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Minimizing Movements for Anisotropic and Inhomogeneous
Mean Curvature Flows

Antonin Chambolle, Daniele De Gennaro, Massimiliano Morini

Abstract

In this paper we address anisotropic and inhomogeneous mean curvature flows with forcing
and mobility, and show that the minimizing movements scheme converges to level set/viscosity
solutions and to distributional solutions a la Luckhaus-Sturzenhecker to such flows, the latter
result holding in low dimension and conditionally to the convergence of the energies. By doing
so we generalize recent works concerning the evolution by mean curvature by removing the
hypothesis of translation invariance, which in the classical theory allows one to simplify many
arguments.

1 Introduction

In this paper we deal with the anisotropic, inhomogeneous mean curvature flow with forcing and
mobility. By inhomogeneous we mean that the flow is driven by surface tensions depending on the
position in addition to the orientation of the surface. The evolution of sets t — FE; C RY considered
is (formally) governed by the law

V(1) = v(@,ve, (@) (~HE, (2) + f(2.1)), =€ 0B, te(0,T), (1.1)

where V (z,t) is the (outer) normal velocity of the boundary OE; at x, ¢(x,p) is a given anisotropy
representing the surface tension, H? is the anisotropic mean curvature of OE; associated to ¢,
(z,p) is an anisotropy evaluated at the outer unit normal vg,(x) to OE; which represents a
velocity modifier (also called the mobility term), and f is the forcing term. We will be mainly
concerned with smooth anisotropies (and the regularity assumptions will be made precise later on):
in this case, the curvature H? is the first variation of the anisotropic and inhomogeneous perimeter
associated to the anisotropy ¢ (in short, ¢—perimeter) defined as

Py(E) := a*Ecﬁ(ﬂia vp(x)) dHN " (z) (1.2)

for any set E of finite perimeter (where 9*E denotes the reduced boundary of F) and, if F is
sufficiently smooth, it takes the form

HY(z) = div(V,o(z, ve(r))),

where with V,, we denote the gradient made with respect to the second variable. Note that evo-
lution (1.1) can be red as the motion of sets in RY, when the latter is endowed with the Finsler



metric induced by the anisotropy (see Remark 4.14). Equation (1.1) is relevant in Material Sciences,
Crystal Growth, Image Segmentation, Geometry Processing and other fields see e.g. [1, 20, 26, 37,
38].

The mathematical literature for inhomogeneous mean curvature flows is not as extensive as in
the homogeneous case, mainly due to the difficulties arising from the lack of translational invari-
ance. Indeed, assuming that the evolution is invariant under translations allows to simplify many
arguments used in the classical proofs of, for example, comparison results and estimates on the
speed of evolution. In the homogeneous case the well-posedness theory is nowadays well established
and quite satisfactory, both in the local and nonlocal case, and even in the much more challenging
crystalline case (that is, when the anisotropy ¢ is piecewise affine) see [2, 3, 9, 12, 13, 14, 17, 25, 32,
33, 35] to cite a few. Concerning the inhomogeneous mean curvature flow, we cite [27, 28] where
the short time existence of smooth solutions on manifolds is shown, and [24, 30], where the viscosity
level set approach (introduced for the homogeneous evolution in [17, 22]) is extended, respectively,
to the equation (1.1) and to the Riemannian setting.

In the present work we implement the minimising movement approach a la Almgren-Taylor-
Wang [3] to prove existence via approximation of a level set solution to the generalized anisotropic
and inhomogeneous motion (1.1). To carry on this scheme (which has only been sketched in [9], but
lacks a formal proof) we gain insights from [14]. We also show that, under the additional hypothesis
of convergence of the energies (1.6) and low dimension (2.6)(which are nowadays classical for this
approach), the same approximate solutions provide in the limit a suitable notion of “BV-solutions”,
also termed distributional solutions, see [33, 35].

The main limitations of this work are the following. To begin with, the new arguments which
are used to compensate the lack of translation invariance are based on the locality of the anisotropic
curvature H? associated with a smooth anisotropy ¢. This implies that the proofs are not straight-
forwardly adaptable to the so-called “variational curvatures” considered in [14], which are non-local
in nature. On the other hand, since the crystalline curvatures are highly nonlocal and degenerate
operators (see e.g. [12, 15]), they do not fall in the theory constructed in the present work. In
principle, it would be possible to follow the same perturbative study conducted in [12] in order
to prove at least existence for an inhomogeneous and cristalline mean curvature flow. However,
a satisfactory characterization of the limiting motion equation bearing a comparison principle is
lacking so far.

This work can be seen as a first step towards constructing a general theory of motions driven
by non translational invariant and possibly nonlocal curvatures, in the spirit of [14].

1.1 Main results

Now briefly recall the minimizing movements procedure in order to state the main results of the
paper. Given an initial bounded set Ey and a parameter h > 0, we define the discrete flow
Et(h) = Th,t_hE&)h for any t > h and Et(h) = Ey for t € [0, h), where the functional T}, , is defined
for t > 0 as follows: for any bounded set E we set T} E (or, sometimes, T, ,E) as the minimal
solution to the problem

sddj(x) [£]h+h
min P¢(F)—|—/ ET+][ f(z,s)ds | dHN"1(z) : F is measurable p (1.3)
P [71h

where sd}é(a:) is the signed geodesic distance between = and F induced by the anisotropy ¢ (see
(2.2) for the precise definition) and [s] = max{n < s, n € NU {0}} denotes the integer part of



stence flat flow‘

1tional solutions‘

a non-negative real number s € [0, +00). We will then define T}, as the maximal solution to the
problem above. Any L!'—limit point as h — 0 of the family {Et(h)}tzo will be called a flat flow. In
the whole paper we will assume that it holds

¢ € & (see Definition 2.2) and v is an anisotropy as in Definition 2.1,

vz e RN it holds f(- CORN (H)
z € RY,t €[0,+00) it holds f(-,t) € C*(R™), || fll oo (N x[0,400)) < 0O

With more effort one could weaken the hypothesis and require fot f(-,8)ds to be continuous (see
[16]). For the sake of simplicity we will require the global-in-time boundedness. We prove existence
and Holder regularity for flat flows.

Theorem 1.1 (Existence of flat flows). Assume (H). Let Eqy be a bounded set of finite perimeter

and ¢, 1, f satisfy the hypothesis above. For any h > 0, let {Et(h)}tzo be a discrete flow with initial
datum Ey. Then, there exists a family of sets of finite perimeter {E;}1>0 and a subsequence hy, \, 0
such that

EM 5B, in LY,

for a.e. t € [0,4+00). Such flow satisfies the following regularity property: for any T > 0 and for
every 0 < s <t <T,

|E,AE| < |t — |2,
P¢(Et) S P¢(E()) +c,
where the constant ¢ depends on T also.

Subsequently, we will show that the flat flow are distributional solutions, as defined in [33]. We
will require additional hypothesis: firstly, low dimension (2.6) (linked to the complete regularity of
the ¢—perimeter minimizer, compare [33, 35]), moreover

Jey > 08t [Y(x,0) —Y(y,v)| < cple —yl, Yo,y e RV, ve SV, (1.4)
f e Co’ RN x[0,00))). (1.5)

Theorem 1.2 (Existence of distributional solutions). Assume (H), (1.4), (1.5) and (2.6). For any
T>0, if
T T
i [P = [ P, (1.6)
k—oo Jq 0

then {E,}1>0 is a distributional solution (1.1) with initial datum Ey in the following sense:

(1) for a.e. t € [0,T) he set Ey has weak ¢— curvature Hgt (see (2.11) for details) satisfying

T
/ / HE 2 < oo
0 *Fy

(2) there exist v: RN x (0,T) — R with fOT Joep, v? AHN 1At < 00 and U("t)’aEt € L*(OFEy) for
a.e. t €10,T), such that

T T
7/ / ondHN 1 dt = / / (g, — ) man™="ar (1.7)
0 “ By 0 * By )

standing hp

’ legge curvatura




T T
/ 8t77dxdt—|—/ n(-,0)dx = —/ Y(vg, ) ondHN 1 dt. (1.8)
0o JE Eo o JoE,

for every n € CHRYN x [0, +00)).

The definitions 1),2) extend to our case the the definition of BV-solutions of [33] and the
distributional solutions of [35]. We recall that hypotheses (1.6) ensures that the evolving sets avoid
the so-called “fattening” phenomenon. It is known that this hypothesis is satisfied in the case of
evolution of convex or mean-convex sets, see e.g. [15, 18], but in general is not known under which
general hypothesis it is valid. We also remark that the proof of the theorem above provides a
rigorous proof of [15, Theorem 3.2], which had only been sketched in that paper and was invoking
a Bernstein type argument which might not be known in that setting, and which we bypass using
regularity results and a double blow-up argument.

In the second part of the work we will focus on the level set approach. Briefly, given an initial
compact set Ey, we set ug such that {ug > 0} = Ey and we look for a solution w in the viscosity
sense (in a sense made precise in Definition 4.6) to

{atu +1(x, — V) (divV,é(z, Vu(z)) — f(z,t) =0 19)

u(,t) = up.

Classical remarks ensure that any level set {u > s} is evolving following the mean curvature flow
(1.1). To prove existence for (1.9) we use an approximating procedure. For h > 0 and ¢ € (0, +00)
we set iteratively ui" (-, t) = ug for t € [0,h) and for t > h

u;{(x,t) 1= sup {5 ER : x€ T}tt_h{ut(',t —h)> s}}

uy, (z,t) :=sup {s €ER : zeTy, {u, (t—h)> 5}},

where the operator Tft has been previously introduced. We remark that these are maps piecewise
constant in time, since Tft = Tf[t Rl which are only upper and lower semicontinuous in space

respectively. Then, we will pass to the limit A — 0 on the families {u,jf}h to find functions u™,u™
which are viscosity sub and supersolution respectively of equation (1.9). Passing to the limit as
h — 0 in our case is not straightforward. The main issue is that we do not have an uniform estimate
on the modulus of continuity of the functions uj (compare [14]) and thus we can not pass to the
(locally) uniform limit of the sequence. (More precisely, our best estimate contained in Lemma 4.9
decays too fast as h — 0 to provide any useful information). Nonetheless, motivated by [6, 7, 8] we
can define the half-relaxed limits

ut(z,t):= sup  limsupu) (zp,tp)
(zh,,th,)%(x,t) h—0 (1 10)
u” (z,t) := (zh,tir)li(z,t) hhm_:(r)lf up(xh, th),

and prove that the functions defined above are sub and supersolutions, respectively, to (1.9). The
main difficulty in this regard is that we need to work with just semicontinuous functions in space,
as in the translationally invariant setting one can easily prove the uniform equicontinuity of the
approximating sequence. We prove the following.

llegge velocita
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teo sol viscosa‘

scosity solutions‘

def anisotropy

Theorem 1.3. Assume (H), (1.4) and f € CO(R™ x [0,+00)). The function u™ (respectively u~)
defined in (1.10) is a viscosity subsolution (respectively a viscosity supersolution) of (1.9).

Thanks to the results of [17] we then prove that, under the additional hypothesis

VeV,o(-,p) and V?ng(',p) are Lipschitz, uniformly for p € S

V2¢?is uniformly elliptic (apart from the degenerate direction p) (1.11)
(-, p) Lipschitz continuous, uniformly in p .

f(-,t) Lipschitz continuous, uniformly in ¢,
the following uniqueness result holds.

Theorem 1.4. Assume (H) and (1.11). If ug is a continuous function which is spatially constant
outside a compact set, equation (1.9) with initial condition uy admits a unique continuous viscosity
solution u given by (1.10). In particular, ut = u™ = u is the unique continuous viscosity solution
to (1.9) and uif — u as h — 0, locally uniformly.

The previous result yields a proof of consistency between the level set approach and the mini-
mizing movements one to study the evolution (1.1). We recall that it has been established for the
classical mean curvature flow in [11], in the anisotropic but homogeneous case in [21] and in a very
general nonlocal setting in [14].

2 Preliminaries

We start introducing some notations. We consider 0 € N. We will use both B,(z) and B(z,r)
to denote the Euclidean ball in RY centered in = and of radius r; with BY~1(x) we denote the
Euclidean ball in RV~ centered in z and of radius r; with SV we denote the sphere 9B;(0) C RN,
In the following, we will always speak about measurable sets and refer to a set as the union of all
the points of density 1 of that set i.e. E = E(1). Moreover, if not otherwise stated, we implicitly
assume that the function spaces considered are defined on RV, e.g L= = L>®(R"). Moreover, we
often drop the measure with respect to which we are integrating, if clear from the context.

Definition 2.1. We define anisotropy (sometimes defined as an elliptic integrand) a function
with the following properties: v (z,p) : RV x RN — [0, +00) is a continuous function, which is
convex and positively 1-homogeneous in the second variable, such that

1
—Ipl < Y(x,p) < cylpl
Cy

for any point = € RN and vector p € RY.

We remark that, as standard, we define a real function f positively 1-homogeneous if for any
A > 0, it holds f(Ax) = Af(x). In particular, the anisotropies that we will consider are not
symmetric. In the following, we will always denote the gradient of an anisotropy with respect to
the first (respectively second) variable as V1 (respectively V,1). We then recall the definition of
some well-known quantities (see [9]). Define the polar function of an anisotropy v, denoted with

Y°, as

wo('vg) ‘= sup {g "Dt ¢(7p) < 1} (21)

peERN
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Using the definition it is easy to see that for all p,& € RY it holds
PP (8 2 p-& —U( =Pt () <p- &
Furthermore, one can prove that (see [9])
PP(Vpe) =1, 9(Vpy®) =1, (¢°)° = 4.

We define for any x,y € RV the geodesic distance induced by 1, or 1)—distance in short, as

dist? (2, ) := mf{ / G (8 A0 At =y e W[, 1];RN),7(0)=%7(1)=@/}.

We remark that this function is not symmetric in general. We define the signed distance function
from a closed set £ C RV as

sd(z) == ;gg dist? (y, ) — ylélg dist? (z, ), (2.2)

so that Sd;é > 0 on E° and Sd% < 0in E. We remark that the bounds stated in Definition 2.1 impy

1

—dist < dist? < cydist, (2.3)

Cop
where here and in the following we will denote with dist,sd the Euclidean distance and signed
distance function respectively. We define the )—balls as the balls associated to the ip—distance,
that is

Bg(a:) = {y e RY : dist¥(y,z) < p},

which in general are not convex nor symmetric.

Definition 2.2. Given A > 1,1 > 0 we say that an anisotropy ¢ is a regular elliptic integrand if
o(x, ')|SN € C%1(SN) and for every x,y,e € RV, v,/ € SN one has:

§ <o) <A,
|p(x,v) — ¢y, V)| + |Vpd(z,v) — Vo (y,v)| < |z -y
”v;z;(b(xa V) - v%(b(l’, I/)”

v =]

<A

Vo (z, )| + Vb (z, v)|+
e (el
- A

We will denote a regular parametric elliptic integrand as ¢ € £. Given any set of finite perimeter
E, one can define the ¢—perimeter Py as follows

e- Vf,qﬁ(w, v)le]

Py(E) = [ (o, vp(x)) dHY (),
9 E
where 0*E is the reduced boundary of E and vg is the measure-theoretic outer normal, see [34]
for further references on sets of finite perimeter. The perimeter of a set of finite perimeter E in an
open set A is defined as

P,(E;A) ::/ o(z,vp(x)) dHN ~1(x).

0*ENA
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We remark that, by definition of regular elliptic integrand, for any C? set E it holds

1

XP(E) < P,(E) < A\P(E).
Some additional remarks on this definition can be found in [19]. We just recall the submodularity
property of the ¢—perimeter, whose proof can be found in [19, Remark 2.4].

Proposition 2.3 (Submodularity property). For any two sets E,F C RN of finite perimeter in
an open set A C RY, one has

Py(EUF)+ Py(ENF) < Py(E) + Py(F). (2.4)

Moreover, by homogeneity, (2.1) and recalling that for any set E of finite perimeter it holds
Dxp = —vgdHN ! we have the following equivalent definitions

O*E
RME)wp{éNDXEf :gecaRMRN%w(g)g1} (2.5)
:sup{/;dwgdHN;l: feCﬂURNﬂRNx¢%H§)§1}.

Concerning the regularity property of the ¢—perimeter minimizers, we refer to [36]. We just recall
the following results. Given two anisotropies ¢, € &, we define the “distance” between them as

diste (¢, ) := sup{|¢(z,p) — ¥(z, p)|

where || denotes the Euclidian norm. Then, some regularity properties of minimizers of ¢—perimeter
can be found in the corollary in part I 6 and the theorem in part II 7 in [36], which are recalled
below.

Theorem 2.4. Assume ¢ € E. Then, for any A—minimizer E of the ¢—perimeter, the reduced
boundary 0*E of the set E is of class CY'/? and the singular set ¥ := OF \ O*E satisfies

HN (D) =0.
Moreover, if distg (o, |- |) is small enough, then
HNTT(E) =0.

We sum up these hypotheses that yield the complete regularity of A—minimizers of parametric
elliptic integrands:

either ¢ € & and N < 3,

. . (2.6)
or distg (¢, | -|) is small enough and N < 7.

[P via calibratior




2.1 The first variation of the ¢—perimeter

In this section we compute the first variation of the ¢-perimeter and define some additional operators
associated to it.

Assume F is of class C2. Let X be a vector field and assume ¥(z,t) =: ¥, () is the associated
flow. To simplify the notation, we write

v(z,t) = Vesdy (g (2).

By classical formulae (see e.g. [10]) we can compute the following. For the sake of brevity, we avoid
writing the evaluation ¢ = ¢(z, vg(x)), if not otherwise specified, and assume that all the integrals
are made with respect to the Hausdorff (N — 1)-dimensional measure H™ 1.

%‘t=op¢(Et) - %Lo @) v (Le(@), ) T dHN " (@)

= V.o - X+V,¢- (~V.(X-v)+ Dv[X])+ ¢div, X (2.7)

OF

= /BE Ve X + Vo (=V (X -v)+ Dv[X])+div, (¢X) = Vo - X + (Vo -v)(X - v)
- / Vad- X + Vb (—Vo(X -v) + Dv[X]) — Vad- X — Dv[V,¢] - X
OFE

+div, (6X) + (Vo - v)(X - v)

= - —Vp¢ V(X v)+ (Vi -v)(X -v)+ (Dv[V,o] - v) (X - v) + div, (¢ X)

= - div, (Vpp(X - 1)) =V - V(X -v) + (X - v) (Ve - V)

- [)E<divrvp¢><x-v> V6 Va(X 1) = V- V(X 1)+ (V- 1)(X - v)

= / (X -v)(div,Vpop+ Vzo-v) = / (X -v)divV,e
OF

OF

where the last equality follows from the definition of div, and the fact that ¢ is 1—homogeneous
with respect to the p variable, since

divV,¢ = div, V,¢ + Z Vi (évm) V]
=div,Vpp+ Y viVp(0a,¢) - v+ v (VieDv) ]

=div,V,¢0 + V30 - v.

Therefore, we define the first variation of a C2—regular set E, induced by the vector field X, as

SPy(E)[X - 1] = /d (X (@) - v(a)) AT, v(a)) 4 ) (2.8) [fizst variavion

and the ¢p—curvature of the set E as

Hp(x) = divVy(z, v(x)). (2.9)



If we now consider equation (2.7), we develop the tangential gradient to find
Voo (=V(X -v)+ Dv[X]) =V,0- (-V.X[v] — Dv[X]+ Dv[X]) = 0.

This shows that for any set E of class C? it holds
SP,(E)[X - V] ;:/ (Voo - X + ¢div, X) dHN 1,
OF

where we dropped the evaluation of ¢ at (x,vg(z)). We remark that the expression on the right
hand side makes sense even if the set F is just of finite perimeter. Defining the ¢—divergence
operator divy as

divyX := Voo - X + ¢div, X, (2.10)

we are led to define the distributional ¢—curvature of a set E of finite perimeter as an operator
HY e L'(DE) (if it exists) such that the following representation formula holds

/ divg X dHV "' = [ HSvp-XdHN™', VX e CF(RY;RY). (2.11)
OF OE

The previous computations allow to say that the distributional ¢—curvature can be expressed as
(2.9) if the set is of class C2. Finally, since ¢ is a regular elliptic integrand, one can prove the
following monotonicity result.

Lemma 2.5. Let E,F be two C? sets of finite ¢—perimeter with E C F, and assume that x €
OF NOE: then HY(z) < HY ().

Proof. Since the anisotropy is smooth, we can expand the curvature formula (2.9) as

H? = tr (Vo Vypé(x,v) + Vip(x,v)Dv) (2.12)

and compare Hﬁ with H}? We consider separately the two terms appearing in (2.12). The first
one depends on v just by the value it has at the point x. Therefore, since vg(x) = vp(x) we have
the equality. The second one falls in the classical framework of smooth anisotropies that do not
depend on the space variable. Indeed, the second term in (2.12) is the same as the curvature in z
associated to the anisotropy ¢ with the first variable freezed at . Then, the result follows from
classical results on curvatures invariant under translations (see e.g. [14, Lemma 4.3]). O

3 The minimizing movements approach

In this section we follow the work of [35] (see also [3, 33]) to prove the existence for the mean
curvature flow via the minimizing movements approach. We recall that in the whole paper we will
assume the hypothesis (H).

3.1 The discrete scheme

In this subsection we will define the discrete scheme approximating the weak solution of the mean
curvature flow, and we shall study some of its properties.

’def curvature vai

’curvature expands




We define the following iterative scheme. Given h > 0, f € L>®(RY x [0,00)) and ¢ > h, and
given a bounded set of finite perimeter F', we minimize the energy functional

FL(E) :P¢(E)+%/Esd}@(x) dx—/EFh(x,t) dx (3.1)

in the class of all measurable sets E C RY, and where we have set

Fy(z,t) = ][Hh f(z,s)ds.

Equivalently, we could define the energy functional as
aF 1 W
FEE) = PyE)+ 1+ [ |sdbl— | Fi(et)da,
h Jear E

which agrees with (3.1) up to a constant. We will call the incremental problem this minimizing
procedure. Then, we denote
Ty +F = E € argmin ﬁ,fjt.

It is well-known (compare (2.8) and [34, Proposition 17.8]) that a minimimum of (3.1) of class C?
satisfies the Euler-Lagrange equation

Hp X -vp, dHN ™ = —/ -

- (1sd}éth(x) — Fh(z,t)) X(z)-vg,(x)dHNHz) =0 (3.2)

OE,

for all X € C°(RY;RY). We can then define the discrete flow, which can be seen as a discrete-in-
time approximation of the mean curvature flow starting from the initial set Fy. We first iteratively
define the sequence (Er(Lh))nGN by setting Eéh) = Ej,

E'r(Lh) = Th,(n—l)hEr(Lh_)l Vn > 1.
Then, we define the discrete flow simply as

EM = gW

Wy tel0,+00). (3.3)

This section is devoted to recall and prove some estimates on the discrete flow. The first one is a
well-known existence result.

1
loc?

Lemma. For any measurable function g : RN — R such that min{g,0} € L the problem

min {P(E) +/ g : E is of finite perimeter}
E

admits a solution.

Consider now F' as a bounded set of finite perimeter. Then, the function g = sd? /h — Fy, is
coercive, thus min{g,0} € L!. Therefore, by the previous result and by classical arguments, one
can prove the following result.

10
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Lemma 3.1. For any given set F' of finite perimeter, the problem (3.1) admits a solution E, which
satisfies the discrete dissipation inequality

1

Pd,(E)—i—f/ sd'a| < Py(F) + Fy(x,t) dsc—/ Fp(x,t) da.
h ENF

E\F F\E

Moreover, the problem (3.1) admits a minimal and a mazimal solution.

We define TJ " (respectively T}, F) as the maximal (respectively minimal) solution to (3.1)
having as initial datum F'. In the following, whenever no confusion is possible, we shall write T}, ;
instead of T} ,.

A compafison result holds. We will consider just bounded sets as datum for the problem
(3.1), but the same result holds in general for unbounded sets (see also Section 4.1 for the case of
unbounded sets with bounded boundary). The proof of this result is classical (see e.g. [14]) and it
is based on the submodularity of the perimeter (2.4). We will omit it.

Lemma 3.2 (Weak comparison principle). Assume that Fy, Fy are bounded sets with Fy CC Fy
and consider g1,g2 € L> with g1 > ga. Then, for any two solutions E;, i = 1,2 of the problems

sd?

min {P¢(E) + / hFi + g; : E is of finite perimeter} ,
E

we have Ey C Ey. If, instead, Fy C F5, then we have that the minimal (respectively mazimal)

solution to (3.1) for i =1 is contained in the minimal (respectively mazimal) solution to (3.1) for

1= 2.

We now prove the volume-density estimates for minimizers of problem (3.1). This result is
based on the minimality properties of almost-minimizers for perimeters induced by regular elliptic
integrands (see [19, Remark 1.9] for further results). These estimates have the disadvantage that
the smallness condition on the radius depends on the parameter h. Subsequently, we will recall a
finer result in the spirit of [33], where we can drop this dependence by making some restrictions on
the balls considered.

Lemma 3.3. Let g € L™ and assume E minimizes the functional
FE) = PuF)+ [ g
F

among all measurable subsets of RN . Then the density estimate

op™ < |By(z) N B[ < (1 —a)p"

opN7l < Py(E;By(x)) < (1— J)prl (3.4) ’perimeter densit;

holds for all x € 9*E, 0 < p < (2\||gllee) ™" := po, for a suitable o0 = (N, cy, N).
Proof. By minimality,
Py(E) < Py(F) + |lglloc| EAF|  VF CRY,

thus [19, Lemma 2.8] implies the thesis. O
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7 in ChaMorNovPon‘

Remark 3.4. We remark that the previous result allows us to choose the minimal solution to (3.1)
to be an open set, and the maximal one to be a closed set. This follows from the fact that the
density estimates imply that the boundary of any minimizer has zero measure.

We now recall [12, Lemma 3.7], which is an anisotropic version of [33, Remark 1.4]. It provides
volume-density estimates for minimizers of (3.1) starting from F, uniform in % and h, holding in
the exterior of E. We remark that, even if in the reference the anisotropy ¢ considered did not
depend on z, all the arguments hold with minor modifications also in our case. We recall the proof
of this result, as similar techniques will be used later on.

Lemma 3.5. Let E be a bounded, closed set, h >0 , and g € L>(RYN). Let E' be a minimizer of

sd?
PyF)+ | =E+g.
r h

Then, there erists o > 0, depending on X, and o € (0,1), depending only on N, \,G := ||g|| 1= (F),
with the following property: if T is such that |E' N Bs(x)| > 0 for all s > 0 and B,.(x) N E = 0 with
r <rg, then

|E' N B,.(z)| > or". (3.5)

Analogously, if T is such that |Bs(Z) \ E'| > 0 for all s > 0 and B, (Z) C E with r < rg, then
|B,(z) \ E'| > or™.

Proof. For all s € (0,7), set E'(s) := E'\ Bs(Z). Note that, for a.e. s we have

Py(E'(s)) = Py(E') = Py(E" N Bs(T)) + /EMB . (6(z,v(2)) + ¢z, —v(z))) dHY " (2),

where v denotes the outer normal vector of the set E' N 9B4(Z). Since Sd% > 0 in E*¢, one has
I (5) Sd}é < @ sdlé, and the minimality of £’ implies

PEaB@ [ g [ (0 ol () d )

By the bound on the ¢—perimeter and using the classical isoperimetric inequality (whose constant
is denoted Cy) we obtain

2AHNHE' N OB, (7)) > EP(E’ N By(7)) +/ g
A B'NB.(3)
1 ’ A=t / _ Cn / =L
> 1 OnIE' N By(@) 7 = llglleo| BN Bs(2)] 2 5B N Bs(2)] 7,

provided |E' N By(z)|"N < Cn/(2)||gllo), which is true if ro is small enough. Since the rhs is
positive for every s, we conclude

d C
E|El N By(2)|V > ——  for ae. s € (0,r). (3.6)

T 4N2N

The thesis follows by integrating the above differential inequality. The other case is analogous. [

12

’ density estimate:

’eq 3.19 ChaMorNo




-ion bounded sets‘

stimates on balls‘

Remark 3.6. Requiring that the anisotropy % is bounded uniformly from above and below ensures
that the results of the previous Lemmas 3.3 and 3.5 can be read in terms of the ¢—balls. For
example, for any 7 > 0 and z € R, equation (3.5) could be read as |E' N BY(z)| > Uc;NrN,
provided 7 is such that |E' N BY(Z)| > 0 for all s > 0 and BY(z) N E = ), and holds for all
r < ro/cy. Here, o is as in Lemma 3.5 and depends only on A. Analogous statements holds for

Lemma 3.9.

We now provide some estimates on the evolution of balls under the discrete flow. We start by
a simple remark concerning the boundedness of the evolving sets.

Remark 3.7. A simple estimate on the energies implies that the minimizers of (3.1) are bounded
whenever F is bounded. Indeed, assume F' C Bp and consider B,(z) N (E \ Bgr) # 0: testing the
minimality of F against F' we easily deduce

R sd?
i < oOF
2h\Bp(x) N E| _/

S Py(F) + [[Fn( )l oo [ EAF] < Py (F) + || flloo (IF] + [ E]).
ENB,@) N

Employing the density estimates of Proposition 3.5 and sending R — oo, we get a contradiction,
as the isoperimetric inequality implies that |E| is bounded since ﬂ’f +(F) < oo.

We now want to prove finer estimates on the speed of evolution of balls. These estimates are
classically a crucial step in order to prove existence of the flow. In the case under study, the main
difficulties come from the inhomogeneity of the functionals considered, as in the homogeneous case
convexity arguments easily yield the boundedness result, for example. We will use a “variational”
approach in the spirit of [14] (but see also [35, Lemma 3.8] for a different proof relying more on the
smoothness of the evolving set).

Lemma 3.8. For every Ry > 0 there exist ho(Ro) > 0 and C(Ry, ¢, f) > 0 with the following
property: For all R > Ry, h € (0,hg), t >0 and x € RN one has

Th,t(BR(x)) D BR,Ch(SC). (37)

Proof. We divide the proof into three steps. In the following, the constants o,ry are those of
Lemma 3.5. We will assume z = 0 for simplicity. We fix R > Ry and denote E := T}, ; Bg.

Step 1. We prove that, given a € (0,0),e € (0,1), we can ensure \BR(l,JE\) \E| <aRN(1—-¢e)V
for h small enough. Indeed, assume by contradiction |Bri_.) \ E| > a RN (1 — &), Testing the
minimality of E against Br, we obtain

P
4| < 1 sd% | < Py(Bg) + - Fp(z,t)dx
h =7 Brl =+4¢ R h\L, )
(Br(1—¢)\E)U(E\BR) BRAE Bgr\E E\Br

and estimating |sd7’§R| >¢e/cy on Bri_q \ E, we get

£ N |Sd1§R|
T‘BR(I—E) \ E| < Py(Br) + || flloo (unR™ + |Br(14¢) \ Brl) + By —— == | dz.
Copy E\BR(1+4¢)

Taking h < ¢/(cyl|f|loo), the last term on the rhs is negative, thus we obtain for e small

&
hioy |Br0-o) \EI < Fs(Br) + 1 £lloo RN (wn + 2V ).
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We employ the hypothesis to obtain
a

e(1—e)VRN < ¢y NunRN ™1 4+ cRY,
th

a contradiction for h < cae (1 — €)Y min{1, R}, where c is a constant depending on N, ¢, 1, || f|| co-
Step 2. We now prove that, for & small enough, if |Bsg/s \ E| < o(3R/4)", then Bg/»s CC E. We
first assume that R < ro. In this case, if |Bs \ E| > 0 for all s < R < rg, we can follow the second
part of the proof of Lemma 3.5 (since obviously Bs; C Rp) to obtain equation (3.6), which reads

Cn

a 1/N <
|B \ Bl = 4NN

=o'/N foraese (0,R).
Using the condition
|Bsrya \ EMN < o'N(3R/4),

we deduce the existence of a positive extinction radius

3R |Bsrya\ E|'N

R:47 ol/N

such that |Bg- \ E| = 0. Applying Step 1 with the values a = 0/3", ¢ = 1/4, we get

|Bsp/a \ E| < 4WRN

holding for h < ¢(N, ¢, 9, f)R, which combined with (3.8) gives Rx > R/2. Clearly, taking h < cRy
the smallness assumption on h is uniform for R > Ry.

If R > 7y one simply uses a covering argument. For any x € Br_,,, applying the previous result
to the ball B, (z) and using the comparison principle of Lemma 3.2, we conclude that Vh < c¢ry it

holds
U Bup@ccE

TEBR—r,

Step 3. We conclude the proof. By the previous two steps, taking h small enough we see that
p=sup{r >0 : |B,\ E| =0} € (R/2,R],

where R is the constant of Remark 3.7. We can assume p < R, otherwise the result of the lemma
is trivial. Consider the vector field V,¢ (:177 M) € CYRN,RYN). Then, recalling (2.5), we get
Py(F) > — [on Dxa - Vpd(x,2/|2x|) for all G set of finite perimeter and

0= [ D (0 2))

Setting W, = (1+4¢)B, \ E, by submodularity on (1+¢)B,, E and exploiting the minimality of E,
we obtain
x
/ Vpo ( ) Dxw, = / Vo (33, ) - (Dx(14e)8, — DX(14)B,nE)
RN i RN ]
< P(b((l + 6)Bp NE) - P¢((1 + S)Bp)

14
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L priori estimate‘

< Py(E) — Py((1+¢)B,UE)

1
< —/ Sd%ﬁ-i—/ Fy(z,t)dx.
h € ) w.

=

We conclude, using the divergence theorem |,

T 1
/E dlvvp¢( T |) < h/ sdl, + [ ]loo | W2 l.

Dividing by |W¢| and sending € — 0 we obtain

R 1 R
f —dwvm( ) <1 .
S Tl h

Exploiting the regularity assumptions on ¢, we remark that

|divV,0| = [tr (Vo V6 + V26V (x/]a])) | < C (1 + 1) .

]

Thus, we obtain

—c<1+1) <P R
P h

which implies that p € (0, p1) U (p2, R) for p12 = (R —~ChF/(R-Ch)? - 4Ch) /2, as long as
h < R2/(4C). Since the choice p < p; < R/2 is not admissible, we conclude the proof by estimating

Ch

pQZR—Ch+ m,

R—-Ch 4Ch
l1—-—— 1| >R—-Ch—-
) ELat
from which the thesis follows. O

The proof of the previous result can be employed to prove an estimate from above of the evolution
speed of the flow, as the following result shows. Since the proof follows the same lines and is easier
in this case, we only sketch it.

Lemma 3.9. Fiz T > 0 and Ry > 0. Then, there exists positive constants C = C(¢,, f, Ro) and
ho = ho(Ro) such that, for every R > Ry and h < hg, if Ey C Bg, then Et(h) C Bprycr for all
€(0,7).

Proof. Choose h small as in the previous result and set
=inf{r>0 : |[E\ B, =0}e (R/2,R]

for h small enough, where R is the constant of Remark 3.7. We can assume p > R, otherwise the
result is trivial. Defining W, = E'\ (1 — €)B, and reasoning as before we obtain

xr
Dxwe = [ 'V 1) (Dxa- — Dxa-
/RN ( ik |) xw /]RN r? (x’ x|) ( X(1-¢)B,UE X(1 E)Bp)

> ~Py((1-)B,UE) + Py((1-£)B,)

15
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> —Py(E) + Py((1 —e)B, N E)

1
> 7/ sd}gR—i—/ Ey(z,t) dx.
h We ’ W,

As in the previous proof, we arrive at

p_R§C<1+1),
h p

which implies that p < py = (R +Ch+/(R+Ch)? + 4Ch) /2 < R+ Ch, up to changing C. O

3.2 Existence of flat flows

In the following, we will prove that the discrete flow (defined in (3.3)) defines a discrete-in-time
approximation of a weak solution to the mean curvature flow, which is usually known as a “flat”
flows (because the approximating surfaces 90* Et(h)
limit 0* Ey, see [3]).

We start by proving uniform bounds on the distance between two consecutive sets of the discrete
flow and on the symmetric difference between them. We introduce the time-discrete normal velocity:

for all t > 0 and z € RN, we set

converge in the “flat” distance of Whitney to the

%sdw(h) (z) for ¢t € [h, +00)
vp(z,t) == Ein
0 for t € [0, h).

The following result provides a bound on the L°°—norm of the discrete velocity. Since the proof
is essentially the same of [33, Lemma 2.1], we will omit it. The only difference is that we use the
upper and lower bounds of (2.3) to work with Euclidean balls.

Lemma 3.10. There exists a dimensional constant ¢ with the following property. Let Ey be a
bounded set of finite perimeter and let {Eﬁh)}te(oyﬂ be a discrete flow starting from Eg. Then,

sup  Jop(5, )] < cooh_l/Q,
EMAEM,

where co, 1S a constant depending on N, only.

The following result can be found in [35, Proposition 3.4] (see also [23, Lemma 2.2]): it provides
an estimate on the volume of the symmetric difference of two consecutive sets of the discrete flow.
The proof is analogous to the one in the reference.

Lemma. Let F be a bounded set of finite perimeter and let E be a minimizer of (3.1). Then, there
ezists a constant C depending on ¢, such that

1
|EAF| < C (1P¢(E) +7 /EM |sd;$|> VI < coocypVh. (3.9)

We are now able to prove an uniform bound on the perimeter of the evolving sets. The proof
follows [23, Proposition 2.3].
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lemma 1.1 LucStu\ Lemma 3.11. For any initial bounded set Eqy of finite ¢—perimeter and h small enough, the dis-

crete flow {Et(h)} satisfies
Py(EY) <O vte(0,T),

for a suitable constant Cr = Cp (T, Ey, f, $,v).

Proof. Set k = [T'/h]. By testing the minimality of Et(h) against Et(ﬁ)h we obtain Vt € [h,T)

h h) h h)
PoE)+ [ sl < PB4 e B AED) (3.10)
t t—h -

Combining this estimate with (3.9) for [ = 2ch||f|loc < coocyVh, with ¢ being a suitably large
constant, we obtain

h ]-
Py(EM) + =

) 2 (h) - -
o B9 A, |SdEf}i);L| < (1 + 20h||f||oo) P¢(Et—h) (3.11) |eq iterativa

Iterating the previous estimate, we find
h t h t h
Py(E(M) < (14 em)lEIRy(E) < MBI py (B()

For the first iterate, we start by observing that by Remark 3.7, for h = h(Ep) small enough, we
have E(h) C By, where Ey C B,.. Therefore, by (3.10) for ¢ = h we obtain P¢(E,(lh)) < Py(Ep) + ¢
and we conclude P¢(E(h)) < Cr(Py(Ep) +1). O

Following the previous proof, employing again (3.11) we find

h
Py(Ean) + / jon] + / o] < (1+ ch) P (EM) + / jon
B ABM BM ABM BM ABM

< (1+ch) <P¢(E§h>) +/

lon| | < (14 ch)*Py(Ep).
EYL)AE(();L)

Iterating, we conclude as before

(T/h]
Z /}E(h>AE(h) lun| < Cr(Py(Eo) + 1). (3.12) ’eq 3.18 MugSeiSp:

(k—1)h

Therefore, combining the previous results and applying (3.9) with [ = h < V'h, we obtain

T (T/h]
/ |Et(h)AEt(f)h| <ec Z <hP¢(EI(€2)) + / o 5 5 |vh|> < Cr (Py(Eo) +1). (3.13) ’eq 3.19 MugSeiSp:
h k=1 AE(k 1)h

With the previous estimates, the local Holder continuity in time of the discrete flow, uniformly in
h, is now easily deduced as in [23, Proposition 2.3]. We omit the proof as it is similar.

17
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Proposition 3.12. Let Ey be an initial bounded set of finite p—perimeter and T > 0. Then, for h
small enough, for a discrete flow {Et(h)} starting from Eqy it holds

[EMAED| < Crlt—s]'V? Vh<t<s<T,
for a suitable constant Cp = Cp(T, Ey, f, ¢, ).

We finally prove the main result of this section, the existence of flat flows.

Proof of Theorem 1.1. The proof is classical and we only sketch it. By the uniform equicontinuity
of the approximating sequence of Proposition 3.12 and compactness of sets of finite perimeter (by

Lemma 3.9 and 3.11) we can use the Ascoli-Arzela theorem to prove that the sequence (Et(hk))keN
converges in L' to sets E; for all times ¢ > 0 and that the family {E;};>¢ satisfies the 1/2—Holder
continuity property, locally uniformly in time. The other property is then easily deduced. O

3.3 Existence of distributional solutions

From Theorem 1.1 we deduce the existence of a subsequence (h)r>0 such that
Dx o = Dxg, Yt >0. (3.14)
t
We will also assume (1.6), remarking that it implies

Jlim Py(E")) = Py(E,)  for ae. t €0, +00). (3.15)

Our aim is to derive (1.7) and (1.8) from the Euler-Lagrange equation (3.2) and passing to the
limit » — 0. To achieve so, we will prove that the discrete velocity is a good approximation (up
to multiplicative factors) of the discrete evolution speed of the sets. Notice that (1.7) is a weak
formulation of (1.1), while (1.8) establishes the link between v and the velocity of the boundaries
of E;. Indeed, law (1.1) can be interpreted as looking for a family {E}};>¢ of sets, whose normal

vector vg, and ¢—curvature Hgt are well-defined objects and a function v : [0,00) x RV — R
such that .
=—-H
Y gt/ (3.16)
V  =4y(x,vg,)v,

where V represents the normal velocity of evolution, obtained as limit as h — 0 (in a suitable sense)

of the ratio
XE; — XE;_p,

h

In this whole section we will assume that hypothesis (2.6) holds. In particular, the sets defining
the discrete flow are smooth hypersurfaces in RY. Moreover, we require hypotheses (1.4) to hold.

We start by estimating in time the L?—norm of the discrete velocity. The proof is the same
of [35, Lemma 3.6], up to using the density estimates on the ¢—perimeter of Lemma 3.3 and
considering the 1)—balls instead of the Euclidean one.
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2 bound velocity‘ Proposition 3.13. Let {Et(h)}tzo be a discrete flow starting from an initial bounded set Fy of

.tion of blow-ups

finite ¢p—perimeter. Then, for any T > 0 and for h small enough, it holds

T
/0 /{)EW v dHNHdt < Cp,

for a suitable constant Cr = Cr(T, Ey, ¢, v, ).

Recalling now the Euler-Lagrange equation (3.2) and Lemma 3.11 we conclude

T s 2 T 9
H = — F; < 1
/0 /e)E,?’” ( Egm) /O /BEW (vn — Fp)” < Cr, (3.17)

We now prove an estimate on the error between the discrete velocity ¢(-,vg,)vn(-, t) and the
discrete time derivative of x,. The proof of this result is based on a double blow-up argument, and
the smoothness of sets (locally) minimizing the ¢—perimeter is essential. We will split the proof in
various lemmas: the first one concerns the composition of blow-ups.

Lemma 3.14 (Composition of blow-ups). Consider 0 < 8 < 8/ < 1. Assume that A is a set such
that the following blow-ups converge as h — 0

A*I’o
hB

hi(ﬁliﬁ)fh — A2 mn Llloc’

— A1 mn Llloc

where zo € DA. Then, if the composition of the blow-ups h™" (A —z0) converges in Li,, the limit
coincides with As.

Proof. We can assume wlog o = 0. Denote with Az = L} —1limj,_,o h~% A. We fix a ball By and
€ > 0. There exists A* such that VA < h* it holds

I(hP A)AA) N By <e, [(WPHPA)AA) N Byl <e.

We fix h and wlog assume MR =8 < 1. Taking h<h suitably small (depending on h,e), we can
ensure

|(RPA)AAL) N By| < eV =P),
Since hPh~(F' =) > h*B/, there exists h < h such that A= = h=Ph=(F"~8) We can then estimate
I(AsAA) N Bu| < [(AsAR™ A) 0 Bag| + [(RP+P) AL A(RP A)) N By
+ (PP A1) A A3) N By
<2+ NE =B (A A(RPA) N By s
<2+ h NE=P|(ALAMPA)) N By| < 3e.
O

We now compute some estimates on the normal vector on the boundary of the evolving sets.
We fix ¢, as the constant appearing in Lemma 3.10.
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mma computations

Lemma 3.15. Assume (H) and (1.4). For given constants 1/2 < ' < a < 1 and T > 2, there
exists a continuous increasing function w : [0,1] = R with w(0) = 0 and with the following property.

Consider t € [2h,T] and zg € 3Et(h) such that
lon(t,y)| <Y Yy e B, i(zo) N (B AEM,). (3.18)
Then, there exists v € SN such that
Voo () = v S w(h) in Bya (o) N oE™

|v

o () =l Sw(h) in By (zo) N oEM . (3.19)

Proof. We fix % <B<pf <aand < R< héfﬁ/cw. Testing the minimality of Egh), s=t,t—h,

we find

1
Py(EM, Brps(20)) < Py(G, Bras (w0)) + */ [sd” ) | +/ | Fnl, (3.20)
hiJogap®  Elh GAEM

for any set G of finite perimeter such that GAEM CC Bpgps(xg). Using Lemma 3.10, the
1—Lipschitz regularity of sd¥ and (3.18), we deduce |vs(s,y)| < ¢y REP ™ +cooh™ /2 < (14-¢o0)h /2
for any y € Bgps (o) N (Egh)AF). Plugging this inequality in (3.20), we find

1+c

Vh

We then introduce the blown-up sets for s = ¢, — h, defined as

Egh)’ﬁ =hP (Egh) — xo) .

Py(EXM, Bpys (20)) < Py(G, Brps (20)) + |FAEM | + || fllol GAEDM. (3.21)

’eq 4.6 MugSeiSpa

’eq 4.8 MugSeiSpa

’eq 4.9 MugSeiSpa

’eq 4.10 MugSeiSp:

Rescaling equation (3.21), we easily find that EMPiga (Ap, r,)—minimizer of the ¢(x¢+h”-, -)—perimeter,

with A, = (14 ¢)h?=1/2, 1, = /278, Moreover, scaling the density estimates (3.4) we have a
uniform bound on the perimeters of the sets Egh)’ﬁ in each ball Br. By compactness, there exist
two sets Ef , Eg such that

EMP B}, EM? 5 EB) L},

Then, by scaling and (3.18) we find

54”00 (VN <A on Byusees (0) N (B ABM),

t—h -
thus we easily conclude that Ef = Elﬁ = Ezﬁ . Moreover, by closeness of Ap—minimizers under
L} .—convergence (see e.g. [19, Theorem 2.9]), one can see that E” is a local ¢(xo,-)—perimeter
minimizer. Thus, by complete regularity, it is a smooth C? set. We can then employ the classic

blow-up theorem to deduce that, for a fixed 5’ € (8, «), the blow-up h=F =A EP converges to a
half-space H = {z - v < 0} as h — 0. Moreover, the blow-ups

EM - Zo

(.8 .
B = =g
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admit a converging subsequence by compactness of sets of finite perimeter and by rescaling equation
(3.21). Thus, the previous Lemma 3.14 implies

EMA L H in L},

as h — 0. To conclude, the e—regularity Theorem for A—minimizers (see e.g. [19, Theorem 3.1])

ensures that £ are uniformly C2 sets in By (0) for s = ¢,t — h as h — 0. O

We recall here an approximation result proved in [33] (see also [35] for a more detailed proof).
We remark that the proof of this result is purely geometric and does not rely on the variational

problem satisfied by the sets Et(h), Ef(ﬁ)h

Corollary (Corollary 4.3 in [35]). Under the hypotheses of Lemma 3.15, fir 0 < 5 < a and let Cyp
be the open cylinder defined as
hPB
.

N—-1
‘/ (XEf(h) — Xg® )dx —/ . SdE(h) dH ‘
PPICIEON e OE,"NCyp )y (xo) TN

< W(h)/ IX ) — X g |-
Cy.5 2 (xo0,v) B Fion

Carefully inspecting the proof, one indeed proves that there exists a geometric constant C' such
that for any y € B%;;(xo)

hPB

Cys(zo,v) := {x eRY :|(x —x0) v < —,

5 (x —xo) — ((x — o) - V)V

Then, it holds

s @ SO+ IVED @2 = (£ 0) = £5,0)) | < Com A ) = £2, ), (3:22)
where we set
OEM N C = {(y, M (y) e RN xR, |y| <h?/2},

for s =t,t — h.

We briefly recall some classical results. Consider an anisotropy 1, independent of the position.
It is well-known that, for any bounded, C? set G C RY, setting sd¥ as the distance induced by 1°,
then the gradient of sd¥ exists almost everywhere (and everywhere in a neighborhood of the set G)
and satisfies the following relations: the first one is known as the eikonal equation

Y(Vsd?) =1 ae.,

the second one is a useful representation formula, holding at every point ¢ G having a unique
point on z’ € G of minimal distance, which reads

ve(z')

b(va(a))

Moreover, in this particular case, in the definition of dist¥ we can consider just straight lines as
follows from a simple application of Jensen’s inequality: for any curve v as in the definition of dist?,

we have
/Olww(t))dt > 4 (/7) — oy —a).
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ites on flat sets‘ Proposition 3.16 (Estimate on almost flat sets). Under the hypotheses of Lemma 5.15, fix B €
(0, ) and let Cys be the open cylinder defined as
hB
< — .
2 }

B
Chs (w9, v) := {xGRN (=) v < %, (x — o) — ((x — o) V)V

Then, it holds

N-1
’/ (X — X )dx—/ " l/f(x,VE(h))SdE(m dH ‘
Cpp jp(wow) th OB NCyp )y (wo.v) ‘ t=h
S W(h)/ |XE(’1) - XE(h) |
Chﬁ/z(woﬂf) t t—h

Proof. From the previous Lemma 3.15 we know that, for A suitably small, both aEt(h) and 0Et(ﬁ)h

in Cps/5(z0, V) can be written as graphs of functions of class Clz. Uptoa change of coordinates,
we can assume wlog that xo = 0,v = ey. For simplicity, we set C = Cjs/5(0,en). We thus find

OEM N C={(y, fM(y) e RV xR, |y < h¥/2}

for s =t,t — h, where fﬁh) : B}IL\;; — R are CY2 functions with

vas(h)HL"o(Bh/;/Q) < w(h).

We want to prove the following slightly stronger pointwise inequality: namely, that for any point
v = (y, [ (y) € 9E N C, it holds

Sdﬁi’i)h (z) Y(z, Vgt (z)y 1+ ‘Vft(h) (y)| - (ft(h)(y) - ft(hal(y))) < («U(h)|ft(h) (y)— t(ﬁal(yﬂ (3.23) ’estimate flatnes:

Integrating the previous inequality over C yields the thesis. Clearly, it is enough to prove (3.23) at
each point z such that |sdg(h) (z)] > 0. We thus fix z = (y, ft(h)(y)) € 8Et(h) N C and denote by
t—h

= (y, ft(]j)h(y)) It can be assumed without loss of generality that = ¢ Egﬁ)h, as the other case

is analogous. Considering the anisotropy 1 (z’, ), we denote by sd; the geodesic distance function

from the set G induced by the anisotropy above. We proceed estimating |sd’E(h> (z) — sdﬁ(h) (z)].
t—h _h
Let v be a smooth curve, with y(0) = z,v(1) € 3Et(f)h to be used in the definition of the geodesic

distance sdjfj(h) . Firstly, we remark that one could assume
t—h

1([0,1]) € B, 2¢3 1 17 (y) = 1, () (3.24) [bound p

Indeed, if it were not the case, the lower bounds contained in (2.3) and (3.22) allow us to estimate

1 1 1
/ YO (ry,7) dt > 07/ |y| dt > ZCw‘ft(h)(y) _ ft(faz(y)‘ > 2¢y sd o () > QSdg(h) (x), (3.25) ’estimate curve
0 ¥ Jo t—h t—h
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a contradiction for h small. We can reason analogously for sd’ . In particular, we can consider

just curves having length fo |4 < c\ft (y) - t(fal(y)| Therefore, we obtain (by homogeneity)

M,

1 1 1
W, @< [wapas [weaas s 0w -l [

SN, te[0,1]

1
< / (@' 4) dt + cwh) £ (g) — 1)),

and, taking the inf,, we obtain sd? B (x) < Sd;i“ff)h( z) + wh)|f, (h)( ) — ft(f%(y)\_ The converse

inequality can be proved analogously, yleldmg
h h
s, (2) = s ()] < w(B) £ W) = £ 2301

Therefore, in what follows we W111 consider always the anisotropy frozen in z’, and use sd’ instead
of sd¥. Finally, define p € OF h as a point of minimal sd’ o distance from x. In the following,
with IIjz we denote the prOJectlon on the hyperplane H of theh point z along the direction v.

Step 1. We assume that 8Et(i 5, N C coincides with the hyperplane H = p+ {z-v = 0}. Assume

that 1° is strictly convex. The gradient Vsdy exists for every point z ¢ H as it has a unique point
of minimal distance from H (by strict convexity). By the eikonal equation we have

= Vsdy(2). (3.26)

P(a',v)

Since 1°(z',) is positively 1—homogeneous, setting Z € H the point of minimal ¢ (z’,-)—distance
from z, we obtain also

Vsdy(2) - (2 — 2) = sdy(2). (3.27)
Combining (3.26), (3.27) and choosing z = x, we have

sdy(z)y(z',v) = (v — ) - v = |z — x| = sdg(x). (3.28)

We remark that sdy(z) = sdE(h) (z) by convexity, thus we conclude (3.23) by combining (3.28)

with (3.22).

The same formula holds even if ¥° is not strictly convex, as an approximation result shows. It
is indeed enough to approximate 1° with strictly convex anisotropies. One way of doing this is
the following: define W¥ as the unit Wulff shape associated to ¢ and set WY := W¥ + %Bl. The
anisotropies 1),, associated to the Wulff shapes W¥ are now strictly convex and converging to v as
n — oco. Remarking that the distance functions induced by these anisotropies converge to sdy, we
pass to the limit in (3.28) to conclude.

Step 2. Set v = Vo and consider the hyperplane H = p+{z-v = 0}. Define w := 2’ —IIg(z').

We shall prove that |w| < cw(h)|ft(h)(y) — ft@l(y)| To see this, we start by remarking that (3.19)
implies
lex —enlen - vym )| Sw(h) i o0E™ nc,
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implying eN V. > 1—w(h), and thus, for any versor v tangent to 8E hﬁC one has |v-ey| < w(h).

Therefore, we have (' — p) - ey < w(h)|z’ — p| and also

z - z —
P V= /_; ~(en(v-en)+v—en(v-en))

<w(h)+ v —en(v-en)| =wlh) + (1= v-enf?)"

< 3vw(h),

o —pl " o

Figure 1: The situation in the proof of the lemma.

by choosing h small. Up to defining v/w as w, using the previous estimate and the bounds (3.24)
we see that

/_
ul =o' ol (52 ) < cwlle’ =5l < coWliP ) - SO0 (629)

We now remark that sd’_ . (z) = sdiy(z) (by convexity of the anisotropy ¥ (z’,-)) and so, applying

EM,
the previous step to H we get

< w(h)|z — TN z|.

h en
Sd:i@h(@w(xa VEt(m(x)) 14|V, 1! )( )| — |z — TN 2

We conclude (3.23) by estimating
w(h)
1—w(h)

where we used (3.29). We conclude the proof by a simple change of coordinates and using (3.23)
to find

‘/aEt(h)ﬂcw(%l/Et(h)(x)) dww) (x )d'HN_l _/ ft(h)( ) - (h)( )dy‘

h

[l — TIg~ | - < Jo’ — Iga| = ||/l - en| < e

117 ) = £ W),

/B S 1 W) v 0 117 W) sy (1 DV T+ VLY )2 = (17 ) = £ @) dy

B2

< cw(h) / 5P~ )y,
B

B2
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sition 2.2 LucStu

Finally, we are able to prove that the error generated approximating the discrete velocity with
vp, goes to zero as h — 0.

Proposition 3.17 (Error estimate). Under the hypothesis of Lemma 3.15, the error in the discrete
curvature equation vanishes in the limit h — 0, namely

1 (T T N
ﬁ/o (/Et(h)ndx—/Eih)hndx> dt—/0 /GEt“” P(x, VEt(“))vhndH (x)dt| =0 (3.30)

for alln € CHRN x [0,T)).

lim
h—0

Proof. We fix t € [2h,00) and « € (3, 2]}'\,122). For any point zg € 6Et(h) we define the open set A,
defined as follows:

i) if (3.18) holds, we set A, = Cps5/9(x0, ), with the notations of Corollary 3.16;
0 hB/
ii) otherwise we set A,, = B(xg COO\/E where ¢, is the constant of Lemma 3.10.
( ) 0 ) b

By Lemma 3.10, the family {A,, : zo € 5‘Et(h)} is a covering of Et(h)AEt(ﬁ)h. By a simple application
of Besicovitch’s theorem (see e.g. [34]), we find a finite collection of points I C 8Et(h) such that
{As, }aoer 1s a covering of Et(h)AE&)h with the finite intersection property. We proceed to estimate
(3.30) on each A,, belonging to this family.

Estimate in case (i) We use Proposition 3.16 to deduce

— ' dx — v sd¥ dHN !
‘ /141'() (XEt(h) XEt(i)h)n /&)Eih)mAzO ’lp(a:7 Eih)) Et(}l)hn

< |n(az0,t)|‘/ (XE(h,) — Xgm )*/ } w(m,I/E(h,))Sdﬁ(h) dHN-1!
Ang  * t=h OEM N AL, t t—n

+ ‘/m (X 7XE§'i)h)(77*77(xo,t))—/

. (77 - 77(960, t)) 7/’(1'7 VEUI)) Sd;g(n) dHN !
0B, NA, ¢ t—h

< (@) Inlloe + h°1V1]|oc) /A X = X | ARV 4 eh? [Vl P(ESY, Agy). (3.31)

zo

Estimate in case (ii) By assumption Jy € B, _ z(z0) N (Et(h)AEt(ﬁ)h) such that |vj(t,y)| > ho L.
We can assume wlog y € Et(h). We then have B(y,h®/(2¢c,)) C RY \Et(ﬁ)h and sdjf;(h) > h*/(2¢;)
t—h

on B(y,h®/(2¢y)). Since h® << h'/2, we can use the density estimates of Lemma 3.3 to deduce

ch(N+Da—1 o /

|op | da.
h h
B(y,he/(2cy)) (B AED,)

Analogously, recalling also Lemma 3.10, we deduce

w|2

Wz, v )sd% o, |[dHN"(z) < ch>.

25

’error estimate o1

’eq 4.13 MugSeiSp:




Combining the two previous equations and B(y, h®/(2¢,)) € B(y, cVh), we infer

_ P N-1
/A X XEt@hl—'—/A W(%VEE’_LL)SdEt(@,L'dH

(h)
zQ 2gNOE,

< chgf(NJrl)aJrl/

[(z, vy Yop)- (3.32) |eq 4.16 MugSeiSp:
Ay N(EMAEM,) Bk ’

Summing over o € I both (3.31) and (3.32), and using the local finiteness of the covering, we get

— do — 0)sd? . ndHN 1
’ G =g et /aEtW vl v )sdpa ndH

5

xo€l

< ¢ ()l + BVl + HF - Y

h h h
: (P(Et( N+ |EMAED, +/(h> o th>
E;VAE, ",

where the last constant ¢ depends on N, 1. We then use Lemma 3.11, (3.12) and (3.13) to conclude

T T
1 N-1
‘/% 7 </E§’L) ndz — /Et(h)h nda:) —/h ~/¢9Et(h) ¢($,VEt(h>)Uh7]dH

< e (@)l + h IVl + R HDH g1 Y

. — de — , d¥ . pdHN !
/ (XEt(}) XEt“—L)h)n v /BEt(h)ﬁAm w(x VEt(h))S Et(;l)hn

zQ

where ¢ = ¢(Ey, f,T,1) and T is chosen such that sptn CC RY x [0,7]. The conclusion follows
using the definition of o and taking the limit A — 0.
O

The proof of our main theorem of this section is now a consequence of the previous results. In
particular, hypothesis (3.14) and (3.15) imply that the discrete flow converges to the flat flow in the
sense of varifolds and this allows to prove (1.7), while (1.8) is a consequence of Proposition 3.17.
In order to prove the convergence of the approximations in time of the forcing term, we need to
require additionally that (1.5) holds.

Proof of Theorem 1.2. Firstly, combining [29, Theorem 4.4.2] with the bounds contained in (3.17)
and in Proposition 3.13, we conclude the existence of functions v, H?, f : RN x [0, 00) — R satisfying

T
// o2 + [HO2 + | f2dHN 1 dt < o
0 OFE;

and the following properties
T T
lim/ / vhknd’HNfl dt = / / nodH N1 de
kJo Jogtw o Jor,
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T T
lim / / Fp, (z,t)yndHN "1 dt = / / nfdHN"tdt
kJo Jogtw o Jom,

T T
lim / / o )H;(hk)ndHNfldt: / / nH® ANt dt, (3.33)
0 OFE, k t 0 OE,

for any n € CO(RY x [0,7T)). We now employ an approximation procedure to prove that H?(-,t) is
the ¢p—mean curvature of E; for a.e. t € [0,00), following the lines of [33, 35]. Fixed ¢t € [0, +o0)
and € > 0, set v, a continuous function such that faE,(”Et —v.)2dHN ! < e. Then, by (3.14) one

could prove that limy_, faE(}Lk)(VE(hk) —v.)2dHN ! < e. Considering test functions in (3.33) of
t t
the form n(x,t) = a(t)g(z), one has for a.e. t € [0, +00)

: ) N-1 _ é N—1
hlgn/aEt“‘k') HEE’Lk)gdH o, H?gdH .

Thus, for a.e. t € [0,+00) and for any X € C?(RN;RY) it holds

3 @ N—-1 __ N—1
lim [ HT Ve - X AR = H%vg, - X dH
OE, 'k t ¢ OE,

by approximating the normal vectors of Et(h’“) with v.. Furthermore, by the convergence (3.14) and
the hypothesis (3.15) we can use the Reshetnyak’s continuity theorem (see e.g. [4, Theorem 2.39)]),
ensuring
/ L(z,v, o) dHY 7 — L(x,vg,)dHN !
op) Ee B '
as k — oo, for any L € CO(RY x RY). We choose L(x,v) = divyX for some X € CHRY;RY) to
obtain

/ diveX dHYN ! =lim divyX dHN 1
OF, k )

oE"r

= lim X v noH?,  dHN
k (hg) Ey E,"k
OFE, t

= X vp H* dHN 1,
OFE,

which shows that H?(-,t) is the ¢—mean curvature of the set E; for a.e. t € [0, +-00). Moreover, we
remark that Fy, (z,t) — f(x,t) for every (z,t), thus for any test function n € CO(RY x [0, +00))

and ¢ € [0, 4+00) we have
/ Fpon— / Frin
oEM B,

< llllle (PUE) = PEO) + [ 1B = fln =0

’ /(;E(h) Fhk (x’t)n(l",t) dHiV_l — f,rl dH]wV_l <

OF

+ / \Fi — fl
OE;

applying the dominated convergence theorem and recalling Lemma 3.9. Thus, f = f. We then
prove (1.7) by passing to the limit in the Euler-Lagrange equation (3.2).
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n unbounded sets‘

To prove (1.8) we employ Proposition 3.17: for every n € CO(RY x [0,7T)), by a change of
variables we have that

T T
/h l/Eih)ndx—/Eii)hndx] dt:/h /Eﬁ") (n(z,t) —n(z, t — h)) dxdt—h/Eondx

where we have used that E,fh) = Ey for t € [0, h). Therefore, a simple convergence argument yields

1T ’
}ILILJ%E/}L /Eih)ndx_/E“‘)hndx] dt——/h 3t77($7t)dxdt—/EUT].

t
Combining the previous estimate with Proposition 3.17 and passing to the limit, we obtain (1.8). O

4 Viscosity solutions

In this section we will prove the existence of another weak notion of solution for the mean curvature
flow starting from a compact set. We will follow the so-called level set approach based on the theory
of viscosity solution. we recall that in the first part we work with the standing assumptions of the
paper (H). Additionally, we require (1.4).

4.1 The discrete scheme for unbounded sets

In this short subsection we will define the discrete evolution scheme for unbounded sets having
compact boundary. The idea would be to define this evolution simply as the complement of the
evolution of the complementary set, but since the anisotropies we are considering are not symmetric,
we need additional care.

We recall that, given an anisotropy ¢, we define qg(x,l/) := ¢(xz, —v). This anisotropy has
all the properties of the original one, concerning regularity and bounds. We start remarking

the following simple fact. Omne can see that distw(x,y) = distw(y,x)7 since for any curve v €
Whi([0,1];RY), 4(0) = z,7(1) = y, a simple change of variable yields

Lo . Lo d ot .
[ amama= [ (-0 aa-n) a= [ @m0
for n(t) = (1 — t), once one sees that

(o)) = sup &-(-v)= sup (=§)-v=(¥)°(v).

P(-,§)<1 P(-,—€)<1

Therefore, by definition of signed distance we have
sd¥(z) = —sd%. (z). (4.1)

For every compact set F' and h > 0, > 0, we will denote by ThitF the maximal and the minimal
solution to problem (3.1), according to Lemma 3.1 with Py and sdw, respectively, replaced by Pd;

and sd?. Finally, for every set F with compact boundary we define

TEE = (T, E) (4.2)
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1ciple, unbounded ‘

younded-unbounded ‘

As in the case for compact sets, we set 1}, £ := T, ,E. Given an open, unbounded set Ey having

compact boundary, we can then define the discrete flow {Et(h)}tzo as follows: Et(h) := Fy for
t €10,h) and
EM =1, E™, | vt € [h, +00).

One easily checks that analogous results to Lemmas 3.2, 3.9 and 3.8 hold also for this problem. We
state the corresponding results.

Lemma 4.1. Let Fy C Fy be open, unbounded sets with compact boundary and fix h > 0,t > 0.
Then, ThﬂgFl g Th7tF2.

Lemma 4.2. For any T > 0 there exists a constant Cr(¢,, f,T) such that for every R > 0 the
following holds. If the initial open set E O B, then Et(h) D B¢, g forallt €10,T).

Lemma 4.3. For every Ry > 0 there exist ho(Ro) > 0 and C(Ro, ®,%, f) > 0 with the following
property: For all R > Ry, h € (0,hg), t >0 and z € RY one has

Th.t((Br(x))%) € (Br—cn(x))".

We now state a comparison principle between bounded and unbounded sets, following the line
of [14, Lemma 6.10].

Lemma 4.4. Let Ey be a compact set and let E5 be an open, unbounded set, with compact boundary,
and such that Ey C Ey. Then, for every h € (0,1),¢t > 0 it holds T,jftEl - ThitEg.

Proof. We fix h € (0,1),t € [0,T] for T > 0. Set R > 0 such that Fy, ES C Bg and note that by
Lemmas 3.2 and 3.9 (applied to Py instead of Ppy) we get

(T,;ftEQ) C Ty, B5 C Ty, Br C Beyrs (4.3)
for some Cp (¢, 4, f,T). Since T};tEg is the minimal solution of
. 1 )
min {Pd;(E) + E/ sdf (2) do - / Fu(a. 1) dx} ,
E E

considering the change of variables E = E° and using (4.1), we easily conclude that T, ,j Lo =

- c
(T,; tEg) is the maximal solution of

- 1 1 1
min{P¢(E) + E/ sd%2 5 ] sd}éi2 —/ Fy(z,t) dx} - E/ sdﬁz.
BCTR Eec ¢ BCTR

we then note that
/ Sd.%2 = / Sdg2XBcTR —‘r/ Sd.jé);27
BCT R E Eec

for every F such that E¢ C Ber- By (4.3), we conclude that T}j:tEg is the maximal solution of

. S =
mm{P¢(E) + 7 / Sdi)éQXBcTR f/~ Fy(z,t)dx : EC BCTR}- (4.4)
E Ee

Analogously, one proves that T, ,E> is the minimal solution of (4.4). Finally, we remark that
sd}gs XBoyr < Sd%1 and that TftEl U TftEg,T}:—LtEl N TﬁttEQ are both admissible competitors for
(4.4), one argues exactly as in the proof of Lemma 3.2 to conclude T,ftEl - ThitEg. O
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4.2 The level set approach

Consider a function u : RY x [0,4+00) — R whose superlevel set evolve according to the mean
curvature equation

V(1) = =@, vue.ze) (Hiy ose (@) = F@0).

The function u then satisfies (recalling that —Vu/|Vu| is the outer normal vector to the superlevel
set {u(-,t) > u(z,t)}) the equation

Ou = [Vu|V(z) = —¢(z, —Vu) (H?u(.yt)zu(m’t)}(x) - f(%ﬂ)
= —Y(x, —Vu) (divV,é(z, —Vu) — f(z,t))

= —(z, —Vu) (Z Oz, Opd(x, —Vu) — V2d(x, —Vu) : Vu — f(ac,t))

L= *ZZJ(% 7vu) (H(‘Ta V’LL, V2U) - f(SC,t)) )
where we defined the Hamiltonian H : RY x RV \ {0} x S¥ — R as

H(z,p,X) := Z Ox, Opp(z, —p) — Vf,qb(m, -p) : X, (4.5)

and SV denotes the space of the symmetric matrices of dimension N x N. We therefore focus on
solving the parabolic Cauchy problem

Opu + P(x, —Vu) (H(ac, Vu, VZiu) — f(:v,t)) =0 (4.6)

u(-,t) = up. '
The appropriate setting for this type of geometric evolution equations is the one of viscosity solu-
tions, in the framework of [24, 31] (see also [14]). Before giving the definition of viscosity solutions
in this setting, we need to introduce an appropriate class of test functions. To do so, we introduce
an auxiliary class of functions whose properties can be found in [31] (see also [14, Section 2.2]).

Definition 4.5. The family F is composed of smooth functions g € C2°([0, +00)) satisfying ¢(0) =
g'(0) = ¢"(0) = 0, ¢"(r) > 0 in a neighborhood of 0, g constant in (0, M)¢ for some M > 0
(depending on g), and
/
lim gir) (r)
r—0 r

=0.

We will focus on the evolution of sets with compact boundary on compact time intervals of the
form [0, 7. We now define the notion of admissible test function. With a slight abuse of notation,
in the following we will say that a function is spatially constant outside a compact set even if the
value of such constant is time-dependent.

Definition 4.6. Let 2 = (2,#) € RN x (0,7) and let A C (0,T) be any open interval containing .
We will say that n € C°(RY x A) is admissible at the point 2 if it is of class C2 in a neighborhood
of 2, if it is constant out of a compact set, and, in case Vn(2) = 0, the following holds: there exists
feF and w e C>(]0,00)) with w'(0) = 0,w(r) > 0 for r # 0 and such that

[n(a,t) = n(2) = ne(2)(t = )] < f(lo = &]) +w(lt —1]),
for all (z,t) € RN x A.
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One can then define the following notion of viscosity solution.

Definition 4.7. An upper semicontinuous function u : RY x [0,7] — R (in short, u € usc(RY x
[0,71])), constant outside a compact set, is a viscosity subsolution of the Cauchy problem (4.6)
if u(-,0) < up and for all z := (z,t) € RY x [0,7] and all C*°—test functions 7 such that 7 is
admissible at z and «—» has a maximum at z (in the domain of definition of 1) the following holds:

i) If Vn(z) = 0, then it holds
ni(z) <0 (4.7)

ii) If Vn(z) # 0, then

Om(z) + (2, —Vn(z)) (H(z, Vn(z), V?n(2)) — f(z,1)) <0. (4.8)

A lower semicontinuous function u : RY x [0,7] — R (in short, u € Isc(RY x [0,7])), constant
outside a compact set, is a viscosity supersolution of the Cauchy problem (4.6) if u(-,0) > ug and
for all z := (x,t) € RV x [0, T] and all O —test functions 5 such that 7 is admissible at z and u —n
has a minimum at z (in the domain of definition of 7) the following holds:

i) If Vn(z) =0, then n(z) > 0;
ii) If Vi # 0 then

31577(2) + ’L/)(Z’ _Vn(z)) (H(Z7 VU(Z)v VQU(Z)) - f(zvt)) <0.

Finally, a function u is a viscosity solution for the Cauchy problem (4.6) if it is both a subsolution
and a supersolution of (4.6).

Remark. By classical arguments, one could assume that the maximum of u — 7 is strict in the
definition of subsolution above (an analogous remark holds for supersolutions).

Remark. We remark that, if —u is a subsolution to (4.6) with initial datum —ug, then u is a
supersolution for (4.6) for the initial datum ug and where ¢, are replaced by ¢, 1 respectively, as
defined in Section 4.1.

We will first prove existence for viscosity solutions of (4.6) via an approximation-in-time tech-
nique, and then prove uniqueness of solutions to (4.6) to link the approximate solution to the mean
curvature flow equation. We would like to proceed with the classical construction of e.g. [11, 14,
21], but in our case the lack of continuity of the evolving functions forces us to be particularly
careful with the procedure.

We use the shorthand notation of Isc for lower semicontinuous and usc for upper semicontin-
uous. Given a bounded, usc function v which is constant outside a compact set, we define the
transformation

T,j:tv(x) = sup {s NS T;:t{v > s}} . (4.9)

Firstly, we see that Th+ .v(z) € R, as v is bounded. Moreover, it turns out that the function 7' U s
usc, bounded and constant outside a compact set. Indeed, definition (4.9) is equivalent to

Thftv(m) = inf {s o d T;ft{v > s}} = 61161]1% (s + ]l(T;f,t{vZS})C(x)) ,
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where 1 4 () is the indicatrix function of a set A, being 0 on the set and 400 outside. By definition,
14 is an usc function for any open set A. Thus, recalling Remark 3.4, in the equation above we
are taking the infimum of a family of usc functions, which is then a usc function. The other two
properties follows from the previous study of the discrete evolution. Analogously, given a bounded
Isc function g, we define

1), .9(x) = sup {s rx ey, {g> s}} = sug (s - ]lT;t{g>s}> ) (4.10)
sE ’

which is now a bounded Isc function (as sup of lsc functions), constant outside a compact set.

We are now ready to give the definition of the discrete-in-time approximations of sub and super
solution to (4.6). Given an initial compact set Ey, set ug as a (uniformly) continuous function,
spatially constant outside a compact set, such that {ug > 0} = Ejy. We remark that for every
s € R, the superlevel set {ug > s} is either compact or it is unbounded with compact boundary.
Then, for » > 0 we introduce the following family of maps as u®*(-,t) = ug for ¢t € [0, h) and

wi (- t) = T,ftfhuf(-, t—h) fort>h. (4.11)

We easily see that the maps above are functions (as implied by the comparison principle contained
in Lemmas 3.2, 4.1 and 4.4) piecewise constant in time (as T}ft = T}f[t /h]h). Moreover, by the
previous remarks, we have that uZ(, t) is an usc function, while u,, (-, t) is a Isc function, for every
t € [0,+00). Some further properties of the approximating scheme are listed below.

Lemma 4.8. For any h > 0, t > 0 we have the following. It holds
upy () <y (1), (4.12)
Furthermore, given any A € R and t > h it holds

{u (1) > A ST, {uf (5t = h) > A} © {u (1) > A} (4.13)
{ui:("t) > /\} < Th_,tfh{ul:("t - h) > /\} < {ui:(ﬂf) > >‘}

Proof. Fix z € RN, t € [0,h). For any given o < uj (x,h) we have that there exists a sequence
(sn) /o sothat x € Ty, {ug > sn} C T}j’tfh{uo > s, }. Thus, u;f (x,t) > 0. We then conclude
by induction. Then, (4.13) follows easily by the definition (4.11). O

We then prove that the half-relaxed limits (in the spirit of [6], see also the references therein)
of the families of functions uf

ut(x,t):==  sup  limsupu, (zp,ts)
(xn,tn)—(x,t) h—0

_ : e (4.14)
u(z,t) = (zh}tif)li(m’t) hhm_}(r)lf uy, (zn, tn),

are (respectively) sub and supersolutions in the viscosity sense of (4.6), see Theorem 1.2 (note that,
by definition, u™ is usc, while v~ is Isc). The proof of this result is the subject of the following
section and we recall that the hypothesis required are (H), (1.4) and f € CO(RY x [0,00)) only.

Once the existence of sub and super-solutions to the equation is settled, we need to properly define
the notion of level-set solution to the mean curvature flow. To do so, we first prove uniqueness for
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(4.6) via a comparison principle and under additional hypothesis. Then, we show that the evolution
of the zero superlevel set of the solution does not depend on the choice of the initial function wug.

We start with a comparison result between v, 4~ and ug at the initial time: it will ensure that
the classical hypothesis for the comparison principle are satisfied. We first prove an estimate for
the speed of decay of the level sets of the evolving functions. While it will only be needed in the
following section, in the proof of the forthcoming Lemma 4.10 we will use similar techniques, so we
preferred to state it here.

Lemma 4.9. Let u™(x,t) be the function defined in (4.14), let o € R. Assume that, for a suitable
zo and R > 0, it holds B(zo, R) C {u*(-,t0) > o} . Then, there exists C = C(R, ¢,, f) such that
B(zo, R—C(t —to)) C {ut(-,t) > o} for every t < to+ R/(2C). An analogous statement holds for
u” by considering its open sublevel sets.

Proof. We focus on the case {u™(-,t9) > o} bounded, the other case being analogous. By as-
sumption, for any Ry < R, if h is small enough, we have B(zo, Ry) C {ut(o,to) > o}. Set
C = C(Ry/2,0,%, f) as the constant of Lemma 3.8. Let R, be defined recursively following
law (3.7), that is R,11 = R, — Ch, as long as R,, > Ry/2. By simple iteration we find that
R, = Ry —nCh, as long as R,, > Ry/2, which can be ensured enforcing hn < Ry/(2C). Therefore,
for any ¢ > to such that t — ¢ty < Ry/(2C), we set n = [(t — tp)/h] and send h — 0 to deduce
(recalling also Lemma 3.2)

{u+(-,t) > 0'} D) .B(SL'()7 Ry — C(t — to)).
Since the choice of Ry is arbitrary, we conclude. O

We are now ready to prove a comparison result for the functions u® and a continuity estimate
at the initial time ¢ = 0.

Lemma 4.10. For any (z,t) € RY x [0, +00) it holds
u” (z,t) < ut(z,t).

Moreover u=(-,0) = ut(-,0) = ug, so that there exists a modulus of continuity w such that Vz,y €
RN
ut(@,0) —u (y,0) < w(|z —yl).

Proof. The proof of the first inequality essentially follows from (4.12) and the definition of u*. To
prove the equality at the initial time ¢ = 0, we start by remarking that u*(-,0) > ug as can be seen
taking sequences of the form (z,0) in (4.14). Then, consider w as a continuous, strictly increasing
modulus of continuity for ug. We can also see that Ve > 0 {ug < ug(z) + ¢} 2 B(z,w () by
uniform continuity. Thus, reasoning iteratively as in Lemma 4.9 and using (4.13), we obtain that
there exists hg(g) such that Vh < hg it holds

C

{uf (+8) < i (@,0) 46} 2 (T fuo > uo(@) +€}) = Ty {uto < wo(w) +2} 2 Bla,w™ (¢/2)),

as long as t < (w™l(e) — w™1(¢/2))/(2C) =: t, and where we recalled that ui(-,0) = uo.
Now, fix ¢ > 0,7 € RY such that u(z,0) > o and a sequence (xy,,tn,) — (z,0) such that
limy, u;l"k (h,,th,) > 0. Then, for k large enough (xp,,ts,) € B(z,w 1(e/2)) x [0,t.) and so we
conclude

o< liinuZ(ththk) < ug(z,0) +¢.
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Letting € — 0 we conclude u(-,0)* < ug. The proof for u~ is essentially the same. The last claim
follows from the previous one, recalling that w is a modulus of uniform continuity for ug. O

In order to prove a comparison principle for (4.6), we will need to assume (1.11). Under these
additional hypotheses, we are able to prove uniqueness for the parabolic Cauchy problem (4.6). The
proof of this result follows from [24, Theorem 4.2]: we will just show in detail that the assumption
of the aforementioned theorem hold in our case, following [9, Proposition 6.1] and [24, pag. 465].

Proof of Theorem 1.4. The proof of this result essentially follows from [24, Theorem 4.2}, combined
with the existence result of Theorem 1.3. Referring to the notation of [24], we firstly remark that
in our case Q2 = R¥, thus the parabolic boundary of U = Q x [0,T] is simply 9,U = RN x {0}.
Therefore, the initial conditions (A1) — (A3) are all verified by Lemma 4.10. We then define the
continuous Hamiltonian F : [0, 7] x RY x (RV \ {0}) x MY *N — R as follows

F(ta x7p7X) = w(xa _p) <_ Za:mapd)(l'v _p) + ngs(mv _p) : X + f(xat)> ) (415)

and focus on the conditions (F1),(F3) — (F5), (F6'), (F7),(F9),(F10) that F' must satisfy. The
assumptions (F1), (F3) — (F5), (F9) are easily checked. (F'6') follows from the Lipschitz regularity
of ¢ and v, as Vt € [0, T],z € RV, |p| > p,|q| + |X| < R one has

|F(t,z,p, X) — F(t,x,q,X)| < cylp —q|

+ w@jv _q)

3

- Z (8118p¢($, _p) - aﬂmap(b(x’ _Q)) + (V?)(b(l', _p) - Vfﬁb(% _Q)) : X‘

1
< cglp—q| (1 + ) +crlp—q| < crplp— gl

Ip|

For (F'7), we remark that the first term in the parenthesis in (4.15) is 0—homogeneous in p,
while the second one is (—1)—homogeneous in p but 1—homogeneous in X. Lastly, we sketch how
to prove (F'10). Since it concerns the X-terms, we focus simply on

Vol —p) : X = tr (Vyo(z—,p) XT).

Multiplying by ¢(z, —p), we rewrite ¢(z, —p)tr (Vig(z—,p) XT) = tr(A(z,—p)XT), where A =
B — (V¢ ®@ V,¢), with B being the uniformly elliptic operator %V%(ﬁ? We can then factorize

B = LL", with L being a nondegenerate, lower triangular matrix. Then, following the proof of 9,
Proposition 6.1] and [24, pg. 465], we obtain (F'10). O

Once uniqueness is settled, one can finally define the notion of level set solution to the mean
curvature flow as follows.

Definition 4.11. Let Fj be a compact initial set. Define a uniformly continuous, bounded function
ug : RN — R such that {ug > 0} = Ey. Then, let u: RY x [0, +00) — R be the unique continuous
viscosity solution to (4.6) given by Theorem 1.4. Then, the family E; := {u™(-,t) > 0};>0 will be
called the level set solution to the mean curvature flow.
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This definition is well posed since the Hamiltonian defined in (4.5) satisfies the so-called geo-
metricity condition. Namely, one can easily check that for any A # 0,p € RN \ 0,¢ € RV and any
symmetric N x N matrix X one has

A
H(z, p, \ X +p®q+q®p) = WH(x,p,X)

Thus, one can prove by classical arguments (see e.g. [14, Remark 3.9]) the following result.

Lemma 4.12. Let ug, Gy two initial data for (4.6) such that {ug > 0} = {Gy > 0}. Then, denoting
by u, @ the corresponding solutions to (4.6), one has

{u(-,t) >0} ={a(-,t) >0} forallte[0,T],

and the same identity holds for the open superlevel sets.

4.3 Proof of Theorem 1.3

In this section we will prove that the limiting functions u™ are respectively a viscosity sub and
supersolutions to (4.6). We remark that we work assuming (H), (1.4) and that f € CY(RN x
[0,4+00)). We will be following the structure of the proof of [14, Theorem 6.16], but taking into
account the weaker definition of u holding in our case. We will be using the O, o notations with
respect to h — 0 and focus on proving that u is a subsolution. The proof for »~ is analogous.

+

Proof of Theorem 1.5. Consider u™ as defined in (1.10): we need to prove that it is a subsolution.
In the following, we will denote v := u™ and wuy, := u;. Let n(x,t) be an admissible test function
in z := (z,¢) and assume that (z,#) is a strict maximum point for v — 7. Assume furthermore that
u—mn = 0 in such point. We need to show that either (4.7) or (4.8) holds at Zz.

Step 1. Let us first assume that Vn(z) # 0. By classical arguments, we can assume that z is
a strict maximum point with £ > 0 and that n is smooth. By the definition of u, there exist a
sequence Zj, := (p,,tn,) — Z such that limy up, (3x) = u(2). By standard arguments (compare
e.g. [5, Lemma 6.1]), there exists a radius p > 0 such that all functions up, — n achieve a local
supremum in B,(Z) at points z, = (z,1;). We remark that we could modify slightly the definition
of up, (z,t) to be

> un (@) Xpn,arom (8 or > un, (@,8) Xan,m (£, (4.16)
leN leN

as this does not change the value of u(z,t). Recalling that us, is usc in space, we can thus ensure
that zj is a local maximum point for up, — 1 by choosing the definition in (4.16) that makes wup,
usc in time at z;. Then, passing to a further subsequence we can ensure that z;, — w € B,(Z), and
we use the definition of u to obtain

(u—n)(w) = limksup(uhk —n)(z) 2 limksup(u;m —n)(%) = (u—n)(2).
Therefore, w = Z by maximality. Thus we can assume that each function uy, — 7 achieves a local

supremum in B,(Z) at a point zp,, =: (2, tx) and that up, (2n,) = u(Z) as k — oco. Finally, we can
assume also that Vn(zy,tr) # 0 for k large enough.
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In particular, one has

up(x,t) < nlx,t) + cx (4.17) ’eq 6.19 Nonlocal

where ¢, 1= up, (Tk, tx) — n(xk, ti), with equality if (x,t) = (xg,tr). Let 0 > 0 and set
o
My, (@) := (2, ) + cp + §|=’L’ -zl

Then, for all z € RV,
un, (2, te) < mp, (2)

with equality if and only if @ = . We set Iy = up, (x, i) = ny. (zx). We fix £ > 0, to be chosen
later, and write E. x := {up, (-,tx — hg) > Iy — }. We define’

Wei= (T Bt ) \ {5, () > U2} (4.18)

We immediately see that W, — {x} in the Kuratowski sense as & — 0 since by (4.13)

{un, (- te) >l — e} \ {772,“(') > Iy +€} CW. C{up, (- tg) >l —e}\ {ngk() > I, + E} , (4.19) ’ inclusions W_e

see also (4.24) below. Then, we check that |[W.| > 0 for all ¢ small enough. By the continuity
of n” and |Vn(Z)| # 0, for any ¢ there exist a radius r. such that W, 2 B(xg,r.) N T,ttkfthg’k.
Furthermore, for any £ > 0, using (4.13) again yields x) € T}j;catk*hk {up, (-, tp — hg) >l — e}, and
the latter set coincides with the closure of its points of density 1 by Lemma 3.3. Thus, xj satisfies
lower density estimates and so we conclude that |W.| > 0. Now, assume E.j is bounded. By
minimality we have

1
P¢(T,;ftk_thg7k)+h—k/T+ i sdy_ (z) dx+/ Fy, (2, tp — hy) dz
k

Bty —hy e e

1
< P, ((Tfitk*thavk> N {ngk >, + E}) + hi/ Sdldéa.k' (4.20) ’eq 6.21 Nonlocal
k (Thftkfths,k)ﬁ{nzk>lk} :

Adding to both sides the term P, ({ngk >, et U Tfj_tk—thEvk) and using the submodularity
(2.4), we obtain

1
Py({nf, >l + ey UW.) = Py({nf, >l +}) + h—k/ Sd}éak(:ﬁ) dz

€

+/ Fhk(:v,tk—hk)dxgo.

€

By (4.17), {uhk(~,tk — hk) >l — 8} - {n(-,tk — hk) >l —cp — 6}, therefore it holds

g ag 1
Py({n7, > + e} UWe) = Py({nf, > Ik +€}) + o /W sd?n(,’trhk)ercrs}(:c) dx

+/ Fp, (z,tg — hy)dz < 0. (4.21) ’eq 6.22 Nonlocal
We

I'We need to define the sets We in this way (compare the different definition in [14]) since firstly, we can not rule
out that the inclusions in (4.19) are strict, and secondly it is not clear if otherwise |W¢| > 0.
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If instead E. j is an unbounded set with compact boundary, we replace inequality (4.20) by

Sd%m(az) dz + / Fp, (z,t — hy) dx

1
Py(Th,t,—ny Be k) + iT/
k ( We

+
Th,tk—hk Eg,k)ﬁBR

o 1
< Py((T o Be) 000, >l,mLe})+hk/(T+ R s,
Bty —hy ek N ngk> krt+e}NBr

for R > 0 sufficiently large, see (4.4). Then, one can argue as before to obtain (4.21).

The first two terms Py({ny > lx +e} UW.) — Ps({nf;, > li +¢}) can be estimated as done
in Lemma 3.8. Indeed, we consider the vector field v = Vp(b(x,Vngk) in (2.5) and we use the
divergence theorem to get

Py({nr, >lk+5}UWg)—P¢({nZkZlk—i—e})Z/ 11-1/—/ vV
8({nzk>lk+s}UW€) 6{77;'”C >lp+e}

= |W5|][ divo,
We
(4.22)

where v denotes the unit outer vector to the set we are integrating on. We then remark that
fy dive — H*({bn;{k 1y (@k) and £y, Fi, (2,tk — hy) do — Fy, (2k,tk — hy) as e — 0 by continuity.

The other term in (4.21), fW Sd?n(. th—hp)>lp—cp—e} CAI be treated as follows. For any z € W_, we

have -
n(z,tk)+ck+§|z—xk|2 <lp+e. (4.23)
Since, in turn, n(z,t) + cx > I — ¢ it follows that |z — x1|? < 4¢ and thus, for € small enough,

W. C B, (). (4.24)

By a Taylor expansion, for every z € W, we have

1
n(z,tx — hi) = n(z,tx) — hiOm(z, t) + hi/ (1 —8)0%n(z,tx — shy)ds. (4.25)
0

Then, we consider y,y. € {n(-,tx — h)(y) = Il — cx, — €} being respectively, a point of minimal
1—distance and Euclidean distance from z. We shall prove that

|2~y = Ohy). (4.26)

In order to prove this result, we start remarking that for & — oo and choosing € < hy, one has

sdf{/’n(.ytk_hkplk_%_s}(z) — 0 (as 2z = xp for e —» 0 and =, € {n(-,tx) > lx — ¢ }). In particular,

recalling the bounds (2.3) one has
[z = vl < il = ol < €GIsdly .y nyst—enmey () = 0

as k — oo. By (4.23) we deduce in particular n(z,tx) + cx <l + €, that is,

0 <n(z,tk) —ny, te — hy) < 2, (4.27)
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and the same inequality substituting y. to y. Thus, one has
(2, t) = (e, ti — hie) = Vi(y, te — he) - (2 = ye) = heden(y, ti — hie) + O(|2 = yel* + )

which we combine with Vn(y,tx — hi) - (2 — ye) = £|Vn(y, tr — hi)| |z — ye| (see [14] for details)
and (4.27) to get
|2 = el Iy, tr — hi)| < 26 + O () + O (|2 = e ).

Recalling that |Vn(y, tx —hg)| > ¢ > 0 for hj, small enough, we divide by |Vn(y, tx —hi)| to conclude
|z — ye| = O(hy) as € < hy. Finally, employing again (2.3), we conclude (4.26).

Then, we consider a geodesic curve for the definition of Sd{n( o hi) S le—ch— E}( z): if this distance
is positive, we choose 7 : [0,1] — RN with v(0) = 2,7(1) = y, with y as before, otherwise we take

~ such that ¥(0) = y,v(1) = z. In the following, we will assume Sd{n( o) >l — E}( z) > 0, the

other case being analogous. Recalling (2.1), we have
n(z,tk — hi) =0y, tk — he) + / Vin(y, ty — hi) -y dt

n(y, tx — hi) / V(v =y, te — hie) )90 (v, %) dt
>0y, te — hi) — ¥y, =Vn(y, t — hi))s d{n( tr—hi) =l —cip— 5}( z)
1
- /0 Wy, =Vn(y, te = b)) — Dy, =Vn(y, te — hi))) ° (v, 7) dt

>y, te — hi) = (0, =Vn(y, t — b)) +elz = y1) sd oo (2

where in the last line we reasoned as in (3.25) to obtain the bound sup, |y(t) — y| < ¢|lz — y|.
Recalling (4.26) one has

(2t — i) > n(y, i — he) = Oy, =y, te — hi))sdy oo (2) +o(hr). (4.28)
Combining (4.25) with (4.28) and using (4.27), we deduce
Sdll){n(‘,tk*hk):lkx*Ck*E}(Z) w(y7 —VU(ZU, ty — hk)) + O(hk:)

1
> —2e + hiOm(z, tr) — hz/ (1 — 8)04n(z, ty — shy) ds.
0

Note that, in view of (4.23) and (2.3), |n(z,tx) — n(y, tx)| < ce + chy = O(hy), provided & < hy,
and small enough. Thus, using also (4.24),(4.26) we deduce
1 omn(z,t £2£ — O(hy) — Op, (1
Lot o Gys (2, tr) — (hi) = Op,. (1)
o=t T~V te = )
 Om(ns ) + O(VE) — 2 — O(h) = O, (1)
P(xg, —Vn(xg, ty, — hk)) +O0(Ve) +O(hy)
We conclude by employing (4.21), (4.22) and (4.29), dividing by |W,| and sending € — 0 to obtain

5't77(53k,tk) B Ohk(]‘) ¢
HY . o .
w(mka_vn($k7tk)> +O(hk> + {Tlthnhk(rk)}(xk)

(4.29)

— Fhk(zk,tk - hk) S 0.
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Letting simultaneously o — 0 and k — oo, recalling the continuity properties of H?, we deduce
(4.8). Indeed the sets {n] > nf (1)} are converging in C? to the set {n > n(z)}, z;, — = and
thus

¢ ¢
Hyye s, @y (@k) = Hpys 0y (@),

and we conclude the proof of this step.
Step 2. Now we consider the case Vn(z,t) = 0 and we show that 9;n(z,t) < 0. The proof follows
the line of the one in [14], we just highlight the differences.

Since Vn(z) = 0, there exist g € F and w € C*°(R) with w’(0) = 0 such that

n(z,t) = n(z) = am(2)(t — )| < g(|z — z[) + w(|t — 2]),

thus, we can define

iz, t) = 0m(2)(t — 1) + 2g(|lz — 2[) + 2w(|t — £])

1
N t) =n(x,t —_—
Wk(% ) 77(337 )+ k(t—t)
We remark that u — 7} achieves a strict maximum in Z and the local maxima of u — 7, in RY x [0, 7]
are in points (zg,t;) — z as k — oo, with ¢, < . From now on, the only difference from [14]
is in the case xp = Z for an (unrelabeled) subsequence. We assume xp = T Vk > 0 and define
by =t —t;, > 0 and the radii

TR 1= gil(akbk),

where ay — 0 must be chosen such that the extinction time for B(-,ry) is greater than ¢ — ¢y, for
k large enough. To show that such a choice for ay, is possible, recalling Lemma 4.9 we set

Ty = 2\/0({7 tk) = 2\/Cbk
(which has extinction time greater than 2(f — #;)) and it is enough to prove that

g(2v/Cby)

— 0, as k — oo,
bi

which follows from the definition of the family F given in Definition 4.5. We then have

B(Z, 1) C k(s tr) < (T, tk) +29(r%)
C {u(-tr) < ul@,tr) +29(re)},

by maximality of u — 7y at z;. Since Lemma 4.9 ensures
T € {u(-1) < u(®,t) +29(rn)},
we use again the maximality of u — n at Z and the choice of r; to obtain

n(‘i.utk) — 77(5) _ n(jvtk) — 77(2) < u(i.7tk> — ’LL((EJ?) < _2g(rkr>

tp — 1t —by —by, - =bg

= —2ak.

Passing to the limit & — oo, we conclude that 9yn(z) < 0. O
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We conclude with two remarks concerning some possible generalizations of the results presented.

Remark 4.13. The results presented in this work can be immediately extended to unbounded
initial open sets Ey, whose boundary is compact. Indeed, defining the discrete flow as E,gh) = FEy
if t € [0, h), otherwise by induction Et(h) = T};tEt(f);L, where the operator T, ., is the one defined in
(4.2), this evolution is uniquely characterized by the one of the complement. Thus, all the results
presented in this paper can be extended to this particular unbounded case.

Remark 4.14. Following the lines of [9] (in the spirit of [3]) one can see that the results of this
paper may be extended to prove existence of flat flows and level set solutions to the mean curvature
flow on RY endowed with the geometric structure induced by a Finsler metric ¢°. For example,
the perimeter functional in this setting is defined as follows. Given a set E of finite perimeter, its
(intrinsic) perimeter is
Pye (E) = O, vp(x)) dHL (x),
*E

where the Hausdorff measure Hi{,_l is the one induced by the metric ¢°. In particular, one can
compute d?—[éx,_l(x) = wy|B? (@) dHN"(x) (see [9]), thus this approach is equivalent to
consider in our framework a slightly different (but still regular) anisotropy, namely ¢*(z,v) :=
wy|B? (x)|7'¢(x,v). In particular, this approach leads to considering the evolution of hypersur-
faces E; moving according to the evolution law

Vo (x,t) = —Hp, (x) + f(z,t) x €IE;, t € (0,T)

where now Ve represents the speed of evolution along the anisotropic normal outer vector nge (z) =
Vpd(x,vg(x)) and H is the “intrinsic” mean curvature, thus the first variation of the perimeter
Pyo. Recalling that ngo(z) - ve(z) = ¢(z, ve(z)), we see that the hypersurfaces are evolving with
a normal (in the Euclidean sense) velocity given by the law

V(1) = o, v, (@) (~Hg, () + f(2.1))

After this transformation, we can apply the results previously proved.
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