d NIR

10 b6 <− r a s t ( ’LC08_L1TP_ 177059 _ 20220208 _ 20220212 _02_T1_B6 . TIF ’ ) # Green
11 b7 <− r a s t ( ’LC08_L1TP_ 177059 _ 20220208 _ 20220212 _02_T1_B7 . TIF ’ ) # Red
12 b8 <− r a s t ( ’LC08_L1TP_ 177059 _ 20220208 _ 20220212 _02_T1_B8 . TIF ’ ) # Panchromat i c
13 b9 <− r a s t ( ’LC08_L1TP_ 177059 _ 20220208 _ 20220212 _02_T1_B9 . TIF ’ ) # C i r r u s
14 b10 <− r a s t ( ’LC08_L1TP_ 177059 _ 20220208 _ 20220212 _02_T1_B10 . TIF ’ ) # TIRS 1
15 b11 <− r a s t ( ’LC08_L1TP_ 177059 _ 20220208 _ 20220212 _02_T1_B11 . TIF ’ ) # TIRS 2
16 # D e f i n i n g t h e c o l o r p a l e t t e
17 co lo rs <− kovesi . c y c l i c _ grey _15_85_ c0 ( 1 0 0 )
18 # P l o t t i n g 11 i n d i v i d u a l l a y e r s ( raw bands ) o f t h e Landsat −8 image .
19 par ( mfrow = c ( 4 , 3 ) , mar=c ( 0 , 5 , 0 , 0 ) , mai = c ( 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 ) ) # c ( bottom , l e f t ,

top , r i g h t )
20 plot ( b1 , main = " Ul t ra Blue ( B1 ) " , col = colors , axes = FALSE , legend = TRUE)
21 plot ( b2 , main = " Blue ( B2 ) " , col = colors , axes = FALSE , legend = TRUE)
22 plot ( b3 , main = " Green ( B3 ) " , col = colors , axes = FALSE , legend = TRUE)
23 plot ( b4 , main = "Red ( B4 ) " , col = colors , axes = FALSE , legend = TRUE)
24 plot ( b5 , main = "NIR ( B5 ) " , col = colors , axes = FALSE , legend = TRUE)
25 plot ( b6 , main = "SWIR ( B6 ) " , col = colors , axes = FALSE , legend = TRUE)
26 plot ( b7 , main = "SWIR ( B7 ) " , col = colors , axes = FALSE , legend = TRUE)
27 plot ( b8 , main = " Panchromatic ( B8 ) " , col = colors , axes = FALSE , legend = TRUE)
28 plot ( b9 , main = " Cirrus ( B9 ) " , col = colors , axes = FALSE , legend = TRUE)
29 plot ( b10 , main = " TIRS 1 ( B10 ) " , col = colors , axes = FALSE , legend = TRUE)
30 plot ( b11 , main = " TIRS 2 ( B11 ) " , col = colors , axes = FALSE , legend = TRUE)

The generated images reveal spatial details that can be better discerned in the intensity of
pixels in false colour composites for water areas and more sharpened representations of urban
areas in the natural colour composites showing spatial details in the three target areas: Bumba,
Basoko and Kisangani (Figure 5). The colour products for all the three regions were prepared
using the combination of bands 4-3-2 (natural) and 5-4-3 (false) with spatial resolution selected
as three triplets of the original multispectral bands of the Landsat-8 OLI/TIRS. The new mixture
of the RGB bands was converted to the colours with the intensity channel corresponding to
the resolution of the original bands (30 m). Hue, saturation and intensity transformations of
each of the triplets were resampled by R package ’terra’ to form the output image, Figure 5.
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Natural (bands 4-3-2) and false colour (bands 5-4-3) composites of the Landsat 8 OLI/TIRS
image for the three target areas: Bumba, Basoko and Kisangani. Mapping: RStudio. (a) Bumba:
natural colour composite, 2013. (b) Bumba: false colour composite: 2013. (c) Basoko: natural colour
composite: 2013. (d) Basoko: false colour composite: 2013. (e) Kisangani: Natural colour composite:
2013. (f) Kisangani: False colour composite: 2013.
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The above-demonstrated scripts show the key advantage of R, which consists of the
optimization of the workflow of remote sensing data processing. Moreover, it illustrates
its advanced analysis capabilities aimed at processing raster data by scripting. Scripts can
be re-used with modified lines of code for the next images as a consecutive work, rather
than repeated as a whole process of image analysis for each image, as in GIS, which is a
fundamentally different approach compared to GIS. This is especially true for processing
big Earth observation data, which play a key role in geoscience. The rapid development
of remote sensing technologies has resulted in an increased amount of available satellite
images, which requires advanced technologies for processing these large massifs of spatial
data. In contrast to the traditional software, programming languages provide an effective
solution to handle such volumes of spatial data by scripting. R, as an example of a
high-level programming language, effectively solves the problem of the optimization of
image processing.

3.4. K-Means Clustering

The k-means clustering of the R package RasterStack is a method by which pixels
are assigned to spectral classes by machine-based partitions without prior knowledge of
those classes. It is a straightforward way to produce a map of land cover classes using
an automatic approach to image classification. The algorithm has been executed using an
image-partitioning algorithm that infers the labels of the land cover classes by analysing
intra-class similarity and, vice versa, the contrast between the classes. This method presents
a machine learning approach for assigning pixels into the defined groups (or coherent
clusters) according to their intensity and brightness, as seen in Listing 4. The clustering and
classification of data is a commonly accepted practice for land cover mapping aimed at
modelling changes in a forest structure by examining land-use categories [2,54,88,101,102].

Listing 4: R code used for running the unsupervised classification by k-means clustering; here a case
of Basoko town applied for all other images.

1 # S e t up working d i r e c t o r y
2 setwd ( " / Users / polinalemenkova /Documents /R / 53_UC_k_means / Basoko_LC08_L1TP_ 177059 _ 20220208 _

20220212 _02_T1 " )
3 # I m p o r t i n g d a t a
4 Landsat _Basoko2022 <− l i s t . f i l e s ( " / Users / polinalemenkova /Documents /R / 53_UC_k_means / Basoko

_LC08_L1TP_ 177059 _ 20220208 _ 20220212 _02_T1 " )
5 # P r i n t i n g t h e l i s t
6 l i s t . f i l e s ( )
7 # C r e a t i n g t h e o b j e c t o f R a s t e r L a y e r c l a s s f o r one band
8 Basoko2022_B2 <− r a s t e r ( Landsat _Basoko2022 [ 2 ] )
9 Basoko2022_B2

10 # G e n e r a t i n g t h e c o l o r p a l e t t e t a b l e
11 co lo rs <− kovesi . l i n e a r _ grey _10_95_ c0 ( 1 0 0 )
12 # P l o t t i n g one band
13 plot ( Basoko2022_B2 ,
14 main = " Landsat OLI / TIRS 2022 band 2 Basoko , Congo \ nLC08_L1TP_ 177059 _ 20220208 _

20220212 _02_T1 " , font . main=2 , cex . main = 0 . 9 0 , axes = FALSE , box = FALSE , legend =
FALSE , col = co lo rs )

15 # S t a c k i n g t h e d a t a t o c r e a t e a R a s t e r S t a c k .
16 Landsat _Basoko2022_ s tack <− s tack ( Landsat _Basoko2022 )
17 # Turning a s t a c k i n t o a b r i c k .
18 # Landsa t _ Basoko2022 _ b r i c k <− b r i c k ( Landsa t _ Basoko2022 _ s t a c k )
19 Landsat _Basoko2022_ b r i c k <− b r i c k ( Basoko2022_B2 )
20 # Viewing b r i c k a t t r i b u t e s
21 Landsat _Basoko2022_ b r i c k
22 # P l o t t i n g t h e RGB t r i p l e t from t h e R a s t e r B r i c k
23 olpar <− par ( no . readonly = TRUE) # back−up par
24 par ( mfrow=c ( 1 , 1 ) )
25 plotRGB ( Landsat _Basoko2022_ b r i c k )
26 ## Running t h e c l a s s i f i c a t i o n
27 s e t . seed ( 2 5 )
28 unC <− unsuperClass ( Landsat _Basoko2022_ brick , nSamples = 100 , nClasses = 10 , n S t a r t s = 5)
29 unC
30 # C r e a t i n g t h e c o l o r p a l e t t e t a b l e
31 co lo rs <− kovesi . diverging _rainbow_bgymr_45_85_ c67 ( 1 0 )
32 # P l o t t i n g a map
33 plot (unC$map, main = "K−means Clus ter ing f o r Landsat−8 OLI / TIRS C1 image of Basoko , Congo

\ nL1TP_ 177059 _ 20220208 _ 20220212 _02_T1 ( 2 0 2 2 ) " , font . main=2 , cex . main = 0 . 9 5 , col =
colors , axes = FALSE , box = FALSE , legend = FALSE)

34 # Adding l e g e n d
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35 legend ( " t o p l e f t " , legend=c ( " 1 " , " 2 " , " 3 " , " 4 " , " 5 " , " 6 " , " 7 " , " 8 " , " 9 " , " 10 " ) , f i l l =
colors , t i t l e = " Classes " , hor iz = FALSE , bty = "n" , t e x t . font =3 , ncol =1)

The image for classification was generated by stacking the data, which enabled us to
create the RasterStack as a collection of RasterLayer objects. In turn, they were generated
from the raster layers of the selected bands with the same spatial extent and resolution,
that is, 30 m for the most of the Landsat-8 OLI/TIRS bands. Afterwards, RasterStack was
merged into a RasterBrick, which is a multi-layer raster object created from the multi-layer
files of RasterStack, made up of Landsat bands. The similarity between the RasterStack
and RasterBrick classes consists in the fact that both are generated with a stack of the
raster Landsat bands. However, the processing time for the RasterBrick is shorter in the R
environment compared to the RasterStack because RasterBrick is less flexible and is merged
already as a single file. The procedure and the output of the k-means clustering is presented
in Figure 6, which shows the console of the RStudio with statistical information on cluster
centroids and the sum of squares for each processed map, respectively. The cluster map on
the right of the print screen depicts the class memberships of the pixels; in this case, we
give the example of Basoko town in the year 2013, as seen in Figure 6.

Figure 6. Executing the k-means clustering classification algorithm in RStudio using the RStoolbox
package. Parameters of cluster centroids and sum of squares by cluster are displayed in the console
of R. Spatial parameters of the output map are listed. Here is shown the example of Landsat image
of Basoko.

Thus, the automatic clustering analysis by R has been performed without prior
knowledge of class membership of those pixels using a principle of partitioning of the
raster file based on the generalization of the matrix of cells. Based on the automatic analysis
of pixel brightness, the pixels of a given symbol were partitioned into the same spectral
class, which belongs to one of the 10 clusters. The advantage of this approach is that
it works quickly and straightforwardly when operating complex scenes. The clusters
were identified by associating the pixels from the images with the available information
of spectral reflectance and presented as the output maps in Figure 7 (Bumba), Figure 8
(Basoko) and Figure 9 (Kisangani).
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(a) (b)

(c) (d)
Figure 7. Bumba town and surroundings of the Congo River: raw Landsat-8 OLI/TIRS scene for years
2013 and 2022 and the classified outputs by k-means clustering. Mapping: RStudio. Source: authors.
(a) Monochrome image for Bumba region: 2013. (b) Classified scene using k-means clustering: 2013.
(c) Monochrome image for Bumba region: 2022. (d) Classified scene using k-means clustering: 2022.

The unsupervised learning algorithm of R incorporates the parameter estimation for
pixels under a partitioning framework using cell’s brightness, which corresponds to the
spectral reflectance of the objects in a matrix of the raster scene. The algorithm of k-means
clustering is computationally demanding by R, yet it is crucial to the concept of remote
sensing due to the effectiveness and importance of the output in satellite image processing.
Thus, land cover types are not known beforehand and defined by the machine method of
image analysis based on the spectral signatures of the objects partitioned into the series of
clusters. The data were divided automatically into the ten clusters using the search for the
spectral class for each pixel in the image. Using this approach, we defined 10 classes in a
process of the unsupervised classification approach to produce the thematic maps with
discriminated vegetation and land cover classes using the existing classification adopted
from previous studies [103]: swamp forest; humid tropical forest; secondary forest; urban
areas and impervious surfaces; inundated grassland; deciduous forest; shrubland and
grassland; cropland and mosaic forest; savannah with sparse trees; water bodies.
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(a) (b)

(c) (d)
Figure 8. Basoko town (Tshopo Province) and surroundings in the confluence of the Aruwimi River
tributary into the main stream of the Congo River: raw Landsat-8 OLI/TIRS scene for years 2013
and 2022 and the classified outputs by k-means clustering. Mapping: RStudio. Source: authors.
(a) True-colour composite image for Basoko: 2013. (b) Classified scene using k-means clustering: 2013.
(c) True-colour composite image for Basoko: 2022. (d) Classified scene using k-means clustering: 2022.

(a) (b)

Figure 9. Cont.
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(c) (d)
Figure 9. Kisangani city (Tshopo Province) and region in the junction of the Tshopo and Lindi
tributaries into the Congo River: raw Landsat-8 OLI/TIRS scene for years 2013, 2015 and 2022 and
the classified outputs by k-means clustering. Mapping: RStudio. Source: authors. (a) True-colour
composite image, Kisangani, 2013. (b) Classified scene using k-means clustering: 2013. (c) Classified
scene using k-means clustering: 2015. (d) Classified scene using k-means clustering: 2022.

3.5. NDVI Calculation

The NDVI is a key vegetation indicator to describe vegetation dynamics and vigour.
It is effectively applied to environmental management and monitoring the responses of
tropical rainforests to climate change and anthropogenic activities. Therefore, the use of the
NDVI is crucial to reveal the health of the terrestrial ecosystems in central Africa, which are
threatened by the deforestation. As a robust traditional estimation method to determine
vegetation coverage, NDVI is deservedly applied in a variety of the remote sensing studies
due to its effectiveness and reliability. The visualization of the NDVI is indispensable in
areas where fieldwork and ground point collection is hardly accessible, such as the tropical
African regions of central Congo. Therefore, we adapted the algorithm of the NDVI to
extract the information on vegetation for knowledge on plant coverage in the three target
areas in the Congo Basin. The NDVI has been generated using composite band arithmetic
operations by the ratio of difference and the sum of the reflected NIR and visible red
wavelength. The NDVI approach is grounded in the calculation of ratios in the reflectance
between the red and NIR bands of the image (Bands 4 and 5) as arithmetical variables using
the existing formula NDVI = (NIR−Red)/(NIR + Red). The NDVI computation has been
performed using multi-band manipulation by R library terra, as per Listing 5.

Listing 5: R code using library terra used for calculation the NDVI; here a case of Basoko town (2013)
with the same principle applied for all other images

1 # S e t up working d i r e c t o r y
2 setwd ( " / Users / polinalemenkova /Documents /R / 53_UC_k_means / Basoko_LC08_L1TP_ 177059 _ 20131216 _

20200912 _02_T1 " )
3 # I m p o r t i n g d a t a
4 f i lenames <− paste0 ( ’LC08_L1TP_ 177059 _ 20131216 _ 20200912 _02_T1_B ’ , 1 : 7 , " . t i f " )
5 f i lenames
6 l andsat <− r a s t ( f i lenames )
7 l andsat
8 vi <− function ( img , k , i ) {
9 bk <− img [ [ k ] ]

10 bi <− img [ [ i ] ]
11 vi <− ( bk − bi ) / ( bk + bi )
12 return ( vi )
13 }
14 # p l o t t i n g t h e NDVI . For Landsa t NIR = 5 , r e d = 4 .
15 ndvi <− vi ( landsat , 5 , 4 )
16 co lo rs <− brewer . pal ( 1 0 , "RdYlGn" )
17 plot ( ndvi , col=colors , font . main = 1 , main = "NDVI f o r Landsat−8 OLI / TIRS C1 image LC08_

L1TP_ 177059 _ 20131216 _ 20200912 _02_T1 : Basoko , Congo DC ( 2 0 1 3 ) " , cex . main =0 .95 , axes =
FALSE , legend = FALSE)
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18 legend ( , x = " t o p l e f t " , i n s e t = 0 . 1 3 , legend=c ( " 0 . 1 " , " 0 . 2 " , " 0 . 3 " , " 0 . 4 " , " 0 . 5 " , " 0 . 6 " ,
" 0 . 7 " , " 0 . 8 " , " 0 . 9 " , " 1 . 0 " ) , f i l l = colors , t i t l e = " Classes " , hor iz = FALSE , bty =

"n" , t e x t . font =3 , ncol =1)

The calculation of the NDVI enabled us to exploit the information derived from spectral
reflectance regarding vegetation coverage. This was enabled due to the parameters of the
ratios of NIR/red spectral bands, which lessen the influence from the ground relief, rocks
and soils. Thus, the methodological advantage of the NDVI consists of the reinforcement of
the slight differences and nuances in the spectral reflectance characteristics of vegetation.
This enables us to better distinguish forest-covered areas, discriminate various vegetation
classes, and discern them from all other land cover types. Using pairwise representations
of the 9-year time series of Landsat OLI/TIRS (2013 to 2022), we calculated the NDVI for
the three target regions along the Congo river: Bumba, Basoko and Kisangani. Here we
computed the values of the NDVI for each couple of images, respectively, to show the
dynamics of the vegetation growth in middle Congo, as shown in Figure 10. The NDVI is
computed for each pixel, with brighter green hues indicating more dense and healthy plant
canopy, and contrariwise.

Apparently, the combination of a higher reflectance in the NIR and a lower reflectance
in the red bands results in higher NDVI values in general, that is, around 1, which represents
the spectral signature of vegetation. Such values refer to healthy plant coverage, typical for
tropical rainforests and other regions of dense canopy, while bank areas of Congo river,
bare land, sparsely vegetated areas and urban spaces near Bumba, Basoko and Kisangani
have lower NDVI values. For instance, dark brown to black areas of the NDVI with values
around zero are non-vegetated areas, and water areas have negative values below zero.
Middle values indicate various types of shrubland andriparian plant communities along
the river Congo and tributaries. Thus, the general approach is that in the NDVI, the scale
ranges from -1 to 1, with positive values from 0 to 1 indicating the terrain areas, while water
surfaces have values below 0. Higher NDVI values (ca. from 0.7 to 1.0) indicate healthy
vegetation, while lower values (from 0.0 to 0.3) represent non-vegetated areas.

(a) (b)

Figure 10. Cont.
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(c) (d)

(e) (f)
Figure 10. NDVI computed from 5 and 4 bands of the Landsat-8 OLI/TIRS scenes for years 2013
and 2022 for the three key areas: Bumba, Basoko, Kisangani. Mapping: RStudio. Source: authors.
(a) Bumba region: 2013. (b) Bumba region: 2022. (c) Basoko region: 2013. (d) Basoko region: 2022.
(e) Kisangani region: 2013. (f) Kisangani region: 2022.

4. Results and Discussion
4.1. Image Classification

Figure 9 shows changes in land cover types in the Bumba region for a 9-year time
period according to the k-means classification by R.

Pairwise examination of the classified images allows us to examine the changes in
forest structure that are caused by anthropogenic activities, including urban growth, and
environmental drivers initiated by climate change. To this end, we present the results of
the classification of the three target regions showing changes in the tropical moist forest
along the flow of Congo River, as shown in Figures 7–9 for Bumba, Basoko and Kisangani,
respectively.

Classes of the land cover types were defined as follows: swamp forest; humid
tropical forest; secondary forest; urban areas and impervious surfaces; inundated grassland;
deciduous forest; shrubland and grassland; cropland and mosaic forest; savannah with
sparse trees; and water bodies. The model was carried out by comparing the results of the
vegetation types classified based on the Landsat imagery in 2013 and 2022. An additional
image was selected for the Kisingani for 2015 due to the cloudiness of the image in 2013. As
demonstrated in the resulting plots, the pixel-based models use 10 land-cover categories.
The integration of the two Landsat OLI/TIRS images for land cover mapping by the R
language is a challenging and promising approach that can be recommended for future
similar studies on rainforest mapping. The final outputs as classified maps contained
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10 land cover classes recorded from the 30 m raster grids equivalent to the resolution of the
initial input Landsat OLI/TIRS data.

Land cover classification using the R approach to process remote sensing data by
RStoolbox is a promising and effective approach. However, the pixel-based data processing
of the satellite images results in the grid structure of the landscape with resolution
corresponding to the initial data. For more detailed data, Sentinel scenes can be considered
as well for a more fine-resolution classification. The continued increase in the volume
of spatial Earth observation data from the satellite images and novel directions in image
analysis techniques using programming tools encourage the development of object-based
approaches. Therefore, technical variations in the classification process can be omitted
by applying object-based image analysis to detect the landscape structure. This can be
considered a further development of the R programming methods.

4.2. NDVI

Three examples of the NDVI computed from the red/NIR bands of the Landsat
OLI-TIRS images have heterogeneous landscapes and vegetation coverage, as seen in
Figure 10.

In the NDVI maps, healthy vegetated areas are bright, water is light to dark brown,
and soils and bare ground areas are beige and bluish to slate grey, as seen in Figure 10.
Denoting those shades and hues can be understood from the inspection of the relevant land
cover types in previous maps. The NDVI is used for the assessment of various types of
vegetation along the Congo flow, where the environmental effects from the hydrology on
plant growth are more distinct. Moreover, the significance of the NDVI for environmental
monitoring is that it well corresponds to crop biomass accumulation, as well as to botanical
parameters, for example, leaf chlorophyll levels, LAI, and the active radiation absorbed by
a crop canopy through the photosynthesis process.

Figure 10 demonstrates the three examples of the NDVI maps derived from the three
dates of Landsat imagery in the Bumba, Basoko and Kisangani regions, respectively. Here,
values from −1.0 to 0.1 signify water areas (Congo river and tributaries); values from 0.1 to
0.2 represent river banks; values from 0.2 to 0.3 belong to the class of the non-vegetated
areas; pixels with values from 0.3 to 0.4 represent seasonally flooded and inundated areas,
wetlands and swamps; values from 0.4 to 0.5 are savannah with sparse trees; pixels of class
0.5 to 0.6 are primarily irrigated agricultural fields with diverse types of crops; bright pixels
of the class 0.6 to 0.7 are secondary forests; values from 0.7 to 0.8 are densely vegetated
lands and mosaic forests; finally, the areas with NDVI values greater than 0.8 are dense
humid tropical forests.

5. Conclusions

In this study, we demonstrated methods of geospatial information processing and
mapping by R that outperform existing traditional software due to the automation of
data computation and the functionality of the high-level language. The approaches of
map algebra utilise scripts to process remotely sensed data using interactive steps that are
completely different from the built-in functions of the traditional software since they use
the syntax of R rather than the GUI interface.

The scripting method of the satellite image processing is presented in this paper with
a case study of three cities of the D.R.C. located along the Congo River in central Africa.
We present a method based on the R programming language that offers an integration of
several libraries and applies algorithms for band arithmetics, classification, and computing
the NDVI indices by unsupervised clustering. A special focus is given to monitoring
vegetation in the tropical rainforests of Congo. Empirically, we showed that this R approach
can determine the complexity of landscapes through the classification of pixels, grouping
them into 10 land cover classes using selected functions of RSToolbox as operators for band
calculations. Moreover, we performed experiments on cartographic data processing with
R using a series of Landsat-8 OLI/TIRS images and compared landscape dynamics. We
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observed land cover changes from 2013 to 2022, which illustrate the deforestation in tropical
regions of Congo, as reflected in the NDVI for the three target locations: Bumba, Basoko
and Kisangani.

The proposed method of programming for satellite image classification is not a
replacement for the state-of-the-art methods of remote sensing data processing but an
extended methodological approach. The existing solutions based on GIS can be used as
quality and conceptually sound methods of image processing in remote sensing, given
proper care in supervised classification. A variety of efficient cases on image processing
exist, as reported in many studies. Importantly, the automation of image classification is
still a challenging problem due to the presence of complex background noise on the image
scene and the restricted functionality of the conventional tools in many GIS. In contrast
to the traditional software, R supports deep learning analysis through several packages
that enhance data processing and enable semantic segmentation. The examples include
the ‘deepnet’ toolkit and its dependent library ‘deepr’, which enhances the training or
predicting process or fine-tunes machine learning methods with ‘RcppDL’. As such, deep
learning with R can be used with the aim of simplifying the workflow of satellite image
pre- and post-processing, as well as optimising the operations and abstraction of objects
during classification, which is required by a variety of remote sensing applications.

A method of automatic image processing using R scripts is demonstrated for image
classification based on the k-means clustering algorithm in the RSToolbox library and band
algebra for NDVI computations by the terra package. We consider the algorithms of R by
computing the raster data and visualising changes in the current forest stage on the built
maps. The experimental results on the vegetation index for the three different datasets
taken in the years 2013 and 2022 use attributes of various land cover classes to visualise the
changes in the land cover types of the forest regions of central Congo. A scripting approach
to image clustering shows that programming by R is able to divide the image scene on the
defined number of classes using the unsupervised k-means algorithm of RSToolbox. We
demonstrate a set of images based on high-level classification of the Landsat-8 OLI-TIRS
raster imagery. Based on the analysis of these images, we confirm that the distribution of
the vegetation in rainforest regions of central Africa experience changes. The driving factors
are diverse and include both social and climatic processes, which affect tropical forests
and contribute to deforestation. The images are processed automatically and compared
for the target regions located along the middle part of Congo River Basin. The results of
R programming demonstrate the probabilistic model of vegetation distribution over the
study areas based on robust image processing.

The libraries of the R language offer improved performance in image processing
through a powerful framework for raster data processing. In particular, R presents
a practical application for modelling real-time Earth observation data from space borne
satellite missions. In particular, we explored the suitability of R programming for processing
Landsat-8 OLI-TIRS images that contain 11 bands, which correspond to various wavelengths
and 30-m resolution. Unlike the conventional GIS, limited to the default software parameters
of the embedded graphical user interface, R proposes flexible command-line solutions.
These include the extended operational support of bitmap image processing and the
diverse suitability of map algebra and computations of bands, as shown in this paper. The
limitations of the presented work include the restricted approach to the geometric and
spectral characteristics of bands. Future works can be extended towards the semantic
segmentation of the detected land cover classes using deep learning methods, as well as
the analysis of the topology of classes for object-based image analysis.
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CPT Colour Palette Table
DCW Digital Chart of the World
DEM Digital Elevation Model
DN Digital Number
GCP Ground Control Points
GEBCO General Bathymetric Chart of the Oceans
GDAL Geospatial Data Abstraction Library
GIS Geographic Information System
GLS Global Land Survey
GloVis Global Visualization Viewer
GMT Generic Mapping Tools
GRFM Global Rain Forest Mapping
Landsat 8-9 OLI/TIRS Landsat 8–9 Operational Land Imager and Thermal Infrared Sensor
LAI Leaf Area Index
LiDAR Light Detection and Ranging
L1TP Level 1 Terrain Precision (Corrected)
LULC Land Use / Land Cover
MODIS Moderate Resolution Imaging Spectroradiometer
NASA National Aeronautics and Space Administration
NDVI Normalized Difference Vegetation Index
NGA National Geospatial-Intelligence Agency
NIR Near Infrared
REDD Reducing Emissions from Deforestation and Forest Degradation
SAR Synthetic Aperture Radar
RMSE Root Mean Square Error
SAR Synthetic Aperture Radar
SRTM Shuttle Radar Topography Mission
SWIR Short Wave Infrared
UAV Unmanned Aerial Vehicle
USGS United States Geological Survey
UTM Universal Transverse Mercator
WRS Worldwide Reference System
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