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Minimizing Movements for Anisotropic and Inhomogeneous

Mean Curvature Flows

Antonin Chambolle, Daniele De Gennaro, Massimiliano Morini

Abstract

In this paper we address anisotropic and inhomogeneous mean curvature flows with forcing
and mobility, and show that the minimizing movements scheme converges to level set/viscosity
solutions and to distributional solutions à la Luckhaus-Sturzenhecker to such flows, the latter
result holding in low dimension and conditionally to the convergence of the energies. By doing
so we generalize recent works concerning the evolution by mean curvature by removing the
hypothesis of translation invariance, which in the classical theory allows one to simplify many
arguments.

1 Introduction

In this paper we deal with the anisotropic, inhomogeneous mean curvature flow with forcing and
mobility. By inhomogeneous we mean that the flow is driven by surface tensions depending on the
position in addition to the orientation of the surface. The evolution of sets t 7→ Et ⊆ RN considered
is (formally) governed by the law

V (x, t) = ψ(x, νEt(x))
(
−Hϕ

Et
(x) + f(x, t)

)
, x ∈ ∂Et, t ∈ (0, T ), (1.1) smooth law

where V (x, t) is the (outer) normal velocity of the boundary ∂Et at x, ϕ(x, p) is a given anisotropy
representing the surface tension, Hϕ is the anisotropic mean curvature of ∂Et associated to ϕ,
ψ(x, p) is an anisotropy evaluated at the outer unit normal νEt(x) to ∂Et which represents a
velocity modifier (also called the mobility term), and f is the forcing term. We will be mainly
concerned with smooth anisotropies (and the regularity assumptions will be made precise later on):
in this case, the curvature Hϕ is the first variation of the anisotropic and inhomogeneous perimeter
associated to the anisotropy ϕ (in short, ϕ−perimeter) defined as

Pϕ(E) :=

ˆ
∂∗E

ϕ(x, νE(x)) dHN−1(x) (1.2)

for any set E of finite perimeter (where ∂∗E denotes the reduced boundary of E) and, if E is
sufficiently smooth, it takes the form

Hϕ
E(x) = div(∇pϕ(x, νE(x))),

where with ∇p we denote the gradient made with respect to the second variable. Note that evo-
lution (1.1) can be red as the motion of sets in RN , when the latter is endowed with the Finsler
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metric induced by the anisotropy (see Remark 4.14). Equation (1.1) is relevant in Material Sciences,
Crystal Growth, Image Segmentation, Geometry Processing and other fields see e.g. [1, 20, 26, 37,
38].

The mathematical literature for inhomogeneous mean curvature flows is not as extensive as in
the homogeneous case, mainly due to the difficulties arising from the lack of translational invari-
ance. Indeed, assuming that the evolution is invariant under translations allows to simplify many
arguments used in the classical proofs of, for example, comparison results and estimates on the
speed of evolution. In the homogeneous case the well-posedness theory is nowadays well established
and quite satisfactory, both in the local and nonlocal case, and even in the much more challenging
crystalline case (that is, when the anisotropy ϕ is piecewise affine) see [2, 3, 9, 12, 13, 14, 17, 25, 32,
33, 35] to cite a few. Concerning the inhomogeneous mean curvature flow, we cite [27, 28] where
the short time existence of smooth solutions on manifolds is shown, and [24, 30], where the viscosity
level set approach (introduced for the homogeneous evolution in [17, 22]) is extended, respectively,
to the equation (1.1) and to the Riemannian setting.

In the present work we implement the minimising movement approach à la Almgren-Taylor-
Wang [3] to prove existence via approximation of a level set solution to the generalized anisotropic
and inhomogeneous motion (1.1). To carry on this scheme (which has only been sketched in [9], but
lacks a formal proof) we gain insights from [14]. We also show that, under the additional hypothesis
of convergence of the energies (1.6) and low dimension (2.6)(which are nowadays classical for this
approach), the same approximate solutions provide in the limit a suitable notion of “BV-solutions”,
also termed distributional solutions, see [33, 35].

The main limitations of this work are the following. To begin with, the new arguments which
are used to compensate the lack of translation invariance are based on the locality of the anisotropic
curvature Hϕ associated with a smooth anisotropy ϕ. This implies that the proofs are not straight-
forwardly adaptable to the so-called “variational curvatures” considered in [14], which are non-local
in nature. On the other hand, since the crystalline curvatures are highly nonlocal and degenerate
operators (see e.g. [12, 15]), they do not fall in the theory constructed in the present work. In
principle, it would be possible to follow the same perturbative study conducted in [12] in order
to prove at least existence for an inhomogeneous and cristalline mean curvature flow. However,
a satisfactory characterization of the limiting motion equation bearing a comparison principle is
lacking so far.

This work can be seen as a first step towards constructing a general theory of motions driven
by non translational invariant and possibly nonlocal curvatures, in the spirit of [14].

1.1 Main results

Now briefly recall the minimizing movements procedure in order to state the main results of the
paper. Given an initial bounded set E0 and a parameter h > 0, we define the discrete flow

E
(h)
t := Th,t−hE

(h)
t−h for any t ≥ h and E

(h)
t = E0 for t ∈ [0, h), where the functional Th,t is defined

for t ≥ 0 as follows: for any bounded set E we set Th,tE (or, sometimes, T−
h,tE) as the minimal

solution to the problem

min

{
Pϕ(F ) +

ˆ
F

(
sdψE(x)

h
+

 [ th ]h+h

[ th ]h

f(x, s) ds

)
dHN−1(x) : F is measurable

}
, (1.3)

where sdψE(x) is the signed geodesic distance between x and E induced by the anisotropy ψ (see
(2.2) for the precise definition) and [s] = max{n ≤ s, n ∈ N ∪ {0}} denotes the integer part of
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a non-negative real number s ∈ [0,+∞). We will then define T+
h,t as the maximal solution to the

problem above. Any L1−limit point as h→ 0 of the family {E(h)
t }t≥0 will be called a flat flow. In

the whole paper we will assume that it holds

ϕ ∈ E (see Definition 2.2) and ψ is an anisotropy as in Definition 2.1,

∀x ∈ RN , t ∈ [0,+∞) it holds f(·, t) ∈ C0(RN ), ∥f∥L∞(RN×[0,+∞)) <∞.
(H) standing hp

With more effort one could weaken the hypothesis and require
´ t
0
f(·, s) ds to be continuous (see

[16]). For the sake of simplicity we will require the global-in-time boundedness. We prove existence
and Holder regularity for flat flows.

theorem existence flat flow Theorem 1.1 (Existence of flat flows). Assume (H). Let E0 be a bounded set of finite perimeter

and ϕ, ψ, f satisfy the hypothesis above. For any h > 0, let {E(h)
t }t≥0 be a discrete flow with initial

datum E0. Then, there exists a family of sets of finite perimeter {Et}t≥0 and a subsequence hk ↘ 0
such that

E
(h)
t → Et in L1,

for a.e. t ∈ [0,+∞). Such flow satisfies the following regularity property: for any T > 0 and for
every 0 ≤ s ≤ t < T ,

|Es△Et| ≤ c|t− s|1/2,
Pϕ(Et) ≤ Pϕ(E0) + c,

where the constant c depends on T also.

Subsequently, we will show that the flat flow are distributional solutions, as defined in [33]. We
will require additional hypothesis: firstly, low dimension (2.6) (linked to the complete regularity of
the ϕ−perimeter minimizer, compare [33, 35]), moreover

∃ cψ > 0 s.t. |ψ(x, v) − ψ(y, v)| ≤ cψ|x− y|, ∀x, y ∈ RN , v ∈ SN , (1.4) hp lip psi 1

f ∈ C0(RN × [0,∞)]). (1.5) hp f 1

theorem existence distributional solutions Theorem 1.2 (Existence of distributional solutions). Assume (H), (1.4), (1.5) and (2.6). For any
T > 0, if

lim
k→∞

ˆ T

0

Pϕ(E
(hk)
t ) =

ˆ T

0

Pϕ(Et), (1.6) hp per

then {Et}t≥0 is a distributional solution (1.1) with initial datum E0 in the following sense:

(1) for a.e. t ∈ [0, T ) he set Et has weak ϕ−curvature Hϕ
Et

(see (2.11) for details) satisfying

ˆ T

0

ˆ
∂∗Et

|Hϕ
Et
|2 <∞;

(2) there exist v : RN × (0, T ) → R with
´ T
0

´
∂∗Et

v2 dHN−1 dt <∞ and v(·, t)
∣∣
∂Et

∈ L2(∂Et) for

a.e. t ∈ [0, T ), such that

−
ˆ T

0

ˆ
∂∗Et

vη dHN−1 dt =

ˆ T

0

ˆ
∂∗Et

(
Hϕ
Et

− f
)
η dHN−1 dt (1.7) legge curvatura
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ˆ T

0

ˆ
Et

∂tη dxdt+

ˆ
E0

η(·, 0) dx = −
ˆ T

0

ˆ
∂∗Et

ψ(νEt)vη dHN−1 dt. (1.8) legge velocita

for every η ∈ C1
c (RN × [0,+∞)).

The definitions 1), 2) extend to our case the the definition of BV -solutions of [33] and the
distributional solutions of [35]. We recall that hypotheses (1.6) ensures that the evolving sets avoid
the so-called “fattening” phenomenon. It is known that this hypothesis is satisfied in the case of
evolution of convex or mean-convex sets, see e.g. [15, 18], but in general is not known under which
general hypothesis it is valid. We also remark that the proof of the theorem above provides a
rigorous proof of [15, Theorem 3.2], which had only been sketched in that paper and was invoking
a Bernstein type argument which might not be known in that setting, and which we bypass using
regularity results and a double blow-up argument.

In the second part of the work we will focus on the level set approach. Briefly, given an initial
compact set E0, we set u0 such that {u0 ≥ 0} = E0 and we look for a solution u in the viscosity
sense (in a sense made precise in Definition 4.6) to{

∂tu+ ψ(x,−∇u) (div∇pϕ(x,∇u(x)) − f(x, t)) = 0

u(·, t) = u0.
(1.9) intro cauchy

Classical remarks ensure that any level set {u ≥ s} is evolving following the mean curvature flow
(1.1). To prove existence for (1.9) we use an approximating procedure. For h > 0 and t ∈ (0,+∞)
we set iteratively u±h (·, t) = u0 for t ∈ [0, h) and for t ≥ h

u+h (x, t) := sup
{
s ∈ R : x ∈ T+

h,t−h{u
+
h (·, t− h) ≥ s}

}
u−h (x, t) := sup

{
s ∈ R : x ∈ T−

h,t−h{u
−
h (·, t− h) > s}

}
,

where the operator T±
h,t has been previously introduced. We remark that these are maps piecewise

constant in time, since T±
h,t = T±

h,[t/h]h, which are only upper and lower semicontinuous in space

respectively. Then, we will pass to the limit h → 0 on the families {u±h }h to find functions u+, u−

which are viscosity sub and supersolution respectively of equation (1.9). Passing to the limit as
h→ 0 in our case is not straightforward. The main issue is that we do not have an uniform estimate
on the modulus of continuity of the functions uh (compare [14]) and thus we can not pass to the
(locally) uniform limit of the sequence. (More precisely, our best estimate contained in Lemma 4.9
decays too fast as h→ 0 to provide any useful information). Nonetheless, motivated by [6, 7, 8] we
can define the half-relaxed limits

u+(x, t) := sup
(xh,th)→(x,t)

lim sup
h→0

u+h (xh, th)

u−(x, t) := inf
(xh,th)→(x,t)

lim inf
h→0

uh(xh, th),
(1.10) def sottosoluzione

and prove that the functions defined above are sub and supersolutions, respectively, to (1.9). The
main difficulty in this regard is that we need to work with just semicontinuous functions in space,
as in the translationally invariant setting one can easily prove the uniform equicontinuity of the
approximating sequence. We prove the following.
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teo sol viscosa Theorem 1.3. Assume (H), (1.4) and f ∈ C0(Rn × [0,+∞)). The function u+ (respectively u−)
defined in (1.10) is a viscosity subsolution (respectively a viscosity supersolution) of (1.9).

Thanks to the results of [17] we then prove that, under the additional hypothesis

∇x∇pϕ(·, p) and ∇2
pϕ(·, p) are Lipschitz, uniformly for p ∈ SN

∇2
pϕ

2is uniformly elliptic (apart from the degenerate direction p)

ψ(·, p) Lipschitz continuous, uniformly in p

f(·, t) Lipschitz continuous, uniformly in t,

(1.11) hp 2

the following uniqueness result holds.

existence and regularity of viscosity solutions Theorem 1.4. Assume (H) and (1.11). If u0 is a continuous function which is spatially constant
outside a compact set, equation (1.9) with initial condition u0 admits a unique continuous viscosity
solution u given by (1.10). In particular, u+ = u− = u is the unique continuous viscosity solution
to (1.9) and u±h → u as h→ 0, locally uniformly.

The previous result yields a proof of consistency between the level set approach and the mini-
mizing movements one to study the evolution (1.1). We recall that it has been established for the
classical mean curvature flow in [11], in the anisotropic but homogeneous case in [21] and in a very
general nonlocal setting in [14].

2 Preliminaries

We start introducing some notations. We consider 0 ∈ N. We will use both Br(x) and B(x, r)
to denote the Euclidean ball in RN centered in x and of radius r; with BN−1

r (x) we denote the
Euclidean ball in RN−1 centered in x and of radius r; with SN we denote the sphere ∂B1(0) ⊆ RN .
In the following, we will always speak about measurable sets and refer to a set as the union of all
the points of density 1 of that set i.e. E = E(1). Moreover, if not otherwise stated, we implicitly
assume that the function spaces considered are defined on RN , e.g L∞ = L∞(RN ). Moreover, we
often drop the measure with respect to which we are integrating, if clear from the context.

def anisotropy Definition 2.1. We define anisotropy (sometimes defined as an elliptic integrand) a function ψ
with the following properties: ψ(x, p) : RN × RN → [0,+∞) is a continuous function, which is
convex and positively 1-homogeneous in the second variable, such that

1

cψ
|p| ≤ ψ(x, p) ≤ cψ|p|

for any point x ∈ RN and vector p ∈ RN .

We remark that, as standard, we define a real function f positively 1-homogeneous if for any
λ ≥ 0, it holds f(λx) = λf(x). In particular, the anisotropies that we will consider are not
symmetric. In the following, we will always denote the gradient of an anisotropy with respect to
the first (respectively second) variable as ∇xψ (respectively ∇pψ). We then recall the definition of
some well-known quantities (see [9]). Define the polar function of an anisotropy ψ, denoted with
ψ◦, as

ψ◦(·, ξ) := sup
p∈RN

{ξ · p : ψ(·, p) ≤ 1} . (2.1) CS type ineq
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Using the definition it is easy to see that for all p, ξ ∈ RN it holds

ψ(·, p)ψ◦(·, ξ) ≥ p · ξ, −ψ(·,−p)ψ◦(·, ξ) ≤ p · ξ.

Furthermore, one can prove that (see [9])

ψ◦(∇pψ) = 1, ψ(∇pψ
◦) = 1, (ψ◦)◦ = ψ.

We define for any x, y ∈ RN the geodesic distance induced by ψ, or ψ−distance in short, as

distψ(x, y) := inf

{ˆ 1

0

ψ◦(γ(t), γ̇(t)) dt : γ ∈W 1,1([0, 1];RN ), γ(0) = x, γ(1) = y

}
.

We remark that this function is not symmetric in general. We define the signed distance function
from a closed set E ⊆ RN as

sdψE(x) := inf
y∈E

distψ(y, x) − inf
y/∈E

distψ(x, y), (2.2) def sd

so that sdψE ≥ 0 on Ec and sdψE ≤ 0 in E. We remark that the bounds stated in Definition 2.1 impy

1

cψ
dist ≤ distψ ≤ cψdist, (2.3) inclusione psi palle

where here and in the following we will denote with dist, sd the Euclidean distance and signed
distance function respectively. We define the ψ−balls as the balls associated to the ψ−distance,
that is

Bψρ (x) := {y ∈ RN : distψ(y, x) < ρ},
which in general are not convex nor symmetric.

def reg ell integr Definition 2.2. Given λ ≥ 1, l ≥ 0 we say that an anisotropy ϕ is a regular elliptic integrand if
ϕ(x, ·)

∣∣
SN

∈ C2,1(SN ) and for every x, y, e ∈ RN , ν, ν′ ∈ SN one has:

1

λ
≤ ϕ(x, ν) ≤ λ,

|ϕ(x, ν) − ϕ(y, ν)| + |∇pϕ(x, ν) −∇pϕ(y, ν)| ≤ l|x− y|

|∇pϕ(x, ν)| + ∥∇2
pϕ(x, ν)∥+

∥∇2
pϕ(x, ν) −∇2

pϕ(x, ν′)∥
|ν − ν′|

≤ λ

e · ∇2
pϕ(x, ν)[e] ≥ |e− (e · ν)ν|2

λ
.

We will denote a regular parametric elliptic integrand as ϕ ∈ E . Given any set of finite perimeter
E, one can define the ϕ−perimeter Pϕ as follows

Pϕ(E) :=

ˆ
∂∗E

ϕ(x, νE(x)) dHN−1(x),

where ∂∗E is the reduced boundary of E and νE is the measure-theoretic outer normal, see [34]
for further references on sets of finite perimeter. The perimeter of a set of finite perimeter E in an
open set A is defined as

Pϕ(E;A) :=

ˆ
∂∗E∩A

ϕ(x, νE(x)) dHN−1(x).
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We remark that, by definition of regular elliptic integrand, for any C2 set E it holds

1

λ
P (E) ≤ Pϕ(E) ≤ λP (E).

Some additional remarks on this definition can be found in [19]. We just recall the submodularity
property of the ϕ−perimeter, whose proof can be found in [19, Remark 2.4].

Proposition 2.3 (Submodularity property). For any two sets E,F ⊆ RN of finite perimeter in
an open set A ⊆ RN , one has

Pϕ(E ∪ F ) + Pϕ(E ∩ F ) ≤ Pϕ(E) + Pϕ(F ). (2.4) submod

Moreover, by homogeneity, (2.1) and recalling that for any set E of finite perimeter it holds
DχE = −νE dHN−1

∣∣
∂∗E

we have the following equivalent definitions

Pϕ(E) = sup

{ˆ
RN

−DχE · ξ : ξ ∈ C1
c (RN ;RN ), ϕ◦(·, ξ) ≤ 1

}
(2.5) P via calibration

= sup

{ˆ
E

div ξ dHN−1 : ξ ∈ C1
c (RN ;RN ), ϕ◦(·, ξ) ≤ 1

}
.

Concerning the regularity property of the ϕ−perimeter minimizers, we refer to [36]. We just recall
the following results. Given two anisotropies ϕ, ψ ∈ E , we define the “distance” between them as

distE (ϕ, ψ) := sup{|ϕ(x, p) − ψ(x, p)|
+ |∇pϕ(x, p) − ψ(x, p)| + |∇2

pϕ(x, p) −∇2
pψ(x, p)| : x ∈ RN , p ∈ SN},

where |·| denotes the Euclidian norm. Then, some regularity properties of minimizers of ϕ−perimeter
can be found in the corollary in part II 6 and the theorem in part II 7 in [36], which are recalled
below.

Theorem 2.4. Assume ϕ ∈ E. Then, for any Λ−minimizer E of the ϕ−perimeter, the reduced
boundary ∂∗E of the set E is of class C1,1/2 and the singular set Σ := ∂E \ ∂∗E satisfies

HN−3(Σ) = 0.

Moreover, if distE(ϕ, | · |) is small enough, then

HN−7(Σ) = 0.

We sum up these hypotheses that yield the complete regularity of Λ−minimizers of parametric
elliptic integrands:

either ϕ ∈ E and N ≤ 3,

or distE (ϕ, | · |) is small enough and N ≤ 7.
(2.6) hp dim
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2.1 The first variation of the ϕ−perimeter

In this section we compute the first variation of the ϕ-perimeter and define some additional operators
associated to it.

Assume E is of class C2. Let X be a vector field and assume Ψ(x, t) =: Ψt(x) is the associated
flow. To simplify the notation, we write

ν(x, t) = ∇xsdΨ(E,t)(x).

By classical formulae (see e.g. [10]) we can compute the following. For the sake of brevity, we avoid
writing the evaluation ϕ = ϕ(x, νE(x)), if not otherwise specified, and assume that all the integrals
are made with respect to the Hausdorff (N − 1)-dimensional measure HN−1.

d

dt

∣∣∣
t=0

Pϕ(Et) =
d

dt

∣∣∣
t=0

ˆ
∂E

ϕ(Ψt(x), ν(Ψt(x), t))JΨt dHN−1(x)

=

ˆ
∂E

∇xϕ ·X + ∇pϕ · (−∇τ (X · ν) +Dν[X]) + ϕdivτX (2.7) eq align

=

ˆ
∂E

∇xϕ ·X + ∇pϕ · (−∇τ (X · ν) +Dν[X]) + divτ (ϕX) −∇ϕ ·X + (∇ϕ · ν)(X · ν)

=

ˆ
∂E

∇xϕ ·X + ∇pϕ · (−∇τ (X · ν) +Dν[X]) −∇xϕ ·X −Dν[∇pϕ] ·X

+ divτ (ϕX) + (∇ϕ · ν)(X · ν)

=

ˆ
∂E

−∇pϕ · ∇τ (X · ν) + (∇xϕ · ν)(X · ν) + (Dν[∇pϕ] · ν) (X · ν) + divτ (ϕX)

=

ˆ
∂E

divτ (∇pϕ(X · ν)) −∇pϕ · ∇τ (X · ν) + (X · ν)(∇xϕ · ν)

=

ˆ
∂E

(divτ∇pϕ)(X · ν) + ∇pϕ · ∇τ (X · ν) −∇pϕ · ∇τ (X · ν) + (∇xϕ · ν)(X · ν)

=

ˆ
∂E

(X · ν) (divτ∇pϕ+ ∇xϕ · ν) =

ˆ
∂E

(X · ν) div∇pϕ

where the last equality follows from the definition of divτ and the fact that ϕ is 1−homogeneous
with respect to the p variable, since

div∇pϕ = divτ∇pϕ+
∑
i

νi

(
d

dxi
∇pϕ

)
[ν]

= divτ∇pϕ+
∑
i

νi∇p(∂xiϕ) · ν + ν ·
(
∇2
pϕDν

)
[ν]

= divτ∇pϕ+ ∇xϕ · ν.

Therefore, we define the first variation of a C2−regular set E, induced by the vector field X, as

δPϕ(E)[X · ν] :=

ˆ
∂E

(X(x) · ν(x)) div∇pϕ(x, ν(x)) dHN−1(x) (2.8) first variation perimeter

and the ϕ−curvature of the set E as

Hϕ
E(x) := div∇pϕ(x, ν(x)). (2.9) def curvature
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If we now consider equation (2.7), we develop the tangential gradient to find

∇pϕ · (−∇τ (X · ν) +Dν[X]) = ∇pϕ · (−∇τX[ν] −Dν[X] +Dν[X]) = 0.

This shows that for any set E of class C2 it holds

δPϕ(E)[X · ν] :=

ˆ
∂E

(∇xϕ ·X + ϕdivτX) dHN−1,

where we dropped the evaluation of ϕ at (x, νE(x)). We remark that the expression on the right
hand side makes sense even if the set E is just of finite perimeter. Defining the ϕ−divergence
operator divϕ as

divϕX := ∇xϕ ·X + ϕdivτX, (2.10)

we are led to define the distributional ϕ−curvature of a set E of finite perimeter as an operator
Hϕ
E ∈ L1(∂E) (if it exists) such that the following representation formula holds

ˆ
∂E

divϕX dHN−1 =

ˆ
∂E

Hϕ
E νE ·X dHN−1, ∀X ∈ C∞

c (RN ;RN ). (2.11) def curvature variational

The previous computations allow to say that the distributional ϕ−curvature can be expressed as
(2.9) if the set is of class C2. Finally, since ϕ is a regular elliptic integrand, one can prove the
following monotonicity result.

Lemma 2.5. Let E,F be two C2 sets of finite ϕ−perimeter with E ⊆ F , and assume that x ∈
∂F ∩ ∂E: then Hϕ

F (x) ≤ Hϕ
E(x).

Proof. Since the anisotropy is smooth, we can expand the curvature formula (2.9) as

Hϕ = tr
(
∇x∇pϕ(x, ν) + ∇2

pϕ(x, ν)Dν
)

(2.12) curvature expanded

and compare Hϕ
E with Hϕ

F . We consider separately the two terms appearing in (2.12). The first
one depends on ν just by the value it has at the point x. Therefore, since νE(x) = νF (x) we have
the equality. The second one falls in the classical framework of smooth anisotropies that do not
depend on the space variable. Indeed, the second term in (2.12) is the same as the curvature in x
associated to the anisotropy ϕ with the first variable freezed at x. Then, the result follows from
classical results on curvatures invariant under translations (see e.g. [14, Lemma 4.3]).

3 The minimizing movements approach

In this section we follow the work of [35] (see also [3, 33]) to prove the existence for the mean
curvature flow via the minimizing movements approach. We recall that in the whole paper we will
assume the hypothesis (H).

3.1 The discrete scheme

In this subsection we will define the discrete scheme approximating the weak solution of the mean
curvature flow, and we shall study some of its properties.

9



We define the following iterative scheme. Given h > 0, f ∈ L∞(RN × [0,∞)) and t ≥ h, and
given a bounded set of finite perimeter F , we minimize the energy functional

FF
h,t(E) = Pϕ(E) +

1

h

ˆ
E

sdψF (x) dx−
ˆ
E

Fh(x, t) dx (3.1) problema discreto

in the class of all measurable sets E ⊆ RN , and where we have set

Fh(x, t) :=

 t+h

t

f(x, s) ds.

Equivalently, we could define the energy functional as

FF
h,t(E) = Pϕ(E) +

1

h

ˆ
E△F

|sdψF | −
ˆ
E

Fh(x, t) dx,

which agrees with (3.1) up to a constant. We will call the incremental problem this minimizing
procedure. Then, we denote

Th,tF = E ∈ argmin FF
h,t.

It is well-known (compare (2.8) and [34, Proposition 17.8]) that a minimimum of (3.1) of class C2

satisfies the Euler-Lagrange equation

ˆ
∂Et

Hϕ
Et
X · νEt dHN−1 = −

ˆ
∂E

(
1

h
sdψEt−h(x) − Fh(x, t)

)
X(x) · νEt(x) dHN−1(x) = 0 (3.2) EL equation

for all X ∈ C∞
c (RN ;RN ). We can then define the discrete flow, which can be seen as a discrete-in-

time approximation of the mean curvature flow starting from the initial set E0. We first iteratively

define the sequence (E
(h)
n )n∈N by setting E

(h)
0 = E0,

E(h)
n = Th,(n−1)hE

(h)
n−1 ∀n ≥ 1.

Then, we define the discrete flow simply as

E
(h)
t = E

(h)
[t/h], t ∈ [0,+∞). (3.3) def discrete flow

This section is devoted to recall and prove some estimates on the discrete flow. The first one is a
well-known existence result.

Lemma. For any measurable function g : RN → R such that min{g, 0} ∈ L1
loc, the problem

min

{
P (E) +

ˆ
E

g : E is of finite perimeter

}
admits a solution.

Consider now F as a bounded set of finite perimeter. Then, the function g = sdψF /h − Fh is
coercive, thus min{g, 0} ∈ L1. Therefore, by the previous result and by classical arguments, one
can prove the following result.
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existence discrete pb Lemma 3.1. For any given set F of finite perimeter, the problem (3.1) admits a solution E, which
satisfies the discrete dissipation inequality

Pϕ(E) +
1

h

ˆ
E△F

|sdψF | ≤ Pϕ(F ) +

ˆ
E\F

Fh(x, t) dx−
ˆ
F\E

Fh(x, t) dx.

Moreover, the problem (3.1) admits a minimal and a maximal solution.

We define T+
h,tF (respectively T−

h,tF ) as the maximal (respectively minimal) solution to (3.1)
having as initial datum F . In the following, whenever no confusion is possible, we shall write Th,t
instead of T−

h,t.
A comparison result holds. We will consider just bounded sets as datum for the problem

(3.1), but the same result holds in general for unbounded sets (see also Section 4.1 for the case of
unbounded sets with bounded boundary). The proof of this result is classical (see e.g. [14]) and it
is based on the submodularity of the perimeter (2.4). We will omit it.

comparison principle Lemma 3.2 (Weak comparison principle). Assume that F1, F2 are bounded sets with F1 ⊆⊆ F2

and consider g1, g2 ∈ L∞ with g1 ≥ g2. Then, for any two solutions Ei, i = 1, 2 of the problems

min

{
Pϕ(E) +

ˆ
E

sdψFi
h

+ gi : E is of finite perimeter

}
,

we have E1 ⊆ E2. If, instead, F1 ⊆ F2, then we have that the minimal (respectively maximal)
solution to (3.1) for i = 1 is contained in the minimal (respectively maximal) solution to (3.1) for
i = 2.

We now prove the volume-density estimates for minimizers of problem (3.1). This result is
based on the minimality properties of almost-minimizers for perimeters induced by regular elliptic
integrands (see [19, Remark 1.9] for further results). These estimates have the disadvantage that
the smallness condition on the radius depends on the parameter h. Subsequently, we will recall a
finer result in the spirit of [33], where we can drop this dependence by making some restrictions on
the balls considered.

lemma density estimate Lemma 3.3. Let g ∈ L∞ and assume E minimizes the functional

F (F ) = Pϕ(F ) +

ˆ
F

g

among all measurable subsets of RN . Then the density estimate

σρN ≤ |Bρ(x) ∩ E| ≤ (1 − σ)ρN

σρN−1 ≤ Pϕ(E;Bρ(x)) ≤ (1 − σ)ρN−1 (3.4) perimeter density estimates, h dip

holds for all x ∈ ∂∗E, 0 < ρ < (2λ∥g∥∞)−1 := ρ0, for a suitable σ = σ(N, cψ, λ).

Proof. By minimality,

Pϕ(E) ≤ Pϕ(F ) + ∥g∥∞|E△F | ∀F ⊆ RN ,

thus [19, Lemma 2.8] implies the thesis.
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open close min max sols Remark 3.4. We remark that the previous result allows us to choose the minimal solution to (3.1)
to be an open set, and the maximal one to be a closed set. This follows from the fact that the
density estimates imply that the boundary of any minimizer has zero measure.

We now recall [12, Lemma 3.7], which is an anisotropic version of [33, Remark 1.4]. It provides
volume-density estimates for minimizers of (3.1) starting from E, uniform in ψ and h, holding in
the exterior of E. We remark that, even if in the reference the anisotropy ϕ considered did not
depend on x, all the arguments hold with minor modifications also in our case. We recall the proof
of this result, as similar techniques will be used later on.

lemma 3.7 in ChaMorNovPon Lemma 3.5. Let E be a bounded, closed set, h > 0 , and g ∈ L∞(RN ). Let E′ be a minimizer of

Pϕ(F ) +

ˆ
F

sdψE
h

+ g.

Then, there exists σ > 0, depending on λ, and r0 ∈ (0, 1), depending only on N,λ,G := ∥g∥L∞(F ),
with the following property: if x̄ is such that |E′ ∩Bs(x̄)| > 0 for all s > 0 and Br(x̄) ∩E = ∅ with
r ≤ r0, then

|E′ ∩Br(x̄)| ≥ σrN . (3.5) density estimates lemma 3.7 ChaMorNovPon

Analogously, if x̄ is such that |Bs(x̄) \ E′| > 0 for all s > 0 and Br(x̄) ⊆ E with r ≤ r0, then

|Br(x̄) \ E′| ≥ σrN .

Proof. For all s ∈ (0, r), set E′(s) := E′ \Bs(x̄). Note that, for a.e. s we have

Pϕ(E′(s)) = Pϕ(E′) − Pϕ(E′ ∩Bs(x̄)) +

ˆ
E′∩∂Bs(x̄)

(ϕ(x, ν(x)) + ϕ(x,−ν(x))) dHN−1(x),

where ν denotes the outer normal vector of the set E′ ∩ ∂Bs(x̄). Since sdψE ≥ 0 in Ec, one has´
E′(s)

sdψE ≤
´
E′ sdψE , and the minimality of E′ implies

Pϕ(E′ ∩Bs(x̄)) +

ˆ
E′∩Bs(x̄)

g ≤
ˆ
E′∩∂Bs(x̄)

(ϕ(x, ν(x)) + ϕ(x,−ν(x))) dHN−1(x).

By the bound on the ϕ−perimeter and using the classical isoperimetric inequality (whose constant
is denoted CN ) we obtain

2λHN−1(E′ ∩ ∂Bs(x̄)) ≥ 1

λ
P (E′ ∩Bs(x̄)) +

ˆ
E′∩Bs(x̄)

g

≥ 1

λ
CN |E′ ∩Bs(x̄)|

N−1
N − ∥g∥∞|E′ ∩Bs(x̄)| ≥ CN

2λ
|E′ ∩Bs(x̄)|

N−1
N ,

provided |E′ ∩ Bs(x̄)|1/N ≤ CN/(2λ∥g∥∞), which is true if r0 is small enough. Since the rhs is
positive for every s, we conclude

d

ds
|E′ ∩Bs(x̄)| 1

N ≥ CN
4λ2N

for a.e. s ∈ (0, r). (3.6) eq 3.19 ChaMorNovPon

The thesis follows by integrating the above differential inequality. The other case is analogous.
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Remark 3.6. Requiring that the anisotropy ψ is bounded uniformly from above and below ensures
that the results of the previous Lemmas 3.3 and 3.5 can be read in terms of the ψ−balls. For
example, for any r ≥ 0 and x ∈ RN , equation (3.5) could be read as |E′ ∩ Bψr (x̄)| ≥ σc−Nψ rN ,

provided x̄ is such that |E′ ∩ Bψs (x̄)| > 0 for all s > 0 and Bψr (x̄) ∩ E = ∅, and holds for all
r ≤ r0/cψ. Here, σ is as in Lemma 3.5 and depends only on λ. Analogous statements holds for
Lemma 3.9.

We now provide some estimates on the evolution of balls under the discrete flow. We start by
a simple remark concerning the boundedness of the evolving sets.

evolution bounded sets Remark 3.7. A simple estimate on the energies implies that the minimizers of (3.1) are bounded
whenever F is bounded. Indeed, assume F ⊆ BR and consider Bρ(x) ∩ (E \ BR) ̸= ∅: testing the
minimality of E against F we easily deduce

R

2h
|Bρ(x) ∩ E| ≤

ˆ
E∩Bρ(x)

sdψF
h

≤ Pϕ(F ) + ∥Fh(·, t)∥∞|E△F | ≤ Pϕ(F ) + ∥f∥∞(|F | + |E|).

Employing the density estimates of Proposition 3.5 and sending R → ∞, we get a contradiction,
as the isoperimetric inequality implies that |E| is bounded since FF

h,t(F ) <∞.

We now want to prove finer estimates on the speed of evolution of balls. These estimates are
classically a crucial step in order to prove existence of the flow. In the case under study, the main
difficulties come from the inhomogeneity of the functionals considered, as in the homogeneous case
convexity arguments easily yield the boundedness result, for example. We will use a “variational”
approach in the spirit of [14] (but see also [35, Lemma 3.8] for a different proof relying more on the
smoothness of the evolving set).

lemma estimates on balls Lemma 3.8. For every R0 > 0 there exist h0(R0) > 0 and C(R0, ϕ, ψ, f) > 0 with the following
property: For all R ≥ R0, h ∈ (0, h0), t > 0 and x ∈ RN one has

Th,t(BR(x)) ⊃ BR−Ch(x). (3.7) evolution law ball

Proof. We divide the proof into three steps. In the following, the constants σ, r0 are those of
Lemma 3.5. We will assume x = 0 for simplicity. We fix R ≥ R0 and denote E := Th,tBR.
Step 1. We prove that, given a ∈ (0, σ), ε ∈ (0, 1), we can ensure |BR(1−ε) \ E| < aRN (1 − ε)N

for h small enough. Indeed, assume by contradiction |BR(1−ε) \ E| ≥ aRN (1 − ε)N . Testing the
minimality of E against BR, we obtain

ˆ
(BR(1−ε)\E)∪(E\BR)

|sdψBR |
h

≤ 1

h

ˆ
BR△E

|sdψBR | ≤ Pϕ(BR) +

ˆ
BR\E

−
ˆ
E\BR

Fh(x, t) dx,

and estimating |sdψBR | ≥ ε/cψ on BR(1−ε) \ E, we get

ε

hcψ
|BR(1−ε) \ E| ≤ Pϕ(BR) + ∥f∥∞

(
ωNR

N + |BR(1+ε) \BR|
)

+

ˆ
E\BR(1+ε)

(
Fh −

|sdψBR |
h

)
dx.

Taking h ≤ ε/(cψ∥f∥∞), the last term on the rhs is negative, thus we obtain for ε small

ε

hcψ
|BR(1−ε) \ E| ≤ Pϕ(BR) + ∥f∥∞RN (ωN + 2N+1ε).
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We employ the hypothesis to obtain

a

hcψ
ε(1 − ε)NRN ≤ cψNωNR

N−1 + cRN ,

a contradiction for h ≤ ca ε (1 − ε)N min{1, R}, where c is a constant depending on N,ϕ, ψ, ∥f∥∞.
Step 2. We now prove that, for h small enough, if |B3R/4 \E| < σ(3R/4)N , then BR/2⊆⊆ E. We
first assume that R ≤ r0. In this case, if |Bs \ E| > 0 for all s ≤ R ≤ r0, we can follow the second
part of the proof of Lemma 3.5 (since obviously Bs ⊆ RR) to obtain equation (3.6), which reads

d

ds
|Bs \ E|1/N ≥ CN

4λ2N
= σ1/N for a.e s ∈ (0, R).

Using the condition
|B3R/4 \ E|1/N < σ1/N (3R/4),

we deduce the existence of a positive extinction radius

R∗ =
3R

4
−

|B3R/4 \ E|1/N

σ1/N
(3.8) extinction radius

such that |BR∗ \ E| = 0. Applying Step 1 with the values a = σ/3N , ε = 1/4, we get

|B3R/4 \ E| ≤ σ

4N
RN ,

holding for h ≤ c(N,ϕ, ψ, f)R, which combined with (3.8) gives R∗ > R/2. Clearly, taking h ≤ cR0

the smallness assumption on h is uniform for R ≥ R0.
If R ≥ r0 one simply uses a covering argument. For any x ∈ BR−r0 , applying the previous result

to the ball Br0(x) and using the comparison principle of Lemma 3.2, we conclude that ∀h ≤ c r0 it
holds ⋃

x∈BR−r0

Br0/2(x)⊆⊆ E.

Step 3. We conclude the proof. By the previous two steps, taking h small enough we see that

ρ = sup{r > 0 : |Br \ E| = 0} ∈ (R/2, R̃],

where R̃ is the constant of Remark 3.7. We can assume ρ ≤ R, otherwise the result of the lemma

is trivial. Consider the vector field ∇pϕ
(
x, x|x|

)
∈ C1(RN ,RN ). Then, recalling (2.5), we get

Pϕ(F ) ≥ −
´
RN DχG · ∇pϕ(x, x/|x|) for all G set of finite perimeter and

Pϕ((1 + ε)Bρ) =

ˆ
RN

Dχ(1+ε)Bρ ·
(
−∇pϕ

(
x,

x

|x|

))
.

Setting Wε = (1 + ε)Bρ \E, by submodularity on (1 + ε)Bρ, E and exploiting the minimality of E,
we obtain

ˆ
RN

∇pϕ

(
x,

x

|x|

)
·DχWε

=

ˆ
RN

∇pϕ

(
x,

x

|x|

)
·
(
Dχ(1+ε)Bρ −Dχ(1+ε)Bρ∩E

)
≤ Pϕ((1 + ε)Bρ ∩ E) − Pϕ((1 + ε)Bρ)
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≤ Pϕ(E) − Pϕ((1 + ε)Bρ ∪ E)

≤ 1

h

ˆ
W ε

sdψBR +

ˆ
Wε

Fh(x, t) dx.

We conclude, using the divergence theorem ,

ˆ
W ε

−div∇pϕ

(
x,

x

|x|

)
≤ 1

h

ˆ
W ε

sdψBR + ∥f∥∞|Wε|.

Dividing by |W ε| and sending ε→ 0 we obtain

 
∂Bρ∩∂E

−div∇pϕ

(
x,

x

|x|

)
≤ 1

cψ

ρ−R

h
+ ∥f∥∞.

Exploiting the regularity assumptions on ϕ, we remark that

|div∇pϕ| = |tr
(
∇x∇pϕ+ ∇2

pϕ∇(x/|x|)
)
| ≤ C

(
1 +

1

|x|

)
.

Thus, we obtain

−C
(

1 +
1

ρ

)
≤ ρ−R

h
,

which implies that ρ ∈ (0, ρ1) ∪ (ρ2, R) for ρ1,2 =
(
R− Ch∓

√
(R− Ch)2 − 4Ch

)
/2, as long as

h ≤ R2
0/(4C). Since the choice ρ ≤ ρ1 < R/2 is not admissible, we conclude the proof by estimating

ρ2 = R− Ch+
R− Ch

2

(√
1 − 4Ch

(R− Ch)2
− 1

)
≥ R− Ch− Ch

R− Ch
,

from which the thesis follows.

The proof of the previous result can be employed to prove an estimate from above of the evolution
speed of the flow, as the following result shows. Since the proof follows the same lines and is easier
in this case, we only sketch it.

lemma a priori estimate Lemma 3.9. Fix T > 0 and R0 > 0. Then, there exists positive constants C = C(ϕ, ψ, f,R0) and

h0 = h0(R0) such that, for every R ≥ R0 and h ≤ h0, if E0 ⊆ BR, then E
(h)
t ⊆ BR+CT for all

t ∈ (0, T ).

Proof. Choose h small as in the previous result and set

ρ = inf{r > 0 : |E \Br| = 0} ∈ (R/2, R̃],

for h small enough, where R̃ is the constant of Remark 3.7. We can assume ρ ≥ R, otherwise the
result is trivial. Defining Wε = E \ (1 − ε)Bρ and reasoning as before we obtain

ˆ
RN

∇pϕ

(
x,

x

|x|

)
·DχW ε =

ˆ
RN

∇pϕ

(
x,

x

|x|

)
·
(
Dχ(1−ε)Bρ∪E −Dχ(1−ε)Bρ

)
≥ −Pϕ((1 − ε)Bρ ∪ E) + Pϕ((1 − ε)Bρ)
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≥ −Pϕ(E) + Pϕ((1 − ε)Bρ ∩ E)

≥ 1

h

ˆ
W ε

sdψBR +

ˆ
Wε

Fh(x, t) dx.

As in the previous proof, we arrive at

ρ−R

h
≤ C

(
1 +

1

ρ

)
,

which implies that ρ ≤ ρ2 =
(
R+ Ch+

√
(R+ Ch)2 + 4Ch

)
/2 ≤ R+Ch, up to changing C.

3.2 Existence of flat flows

In the following, we will prove that the discrete flow (defined in (3.3)) defines a discrete-in-time
approximation of a weak solution to the mean curvature flow, which is usually known as a “flat”

flows (because the approximating surfaces ∂∗E
(h)
t converge in the “flat” distance of Whitney to the

limit ∂∗Et, see [3]).
We start by proving uniform bounds on the distance between two consecutive sets of the discrete

flow and on the symmetric difference between them. We introduce the time-discrete normal velocity:
for all t ≥ 0 and x ∈ RN , we set

vh(x, t) :=

{
1
h sdψ

E
(h)
t−h

(x) for t ∈ [h,+∞)

0 for t ∈ [0, h).

The following result provides a bound on the L∞−norm of the discrete velocity. Since the proof
is essentially the same of [33, Lemma 2.1], we will omit it. The only difference is that we use the
upper and lower bounds of (2.3) to work with Euclidean balls.

L infty estimate Lemma 3.10. There exists a dimensional constant c with the following property. Let E0 be a

bounded set of finite perimeter and let {E(h)
t }t∈(0,T ) be a discrete flow starting from E0. Then,

sup
E

(h)
t △E(h)

t−h

|vh(·, t)| ≤ c∞h
−1/2,

where c∞ is a constant depending on N,ψ only.

The following result can be found in [35, Proposition 3.4] (see also [23, Lemma 2.2]): it provides
an estimate on the volume of the symmetric difference of two consecutive sets of the discrete flow.
The proof is analogous to the one in the reference.

Lemma. Let F be a bounded set of finite perimeter and let E be a minimizer of (3.1). Then, there
exists a constant C depending on ϕ, ψ such that

|E△F | ≤ C

(
lPϕ(E) +

1

l

ˆ
E△F

|sdψF |
)

∀l ≤ c∞cψ
√
h. (3.9) stima L1

We are now able to prove an uniform bound on the perimeter of the evolving sets. The proof
follows [23, Proposition 2.3].
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lemma 1.1 LucStu Lemma 3.11. For any initial bounded set E0 of finite ϕ−perimeter and h small enough, the dis-

crete flow {E(h)
t } satisfies

Pϕ(E
(h)
t ) ≤ CT ∀t ∈ (0, T ),

for a suitable constant CT = CT (T,E0, f, ϕ, ψ).

Proof. Set k = [T/h]. By testing the minimality of E
(h)
t against E

(h)
t−h we obtain ∀t ∈ [h, T )

Pϕ(E
(h)
t ) +

ˆ
E

(h)
t △E(h)

t−h

|sdψ
E

(h)
t−h

| ≤ Pϕ(E
(h)
t−h) + ∥f∥∞|E(h)

t △E(h)
t−h|. (3.10) eq 2.4 FJM

Combining this estimate with (3.9) for l = 2ch∥f∥∞ ≪ c∞cψ
√
h, with c being a suitably large

constant, we obtain

Pϕ(E
(h)
t ) +

1

2h

ˆ
E

(h)
t △E(h)

t−h

|sdψ
E

(h)
t−h

| ≤
(
1 + 2ch∥f∥2∞

)
Pϕ(E

(h)
t−h) (3.11) eq iterativa

Iterating the previous estimate, we find

Pϕ(E
(h)
t ) ≤ (1 + ch)[

t
h ]−1Pϕ(E

(h)
h ) ≤ ch[

t
h ]−hPϕ(E

(h)
h )

For the first iterate, we start by observing that by Remark 3.7, for h = h(E0) small enough, we

have E
(h)
h ⊆ B2r, where E0 ⊆ Br. Therefore, by (3.10) for t = h we obtain Pϕ(E

(h)
h ) ≤ Pϕ(E0) + c

and we conclude Pϕ(E
(h)
t ) ≤ CT (Pϕ(E0) + 1).

Following the previous proof, employing again (3.11) we find

Pϕ(E2h) +

ˆ
E

(h)
2 △E(h)

1

|vh| +

ˆ
E

(h)
1 △E(h)

0

|vh| ≤ (1 + ch)Pϕ(E
(h)
1 ) +

ˆ
E

(h)
1 △E(h)

0

|vh|

≤ (1 + ch)

(
Pϕ(E

(h)
1 ) +

ˆ
E

(h)
1 △E(h)

0

|vh|

)
≤ (1 + ch)2Pϕ(E0).

Iterating, we conclude as before

[T/h]∑
k=1

ˆ
E

(h)
kh △E(h)

(k−1)h

|vh| ≤ CT (Pϕ(E0) + 1). (3.12) eq 3.18 MugSeiSpa

Therefore, combining the previous results and applying (3.9) with l = h≪
√
h, we obtain

ˆ T

h

|E(h)
t △E(h)

t−h| ≤ c

[T/h]∑
k=1

(
hPϕ(E

(h)
kh ) +

ˆ
E

(h)
kh △E(h)

(k−1)h

|vh|

)
≤ CT (Pϕ(E0) + 1) . (3.13) eq 3.19 MugSeiSpa

With the previous estimates, the local Hölder continuity in time of the discrete flow, uniformly in
h, is now easily deduced as in [23, Proposition 2.3]. We omit the proof as it is similar.
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prop 3.3.1 MugSeiSpa Proposition 3.12. Let E0 be an initial bounded set of finite ϕ−perimeter and T > 0. Then, for h

small enough, for a discrete flow {E(h)
t } starting from E0 it holds

|E(h)
t △E(h)

s | ≤ CT |t− s|1/2 ∀h ≤ t ≤ s < T,

for a suitable constant CT = CT (T,E0, f, ϕ, ψ).

We finally prove the main result of this section, the existence of flat flows.

Proof of Theorem 1.1. The proof is classical and we only sketch it. By the uniform equicontinuity
of the approximating sequence of Proposition 3.12 and compactness of sets of finite perimeter (by

Lemma 3.9 and 3.11) we can use the Ascoli-Arzelà theorem to prove that the sequence (E
(hk)
t )k∈N

converges in L1 to sets Et for all times t ≥ 0 and that the family {Et}t≥0 satisfies the 1/2−Hölder
continuity property, locally uniformly in time. The other property is then easily deduced.

3.3 Existence of distributional solutions

From Theorem 1.1 we deduce the existence of a subsequence (hk)k≥0 such that

Dχ
E

(hk)
t

∗
⇀ DχEt ∀t ≥ 0. (3.14) convergenza senso misure

We will also assume (1.6), remarking that it implies

lim
k→∞

Pϕ(E
(hk)
t ) = Pϕ(Et) for a.e. t ∈ [0,+∞). (3.15) convergenza perimeteri

Our aim is to derive (1.7) and (1.8) from the Euler-Lagrange equation (3.2) and passing to the
limit h → 0. To achieve so, we will prove that the discrete velocity is a good approximation (up
to multiplicative factors) of the discrete evolution speed of the sets. Notice that (1.7) is a weak
formulation of (1.1), while (1.8) establishes the link between v and the velocity of the boundaries
of Et. Indeed, law (1.1) can be interpreted as looking for a family {Et}t≥0 of sets, whose normal

vector νEt and ϕ−curvature Hϕ
Et

are well-defined objects and a function v : [0,∞) × RN → R
such that {

v = −Hϕ
Et

+ f

V = ψ(x, νEt)v,
(3.16)

where V represents the normal velocity of evolution, obtained as limit as h→ 0 (in a suitable sense)
of the ratio

χEt − χEt−h
h

.

In this whole section we will assume that hypothesis (2.6) holds. In particular, the sets defining
the discrete flow are smooth hypersurfaces in RN . Moreover, we require hypotheses (1.4) to hold.

We start by estimating in time the L2−norm of the discrete velocity. The proof is the same
of [35, Lemma 3.6], up to using the density estimates on the ϕ−perimeter of Lemma 3.3 and
considering the ψ−balls instead of the Euclidean one.
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L2 bound velocity Proposition 3.13. Let {E(h)
t }t≥0 be a discrete flow starting from an initial bounded set E0 of

finite ϕ−perimeter. Then, for any T > 0 and for h small enough, it holds

ˆ T

0

ˆ
∂E

(h)
t

v2h dHN−1 dt ≤ CT ,

for a suitable constant CT = CT (T,E0, ϕ, ψ, f).

Recalling now the Euler-Lagrange equation (3.2) and Lemma 3.11 we conclude

ˆ T

0

ˆ
∂E

(h)
t

(
Hϕ

E
(h)
t

)2

=

ˆ T

0

ˆ
∂E

(h)
t

(vh − Fh)
2 ≤ CT , (3.17) L2 bound curvatures

We now prove an estimate on the error between the discrete velocity ψ(·, νEt)vh(·, t) and the
discrete time derivative of χh. The proof of this result is based on a double blow-up argument, and
the smoothness of sets (locally) minimizing the ϕ−perimeter is essential. We will split the proof in
various lemmas: the first one concerns the composition of blow-ups.

lemma composition of blow-ups Lemma 3.14 (Composition of blow-ups). Consider 0 < β < β′ < 1. Assume that A is a set such
that the following blow-ups converge as h→ 0

A− x0
hβ

→ A1 in L1
loc

h−(β′−β)A1 → A2 in L1
loc,

where x0 ∈ ∂A. Then, if the composition of the blow-ups h−β
′
(A− x0) converges in L1

loc, the limit
coincides with A2.

Proof. We can assume wlog x0 = 0. Denote with A3 = L1
loc− limh→0 h

−β′
A. We fix a ball BM and

ε > 0. There exists h∗ such that ∀h ≤ h∗ it holds

|((h−β
′
A)△A3) ∩BM | ≤ ε, |((h−β

′+βA1)△A2) ∩BM | ≤ ε.

We fix h and wlog assume Mhβ
′−β ≤ 1. Taking h̃ < h suitably small (depending on h, ε), we can

ensure
|((h̃−βA)△A1) ∩B1| ≤ εhN(β′−β).

Since h̃−βh−(β′−β) > h−β
′
, there exists h̄ < h such that h̄−β

′
= h̃−βh−(β′−β). We can then estimate

|(A3△A2) ∩BM | ≤ |(A3△h̄−β
′
A) ∩BM | + |((h−β

′+β)A1△(h̄−β
′
A)) ∩BM |

+ |((h−β
′+βA1)△A2) ∩BM |

≤ 2ε+ h−N(β′−β)|(A1△(h̃−βA)) ∩BMhβ′−β |

≤ 2ε+ h−N(β′−β)|(A1△(h̃−βA)) ∩B1| ≤ 3ε.

We now compute some estimates on the normal vector on the boundary of the evolving sets.
We fix c∞ as the constant appearing in Lemma 3.10.
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lemma computations Lemma 3.15. Assume (H) and (1.4). For given constants 1/2 < β′ < α < 1 and T > 2, there
exists a continuous increasing function ω : [0, 1] → R with ω(0) = 0 and with the following property.

Consider t ∈ [2h, T ] and x0 ∈ ∂E
(h)
t such that

|vh(t, y)| ≤ hα−1 ∀y ∈ Bc∞
√
h(x0) ∩ (E

(h)
t △E(h)

t−h). (3.18) eq 4.6 MugSeiSpa

Then, there exists ν ∈ SN such that

|ν
E

(h)
t

(·) − ν| ≤ ω(h) in Bhβ′ (x0) ∩ ∂E(h)
t

|ν
E

(h)
t−h

(·) − ν| ≤ ω(h) in Bhβ′ (x0) ∩ ∂E(h)
t−h. (3.19) eq 4.8 MugSeiSpa

Proof. We fix 1
2 < β < β′ < α and 0 < R < h

1
2−β/cψ. Testing the minimality of E

(h)
s , s = t, t− h,

we find

Pϕ(E(h)
s , BRhβ (x0)) ≤ Pϕ(G,BRhβ (x0)) +

1

h

ˆ
G△E(h)

s

|sdψ
E

(h)
s−h

| +

ˆ
G△E(h)

s

|Fh|, (3.20) eq 4.9 MugSeiSpa

for any set G of finite perimeter such that G△E(h)
s ⊆⊆ BRhβ (x0). Using Lemma 3.10, the

1−Lipschitz regularity of sdψ and (3.18), we deduce |vh(s, y)| ≤ cψRh
β−1+c∞h

−1/2 ≤ (1+c∞)h−1/2

for any y ∈ BRhβ (x0) ∩ (E
(h)
s △F ). Plugging this inequality in (3.20), we find

Pϕ(E(h)
s , BRhβ (x0)) ≤ Pϕ(G,BRhβ (x0)) +

1 + c√
h

|F△E(h)
s | + ∥f∥∞|G△E(h)

s |. (3.21) eq 4.10 MugSeiSpa

We then introduce the blown-up sets for s = t, t− h, defined as

E(h),β
s := h−β

(
E(h)
s − x0

)
.

Rescaling equation (3.21), we easily find that E
(h),β
s is a (Λh, rh)−minimizer of the ϕ(x0+hβ ·, ·)−perimeter,

with Λh = (1 + c)hβ−1/2, rh = h1/2−β . Moreover, scaling the density estimates (3.4) we have a

uniform bound on the perimeters of the sets E
(h),β
s in each ball BR. By compactness, there exist

two sets Eβ1 , E
β
2 such that

E
(h),β
t → Eβ1 , E

(h),β
t−h → Eβ2 in L1

loc.

Then, by scaling and (3.18) we find

|sdψ
E

(h),β
t−h

(·)| ≤ hα−β on Bh1/2−β (0) ∩ (E
(h),β
t △E(h),β

t−h ),

thus we easily conclude that Eβ := Eβ1 = Eβ2 . Moreover, by closeness of Λh−minimizers under
L1
loc−convergence (see e.g. [19, Theorem 2.9]), one can see that Eβ is a local ϕ(x0, ·)−perimeter

minimizer. Thus, by complete regularity, it is a smooth C2 set. We can then employ the classic
blow-up theorem to deduce that, for a fixed β′ ∈ (β, α), the blow-up h−(β′−β)Eβ converges to a
half-space H = {x · ν ≤ 0} as h→ 0. Moreover, the blow-ups

E(h),β′

s :=
E

(h)
s − x0
hβ′
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admit a converging subsequence by compactness of sets of finite perimeter and by rescaling equation
(3.21). Thus, the previous Lemma 3.14 implies

E(h),β′

s → H in L1
loc

as h → 0. To conclude, the ε−regularity Theorem for Λ−minimizers (see e.g. [19, Theorem 3.1])

ensures that E
(h),β′

s are uniformly C1, 12 sets in B1(0) for s = t, t− h as h→ 0.

We recall here an approximation result proved in [33] (see also [35] for a more detailed proof).
We remark that the proof of this result is purely geometric and does not rely on the variational

problem satisfied by the sets E
(h)
t , E

(h)
t−h.

Corollary (Corollary 4.3 in [35]). Under the hypotheses of Lemma 3.15, fix 0 < β < α and let Chβ

be the open cylinder defined as

Chβ (x0, ν) :=

{
x ∈ RN : |(x− x0) · ν| < hβ

2
,

∣∣∣∣(x− x0) − ((x− x0) · ν) ν

∣∣∣∣ < hβ

2

}
.

Then, it holds ∣∣∣ˆ
C
hβ/2

(x0,ν)

(χ
E

(h)
t

− χ
E

(h)
t−h

) dx−
ˆ
∂E

(h)
t ∩C

hβ/2
(x0,ν)

sd
E

(h)
t−h

dHN−1
∣∣∣

≤ ω(h)

ˆ
C
hβ/2

(x0,ν)

|χ
E

(h)
t

− χ
E

(h)
t−h

|.

Carefully inspecting the proof, one indeed proves that there exists a geometric constant C such
that for any y ∈ BN−1

hβ/2
(x0)

|sd
E

(h)
t−h

(y, f
(h)
t (y))

√
1 + |∇f (h)t (y)|2 −

(
f
(h)
t (y) − f

(h)
t−h(y)

)
| ≤ Cω(h)|f (h)t (y) − f

(h)
t−h(y)|, (3.22) computation sd

where we set
∂E(h)

s ∩C = {(y, f (h)s (y)) ∈ RN−1 × R, |y| ≤ hβ/2},
for s = t, t− h.

We briefly recall some classical results. Consider an anisotropy ψ, independent of the position.
It is well-known that, for any bounded, C2 set G ⊆ RN , setting sdψ as the distance induced by ψ◦,
then the gradient of sdψ exists almost everywhere (and everywhere in a neighborhood of the set G)
and satisfies the following relations: the first one is known as the eikonal equation

ψ(∇sdψ) = 1 a.e.,

the second one is a useful representation formula, holding at every point x /∈ G having a unique
point on x′ ∈ G of minimal distance, which reads

∇sdψG(x) =
νG(x′)

ψ(νG(x′))
.

Moreover, in this particular case, in the definition of distψ we can consider just straight lines as
follows from a simple application of Jensen’s inequality: for any curve γ as in the definition of distψ,
we have ˆ 1

0

ψ◦(γ̇(t)) dt ≥ ψ◦
(ˆ 1

0

γ̇

)
= ψ◦(y − x).

21



estimates on flat sets Proposition 3.16 (Estimate on almost flat sets). Under the hypotheses of Lemma 3.15, fix β ∈
(0, α) and let Chβ be the open cylinder defined as

Chβ (x0, ν) :=

{
x ∈ RN : |(x− x0) · ν| < hβ

2
,

∣∣∣∣(x− x0) − ((x− x0) · ν) ν

∣∣∣∣ < hβ

2

}
.

Then, it holds∣∣∣ˆ
C
hβ/2

(x0,ν)

(χ
E

(h)
t

− χ
E

(h)
t−h

) dx−
ˆ
∂E

(h)
t ∩C

hβ/2
(x0,ν)

ψ(x, ν
E

(h)
t

) sdψ
E

(h)
t−h

dHN−1
∣∣∣

≤ ω(h)

ˆ
C
hβ/2

(x0,ν)

|χ
E

(h)
t

− χ
E

(h)
t−h

|.

Proof. From the previous Lemma 3.15 we know that, for h suitably small, both ∂E
(h)
t and ∂E

(h)
t−h

in Chβ/2(x0, ν) can be written as graphs of functions of class C1, 12 . Up to a change of coordinates,
we can assume wlog that x0 = 0, ν = eN . For simplicity, we set C = Chβ/2(0, eN ). We thus find

∂E(h)
s ∩C = {(y, f (h)s (y)) ∈ RN−1 × R, |y| ≤ hβ/2}

for s = t, t− h, where f
(h)
s : BN−1

hβ/2
→ R are C1, 12 functions with

∥∇f (h)s ∥L∞(B
hβ/2

) ≤ ω(h).

We want to prove the following slightly stronger pointwise inequality: namely, that for any point

x = (y, f
(h)
t (y)) ∈ ∂E

(h)
t ∩C, it holds∣∣∣∣sdψE(h)

t−h
(x)ψ(x, ν

E
(h)
t

(x))

√
1 + |∇f (h)t (y)| −

(
f
(h)
t (y) − f

(h)
t−h(y)

)∣∣∣∣ ≤ ω(h)|f (h)t (y)−f (h)t−h(y)|. (3.23) estimate flatness

Integrating the previous inequality over C yields the thesis. Clearly, it is enough to prove (3.23) at

each point x such that |sdψ
E

(h)
t−h

(x)| > 0. We thus fix x = (y, f
(h)
t (y)) ∈ ∂E

(h)
t ∩ C and denote by

x′ := (y, f
(h)
t−h(y)). It can be assumed without loss of generality that x /∈ E

(h)
t−h, as the other case

is analogous. Considering the anisotropy ψ(x′, ·), we denote by sd′
G the geodesic distance function

from the set G induced by the anisotropy above. We proceed estimating |sd′
E

(h)
t−h

(x) − sdψ
E

(h)
t−h

(x)|.

Let γ be a smooth curve, with γ(0) = x, γ(1) ∈ ∂E
(h)
t−h to be used in the definition of the geodesic

distance sdψ
E

(h)
t−h

. Firstly, we remark that one could assume

γ([0, 1]) ⊆ B(x, 2c2ψ|f
(h)
t (y) − f

(h)
t−h(y)|) (3.24) bound p

Indeed, if it were not the case, the lower bounds contained in (2.3) and (3.22) allow us to estimate

ˆ 1

0

ψ◦(γ, γ̇) dt ≥ 1

cψ

ˆ 1

0

|γ̇|dt ≥ 2cψ|f (h)t (y) − f
(h)
t−h(y)| ≥ 2cψ sd

E
(h)
t−h

(x) ≥ 2 sdψ
E

(h)
t−h

(x), (3.25) estimate curve
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a contradiction for h small. We can reason analogously for sd′
E

(h)
t−h

. In particular, we can consider

just curves having length
´ 1

0
|γ̇| ≤ c|f (h)t (y) − f

(h)
t−h(y)|. Therefore, we obtain (by homogeneity)

sdψ
E

(h)
t−h

(x) ≤
ˆ 1

0

ψ◦(γ, γ̇) dt ≤
ˆ 1

0

ψ◦(x′, γ̇) dt+ sup
ν∈SN , t∈[0,1]

|ψ(γ(t), ν) − ψ(x′, ν)|
ˆ 1

0

|γ̇|

≤
ˆ 1

0

ψ◦(x′, γ̇) dt+ c ω(h)|f (h)t (y) − f
(h)
t−h(h)|,

and, taking the infγ , we obtain sdψ
E

(h)
t−h

(x) ≤ sd′
E

(h)
t−h

(x) + ω(h)|f (h)t (y) − f
(h)
t−h(y)|. The converse

inequality can be proved analogously, yielding

|sd′
E

(h)
t−h

(x) − sdψ
E

(h)
t−h

(x)| ≤ ω(h)|f (h)t (y) − f
(h)
t−h(y)|.

Therefore, in what follows we will consider always the anisotropy frozen in x′, and use sd′ instead

of sdψ. Finally, define p ∈ ∂E
(h)
t−h as a point of minimal sd′

E
(h)
t−h

distance from x. In the following,

with Πv
Hz we denote the projection on the hyperplane H of the point z along the direction v.

Step 1. We assume that ∂E
(h)
t−h ∩C coincides with the hyperplane H = p+ {z · ν = 0}. Assume

that ψ◦ is strictly convex. The gradient ∇sd′
H exists for every point z /∈ H as it has a unique point

of minimal distance from H (by strict convexity). By the eikonal equation we have

ν

ψ(x′, ν)
= ∇sd′

H(z). (3.26) approx 1

Since ψ◦(x′, ·) is positively 1−homogeneous, setting z̃ ∈ H the point of minimal ψ(x′, ·)−distance
from z, we obtain also

∇sd′
H(z) · (z − z̃) = sd′

H(z). (3.27) approx 2

Combining (3.26), (3.27) and choosing z = x, we have

sd′
H(x)ψ(x′, ν) = (x− x̃) · ν = |x− Πν

Hx| = sdH(x). (3.28) id dis

We remark that sd′
H(x) = sd′

E
(h)
t−h

(x) by convexity, thus we conclude (3.23) by combining (3.28)

with (3.22).
The same formula holds even if ψ◦ is not strictly convex, as an approximation result shows. It

is indeed enough to approximate ψ◦ with strictly convex anisotropies. One way of doing this is
the following: define Wψ as the unit Wulff shape associated to ψ and set Wψ

n := Wψ + 1
nB1. The

anisotropies ψn associated to the Wulff shapes Wψ
n are now strictly convex and converging to ψ as

n → ∞. Remarking that the distance functions induced by these anisotropies converge to sd′
H, we

pass to the limit in (3.28) to conclude.
Step 2. Set ν = ν

E
(h)
t−h

and consider the hyperplane H = p+{z ·ν = 0}. Define w := x′−ΠH(x′).

We shall prove that |w| ≤ c ω(h)|f (h)t (y) − f
(h)
t−h(y)|. To see this, we start by remarking that (3.19)

implies

|eN − eN (eN · ν
E

(h)
t−h

)| ≤ ω(h) in ∂E
(h)
t−h ∩C,
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implying eN ·ν
E

(h)
t−h

≥ 1−ω(h), and thus, for any versor v tangent to ∂E
(h)
t−h∩C one has |v·eN | ≤ ω(h).

Therefore, we have (x′ − p) · eN ≤ ω(h)|x′ − p| and also

x′ − p

|x′ − p|
· ν =

x′ − p

|x′ − p|
· (eN (ν · eN ) + ν − eN (ν · eN ))

≤ ω(h) + |ν − eN (ν · eN )| = ω(h) +
(
1 − |ν · eN |2

)1/2
≤ 3
√
ω(h),

Figure 1: The situation in the proof of the lemma.

by choosing h small. Up to defining
√
ω as ω, using the previous estimate and the bounds (3.24)

we see that

|w| = |x′ − p|
(
x′ − p

|x′ − p|
· ν
)

≤ c ω(h)|x′ − p| ≤ c ω(h)|f (h)t (y) − f
(h)
t−h(y)|. (3.29) bound planes

We now remark that sd′
E

(h)
t−h

(x) = sd′
H(x) (by convexity of the anisotropy ψ(x′, ·)) and so, applying

the previous step to H we get∣∣∣∣sdψE(h)
t−h

(x)ψ(x, ν
E

(h)
t

(x))

√
1 + |∇f (h)t (y)| − |x− ΠeN

H x|
∣∣∣∣ ≤ ω(h)|x− ΠeN

H x|.

We conclude (3.23) by estimating∣∣|x− ΠeN
H x| − |x− x′|

∣∣∣ ≤ |x′ − ΠeN
H x| = |w|/|ν · eN | ≤ c

ω(h)

1 − ω(h)
|f (h)t (y) − f

(h)
t−h(y)|,

where we used (3.29). We conclude the proof by a simple change of coordinates and using (3.23)
to find∣∣∣∣ˆ
∂E

(h)
t ∩C

ψ(x, ν
E

(h)
t

(x)) sdψ
E

(h)
t−h

(x) dHN−1 −
ˆ
B
hβ/2

f
(h)
t (y) − f

(h)
t−h(y) dy

∣∣∣∣
=

∣∣∣∣ˆ
B
hβ/2

ψ((y, f
(h)
t (y)), ν

E
(h)
t

(y, f
(h)
t (y))) sdψ

E
(h)
t−h

(y, f
(h)
t (y))

√
1 + |∇f (h)t (y)|2 − (f

(h)
t (y) − f

(h)
t−h(y)) dy

∣∣∣∣
≤ c ω(h)

ˆ
B
hβ/2

|f (h)t − f
(h)
t−h|dy.
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Finally, we are able to prove that the error generated approximating the discrete velocity with
vh goes to zero as h→ 0.

proposition 2.2 LucStu Proposition 3.17 (Error estimate). Under the hypothesis of Lemma 3.15, the error in the discrete
curvature equation vanishes in the limit h→ 0, namely

lim
h→0

∣∣∣∣∣ 1h
ˆ T

0

(ˆ
E

(h)
t

η dx−
ˆ
E

(h)
t−h

η dx

)
dt−

ˆ T

0

ˆ
∂E

(h)
t

ψ(x, ν
E

(h)
t

)vhη dHN−1(x) dt

∣∣∣∣∣ = 0 (3.30) error estimate on the velocity

for all η ∈ C1
c (RN × [0, T )).

Proof. We fix t ∈ [2h,∞) and α ∈ ( 1
2 ,

N+2
2N+2 ). For any point x0 ∈ ∂E

(h)
t we define the open set Ax0

defined as follows:

(i) if (3.18) holds, we set Ax0
= Chβ/2(x0, ν), with the notations of Corollary 3.16;

(ii) otherwise we set Ax0 = B(x0, c∞
√
h), where c∞ is the constant of Lemma 3.10.

By Lemma 3.10, the family {Ax0
: x0 ∈ ∂E

(h)
t } is a covering of E

(h)
t △E(h)

t−h. By a simple application

of Besicovitch’s theorem (see e.g. [34]), we find a finite collection of points I ⊆ ∂E
(h)
t such that

{Ax0}x0∈I is a covering of E
(h)
t △E(h)

t−h with the finite intersection property. We proceed to estimate
(3.30) on each Ax0 belonging to this family.

Estimate in case (i) We use Proposition 3.16 to deduce∣∣∣∣ˆ
Ax0

(χ
E

(h)
t

− χ
E

(h)
t−h

)η dx−
ˆ
∂E

(h)
t ∩Ax0

ψ(x, ν
E

(h)
t

)sdψ
E

(h)
t−h

η dHN−1

∣∣∣∣
≤ |η(x0, t)|

∣∣∣∣ ˆ
Ax0

(χ
E

(h)
t

− χ
E

(h)
t−h

) −
ˆ
∂E

(h)
t ∩Ax0

ψ(x, ν
E

(h)
t

)sdψ
E

(h)
t−h

dHN−1

∣∣∣∣
+

∣∣∣∣ˆ
Ax0

(χ
E

(h)
t

− χ
E

(h)
t−h

)(η − η(x0, t)) −
ˆ
∂E

(h)
t ∩Ax0

(η − η(x0, t))ψ(x, ν
E

(h)
t

) sdψ
E

(h)
t−h

dHN−1

∣∣∣∣
≤ C(ω(h)∥η∥∞ + hβ∥∇η∥∞)

ˆ
Ax0

|χ
E

(h)
t

− χ
E

(h)
t−h

|dHN−1 + chβ∥∇η∥∞P (E
(h)
t , Ax0

). (3.31) eq 4.13 MugSeiSpa

Estimate in case (ii) By assumption ∃y ∈ Bc∞
√
h(x0) ∩ (E

(h)
t △E(h)

t−h) such that |vh(t, y)| > hα−1.

We can assume wlog y ∈ E
(h)
t . We then have B(y, hα/(2cψ)) ⊆ RN \ E(h)

t−h and sdψ
E

(h)
t−h

> hα/(2c2ψ)

on B(y, hα/(2cψ)). Since hα << h1/2, we can use the density estimates of Lemma 3.3 to deduce

ch(N+1)α−1 ≤
ˆ
B(y,hα/(2cψ))∩(E

(h)
t △E(h)

t−h)

|vh|dx.

Analogously, recalling also Lemma 3.10, we deduce

ˆ
B(x0,c∞

√
h)∩∂E(h)

t

|ψ(x, ν
E

(h)
t−h

) sdψ
E

(h)
t−h

|dHN−1(x) ≤ ch
N
2 .
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Combining the two previous equations and B(y, hα/(2cψ)) ⊆ B(y, c
√
h), we infer

ˆ
Ax0

|χ
E

(h)
t

− χ
E

(h)
t−h

| +

ˆ
Ax0∩∂E

(h)
t

|ψ(x, ν
E

(h)
t−h

) sdψ
E

(h)
t−h

|dHN−1

≤ ch
N
2 −(N+1)α+1

ˆ
Ax0∩(E

(h)
t △E(h)

t−h)

|ψ(x, ν
E

(h)
t−h

)vh|. (3.32) eq 4.16 MugSeiSpa

Summing over x0 ∈ I both (3.31) and (3.32), and using the local finiteness of the covering, we get∣∣∣∣ˆ (χ
E

(h)
t

− χ
E

(h)
t−h

)η dx−
ˆ
∂E

(h)
t

ψ(x, ν
E

(h)
t

)sdψ
E

(h)
t−h

η dHN−1

∣∣∣∣
≤
∑
x0∈I

∣∣∣∣ ˆ
Ax0

(χ
E

(h)
t

− χ
E

(h)
t−h

)η dx−
ˆ
∂E

(h)
t ∩Ax0

ψ(x, ν
E

(h)
t

)sdψ
E

(h)
t−h

η dHN−1

∣∣∣∣
≤ c

(
ω(h)∥η∥∞ + hβ∥∇η∥∞ + h

N
2 −(n+1)α+1∥η∥∞

)
·

·

(
P (E

(h)
t ) + |E(h)

t △E(h)
t−h| +

ˆ
E

(h)
t △E(h)

t−h

|vh|

)

where the last constant c depends on N,ψ. We then use Lemma 3.11, (3.12) and (3.13) to conclude∣∣∣∣ˆ T

2h

1

h

(ˆ
E

(h)
t

η dx−
ˆ
E

(h)
t−h

η dx

)
−
ˆ T

h

ˆ
∂E

(h)
t

ψ(x, ν
E

(h)
t

)vhη dHN−1

∣∣∣∣
≤ c

(
ω(h)∥η∥∞ + hβ∥∇η∥∞ + h

N
2 −(n+1)α+1∥η∥∞

)
,

where c = c(E0, f, T, ψ) and T is chosen such that spt η ⊆⊆ RN × [0, T ]. The conclusion follows
using the definition of α and taking the limit h→ 0.

The proof of our main theorem of this section is now a consequence of the previous results. In
particular, hypothesis (3.14) and (3.15) imply that the discrete flow converges to the flat flow in the
sense of varifolds and this allows to prove (1.7), while (1.8) is a consequence of Proposition 3.17.
In order to prove the convergence of the approximations in time of the forcing term, we need to
require additionally that (1.5) holds.

Proof of Theorem 1.2. Firstly, combining [29, Theorem 4.4.2] with the bounds contained in (3.17)
and in Proposition 3.13, we conclude the existence of functions v,Hϕ, f̃ : RN×[0,∞) → R satisfying

ˆ T

0

ˆ
∂Et

|v|2 + |Hϕ|2 + |f̃ |2 dHN−1 dt ≤ CT

and the following properties

lim
k

ˆ T

0

ˆ
∂E

(hk)
t

vhkη dHN−1 dt =

ˆ T

0

ˆ
∂Et

ηv dHN−1 dt
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lim
k

ˆ T

0

ˆ
∂E

(hk)
t

Fhk(x, t)η dHN−1 dt =

ˆ T

0

ˆ
∂Et

ηf̃ dHN−1 dt

lim
k

ˆ T

0

ˆ
∂E

(hk)
t

Hϕ

E
(hk)
t

η dHN−1 dt =

ˆ T

0

ˆ
∂Et

ηHϕ dHN−1 dt, (3.33) eq 4.4 MugSeiSpa

for any η ∈ C0
c (RN × [0, T )). We now employ an approximation procedure to prove that Hϕ(·, t) is

the ϕ−mean curvature of Et for a.e. t ∈ [0,∞), following the lines of [33, 35]. Fixed t ∈ [0,+∞)
and ε > 0, set νε a continuous function such that

´
∂Et

(νEt − νε)
2 dHN−1 < ε. Then, by (3.14) one

could prove that limk→∞
´
∂E

(hk)
t

(ν
E

(hk)
t

− νε)
2 dHN−1 < ε. Considering test functions in (3.33) of

the form η(x, t) = a(t)g(x), one has for a.e. t ∈ [0,+∞)

lim
k

ˆ
∂E

(hk)
t

Hϕ

E
(hk)
t

g dHN−1 =

ˆ
∂Et

Hϕg dHN−1.

Thus, for a.e. t ∈ [0,+∞) and for any X ∈ C0
c (RN ;RN ) it holds

lim
k

ˆ
∂E

(hk)
t

Hϕ

E
(hk)
t

ν
E

(hk)
t

·X dHN−1 =

ˆ
∂Et

HϕνEt ·X dHN−1

by approximating the normal vectors of E
(hk)
t with νε. Furthermore, by the convergence (3.14) and

the hypothesis (3.15) we can use the Reshetnyak’s continuity theorem (see e.g. [4, Theorem 2.39]),
ensuring ˆ

∂E
(hk)
t

L(x, ν
E

(hk)
t

) dHN−1 →
ˆ
Et

L(x, νEt) dHN−1

as k → ∞, for any L ∈ C0
c (RN × RN ). We choose L(x, ν) = divϕX for some X ∈ C1

c (RN ;RN ) to
obtain ˆ

∂Et

divϕX dHN−1 = lim
k

ˆ
∂E

(hk)
t

divϕX dHN−1

= lim
k

ˆ
∂E

(hk)
t

X · ν
E

(hk)
t

Hϕ

E
(hk)
t

dHN−1

=

ˆ
∂Et

X · νEtHϕ dHN−1,

which shows that Hϕ(·, t) is the ϕ−mean curvature of the set Et for a.e. t ∈ [0,+∞). Moreover, we
remark that Fhk(x, t) → f(x, t) for every (x, t), thus for any test function η ∈ C0

c (RN × [0,+∞))
and t ∈ [0,+∞) we have

∣∣∣∣ˆ
∂E

(h)
t

Fhk(x, t)η(x, t) dHN−1
x −

ˆ
∂E

fη dHN−1
x

∣∣∣∣ ≤
∣∣∣∣∣
ˆ
∂E

(h)
t

Fhkη −
ˆ
∂Et

Fhkη

∣∣∣∣∣+

ˆ
∂Et

|Fhk − f |η

≤ ∥f∥∞∥η∥∞
(
P (E

(h)
t ) − P (Et)

)
+

ˆ
∂Et

|Fhk − f |η → 0

applying the dominated convergence theorem and recalling Lemma 3.9. Thus, f̃ = f . We then
prove (1.7) by passing to the limit in the Euler-Lagrange equation (3.2).
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To prove (1.8) we employ Proposition 3.17: for every η ∈ C0
c (RN × [0, T )), by a change of

variables we have that
ˆ T

h

[ˆ
E

(h)
t

η dx−
ˆ
E

(h)
t−h

η dx

]
dt =

ˆ T

h

ˆ
E

(h)
t

(η(x, t) − η(x, t− h)) dxdt− h

ˆ
E0

η dx

where we have used that E
(h)
t = E0 for t ∈ [0, h). Therefore, a simple convergence argument yields

lim
h→0

1

h

ˆ T

h

[ˆ
E

(h)
t

η dx−
ˆ
E

(h)
t−h

η dx

]
dt = −

ˆ T

h

∂tη(x, t) dx dt−
ˆ
E0

η.

Combining the previous estimate with Proposition 3.17 and passing to the limit, we obtain (1.8).

4 Viscosity solutions

In this section we will prove the existence of another weak notion of solution for the mean curvature
flow starting from a compact set. We will follow the so-called level set approach based on the theory
of viscosity solution. we recall that in the first part we work with the standing assumptions of the
paper (H). Additionally, we require (1.4).

4.1 The discrete scheme for unbounded sets
sect evolution unbounded sets

In this short subsection we will define the discrete evolution scheme for unbounded sets having
compact boundary. The idea would be to define this evolution simply as the complement of the
evolution of the complementary set, but since the anisotropies we are considering are not symmetric,
we need additional care.

We recall that, given an anisotropy ϕ, we define ϕ̃(x, ν) := ϕ(x,−ν). This anisotropy has
all the properties of the original one, concerning regularity and bounds. We start remarking

the following simple fact. One can see that distψ(x, y) = distψ̃(y, x), since for any curve γ ∈
W 1,1([0, 1];RN ), γ(0) = x, γ(1) = y, a simple change of variable yields

ˆ 1

0

ψ◦(γ(t), γ̇(t)) dt =

ˆ 1

0

ψ◦
(
γ(1 − t),− d

dt
(γ(1 − t))

)
dt =

ˆ 1

0

(̃ψ◦)(η(t), η̇(t)) dt,

for η(t) = γ(1 − t), once one sees that

(̃ψ◦)(·, ν) = sup
ψ(·,ξ)≤1

ξ · (−ν) = sup
ψ̃(·,−ξ)≤1

(−ξ) · ν = (ψ̃)◦(·, ν).

Therefore, by definition of signed distance we have

sdψE(x) = −sdψ̃Ec(x). (4.1) invers dist

For every compact set F and h > 0, t ≥ 0, we will denote by T̃±
h,tF the maximal and the minimal

solution to problem (3.1), according to Lemma 3.1 with Pϕ and sdψ, respectively, replaced by Pϕ̃

and sdψ̃. Finally, for every set E with compact boundary we define

T±
h,tE :=

(
T̃∓
h,tE

c
)c
. (4.2) pb discr compl
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As in the case for compact sets, we set Th,tE := T−
h,tE. Given an open, unbounded set E0 having

compact boundary, we can then define the discrete flow {E(h)
t }t≥0 as follows: E

(h)
t := E0 for

t ∈ [0, h) and

E
(h)
t = Th,tE

(h)
t−h, ∀t ∈ [h,+∞).

One easily checks that analogous results to Lemmas 3.2, 3.9 and 3.8 hold also for this problem. We
state the corresponding results.

comparison principle, unbounded Lemma 4.1. Let F1 ⊆ F2 be open, unbounded sets with compact boundary and fix h > 0, t ≥ 0.
Then, Th,tF1 ⊆ Th,tF2.

Lemma 4.2. For any T > 0 there exists a constant CT (ϕ, ψ, f, T ) such that for every R > 0 the

following holds. If the initial open set E ⊃ BcR, then E
(h)
t ⊃ BcCTR for all t ∈ [0, T ].

Lemma 4.3. For every R0 > 0 there exist h0(R0) > 0 and C(R0, ϕ, ψ, f) > 0 with the following
property: For all R ≥ R0, h ∈ (0, h0), t > 0 and x ∈ RN one has

Th,t((BR(x))
c
) ⊆ (BR−Ch(x))

c
.

We now state a comparison principle between bounded and unbounded sets, following the line
of [14, Lemma 6.10].

comparison principle, bounded-unbounded Lemma 4.4. Let E1 be a compact set and let E2 be an open, unbounded set, with compact boundary,
and such that E1 ⊆ E2. Then, for every h ∈ (0, 1), t ≥ 0 it holds T±

h,tE1 ⊆ T±
h,tE2.

Proof. We fix h ∈ (0, 1), t ∈ [0, T ] for T > 0. Set R > 0 such that E1, E
c
2 ⊆ BR and note that by

Lemmas 3.2 and 3.9 (applied to Pϕ̃ instead of Pϕ) we get(
T+
h,tE2

)c
⊆ T̃−

h,tE
c
2 ⊆ T−

h,tBR ⊆ BCTR, (4.3) eq 6.9 Nonlocal

for some CT (ϕ, ψ, f, T ). Since T̃−
h,tE

c
2 is the minimal solution of

min

{
Pϕ̃(E) +

1

h

ˆ
E

sdψ̃Ec2
(x) dx−

ˆ
E

Fh(x, t) dx

}
,

considering the change of variables Ẽ = Ec and using (4.1), we easily conclude that T+
h,tE2 =(

T̃−
h,tE

c
2

)c
is the maximal solution of

min

{
Pϕ(Ẽ) +

1

h

ˆ
BCTR

sdψE2
− 1

h

ˆ
Ẽc

sdψE2
−
ˆ
Ẽc
Fh(x, t) dx

}
− 1

h

ˆ
BCTR

sdψE2
.

we then note that ˆ
BCTR

sdψE2
=

ˆ
Ẽ

sdψE2
χBCTR +

ˆ
Ẽc

sdψE2
,

for every Ẽ such that Ẽc ⊆ BCTR. By (4.3), we conclude that T+
h,tE2 is the maximal solution of

min

{
Pϕ(Ẽ) +

1

h

ˆ
Ẽ

sdψE2
χBCTR −

ˆ
Ẽc
Fh(x, t) dx : Ẽ ⊆ BCTR

}
. (4.4) eq 6.10 Nonlocal

Analogously, one proves that T−
h,tE2 is the minimal solution of (4.4). Finally, we remark that

sdψEsχBCTR ≤ sdψE1
and that T±

h,tE1 ∪ T±
h,tE2, T

±
h,tE1 ∩ T±

h,tE2 are both admissible competitors for

(4.4), one argues exactly as in the proof of Lemma 3.2 to conclude T±
h,tE1 ⊆ T±

h,tE2.
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4.2 The level set approach

Consider a function u : RN × [0,+∞) → R whose superlevel set evolve according to the mean
curvature equation

V (x, t) = −ψ(x, ν{u(·,t)≥s})
(
Hϕ

{u(·,t)≥s}(x) − f(x, t)
)
.

The function u then satisfies (recalling that −∇u/|∇u| is the outer normal vector to the superlevel
set {u(·, t) ≥ u(x, t)}) the equation

∂tu = |∇u|V (x) = −ψ(x,−∇u)
(
Hϕ

{u(·,t)≥u(x,t)}(x) − f(x, t)
)

= −ψ(x,−∇u) (div∇pϕ(x,−∇u) − f(x, t))

= −ψ(x,−∇u)

(∑
i

∂xi∂pϕ(x,−∇u) −∇2
pϕ(x,−∇u) : ∇2u− f(x, t)

)
: = −ψ(x,−∇u)

(
H(x,∇u,∇2u) − f(x, t)

)
,

where we defined the Hamiltonian H : RN × RN \ {0} × SN → R as

H(x, p,X) :=
∑
i

∂xi∂pϕ(x,−p) −∇2
pϕ(x,−p) : X, (4.5) def hamiltonian

and SN denotes the space of the symmetric matrices of dimension N ×N . We therefore focus on
solving the parabolic Cauchy problem{

∂tu+ ψ(x,−∇u)
(
H(x,∇u,∇2u) − f(x, t)

)
= 0

u(·, t) = u0.
(4.6) Hamilton-Jacobi eq

The appropriate setting for this type of geometric evolution equations is the one of viscosity solu-
tions, in the framework of [24, 31] (see also [14]). Before giving the definition of viscosity solutions
in this setting, we need to introduce an appropriate class of test functions. To do so, we introduce
an auxiliary class of functions whose properties can be found in [31] (see also [14, Section 2.2]).

family F Definition 4.5. The family F is composed of smooth functions g ∈ C∞
c ([0,+∞)) satisfying g(0) =

g′(0) = g′′(0) = 0, g′′(r) > 0 in a neighborhood of 0, g constant in (0,M)c for some M > 0
(depending on g), and

lim
r→0

g′(r)

r
= 0.

We will focus on the evolution of sets with compact boundary on compact time intervals of the
form [0, T ]. We now define the notion of admissible test function. With a slight abuse of notation,
in the following we will say that a function is spatially constant outside a compact set even if the
value of such constant is time-dependent.

def visco sol Definition 4.6. Let ẑ = (x̂, t̂) ∈ RN × (0, T ) and let A ⊆ (0, T ) be any open interval containing t̂.
We will say that η ∈ C0(RN × Ā) is admissible at the point ẑ if it is of class C2 in a neighborhood
of ẑ, if it is constant out of a compact set, and, in case ∇η(ẑ) = 0, the following holds: there exists
f ∈ F and ω ∈ C∞([0,∞)) with ω′(0) = 0, ω(r) > 0 for r ̸= 0 and such that

|η(x, t) − η(ẑ) − ηt(ẑ)(t− t̂)| ≤ f(|x− x̂|) + ω(|t− t̂|),

for all (x, t) ∈ RN ×A.
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One can then define the following notion of viscosity solution.

Definition 4.7. An upper semicontinuous function u : RN × [0, T ] → R (in short, u ∈ usc(RN ×
[0, T ])), constant outside a compact set, is a viscosity subsolution of the Cauchy problem (4.6)
if u(·, 0) ≤ u0 and for all z := (x, t) ∈ RN × [0, T ] and all C∞−test functions η such that η is
admissible at z and u−η has a maximum at z (in the domain of definition of η) the following holds:

i) If ∇η(z) = 0, then it holds
ηt(z) ≤ 0 (4.7) eq viscosa degen

ii) If ∇η(z) ̸= 0, then

∂tη(z) + ψ(z,−∇η(z))
(
H(z,∇η(z),∇2η(z)) − f(z, t)

)
≤ 0. (4.8) eq viscosa

A lower semicontinuous function u : RN × [0, T ] → R (in short, u ∈ lsc(RN × [0, T ])), constant
outside a compact set, is a viscosity supersolution of the Cauchy problem (4.6) if u(·, 0) ≥ u0 and
for all z := (x, t) ∈ RN × [0, T ] and all C∞−test functions η such that η is admissible at z and u−η
has a minimum at z (in the domain of definition of η) the following holds:

i) If ∇η(z) = 0, then ηt(z) ≥ 0;

ii) If ∇η ̸= 0 then

∂tη(z) + ψ(z,−∇η(z))
(
H(z,∇η(z),∇2η(z)) − f(z, t)

)
≤ 0.

Finally, a function u is a viscosity solution for the Cauchy problem (4.6) if it is both a subsolution
and a supersolution of (4.6).

Remark. By classical arguments, one could assume that the maximum of u − η is strict in the
definition of subsolution above (an analogous remark holds for supersolutions).

Remark. We remark that, if −u is a subsolution to (4.6) with initial datum −u0, then u is a
supersolution for (4.6) for the initial datum u0 and where ϕ, ψ are replaced by ϕ̃, ψ̃ respectively, as
defined in Section 4.1.

We will first prove existence for viscosity solutions of (4.6) via an approximation-in-time tech-
nique, and then prove uniqueness of solutions to (4.6) to link the approximate solution to the mean
curvature flow equation. We would like to proceed with the classical construction of e.g. [11, 14,
21], but in our case the lack of continuity of the evolving functions forces us to be particularly
careful with the procedure.

We use the shorthand notation of lsc for lower semicontinuous and usc for upper semicontin-
uous. Given a bounded, usc function v which is constant outside a compact set, we define the
transformation

T+
h,tv(x) = sup

{
s : x ∈ T+

h,t{v ≥ s}
}
. (4.9) def increm supersol

Firstly, we see that T+
h,tv(x) ∈ R, as v is bounded. Moreover, it turns out that the function T+

h,tv is
usc, bounded and constant outside a compact set. Indeed, definition (4.9) is equivalent to

T+
h,tv(x) = inf

{
s : x /∈ T+

h,t{v ≥ s}
}

= inf
s∈R

(
s+ 1(T+

h,t{v≥s})
c(x)

)
,
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where 1A(x) is the indicatrix function of a set A, being 0 on the set and +∞ outside. By definition,
1A is an usc function for any open set A. Thus, recalling Remark 3.4, in the equation above we
are taking the infimum of a family of usc functions, which is then a usc function. The other two
properties follows from the previous study of the discrete evolution. Analogously, given a bounded
lsc function g, we define

T−
h,tg(x) = sup

{
s : x ∈ T−

h,t{g > s}
}

= sup
s∈R

(
s− 1T−

h,t{g>s}

)
, (4.10)

which is now a bounded lsc function (as sup of lsc functions), constant outside a compact set.
We are now ready to give the definition of the discrete-in-time approximations of sub and super

solution to (4.6). Given an initial compact set E0, set u0 as a (uniformly) continuous function,
spatially constant outside a compact set, such that {u0 ≥ 0} = E0. We remark that for every
s ∈ R, the superlevel set {u0 ≥ s} is either compact or it is unbounded with compact boundary.
Then, for h > 0 we introduce the following family of maps as u±(·, t) = u0 for t ∈ [0, h) and

u±h (·, t) := T±
h,t−hu

±
h (·, t− h) for t ≥ h. (4.11) def subsol iter

We easily see that the maps above are functions (as implied by the comparison principle contained
in Lemmas 3.2, 4.1 and 4.4) piecewise constant in time (as T±

h,t = T±
h,[t/h]h). Moreover, by the

previous remarks, we have that u+h (·, t) is an usc function, while u−h (·, t) is a lsc function, for every
t ∈ [0,+∞). Some further properties of the approximating scheme are listed below.

Lemma 4.8. For any h > 0, t ≥ 0 we have the following. It holds

u−h (·, t) ≤ u+h (·, t). (4.12) ineq subsol

Furthermore, given any λ ∈ R and t ≥ h it holds

{u+h (·, t) > λ} ⊆ T+
h,t−h{u

+
h (·, t− h) ≥ λ} ⊆ {u+h (·, t) ≥ λ} (4.13) inclusion level sets

{u−h (·, t) > λ} ⊆ T−
h,t−h{u

−
h (·, t− h) > λ} ⊆ {u−h (·, t) ≥ λ}.

Proof. Fix x ∈ RN , t ∈ [0, h). For any given σ < u−h (x, h) we have that there exists a sequence
(sn) ↗ σ so that x ∈ T−

h,t−h{u0 > sn} ⊆ T+
h,t−h{u0 ≥ sn}. Thus, u+h (x, t) ≥ σ. We then conclude

by induction. Then, (4.13) follows easily by the definition (4.11).

We then prove that the half-relaxed limits (in the spirit of [6], see also the references therein)
of the families of functions u±h

u+(x, t) := sup
(xh,th)→(x,t)

lim sup
h→0

u+h (xh, th)

u−(x, t) := inf
(xh,th)→(x,t)

lim inf
h→0

u−h (xh, th),
(4.14) def subsol supersol

are (respectively) sub and supersolutions in the viscosity sense of (4.6), see Theorem 1.2 (note that,
by definition, u+ is usc, while u− is lsc). The proof of this result is the subject of the following
section and we recall that the hypothesis required are (H), (1.4) and f ∈ C0(RN × [0,∞)) only.
Once the existence of sub and super-solutions to the equation is settled, we need to properly define
the notion of level-set solution to the mean curvature flow. To do so, we first prove uniqueness for
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(4.6) via a comparison principle and under additional hypothesis. Then, we show that the evolution
of the zero superlevel set of the solution does not depend on the choice of the initial function u0.

We start with a comparison result between u+, u− and u0 at the initial time: it will ensure that
the classical hypothesis for the comparison principle are satisfied. We first prove an estimate for
the speed of decay of the level sets of the evolving functions. While it will only be needed in the
following section, in the proof of the forthcoming Lemma 4.10 we will use similar techniques, so we
preferred to state it here.

lemma estimate decay balls Lemma 4.9. Let u+(x, t) be the function defined in (4.14), let σ ∈ R. Assume that, for a suitable
x0 and R > 0, it holds B(x0, R) ⊆ {u+(·, t0) ≥ σ} . Then, there exists C = C(R,ϕ, ψ, f) such that
B(x0, R−C(t− t0)) ⊆ {u+(·, t) ≥ σ} for every t ≤ t0 +R/(2C). An analogous statement holds for
u− by considering its open sublevel sets.

Proof. We focus on the case {u+(·, t0) ≥ σ} bounded, the other case being analogous. By as-
sumption, for any R0 < R, if h is small enough, we have B(x0, R0) ⊆ {u+h (·, t0) ≥ σ}. Set
C = C(R0/2, ϕ, ψ, f) as the constant of Lemma 3.8. Let Rn be defined recursively following
law (3.7), that is Rn+1 = Rn − Ch, as long as Rn ≥ R0/2. By simple iteration we find that
Rn = R0 − nCh, as long as Rn ≥ R0/2, which can be ensured enforcing hn ≤ R0/(2C). Therefore,
for any t ≥ t0 such that t − t0 ≤ R0/(2C), we set n = [(t − t0)/h] and send h → 0 to deduce
(recalling also Lemma 3.2)

{u+(·, t) ≥ σ} ⊃ B(x0, R0 − C(t− t0)).

Since the choice of R0 is arbitrary, we conclude.

We are now ready to prove a comparison result for the functions u± and a continuity estimate
at the initial time t = 0.

lemma initial datum Lemma 4.10. For any (x, t) ∈ RN × [0,+∞) it holds

u−(x, t) ≤ u+(x, t).

Moreover u−(·, 0) = u+(·, 0) = u0, so that there exists a modulus of continuity ω such that ∀x, y ∈
RN

u+(x, 0) − u−(y, 0) ≤ ω(|x− y|).

Proof. The proof of the first inequality essentially follows from (4.12) and the definition of u±. To
prove the equality at the initial time t = 0, we start by remarking that u+(·, 0) ≥ u0 as can be seen
taking sequences of the form (xh, 0) in (4.14). Then, consider ω as a continuous, strictly increasing
modulus of continuity for u0. We can also see that ∀ε > 0 {u0 ≤ u0(x) + ε} ⊇ B(x, ω−1(ε)) by
uniform continuity. Thus, reasoning iteratively as in Lemma 4.9 and using (4.13), we obtain that
there exists h0(ε) such that ∀h ≤ h0 it holds

{u+h (·, t) ≤ u+h (x, 0)+ε} ⊇
(
T+
h,t−h{u0 > u0(x) + ε}

)c
= T−

h,t−h{u0 ≤ u0(x)+ε} ⊇ B(x, ω−1(ε/2)),

as long as t ≤ (ω−1(ε) − ω−1(ε/2))/(2C) =: tε, and where we recalled that u±h (·, 0) = u0.
Now, fix σ > 0, x ∈ RN such that u(x, 0) > σ and a sequence (xhk , thk) → (x, 0) such that
limk u

+
hk

(xhk , thk) > σ. Then, for k large enough (xhk , thk) ∈ B(x, ω−1(ε/2)) × [0, tε) and so we
conclude

σ < lim
k
u+h (xhk , thk) ≤ u0(x, 0) + ε.
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Letting ε → 0 we conclude u(·, 0)+ ≤ u0. The proof for u− is essentially the same. The last claim
follows from the previous one, recalling that ω is a modulus of uniform continuity for u0.

In order to prove a comparison principle for (4.6), we will need to assume (1.11). Under these
additional hypotheses, we are able to prove uniqueness for the parabolic Cauchy problem (4.6). The
proof of this result follows from [24, Theorem 4.2]: we will just show in detail that the assumption
of the aforementioned theorem hold in our case, following [9, Proposition 6.1] and [24, pag. 465].

Proof of Theorem 1.4. The proof of this result essentially follows from [24, Theorem 4.2], combined
with the existence result of Theorem 1.3. Referring to the notation of [24], we firstly remark that
in our case Ω = RN , thus the parabolic boundary of U = Ω × [0, T ] is simply ∂pU = RN × {0}.
Therefore, the initial conditions (A1) − (A3) are all verified by Lemma 4.10. We then define the
continuous Hamiltonian F : [0, T ] × RN × (RN \ {0}) ×MN×N → R as follows

F (t, x, p,X) := ψ(x,−p)

(
−
∑
i

∂xi∂pϕ(x,−p) + ∇2
pϕ(x,−p) : X + f(x, t)

)
, (4.15) Hamiltonian Giga

and focus on the conditions (F1), (F3) − (F5), (F6′), (F7), (F9), (F10) that F must satisfy. The
assumptions (F1), (F3)− (F5), (F9) are easily checked. (F6′) follows from the Lipschitz regularity
of ϕ and ψ, as ∀t ∈ [0, T ], x ∈ RN , |p| ≥ ρ, |q| + |X| ≤ R one has

|F (t, x, p,X) − F (t, x, q,X)| ≤ cψ|p− q|

∣∣∣∣∣−∑
i

∂xi∂pϕ(x,−p) + ∇2
pϕ(x,−p) : X

∣∣∣∣∣
+ ψ(x,−q)

∣∣∣∣∣−∑
i

(∂xi∂pϕ(x,−p) − ∂xi∂pϕ(x,−q)) +
(
∇2
pϕ(x,−p) −∇2

pϕ(x,−q)
)

: X

∣∣∣∣∣
≤ cR|p− q|

(
1 +

1

|p|

)
+ cR|p− q| ≤ cR,ρ|p− q|.

For (F7), we remark that the first term in the parenthesis in (4.15) is 0−homogeneous in p,
while the second one is (−1)−homogeneous in p but 1−homogeneous in X. Lastly, we sketch how
to prove (F10). Since it concerns the X-terms, we focus simply on

∇2
pϕ(x,−p) : X = tr

(
∇2
pϕ(x−, p)XT

)
.

Multiplying by ϕ(x,−p), we rewrite ϕ(x,−p)tr
(
∇2
pϕ(x−, p)XT

)
= tr(A(x,−p)XT ), where A =

B − (∇pϕ⊗∇pϕ) , with B being the uniformly elliptic operator 1
2∇

2
pϕ

2. We can then factorize

B = L̃L̃T , with L̃ being a nondegenerate, lower triangular matrix. Then, following the proof of [9,
Proposition 6.1] and [24, pg. 465], we obtain (F10).

Once uniqueness is settled, one can finally define the notion of level set solution to the mean
curvature flow as follows.

Definition 4.11. Let E0 be a compact initial set. Define a uniformly continuous, bounded function
u0 : RN → R such that {u0 ≥ 0} = E0. Then, let u : RN × [0,+∞) → R be the unique continuous
viscosity solution to (4.6) given by Theorem 1.4. Then, the family Et := {u+(·, t) ≥ 0}t≥0 will be
called the level set solution to the mean curvature flow.
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This definition is well posed since the Hamiltonian defined in (4.5) satisfies the so-called geo-
metricity condition. Namely, one can easily check that for any λ ̸= 0, p ∈ RN \ 0, q ∈ RN and any
symmetric N ×N matrix X one has

H(x, λp, λX + p⊗ q + q ⊗ p) =
λ

|λ|
H(x, p,X).

Thus, one can prove by classical arguments (see e.g. [14, Remark 3.9]) the following result.

Lemma 4.12. Let u0, ũ0 two initial data for (4.6) such that {u0 ≥ 0} = {ũ0 ≥ 0}. Then, denoting
by u, ũ the corresponding solutions to (4.6), one has

{u(·, t) ≥ 0} = {ũ(·, t) ≥ 0} for all t ∈ [0, T ],

and the same identity holds for the open superlevel sets.

4.3 Proof of Theorem 1.3

In this section we will prove that the limiting functions u± are respectively a viscosity sub and
supersolutions to (4.6). We remark that we work assuming (H), (1.4) and that f ∈ C0(RN ×
[0,+∞)). We will be following the structure of the proof of [14, Theorem 6.16], but taking into
account the weaker definition of u holding in our case. We will be using the O, o notations with
respect to h→ 0 and focus on proving that u is a subsolution. The proof for u− is analogous.

Proof of Theorem 1.3. Consider u+ as defined in (1.10): we need to prove that it is a subsolution.
In the following, we will denote u := u+ and uh := u+h . Let η(x, t) be an admissible test function
in z̄ := (x̄, t̄) and assume that (x̄, t̄) is a strict maximum point for u− η. Assume furthermore that
u− η = 0 in such point. We need to show that either (4.7) or (4.8) holds at z̄.
Step 1. Let us first assume that ∇η(z̄) ̸= 0. By classical arguments, we can assume that z̄ is
a strict maximum point with t̄ > 0 and that η is smooth. By the definition of u, there exist a
sequence z̃k := (x̃hk , t̃hk) → z̄ such that limk uhk(z̃k) = u(z̄). By standard arguments (compare
e.g. [5, Lemma 6.1]), there exists a radius ρ > 0 such that all functions uhk − η achieve a local
supremum in Bρ(z̄) at points zk = (xk, tk). We remark that we could modify slightly the definition
of uhk(x, t) to be ∑

l∈N
uhk(x, t)χ[lh,(l+1)h)(t) or

∑
l∈N

uhk(x, t)χ(lh,(l+1)h](t), (4.16) def equi

as this does not change the value of u(x, t). Recalling that uhk is usc in space, we can thus ensure
that zk is a local maximum point for uhk − η by choosing the definition in (4.16) that makes uhk
usc in time at zk. Then, passing to a further subsequence we can ensure that zk → w ∈ Bρ(z̄), and
we use the definition of u to obtain

(u− η)(w) ≥ lim sup
k

(uhk − η)(zk) ≥ lim sup
k

(uhk − η)(z̃k) = (u− η)(z̄).

Therefore, w = z̄ by maximality. Thus we can assume that each function uhk − η achieves a local
supremum in Bρ(z̄) at a point zhk =: (xk, tk) and that uhk(zhk) → u(z̄) as k → ∞. Finally, we can
assume also that ∇η(xk, tk) ̸= 0 for k large enough.
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In particular, one has
uh(x, t) ≤ η(x, t) + ck (4.17) eq 6.19 Nonlocal

where ck := uhk(xk, tk) − η(xk, tk), with equality if (x, t) = (xk, tk). Let σ > 0 and set

ησhk(x) := η(x, tk) + ck +
σ

2
|x− xk|2.

Then, for all x ∈ RN ,
uhk(x, tk) ≤ ησhk(x)

with equality if and only if x = xk. We set lk = uhk(xk, tk) = ησhk(xk). We fix ε > 0, to be chosen

later, and write Eε,k := {uhk(·, tk − hk) ≥ lk − ε}. We define1

Wε :=
(
T+
h,tk−hkEε,k

)
\
{
ησhk(·) > lk + ε

}
. (4.18)

We immediately see that Wε → {xk} in the Kuratowski sense as ε→ 0 since by (4.13)

{uhk(·, tk) > lk − ε} \
{
ησhk(·) > lk + ε

}
⊆Wε ⊆ {uhk(·, tk) ≥ lk − ε} \

{
ησhk(·) > lk + ε

}
, (4.19) inclusions W_e

see also (4.24) below. Then, we check that |Wε| > 0 for all ε small enough. By the continuity
of ησ and |∇η(z̄)| ̸= 0, for any ε there exist a radius rε such that Wε ⊇ B(xk, rε) ∩ T+

h,tk−hkEε,k.

Furthermore, for any ε > 0, using (4.13) again yields xk ∈ T+
hk,tk−hk{uhk(·, tk − hk) ≥ lk − ε}, and

the latter set coincides with the closure of its points of density 1 by Lemma 3.3. Thus, xk satisfies
lower density estimates and so we conclude that |Wε| > 0. Now, assume Eε,k is bounded. By
minimality we have

Pϕ(T+
h,tk−hkEε,k) +

1

hk

ˆ
T+
h,tk−hk

Eε,k

sdψEε,k(x) dx+

ˆ
Wε

Fhk(x, tk − hk) dx

≤ Pϕ

((
T+
h,tk−hkEε,k

)
∩ {ησhk > lk + ε}

)
+

1

hk

ˆ
(
T+
h,tk−hk

Eε,k

)
∩{ησhk>lk}

sdψEε,k . (4.20) eq 6.21 Nonlocal

Adding to both sides the term Pϕ

(
{ησhk > lk + ε} ∪ T+

h,tk−hkEε,k

)
and using the submodularity

(2.4), we obtain

Pϕ({ησhk > lk + ε} ∪Wε) − Pϕ({ησhk > lk + ε}) +
1

hk

ˆ
Wε

sdψEε,k(x) dx

+

ˆ
Wε

Fhk(x, tk − hk) dx ≤ 0.

By (4.17), {uhk(·, tk − hk) ≥ lk − ε} ⊆ {η(·, tk − hk) ≥ lk − ck − ε}, therefore it holds

Pϕ({ησhk > lk + ε} ∪Wε) − Pϕ({ησhk > lk + ε}) +
1

hk

ˆ
Wε

sdψ{η(·,tk−hk)≥lk−ck−ε}(x) dx

+

ˆ
Wε

Fhk(x, tk − hk) dx ≤ 0. (4.21) eq 6.22 Nonlocal

1We need to define the sets Wε in this way (compare the different definition in [14]) since firstly, we can not rule
out that the inclusions in (4.19) are strict, and secondly it is not clear if otherwise |Wε| > 0.
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If instead Eε,k is an unbounded set with compact boundary, we replace inequality (4.20) by

Pϕ(Th,tk−hkEε,k) +
1

hk

ˆ
(
T+
h,tk−hk

Eε,k

)
∩BR

sdψEε,k(x) dx+

ˆ
Wε

Fhk(x, tk − hk) dx

≤ Pϕ(
(
T+
h,tk−hkEε,k

)
∩ {ησhk > lk + ε}) +

1

hk

ˆ
(
T+
h,tk−hk

Eε,k

)
∩{ησhk>lk+ε}∩BR

sdψEε,k ,

for R > 0 sufficiently large, see (4.4). Then, one can argue as before to obtain (4.21).
The first two terms Pϕ({ησhk > lk + ε} ∪Wε) − Pϕ({ησhk > lk + ε}) can be estimated as done

in Lemma 3.8. Indeed, we consider the vector field v = ∇pϕ(x,∇ησhk) in (2.5) and we use the
divergence theorem to get

Pϕ({ησhk > lk + ε} ∪Wε) − Pϕ({ησhk ≥ lk + ε}) ≥
ˆ
∂({ησhk>lk+ε}∪Wε)

v · ν −
ˆ
∂{ησhk>lk+ε}

v · ν

= |Wε|
 
Wε

div v,

(4.22) eq 6.30 Nonlocal

where ν denotes the unit outer vector to the set we are integrating on. We then remark thatffl
Wε

div v → Hϕ
{ησhk>lk}

(xk) and
ffl
Wε

Fhk(x, tk − hk) dx → Fhk(xk, tk − hk) as ε → 0 by continuity.

The other term in (4.21),
´
Wε

sdψ{η(·,tk−hk)>lk−ck−ε}, can be treated as follows. For any z ∈Wε, we

have
η(z, tk) + ck +

σ

2
|z − xk|2 ≤ lk + ε. (4.23) eq 6.23 Nonlocal

Since, in turn, η(z, tk) + ck > lk − ε it follows that σ|z − xk|2 < 4ε and thus, for ε small enough,

Wε ⊆ Bc
√
ε(xk). (4.24) eq 6.24 Nonlocal

By a Taylor expansion, for every z ∈Wε we have

η(z, tk − hk) = η(z, tk) − hk∂tη(z, tk) + h2k

ˆ 1

0

(1 − s)∂2ttη(z, tk − shk) ds. (4.25) eq 6.25 Nonlocal

Then, we consider y, ye ∈ {η(·, tk − hk)(y) = lk − ck − ε} being respectively, a point of minimal
ψ−distance and Euclidean distance from z. We shall prove that

|z − y| = O(hk). (4.26) decay y

In order to prove this result, we start remarking that for k → ∞ and choosing ε ≪ hk, one has
sdψ{η(·,tk−hk)≥lk−ck−ε}(z) → 0 (as z → xk for ε → 0 and xk ∈ {η(·, tk) ≥ lk − ck}). In particular,

recalling the bounds (2.3) one has

|z − ye| ≤ c2ψ|z − y| ≤ c3ψ|sd
ψ
{η(·,tk−hk)≥lk−ck−ε}(z)| → 0

as k → ∞. By (4.23) we deduce in particular η(z, tk) + ck < lk + ε, that is,

0 ≤ η(z, tk) − η(y, tk − hk) ≤ 2ε, (4.27) eq 6.28 Nonlocal
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and the same inequality substituting ye to y. Thus, one has

η(z, tk) − η(ye, tk − hk) = ∇η(y, tk − hk) · (z − ye) − hk∂tη(y, tk − hk) +O(|z − ye|2 + h2k)

which we combine with ∇η(y, tk − hk) · (z − ye) = ±|∇η(y, tk − hk)| |z − ye| (see [14] for details)
and (4.27) to get

|z − ye| |∇η(y, tk − hk)| ≤ 2ε+O(hk) +O(|z − ye|2).

Recalling that |∇η(y, tk−hk)| ≥ c > 0 for hk small enough, we divide by |∇η(y, tk−hk)| to conclude
|z − ye| = O(hk) as ε≪ hk. Finally, employing again (2.3), we conclude (4.26).

Then, we consider a geodesic curve for the definition of sdψ{η(·,tk−hk)≥lk−ck−ε}(z): if this distance

is positive, we choose γ : [0, 1] → RN with γ(0) = z, γ(1) = y, with y as before, otherwise we take

γ such that γ(0) = y, γ(1) = z. In the following, we will assume sdψ{η(·,tk−hk)≥lk−ck−ε}(z) > 0, the

other case being analogous. Recalling (2.1), we have

η(z, tk − hk) = η(y, tk − hk) +

ˆ 1

0

∇η(γ, tk − hk) · γ̇ dt

≥ η(y, tk − hk) −
ˆ 1

0

ψ(γ,−∇η(γ, tk − hk))ψ◦(γ, γ̇) dt

≥ η(y, tk − hk) − ψ(y,−∇η(y, tk − hk)) sdψ{η(·,tk−hk)=lk−ck−ε}(z)

−
ˆ 1

0

(ψ(γ,−∇η(γ, tk − hk)) − ψ(y,−∇η(y, tk − hk)))ψ◦(γ, γ̇) dt

≥ η(y, tk − hk) −
(
ψ(y,−∇η(y, tk − hk)) + c|z − y|

)
sdψ{η(·,tk−hk)=lk−ck−ε}(z),

where in the last line we reasoned as in (3.25) to obtain the bound supt |γ(t) − y| ≤ c|z − y|.
Recalling (4.26) one has

η(z, tk − hk) ≥ η(y, tk − hk) − ψ(y,−∇η(y, tk − hk)) sdψ{η(·,tk−hk)=lk−ck−ε}(z) + o(hk). (4.28) eq 6.26 Nonlocal

Combining (4.25) with (4.28) and using (4.27), we deduce

sdψ{η(·,tk−hk)=lk−ck−ε}(z)ψ(y,−∇η(y, tk − hk)) + o(hk)

≥ −2ε+ hk∂tη(z, tk) − h2k

ˆ 1

0

(1 − s)∂2ttη(z, tk − shk) ds.

Note that, in view of (4.23) and (2.3), |η(z, tk) − η(y, tk)| ≤ cε + chk = O(hk), provided ε ≪ hk
and small enough. Thus, using also (4.24),(4.26) we deduce

1

hk
sdψ{η(·,tk−hk)=lk−ck−ε}(z) ≥

∂tη(z, tk) − 2ε
hk

−O(hk) −Ohk(1)

ψ(y,−∇η(y, tk − hk))

=
∂tη(xk, tk) +O(

√
ε) − 2ε

hk
−O(hk) −Ohk(1)

ψ(xk,−∇η(xk, tk − hk)) +O(
√
ε) +O(hk)

. (4.29) eq 6.29 Nonlocal

We conclude by employing (4.21), (4.22) and (4.29), dividing by |Wε| and sending ε→ 0 to obtain

∂tη(xk, tk) −Ohk(1)

ψ(xk,−∇η(xk, tk)) +O(hk)
+Hϕ

{ησhk≥η
σ
hk

(xk)}(xk) − Fhk(xk, tk − hk) ≤ 0.
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Letting simultaneously σ → 0 and k → ∞, recalling the continuity properties of Hϕ, we deduce
(4.8). Indeed the sets {ησhk > ησhk(xk)} are converging in C2 to the set {η > η(x)}, xk → x and
thus

Hϕ
{ησhk>η

σ
hk

(xk)}(xk) → Hϕ
{η>η(x)}(x),

and we conclude the proof of this step.
Step 2. Now we consider the case ∇η(x̄, t̄) = 0 and we show that ∂tη(x̄, t̄) ≤ 0. The proof follows
the line of the one in [14], we just highlight the differences.

Since ∇η(z̄) = 0, there exist g ∈ F and ω ∈ C∞(R) with ω′(0) = 0 such that

|η(x, t) − η(z̄) − ∂tη(z̄)(t− t̄)| ≤ g(|x− x̄|) + ω(|t− t̄|),

thus, we can define

η̃(x, t) = ∂tη(z̄)(t− t̄) + 2g(|x− x̄|) + 2ω(|t− t̄|)

η̃k(x, t) = η̃(x, t) +
1

k(t̄− t)
.

We remark that u− η̃ achieves a strict maximum in z̄ and the local maxima of u− η̃k in RN × [0, t̄]
are in points (xk, tk) → z̄ as k → ∞, with tn ≤ t̄. From now on, the only difference from [14]
is in the case xk = x̄ for an (unrelabeled) subsequence. We assume xk = x̄ ∀k > 0 and define
bk = t̄− tk > 0 and the radii

rk := g−1(akbk),

where ak → 0 must be chosen such that the extinction time for B(·, rk) is greater than t̄ − tk, for
k large enough. To show that such a choice for ak is possible, recalling Lemma 4.9 we set

rk = 2
√
C(t̄− tk) = 2

√
C bk

(which has extinction time greater than 2(t̄− tk)) and it is enough to prove that

g(2
√
C bk)

bk
→ 0, as k → ∞,

which follows from the definition of the family F given in Definition 4.5. We then have

B(x̄, rk) ⊆ {η̃k(·, tk) ≤ η̃k(x̄, tk) + 2g(rk)}
⊆ {u(·, tk) ≤ u(x̄, tk) + 2g(rk)},

by maximality of u− η̃k at zk. Since Lemma 4.9 ensures

x̄ ∈ {u(·, t̄) ≤ u(x̄, tk) + 2g(rk)},

we use again the maximality of u− η at z̄ and the choice of rk to obtain

η(x̄, tk) − η(z̄)

tk − t̄
=
η(x̄, tk) − η(z̄)

−bk
≤ u(x̄, tk) − u(x̄, t̄)

−bk
≤ −2g(rk)

−bk
= −2ak.

Passing to the limit k → ∞, we conclude that ∂tη(z̄) ≤ 0.
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We conclude with two remarks concerning some possible generalizations of the results presented.

Remark 4.13. The results presented in this work can be immediately extended to unbounded

initial open sets E0, whose boundary is compact. Indeed, defining the discrete flow as E
(h)
t = E0

if t ∈ [0, h), otherwise by induction E
(h)
t = T−

h,tE
(h)
t−h, where the operator T−

h,n is the one defined in
(4.2), this evolution is uniquely characterized by the one of the complement. Thus, all the results
presented in this paper can be extended to this particular unbounded case.

rmk rel geom Remark 4.14. Following the lines of [9] (in the spirit of [3]) one can see that the results of this
paper may be extended to prove existence of flat flows and level set solutions to the mean curvature
flow on RN endowed with the geometric structure induced by a Finsler metric ϕ◦. For example,
the perimeter functional in this setting is defined as follows. Given a set E of finite perimeter, its
(intrinsic) perimeter is

Pϕ◦(E) =

ˆ
∂∗E

ϕ(x, νE(x)) dHN−1
ϕ◦ (x),

where the Hausdorff measure HN−1
ϕ◦ is the one induced by the metric ϕ◦. In particular, one can

compute dHN−1
ϕ◦ (x) = ωN |Bϕ◦

(x)|−1 dHN−1(x) (see [9]), thus this approach is equivalent to
consider in our framework a slightly different (but still regular) anisotropy, namely ϕ∗(x, ν) :=
ωN |Bϕ◦

(x)|−1ϕ(x, ν). In particular, this approach leads to considering the evolution of hypersur-
faces Et moving according to the evolution law

Vϕ◦(x, t) = −HEt(x) + f(x, t) x ∈ ∂Et, t ∈ (0, T )

where now Vϕ◦ represents the speed of evolution along the anisotropic normal outer vector nϕ◦(x) =
∇pϕ(x, νE(x)) and H is the “intrinsic” mean curvature, thus the first variation of the perimeter
Pϕ◦ . Recalling that nϕ◦(x) · νE(x) = ϕ(x, νE(x)), we see that the hypersurfaces are evolving with
a normal (in the Euclidean sense) velocity given by the law

V (x, t) = ϕ(x, νEt(x))
(
−Hϕ∗

Et
(x) + f(x, t)

)
.

After this transformation, we can apply the results previously proved.
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