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Chemometrics/informatics, and data analysis in general, are increasingly important in X-

ray photoelectron spectroscopy XPS because of the large amount of information 

(spectra/data) that is often collected in degradation, depth profiling, operando, and imaging 

studies. In this guide, we present chemometrics/informatics analyses of XPS data using a 

summary statistic (pattern recognition entropy (PRE)), principal component analysis 

(PCA), multivariate curve resolution (MCR), and cluster analysis. These analyses were 

performed on C 1s, O 1s, and concatenated (combined) C 1s and O 1s narrow scans 
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obtained by repeatedly analyzing samples of cellulose and tartaric acid, which led to their 

degradation. We discuss the following steps, principles, and methods in these analyses: 

gathering/using all of the information about samples, performing an initial evaluation of 

the raw data, including plotting it, knowing which chemometrics/informatics analyses to 

choose, data preprocessing, knowing where to start the chemometrics/informatics analysis, 

including the initial identification of outliers and unexpected features in data sets, returning 

to the original data after an informatics analysis to confirm findings, determining the 

number of abstract factors to keep in a model, MCR, including peak fitting MCR factors 

and more complicated MCR factors and the presence of intermediates, and cluster analysis. 

Some of the findings of this work are as follows. The various chemometrics/informatics 

methods showed a break/abrupt change in the cellulose data set (and in some cases an 

outlier). For the first time, MCR components were peak fit. Peak fitting of MCR 

components revealed the presence of intermediates in the decomposition of tartaric acid. 

Cluster analysis grouped the data in the order in which they were collected, leading to a 

series of average spectra that represent the changes in the spectra. This paper is a 

companion to a guide that focuses on the more theoretical aspects of the themes touched 

on here. 

 

I. INTRODUCTION 
In this guide, we show the analysis of two rather large X-ray photoelectron 

spectroscopy (XPS) data sets using various exploratory data analysis (EDA) methods. In 

particular, we analyze two XPS data sets obtained from the repeated analyses of filter 

paper (cellulose, a natural polymer containing C, O, and H) and tartaric acid (a small, 
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symmetric molecule that also contains only C, O, and H). We focus here on carbon and 

oxygen containing materials because the C 1s and O 1s XPS narrow scans are the most 

commonly shown and analyzed in the scientific literature. Both data sets reveal 

significant degradation of the materials during XPS analyses that appears to lead to 

graphitization. These data sets were analyzed/probed with a series of EDA 

chemometrics/informatics methods that include a summary statistic (pattern recognition 

entropy, PRE), principal component analysis (PCA), multivariate curve resolution 

(MCR), and cluster analysis. This work also presents an examination of the raw spectra, 

identifies anomalies in the data sets, covers methods for determining the number of 

abstract factors to keep (that best describe a data set), discusses data preprocessing, 

shows XPS peak fitting of MCR components (to the best of our knowledge this is the first 

time this has been done), identifies intermediates revealed in an MCR analysis (to the 

best of our knowledge this is also the first time this has been done), shows the evolution 

of XPS data using cluster analysis, and compares the results from multiple EDA methods. 

This guide has a companion paper that focuses on more general and theoretical aspects of 

the techniques and analyses shown here. The chemometrics/informatics methods 

employed in this study have been reviewed and discussed multiple times in the 

literature.1-8 

 
XPS is the most widely used and important method for chemically analyzing 

surfaces.9-12 In XPS, a beam of X-rays, which is directed onto a surface, generates 

photoelectrons via the photoelectric effect. The kinetic energies of these photoelectrons 

are measured, converted into binding energies, and used to identify the elements present 

at a sample surface. Relatively small ‘chemical shifts’ in the resulting peak positions 
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(typically 1 – 4 eV, but sometimes as large as 10 eV) reveal the chemical (oxidation) 

states of the elements.13 While the X-rays used in XPS can penetrate ca. 1 micron into a 

material, the photoelectrons they generate can only escape in an unattenuated fashion 

from the upper ca. 5 – 10 nm of it. Accordingly, XPS is a surface sensitive spectroscopy. 

Furthermore, while little or no sample damage occurs in many XPS analyses, e.g., for 

many inorganic materials, it does occur in some cases. This damage is often caused more 

by photoelectrons than the X-rays themselves. Because XPS peak widths and chemical 

shifts are of similar magnitudes, peak fitting is often necessary in XPS data analysis. For 

quite a few years, XPS experts have expressed concern over the quality of some of the 

XPS peak fitting in the scientific literature. In response to this issue, which is part of the 

larger problem of reproducibility in science,14, 15 a group of experts has recently produced 

a series of guides that cover multiple aspects of XPS.12, 16-25 These guides follow many 

efforts by XPS experts to educate the broader community, including through ISO and 

ASTM standards. This particular guide is part of a second series of guides that covers 

additional topics related to XPS, and also other surface analytical techniques. 

 
Materials containing carbon and oxygen (and hydrogen) have been extensively 

analyzed by XPS. Indeed, Beamson and Briggs’ classic work on organic polymers 

suggests that a large subset of the organic polymers of interest in XPS are those that 

contain only carbon, hydrogen, and oxygen.26 Such materials include the acrylates, 

methacrylates, polyethylene glycol/oxide, polypropylene glycol/oxide, 

polyethyleneterephthalate, polyether ether ketone, and the naturally occurring polymers 

lignin and cellulose. All are of practical and theoretical importance, and there are 

multiple examples of their characterization in the literature by XPS,27-29 including by near 
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ambient pressure (NAP)- XPS.30-34 These polymers are dominated by a series of 

functional groups that contain increasing numbers of carbon-oxygen bonds, including 

reduced carbon with no carbon-oxygen bonds (C-C/C-H, where carbon is usually sp2 or 

sp3 hybridized), C-O (alcohols, ethers, and epoxides), C=O (carbonyls) and O-C-O 

(acetals), C(O)O (carboxyls and esters), and O-C(O)O (carbonates).13 While both the C 

1s and O 1s narrow scans are important for understanding these polymers, the C 1s 

narrow scan is usually more informative because (i) the chemical shifts exhibited by 

carbon in its different oxidation states occur over ca. 10 eV, which is quite a bit more 

than for oxygen, (ii) organic polymers generally contain more carbon atoms than oxygen 

atoms, i.e., the C 1s narrow scan often represents a larger fraction of the atoms in the 

material, and (iii) the XPS of carbon is quite strongly determined by initial state effects, 

i.e., the state of the atom as influenced by those it is bonded to. As a result of this first 

point, the C 1s spectrum is often easier to fit/interpret. The large spread in binding 

energies for carbon is, no doubt, a reflection of its lower electronegativity compared to 

oxygen. That is, carbon may be bonded to elements that are more electronegative than it 

is, e.g., nitrogen, oxygen, chlorine, and fluorine, to those that have roughly the same 

electronegativity, e.g., hydrogen and sulfur, and to those that are more electropositive, 

e.g., silicon and germanium, while there is only one element (fluorine) that is more 

electronegative than oxygen. Sulfur, which has about the same electronegativity as 

carbon, also shows a wide range of chemical shifts. In addition to polymers, some small 

organic molecules with sufficiently low volatilities can be analyzed by conventional XPS. 

Such molecules are often held together by multiple hydrogen bonds. More volatile 

organic molecules may be analyzed by NAP-XPS.30 
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While XPS causes little or no sample damage in many cases, organic materials 

sometimes degrade during XPS analyses. This damage usually occurs gradually, over 

multiple scans. Damage can be identified by comparing different scans in an analysis, 

e.g., by ratioing spectra.25 In describing the damage caused by X-rays and photoelectrons 

during XPS, Baer et al. noted that, in general, sample damage takes place in an 

approximately linear fashion at the beginning of an analysis, but non-linearly at later 

times.35 Because it undergoes rapid damage during XPS analysis, polyvinyl chloride 

(PVC) is often used as a standard in damage studies.35-38 Even though clean cellulosic 

filter paper is damaged during XPS, it has been proposed as an in situ reference for 

analysis of organics and polymeric materials.39 Cellulosic filter paper stays relatively 

clean in and out of vacuum, and, more importantly, its C 1s envelope is different from 

adventitious carbon contamination. Related studies have shown damage to polymers 

when they are irradiated with energetic electrons or photons, where these conditions 

appear to lead to an increase in sp2 carbon/sample graphitization and cross-linking.40, 41 

Large numbers of spectra may be needed to understand sample damage. These large data 

sets may be difficult to interpret and visualize by conventional methods. 

 
Chemometrics/informatics methods have been used for years to analyze large and 

complex data sets. However, in spite of previous work in this area,1, 5, 42-44 this capability 

has been overlooked by much of the XPS community. Indeed, multivariate/chemometrics 

methods may not have been significantly adopted and employed by XPS practitioners 

because of the general unfamiliarity of many scientists with these techniques. The first 

extensive use of chemometrics algorithms, such as PCA, MCR, and image classification, 
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in degradation studies was done on a PVC/polymethymethacrylate (PMMA) blend. 41, 45 

The time-of-flight secondary ion mass spectrometry (ToF-SIMS) community appears to 

have recognized the importance of chemometrics methods to a somewhat greater extent 

than the XPS community.42, 45-51 Chemometrics/informatics techniques can be used as an 

alternative to or in combination with conventional peak fitting because they reduce the 

dimensionality of large and complex data sets and may extract hidden features in the 

data. Fundamentally, these multivariate methods work in XPS data analysis because of 

the high degree of correlation between the spectra in many data sets. 

Chemometrics/informatics methods are particularly relevant to XPS today because of the 

trend to collect increasingly large data sets in degradation, depth profiling, operando, and 

imaging studies. Thus, methods are increasingly needed to more efficiently analyze and 

visualize these data sets. In addition to providing a wide variety of analysis 

methodologies, chemometrics/informatics can guide experimental design to ensure 

maximimal interpretability of experimental results. Finally, while the particular EDA 

methods employed herein are, for the most part, widely used and effective, we have not 

covered all possible EDA methods in this guide – there are many more than may be 

considered. 

The Results and Discussion of this paper is organized into sections that cover 

multiple aspects of the chemometrics/informatics analysis of XPS data. To help the 

reader understand the connections between these sections/concepts, they have been 

organized into a flowchart (Figure 1). This diagram teaches that one should first gather 

(and then use) all the information available about one’s samples and data. The raw data 

should then be plotted and its general structure should be analyzed, where one should 
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look for any outliers or irregularities in it. At this point, one should determine which 

chemometrics/informatics analyses to perform. The data preprocessing necessary for 

these analyses should then be undertaken. Because of its widespread use and power, we 

recommend PCA first be performed. The reader may also wish to consider a summary 

statistic analysis. One then determines the appropriate number of abstract factors to keep 

in the PCA model. After obtaining these initial results, one should return to the original 

data to confirm them. We then recommend that MCR be performed. Peak fitting of the 

MCR factors can help reveal the chemical evolution of a data set. Chemical intermediates 

may even appear in this analysis. Finally, one may wish to consider cluster analysis to 

obtain another mathematical perspective of one’s data. As suggested by the dashed lines 

in the flowchart, we believe that chemometrics/informatics analyses should always point 

one back to the original data. At that point, initial findings can be confirmed, and the 

original data may be better understood, dissected, and reconsidered so that more correct 

and refined chemometrics/informatics analyses can then be undertaken. 

Finally, someone new to chemometrics/informatics may want to apply these 

methods in their work, but be put off by all the new vocabulary, concepts, and techniques 

in this paper and the previous one. Does one really have to master all these concepts and 

methods to be able to do chemometrics/informatics, or is there an easier way? We think 

there is an easier way. Of course, we believe that (i) all the methods described in this 

work are important, where each has strengths that let it solve certain problems better or 

more conveniently than the others, and (ii) there is value in probing data sets with 

different statistical/mathematic tools because the results from these methods can reinforce 

each other. Nevertheless, in our opinion, those who wish to most quickly benefit from 
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chemometrics/informatics in their XPS analyses should focus on MCR, first reading (and 

following) Sections A and B of the Results and Discussion and then skipping to the 

sections on MCR. The other sections of this document and the information in the 

previous paper can then be referred to as needed. In our opinion, not only do the most 

exciting and important results in this study come from MCR, MCR is easier to apply than 

PCA and its results are generally more intuitive. For example, spectra taken under 

identical conditions do not, in general, need to be preprocessed prior to MCR. In contrast, 

some form of preprocessing is required before most PCA analyses, and it is not always 

clear what that best preprocessing approach is. MCR factors are also much easier to 

interpret than PCA loadings because they generally look like (and very often represent) 

real spectra. In addition, while PCA is often used to estimate the number of factors that 

are needed in an MCR analysis, one can do this with MCR itself by:  

(i) Looking at the amount of variance captured by the different MCR factors 

(in a good model, the number of factors that are kept will generally 

account for most of the variance in the data set),  

(ii) Examining the factors themselves to see where they no longer show 

meaningful structure,  

(iii) Creating models with successively larger numbers of factors in them, 

evaluating the chemical reasonableness of the models (this approach is 

shown in the Results and Discussion), 

(iv) Perhaps reconstructing spectra from one’s data set with MCR factors as is 

done in Figures 13 – 15 for PCA, and  
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(v) Using what one knows about one’s sample to determine the appropriate 

number of MCR factors to keep/expect.  

It would probably be best to use a combination of these approaches. While our view may 

not be shared by all chemometricians, we believe that MCR is the most powerful and 

relevant tool for analyzing the types of data sets considered in this work, and that if one 

were to learn and apply only one of these techniques, it should be MCR. However, in the 

long run, if one is to be effective in this space – if one wishes to be able to apply 

chemometrics/informatics methods to a wide variety of data sets, one should become 

familiar with at least PCA, and, in time, with other chemometrics/informatics methods as 

well. 

 

Figure 1. Flowchart of the topics covered in this work (blue boxes). The red boxes 
indicate important subtopics.  
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II. EXPERIMENTAL 

The impact of repeated XPS analyses (X-ray irradiation of the samples) on two 

organic materials (cellulose and tartaric acid) were examined using the data sets from two 

different instruments as described below. 

A. Materials Analyzed 

1. Cellulose 

Sixty C 1s and O 1s XPS narrow scans of a cellulose sample (filter paper) were 

collected with a Kratos AXIS Ultra instrument with an Al K alpha monochromatic source 

at 300 W. In our experience, the charge compensation system for this instrument is 

superb – the data were not shifted or otherwise corrected after they were collected. The 

pass energy for these measurements was 10 eV. The instrumental resolution determined 

from the Fermi edge of silver yielded a resolution of 0.5 eV with a step size of 0.1 eV. 

The region analyzed was about 150 x 350 microns (FOV2 slot). Acquisition of each 

spectrum took about 10 minutes. The total analysis time was 36 hours. 

2. Tartaric acid 

One hundred and one C 1s and O 1s XPS narrow scans of a tartaric acid sample 

were collected with a Thermo Fisher Scientific K-alpha+ spectrometer. Samples were 

mounted by pressing them into a well on the Thermo K-Alpha copper powder sample 

exchangeable top plate. Data were recorded using a micro-focused monochromatic Al K 

alpha X-ray source (6 mA x 12 kV = 72 W) using the 400-micron spot option which 

forms an ellipse of approximately 600 x 400 microns.  Data were recorded at pass 

energies of 150 eV for survey scans and 40 eV for high resolution/narrow scans with 1 

eV and 0.1 eV step sizes, respectively.  A total of 2 scans each for the C1s and O1s 
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regions were acquired, totaling approximately 50 seconds per iteration. Charge 

compensation was achieved using a combination of both low energy electrons and argon 

ions with the flood source operating at the following conditions: Beam = 0.2 V, Emission 

= 100 mA, and Extractor = 40 V. However, in spite of the reasonable efforts undertaken 

to provide adequate charge compensation for the sample, the less expensive K-alpha+ 

instrument probably does not have the capabilities of the higher end instrument used to 

analyze the cellulose sample. Accordingly, in this work, these data were handled in both 

corrected and uncorrected ways. That is, all of the analyses in this work, except those in 

Figures 13 – 15, were performed with uncorrected/unshifted data. Appendix 1 describes 

the approach taken to shift the peak positions of the O 1s peaks to a common value.  

B. Data organization 

The spectra analyzed herein were organized row-wise into data matrices, where 

each row of the data set contained one spectrum/scan. The concatenated data set 

consisted of C 1s and O 1s narrow scans joined/linked together into a single spectrum. 

C. Computer/software 

The computer programs used to analyze the data sets with summary statistics 

were written in the MATLAB computing environment (Version R2018b, Release No. 

8.6.0.267246, The MathWorks Inc., 1 Apple Hill Drive, Natick, MA). The computer used 

for this work was an Intel Corei7-4770 CPU@3.40 GHz with 8.0 GB of RAM on a 64-bit 

Windows 10 Enterprise Edition operating system. PCA, and MCR were performed using 

the PLS Toolbox, version 8.7, and MIA Toolbox, version 3.0.9 from Eigenvector 

Research, Inc., Wenatchee, WA, in the MATLAB programming environment. Curve 
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fitting was performed in CasaXPS 2.3.25. The PCA abstract factors used in Figures 13, 

14 and 15 were computed using Iterative SVD52 implemented in CasaXPS. 

 

III. RESULTS AND DISCUSSION 

We now show the chemometrics/informatics analyses of two moderately large 

XPS data sets, as presented in a series of subsections. These subsections cover important 

concepts/steps that should be considered in performing chemometrics/informatics 

analyses including gathering all the information possible about the samples, 

examining/plotting the raw data, determining the types of analyses to perform, 

preprocessing the data, knowing where to begin the chemometrics/informatics analysis, 

identifying outliers or other unexpected features in data sets, returning to the original data 

to confirm chemometrics/informatics results, determining the number of factors to keep 

in a model, MCR, peak fitting of MCR factors, more complicated MCR factors and the 

presence of intermediates, and cluster analysis, including using the average spectra from 

clusters to follow an analysis. We again refer the reader to the flowchart in Figure 1, 

which shows the logical sequence of and connections between these topics. 

 

A. Gather/use all the information you have about your samples 

As discussed in the companion guide to this one,53 all of the information that is 

available about a sample, including its chemical/structure information, should be 

considered in a chemometrics/informatics analysis of it. Most of this paper is about 

analyses of two data sets obtained from samples of cellulose and tartaric acid. The 

structures of these polymers/molecules are shown in Figure 2. In both cases, these 



 14 

structures suggest that two types of chemically different carbon are in these materials: for 

cellulose, we expect carbon in +1 (C-O) and +2 (O-C-O) oxidation states, while for 

tartaric acid, we expect carbon in +1 (C-O) and +3 (C(O)O) oxidation states.13 Thus, if 

additional (more than two) signals are present in the XPS spectra of these materials, they 

must come from impurities or (in the case of cellulose) additives. 

 

 
 
 

Figure 2. Chemical structures of cellulose (top) and tartaric acid (bottom). 

 

B. Examine (plot) the raw data 

As discussed in the companion guide to this one,53 an early step in a 

chemometrics/informatics analysis should be to visually examine/plot the data. Figure 3 
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presents overlay plots of the C 1s and O 1s narrow scans from the cellulose and tartaric 

acid data sets, i.e., all the spectra are just plotted on top of each other. These plots show 

significant changes in the data, where such changes in XPS spectra may indicate sample 

degradation or charging. These plots also suggest that there is a rather significant break or 

discontinuity in the cellulose O 1s data set. These plots provide good motivation for the 

chemometrics/informatics analyses of these spectra. Waterfall plots show spectra in a 

side-by-side, sequential fashion. The waterfall plots in Figure 4a-c for cellulose show a 

decrease in the C-O peak, an increase in the reduced carbon peak, and a decrease in the O 

1s signal. Because of the more three-dimensional nature of waterfall plots, it can be 

advantageous to view them from different angles. Figure 4 shows ‘high binding energy’ 

and ‘low binding energy’ views of the cellulose and tartaric acid C 1s data sets. These 

plots again suggest that there is a break/discontinuity in the cellulose data, which will be 

discussed below. Like the plots of the cellulose data, the waterfall plots of the tartaric 

acid data show an increase in the reduced carbon peak and a decrease in the O 1s signal 

(see Figure 4d-f).  

Another possible way to view spectra is by plotting their derivative. Figure 5 

shows the first and last (60th) C 1s and O 1s narrow scans of the cellulose data set and 

their derivatives. These plots reveal considerable differences between the 1st and 60th C 

1s narrow scans in both their differentiated and undifferentiated forms. However, the 

changes in the O 1s spectra are more subtle – the most obvious change in them is that the 

O 1s peaks decrease in size. However, the O 1s peak position and peak shape do change 

to some degree, where the shift in this peak position is nicely revealed by the change in 
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the zero-crossings of the corresponding derivative curves. There is generally more 

complexity/‘wiggles’ in derivative spectra than undifferentiated spectra. 

 

 
 

Figure 3. Overlay plots of 60 (a) C 1s and (b) O 1s narrow scans from an XPS analysis of 
cellulose and 101 (c) C 1s and (d) O 1s narrow scans from an XPS analysis of tartaric 
acid. Arrows show the general direction of early time to later time in data collection. See 
Appendix 1 for an approach used to energy shift the O 1s and C 1s tartaric acid peaks 
such that the O 1s signals would align. 
 



 17 

 
 
Figure 4. Waterfall plots of the C 1s and O 1s narrow scans in the cellulose (a – c) and 
tartaric acid (d – f) data sets. Two different views of the C 1s data sets (a – b and d – e) 
and one view of the O 1s data sets (c and f) are presented. The cellulose and tartaric acid 
data sets here contain 60 and 101 spectra, respectively. 
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Figure 5. The first and the last (60th) undifferentiated (a and c) and 
differentiated/derivative (b and d) C 1s and O 1s narrow scans of the cellulose data set. A 
smoothing/differentiating Savitzky-Golay filter54-58 was used to produce the results in 
(b) and (d).  
 

C. Develop a general strategy for the 

chemometrics/informatics analysis 

It can be challenging for a beginner in chemometrics/informatics to know which 

analyses/tools to apply to a data set. Accordingly, if an analyst is unsure how to proceed, 

we recommend the approach in the flowchart in Figure 1. Of course, there are other 

chemometrics/informatics analyses and approaches that the analyst will learn in time and 
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be able to consider. However, one new to this area may wish to follow the approach 

outlined in Figure 1 because (i) PCA, MCR, and cluster analysis are very well accepted 

and established, and (ii) they have been shown to be effective on many types of data sets. 

We have also found summary statistics to be helpful in the initial evaluation of our data. 

Of course, those who are more experienced with chemometrics/informatics may see more 

tailored/focused approaches for analyzing particular data sets. 

D. Preprocess the data 

‘Data preprocessing’, or just ‘preprocessing’, refers to any mathematical 

treatment of a data set prior to a chemometrics/informatics analysis. The objectives of 

data preprocessing are to suppress signal that is not of interest, bring signal of interest to 

the forefront, and make the data mathematically consistent with the analyses that are to 

be performed on it, e.g., one may add an extremely small number to zero values in a data 

set to prevent an algorithm from dividing by zero. The companion paper to this one53 

describes multiple ways of preprocessing data for chemometrics/informatics analyses that 

include no preprocessing at all, normalization with the 1-norm, baselining, variable 

selection, mean centering, autoscaling, Poisson scaling, concatenation, differentiation, 

smoothing, and the use of multiple preprocessing methods. Some of these methods are 

important for XPS data analysis, and some of them are discouraged. An advantage of 

pattern recognition entropy (PRE), which will be described in the next section, is that it 

requires little or no preprocessing. 

E. Where to start an informatics analysis, and identifying 

outliers and unexpected features in data sets 
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A summary statistic is a single number that characterizes a spectrum. Summary 

statistic analyses are quite easy to perform and can be helpful in identifying trends in 

data/spectra. Accordingly, we suggest that a summary statistic be applied early in a data 

analysis. PRE,5, 59 1, 6, 60, 61 which is based on Shannon’s entropy, clusters and reveals 

trends in data, where its results are often similar to those in PCA scores plots. PRE is 

particularly useful in image analysis. Figure 6 shows the PRE analyses of the C 1s and O 

1s spectra from the cellulose and tartaric acid data sets. First, Figure 6 simply reveals that 

the PRE values change, which suggests that the spectra are changing (in three of the four 

subplots in Figure 6 these changes are basically monotonic). Of course, this is not 

surprising because the original data/underlying spectra are also changing (see Figures 3 – 

4). Second, PRE reveals an abrupt change in the cellulose C 1s and O 1s spectra, where 

this discontinuity occurs between spectra 51 and 52. No evidence for a gap or jump is 

present in either the raw spectra (Figures 3 – 4) or in the PRE analyses (Figure 6c-d) of 

the tartaric acid spectra. Supporting Information Figure S1 shows other summary statistic 

analyses of these data. PRE is a rather new chemometrics/informatics tool. It was 

developed by some of the authors on this paper.  

As single numbers, summary statistics are limited in the amount of insight they 

can provide about spectra. Accordingly, we next recommend that a whole-spectrum 

analysis be performed. The most common, and arguably important, of these EDA 

methods is PCA. Figure 7 shows the two-dimensional PCA scores plots of the C 1s, O 1s, 

and concatenated C 1s and O 1s spectra of the cellulose and tartaric acid data sets, which 

were preprocessed by mean centering. In all cases, the data points/spectra fall along 

trajectories, which suggest steady changes in the spectra. These types of trajectories are 
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often observed in PCA analyses. As can be seen in the x- and y-labels of these plots, most 

of the variance in these data sets is captured by these first two PCs. In the companion 

paper to this one,53 and also below, we discuss methods for determining the number of 

abstract factors to keep in a chemometrics/informatics analysis. The breaks in the 

trajectories of the data points/spectra in the PCA of the cellulose data set (Figure 7a-c) 

take place at the same point as the breaks in the PRE analysis in Figure 6a-b. This 

discontinuity in the data was confusing to us. The scientist who took the data informed us 

that after scan 51 a different analysis was performed on this cellulose sample, after which 

the remainder of the data for this analysis were collected. That is, the cellulose received 

additional irradiation between scans 51 and 52. As in its PRE analysis, no break or 

discontinuity is present in the tartaric acid data set (Figure 7d-f). Rather, continuous 

trajectories are observed, which, again, suggest steady changes in the spectra. 

Outlier identification is an early step in an informatics analysis. In the C 1s, O 1s, 

and concatenated C 1s and O 1s PCA scores plots of cellulose (Figure 7a-c), the first 

points (corresponding to the first narrow scans collected) are either fairly far from the 

next points and/or inconsistent with the trajectories of the points that follow them. These 

results suggest that the first C 1s and O 1s scans of the cellulose data set may be outliers. 

These effects are even more pronounced in the 3D PCA scores plot (on the first three PCs 

of this data) in Figure 8. This result illustrates that even if most of the variation in a data 

set is be captured by a few PCs, the higher PCs sometimes contain useful, and even 

important, information about the data set. The same applies for MCR. Finally, additional 

information may be added to PCA scores plots. Figure 9 shows a plot of the PCA of the 

concatenated C 1s and O 1s narrow scans of the cellulose data set, where the elapsed time 
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of the analysis has been added to the plot via the color of the data points. This type of plot 

allows additional information/another dimension to be rather easily added to a graph.  

 
 

Figure 6. PRE analysis of 60 C 1s (a) and O 1s (b) narrow scans from an XPS analysis of 
cellulose, and 101 C 1s (c) and O 1s (d) narrow scans from an XPS analysis of tartaric 
acid. No preprocessing was performed on the data before these analyses. PRE is a 
summary statistic based on Shannon’s entropy. That is, PRE takes a spectrum and turns it 
into a single, characteristic number, which is plotted here. 
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Figure 7. Two-dimensional PCA scores plots of the C 1s (a and d), O 1s (b and e), and 
concatenated C 1s and O 1s (c and f) spectra of the cellulose (first column) and tartaric 
acid (second column) data sets after preprocessing by mean centering. Each point in these 
plots corresponds to a spectrum, where the ‘scores’ here are the projections of these 
spectra on a new set of rotated, orthogonal axes, which are called principal components, 
or ‘PCs’. The first two PCs here account for most of the variance in the data sets. For 
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example, in panel (c), the ‘(97.96%)’ value in the x-axis label ‘Scores on PC1 (97.96%)’ 
indicates that PC1 accounts for 97.96% of the variance in the data set. 
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Figure 8. Three-dimensional PCA scores plots of the (a) C 1s, (b) O 1s, and (c) 
concatenated C 1s and O 1s spectra of the cellulose data set after preprocessing by mean 
centering. PC 3 here only accounts for a small amount of the variance in these data sets. 

 

 
 

Figure 9. Two-dimensional PCA scores plots of the concatenated C 1s and O 1s narrow 
scans of the cellulose data set with the elapsed time shown as the color of the data points. 
In PCA, the spectra are, in essence, plotted as single points in a hyperspace, where the 
axes of this coordinate system are rotated to align with the greatest amount possible of 
variance in the data. The ‘scores’ of the data points (spectra) are the projections of the 
data points (spectra) on the new (rotated) axes, where these new axes as called ‘principal 
components’ or ‘PCs’. 

 

F. Determine the number of abstract factors to keep in a model 

One of the challenges associated with PCA and MCR is determining the ‘right’ 

number of abstract factors to keep, i.e., the number that appropriately captures the 

relevant variance in a data set. While there is no simple formula or approach for 

determining the appropriate number of abstract factors to keep, there are accepted tools 
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that can be used to this end, including scree plots, cross-validation, and reconstructing the 

data from increasing numbers of PCs. Figure 10 shows scree plots obtained from the 

PCA analysis of the cellulose data set after mean centering. The top row of plots in this 

figure, which show the cumulative variance captured by the PCs, reveals that for all three 

data sets (the C 1s, O 1s, and concatenated C 1s and O 1s data sets) the first two PCs 

capture more than 99% of the variance in the data. The bottom row of scree plots in 

Figure 10 shows the log of the eigenvalues (a measure of the amount of variance captured 

per PC) as a function of the principal component number. In these types of plots, one 

typically looks for a discontinuity in the plot (a ‘knee’) where the slope of the results (as 

viewed from right to left) changes. This point in the plot is often taken as the number of 

PCs that describe a data set. Accordingly, these plots suggest that five PCs describe the 

cellulose data sets quite well. That is, while, in some cases, a two-PC (two abstract 

factor) model may adequately describe the cellulose data sets because of the high amount 

of variance it captures, the higher PCs appear to contain some relevant (non-noise) 

information. These results are typical of the PCA of many data sets. The scree plots for 

the tartaric acid data sets in Figure 11 show that the first two PCs account, on average, for 

a lower fraction of the variance in the data sets than for the cellulose data set, and that a 

total of 4 – 5 PCs probably describe these data sets. 

A more graphical approach for finding the number of abstract factors that describe 

a data set is to first perform PCA on the data and then to reconstruct the spectra from 

increasing numbers of PCs. Both the reconstructed spectra and the loadings (abstract 

factors) are examined here. It is often better not to preprocess the data prior to this type of 

reconstruction, and the data were not preprocessed in the analyses that are now described. 
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Figure 12 shows reconstructions of the first spectrum of the tartaric acid C 1s data set 

from increasing numbers of abstract factors. The high RSD values and the presence of 

significant structure in the residuals of the reconstructions from one (Figure 12a) and two 

(Figure 12b) abstract factors suggest that the spectrum is inadequately described by one 

or two PCs. Reconstructing the spectrum from three or more abstract factors yields 

spectra that no longer change significantly. However, the residuals in Figure 12c still 

show some structure, which mostly disappears when the spectrum is reconstructed from 

four abstract factors. The loadings of these factors in Figure 13 suggest that abstract 

factors 1 – 4 have meaningful structure and that four abstract factors (PCs) adequately 

describe this data set. Nevertheless, like scree plots and cross-validation, this is an inexact 

approach. There appears to still be a small amount of structure/information in abstract 

factors 5 (Figure 13e) and 6 (Figure 13f). Nevertheless, these factors are becoming 

noisier, which also suggests that they are contributing less useful information to the 

analysis. With the exception of the first abstract factor, the negative peaks in the abstract 

factors in Figure 13 make them hard to interpret chemically. As noted in the companion 

paper to this one,53 the approach of reconstructing data from abstract factors should be 

applied to different spectra in a data set. Figure 14 shows the reconstruction of the 50th C 

1s spectrum in the tartaric acid data set. Fortuitously, this spectrum is very well described 

by the first abstract factor. That is, if only this spectrum were reconstructed, one might 

conclude that only one, or perhaps two, abstract factors are necessary to describe this data 

set. Finally, one can denoise/smooth a spectrum by reconstructing it from a limited 

number of abstract factors. This removal of noise is illustrated in Figure 12 – compare the 
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noise levels on the spectra reconstructed from three and four abstract factors to the 

original spectrum, i.e., the spectrum reconstructed from all the abstract factors.  

 

 
 

Figure 10. Scree plots from the PCA analyses of the cellulose data sets after mean 
centering. Scree plots show the amount of variance captured by a PCA model vs. the 
principal component number. 
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Figure 11. Scree plots from the PCA analyses of the tartaric acid data sets after mean 
centering. Scree plots show the amount of variance captured by a PCA model vs. the 
principal component number. 
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Figure 12. Reconstructions of the first, unpreprocessed, C 1s spectrum from the tartaric 
acid data set using (a) one, (b) two, (c) three, (d) four, (e) five, (f) six, (g) twelve, and (h) 
all the PCs (abstract factors). The residuals of these reconstructions are shown above the 
spectra in each panel. As the number of PCs used to reconstruct the raw data increases, 
the residuals and residual standard deviations (residual STDs) decrease. 
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Figure 13. The first six loadings (abstract factors) from a PCA analysis of the C 1s 
tartaric acid data set in which no preprocessing was performed on the data. The 
‘loadings’ contain the contributions of the original axes to the new (rotated) axes in PCA. 
These abstract factors were used to regenerate the spectra in Figures 12 and 14. For these 
analyses (in Figures 12 – 14), the binding energy scale was adjusted to align the O 1s 
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spectra peak maxima in all the spectra. Appendix 1 contains more details of this 
adjustment. 

 
Figure 14. Reconstruction of the 50th unpreprocessed C 1s spectrum from the tartaric 
acid data set using (a) one, (b) two, (c) three, (d) four, (e) five, (f) six, (g) twelve, and (h) 
all abstract factors. The residuals of these reconstructions are shown above the spectra in 
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each panel. As the number of PCs used to reconstruct the raw data increases, the residuals 
and residual standard deviations (residual STDs) decrease. 
 

G. Return to the original data after an informatics analysis to 

confirm findings 

With modern chemometrics/informatics software, it is easy to perform many 

different analyses on data sets. However, the predictions and findings from these analyses 

should always be confirmed in the originally data. We now follow this procedure for the 

outlier in the cellulose data set (Spectrum 1) suggested in Figures 7 – 9. Figure 15 shows 

the raw, concatenated C 1s and O 1s data for the first three narrow scans of this data set. 

Included in this plot are enlarged views of the tips of the peaks. While one might argue 

that these three scans are not terribly different from each other, Figure 15 suggests that 

Spectrum 1 is indeed different from Spectra 2 and 3. These results underscore the ability 

of chemometrics/informatics methods to differentiate between spectra, even when the 

differences between them are fairly subtle. These differences might have been missed 

otherwise. 
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Figure 15. First, second, and third concatenated C 1s (left) and O 1s (right) spectra of the 
cellulose data set. The insets of these panels show zoomed-in views of the data. 

 

H. Multivariate Curve Resolution (MCR) (of the cellulose data 

set) 

MCR has become popular among chemometricians as it offers various advantages 

over PCA. For example, because of the non-negativity constraints that are usually applied 

in MCR, MCR loadings have the appearance of real spectra, making them easier to 

interpret, while PCA loadings often have negative peaks (see, for example, Figure 13). 

Figure 16 shows scores and loadings plots for two-component MCR models of the C 1s, 

O 1s, and concatenated C 1s and O 1s data of the cellulose data set. In all three cases, 

more than 99% of the variance in the data sets is captured by two components. In each 

case, the scores on one of the components rise monotonically, while the scores on the 
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other fall monotonically. Accordingly, one might expect that the first and last scans of the 

data sets would basically be the same as the MCR components, which is confirmed in the 

last row of Figure 16. In other words, MCR makes the interesting prediction that the 

cellulose spectra are essentially linear combinations of the first and last spectra in this 

data set. Chemically, this implies that there are two chemical states for the material: an 

undamaged state and a damaged one. As we will see below, it is not always the case that 

series of spectra can be conveniently described with only two components.  

The following are additional conclusions/considerations from the MCR analyses 

of the cellulose data set in Figure 16. 

i. The break in the cellulose data between spectra 51 and 52, which was apparent in 

the summary statistic (Figure 6a-b) and PCA (Figures 7 - 9) analyses, is also 

obvious in the MCR scores plots for all three models (the C 1s, O 1s, and 

concatenated C 1s and O 1s models) (see Figure 16a-c). 

ii. While the PCA analyses in Figures 7a-c, 8 and 9 suggest that Spectrum 1 is an 

outlier in the C 1s, O 1s, and concatenated data sets, this effect was only observed 

in the MCR model of the O 1s spectra (see Figure 16b), where spectrum 2 has the 

highest and lowest scores on components one and two, respectively. It is not 

entirely clear why this effect is only apparent in Figure 16b. Nevertheless, these 

somewhat different results from PCA and MCR underscore the importance of 

using multiple informatics methods to analyze data sets. The different 

mathematics of these methods probe data sets differently.  

iii. Preprocessing usually affects informatics analyses. For example, the outlier in the 

cellulose data set became apparent when the data were mean centered prior to the 
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PCA analysis (Figures 7 – 9), but not when no preprocessing was applied (see 

Supporting Information Figure S2). No preprocessing was applied to the cellulose 

data set prior to MCR. However, it is incorrect to mean center (or autoscale) 

spectra prior to MCR because of its non-negativity constraints, unless special 

considerations/changes are applied in the analysis. 

iv. In Figure 16, we obtain loadings with very similar shapes from the C 1s, O 1s, 

and concatenated data sets, which suggests that all of these analyses are 

revealing/exposing the same chemical variation/evolution in the data. 

v. The relative concentrations of the different chemical components of a material are 

more obvious/better preserved in the loadings obtained from the concatenated 

data set. For example, in Figure 16, the loadings of the concatenated data set are 

closer to the real spectra. MCR results from concatenated data can be easier to 

interpret – concatenation forces the relative areas of the peaks/different signals to 

be constant. 
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Figure 16. MCR of the 60 XPS spectra in the cellulose data set. (a-c) Scores plots, (d-f) 
Loadings on Components 1-2, and (g-i) Plot of the first and last scans from the C 1s (a, d, 
and g), O 1s (b, e, and h), and concatenated C 1s and O 1s (c, f, and i) data sets. The 
scores in (a) – (c) are the projections/contributions of the loadings (abstract factors) to the 
original spectra. That is, the spectra are represented as a linear combination of the two 
components shown in (d) – (f). 
 

I. Peak fitting the MCR factors (of the cellulose data set) 

We believe we now show for the first time that chemical information can be 

extracted from MCR factors of XPS data sets by peak fitting. Such fits can help us 

understand the chemical changes that may take place in a material. In this section, we 
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focus on fitting MCR factors of C 1s narrow scans. Figure 17 shows both the fits of the 

two MCR components of the cellulose C 1s spectra shown in Figure 16, and the fits of 

the first and last C 1s narrow scans in this data set. The protocol used in these fits was 

determined as follows. First, the spectra and MCR components were fit with four 

synthetic peaks (Voigt functions with a mixing parameter, m, that was allowed to vary 

from 0 - 100)62 that represent the following chemical states: C-C/C-H (peak 1), C-O 

(peak 2), O-C-O (peak 3), and carboxyl carbon/C(O)O (peak 4),31 where these peaks 

were constrained to have equal widths, their Gaussian contributions/contents were 

optimized such that all four peaks in a fit had the same value of the mixing parameter, 

and the position of the highest binding energy peak was constrained to be at least 1.2 eV 

above the previous peak. This last constraint was only necessary in the fits of the first two 

narrow scans in the data set. These same chemical states of carbon were used in a recent 

XPS study of cellulose.39 A universal polymer Tougaard background was used for all the 

fits.63 No other constraints were applied. These fits indicate that significant changes take 

place during the XPS analysis of cellulose, i.e., the first and last narrow scans (and also 

the two MCR components) are very different. As expected from the results in Figure 16 

for cellulose, the fits to MCR components 1 and 2 are quite similar to the fits of the first 

and last C 1s narrow scans in the data set, respectively. These results are also consistent 

with significant sample degradation during the analysis. For example, an obvious change 

in the spectra is the decrease in intensity of the C-O peak and the concomitant increase in 

intensity of the C-C/C-H peak, which suggests carbonization of the material. 
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The protocol used to fit the C 1s narrow scans and MCR components in Figure 17 

was applied to all the spectra in the cellulose data set. Figure 18 shows the percent areas 

of the four synthetic peaks used in these fits plotted as a function of sample irradiation 

time (not scan number as in Figures 6 and 16a-c). This plot clearly shows the break in the 

data that is apparent in Figures 6 and 16, indicating that the latter data points (after the 

break) are an extension of the earlier ones. Figure 18 also shows the total C/O area ratio 

for cellulose as a function of X-ray exposure. The increase in this ratio suggests sample 

damage, and it is also consistent with the increase in the area of peak 1 and the decrease 

in the areas of peaks 2 and 3 in Figure 18. Over the course of this damage, peak 4 (the 

carboxyl signal) increases and then begins to decrease, suggesting it is an intermediate 

(there should not be any carboxyl functionality in pure cellulose, see Figure 1). Sample 

damage is expected to randomize and/or introduce new chemical states into a material. 

Therefore, the best synthetic peaks for the fits to the data may change over the course of 

the analysis. In particular, a more random material is often better described by a more 

Gaussian fit component. We optimized the mixing parameter, m, in all the fits. However, 

there was no clear trend in the results, e.g., the average value of m for these scans was 

10., the standard deviation here was 11, and, in general, for each fit, the plot of the error 

in the fit vs. m was flat (at a minimum value) from m = 0 to m = 20 – 40. Even though m 

did not change/show a trend in these fits, we still believe it is a good idea to check for this 

possibility. 

While MCR can be extremely useful in understanding series of spectra, MCR 

components may contain artifacts or anomalies. For example, component 1 (see Figure 

17a) contains a small carboxyl peak that is not in the first spectrum in the data set. A 
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more subtle example of an artifact is on the right side of component 1. Here, as indicated 

in the residuals, component 1 is not precisely fit with the first synthetic peak. 

Nevertheless, in spite of these artifacts, MCR is an extremely powerful tool for 

understanding series of spectra. However, the possibility of artifacts in an MCR analysis 

underscores the importance of utilizing all the information available in an analysis, i.e., 

from both the raw data and (ideally) multiple informatics analyses of it – an artifact 

created by one chemometrics/informatics analysis may not be present in the results of 

another chemometrics/informatics tool.  

 
 
Figure 17. Peak fitting of the two MCR components used to describe the cellulose data 
set and of the first and last spectra of this data set. See the text for the fitting protocol. 
The abstract factors (components) here were multiplied by a factor of 103. 
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Figure 18. Areas (as percentages of the total area) of the four synthetic peaks in the peak 
fits to the C 1s narrow scans in the cellulose data set (see the text for the fitting protocol).  

 

J. Identification of intermediates in an MCR analysis 

In addition to the methods mentioned in Section G, another way to determine the 

number of abstract factors that describe a data set is to create models with successively 

larger numbers of factors in them, evaluating the chemical reasonableness of the models. 

As noted above, PCA of the mean-centered C 1s data set of tartaric acid suggested that a 

minimum of four abstract factors is necessary to describe the data set. Figure 19 shows 

the results of MCR models of the tartaric acid data set with three, four, five, and six 

factors. The MCR models with 3 – 6 factors depicted in Figure 19 all capture more than 

99% of the variance in the data, which is definitely a positive sign. The loadings of the 
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three-factor model (Figure 19a-b) are smooth and appear to be chemically reasonable. 

The scores on these components suggest that there is an initial state (described by 

component 3), an intermediate state (described by component 1, which grows in and then 

disappears), and a final state (described by component 2) for this material. However, the 

scores here are somewhat unreasonable because those corresponding to the initial and 

final states do not change in a monotonic fashion. These results suggest that a model with 

more components should be considered. Figure 19c-d shows the four-component MCR 

model of the tartaric acid C 1s data set. Again, the loadings (Figure 19d) are smooth and 

chemically reasonable. The corresponding scores plot indicates that there are two initial 

states (components 3 and 4), one intermediate state (component 1), and one final state 

(component 2). However, as before, the initial and final states do not change in an 

entirely monotonic fashion. These results again prompted us to consider a model with 

more factors. 

Both the five and six component models of the tartaric acid data set are 

satisfactory in many ways. First, all of the initial and final states in the models change in 

a monotonic fashion. In addition, both models have scores and loadings that are not 

overly noisy, although we would be uncomfortable with any more noise in the results 

than that in the six-component model because noisy loadings suggest that we are 

fitting/adding noise in a model. The five-component model decomposes the spectra into 

two initial states (components 4 and 5), two intermediate states (components 1 and 2), 

and one final state (component 3). These results raise the interesting possibility that 

component 3 (the final state) is also an intermediate state, i.e., that the scores on this 

component will also eventually decrease. Obviously, more scans would be needed to 
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confirm or reject this hypothesis. The reduced carbon (C-C/C-H) signal in the loadings 

increases from the initial states through the intermediate states to the final state, 

suggesting a carbonization of the material.  

The six-component MCR model of the tartaric acid data set presents a particularly 

interesting view of the evolution and degradation of the material. The C 1s spectrum of 

pure tartaric acid should contain two equal-area, chemically shifted signals corresponding 

to the two chemically different carbons in the molecule. However, in addition to the two 

expected signals, the initial states in the six-component model (components 5 and 6) also 

show reduced carbon, and these components do not have the two main signals in exactly 

the expected 1:1 ratio. That is, these initial states suggest the presence of adventitious 

carbon contamination. Component 4 then grows in as the initial states (components 5 and 

6) disappear. Interestingly, component 4 contains the two equal-area signals expected 

from tartaric acid, with little reduced carbon. These results suggest that the X-ray beam 

and photoelectrons ‘clean’ the surface of adventitious carbon. Thereafter, two 

intermediate states (components 1 and 2) and a final one (component 3) appear. Again, 

the final state (component 3) may actually be an intermediate. We believe that this 

analysis is the first time these types of intermediate states have been shown/suggested in 

an XPS degradation study. MCR is a powerful tool for these types of analyses. However, 

this all begs the question, how do we actually know that the degradation of this material 

involves multiple intermediates? First, intermediates are present in many complex 

chemical reactions, and the degradation of tartaric acid is probably complex. Second, in 

the five-component MCR model, when component 1 has grown in (around scan 22), it 

should mostly describe the data (the score on the other components are low at that point). 
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As shown in Supporting Information Figure S3, component 1 and scan 22 are indeed very 

similar, i.e., the model appears to be representing the data at this point, which suggests it 

has some validity. In summary, these results suggest the interesting possibility that MCR 

can be used to uncover the underlying chemistry, including intermediates, in complex 

XPS data sets. 

To better understand their chemistry, we peak fit the MCR factors in the six-

component model in Figure 19h. To find an appropriate protocol for this fitting, the raw 

spectra in the data set were first fit. This protocol consisted of three synthetic peaks with 

equal widths representing the C-C/C-H (peak 1), C-OH (peak 2), and COOH (peak 3). 

No other constraints were applied to these fits. The optimal m values (mixing parameters) 

for the fit components ranged from 0.6 to 0.8, and the average spacings between the first 

two peaks and the last two peaks were 1.72 ± 0.04 eV and 2.33 ± 0.09 eV, respectively.  

These results prompted us to fit the loadings in Figure 19 with three synthetic peaks of 

equal widths, spacings of 1.72 and 2.33 eV, and an m value of 0.7. Very good fits were 

obtained with this protocol (see Figure 20). There is little evidence of sample charging in 

these fits, i.e., the first peak stayed at a relatively constant position of 285.0 ± 0.2 eV, 

where the shifts in the peak positions were not monotonic. Figure 21 is a plot of the areas 

of the three synthetic peaks used to fit the six MCR components. It shows that (after the 

initial, apparent cleaning of the material) the amount of reduced carbon increases 

monotonically from the earlier to the later components, while, overall, the areas of the 

two oxygen containing peaks decrease somewhat. These results suggest that, as was the 

case with cellulose, X-ray exposure and photoelectrons carbonize tartaric acid. 
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Figure 19. MCR analyses with different numbers of components of the C 1s narrow scans 
of the tartaric acid data sets. MCR scores (left) and loadings (right) from models with 
three (a-b), four (c-d), five (e-f), and six (g-h) components. The scores and loadings 
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become noisier as the number of components in the models increase, i.e., increasing 
amounts of noise are being incorporated into the models. 

 
Figure 20. Peak fits of the MCR loadings of the six-component MCR analysis of the 
tartaric acid C 1s data set in Figure 19h. See the text for the fitting protocols used here. 
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Figure 21. Percent areas of the synthetic peaks used to fit the MCR components of the 
tartaric acid data set in Figure 20. The peak fits to components 5 and 6 were nearly 
identical, which is why they are shown together. 
 
K. Cluster analysis 

Cluster analysis is another widely used EDA method. Cluster analysis groups 

similar samples/spectra according to their distances in a multidimensional space. The 

resulting groupings are typically shown as a dendrogram.  Figure 22a shows the cluster 

analysis/dendrogram of the tartaric acid C 1s data set that grouped the data into five 

classes. (The number of clusters/classes in a cluster analysis can be chosen by the user.) 

Interestingly, the spectra naturally clustered in this analysis in the same consecutive order 

that they appear in in the data set. In other words, the series of clusters reflects the 

evolution/changes that are taking place in the data set. Figure 22b shows the average 

spectrum for each of the five clusters. As in the MCR analysis (Figure 19h), these spectra 
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indicate that the sample is carbonizing with X-ray exposure (the reduced carbon peak 

grows in). Thus, cluster analysis confirms the other results in this work – in our opinion, 

it is good to verify the trends/conclusions of one chemometrics/informatics method with 

others. Cluster analysis was also performed on the O 1s and concatenated data sets. As 

with the C 1s data, the clustering took place consecutively. However, different spectra 

appeared in the different clusters, i.e., the groupings were not the same. Cluster is 

relatively easy to apply and conceptually simpler than some other 

chemometrics/informatics methods. However, cluster analysis does not generally provide 

as much insight or information as MCR or PCA. For example, although the cluster 

analysis in Figure 22 groups the data in a reasonable way, it does not suggest or reveal 

the presence of intermediates. Cluster analysis could lead to additional multivariate 

analyses and/or XPS peak fitting. For example, one might perform MCR or PCA on the 

spectra in a specific cluster. In addition, the average spectra in Figure 22b could be peak 

fit.  
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Figure 22. (a) The dendrogram from the cluster analysis of the tartaric acid C 1s data set, 
and (b) the average spectrum of each cluster identified in the dendrogram in (a). The 
numbers on the left side of the figure correspond to the spectra in the data set. The user 
can select the number of clusters in a cluster analysis. That is, imagine moving a vertical 
line back and forth across the dendrogram, e.g., if the line were at 3 x 105 on the x-axis, 
two clusters would have been selected. Five clusters have been selected here, which are 
color coded and numbered. The distances between the data points (spectra) or clusters of 
data points in a dendrogram is given by the lengths of the lines parallel to the x-axis.  
 

L. Summary of the Results 

The following is a summary of the information provided by each of the 

chemometrics/informatics methods applied to the cellulose and tartaric acid data sets, 

including where the analyses agreed, any problem areas, and differences in the results.  

i. For the cellulose data set, plotting (examining) the raw data, PRE, PCA, and 

MCR showed a break in the data set. This break would probably be harder to 

identify in a cluster analysis. Two- and three-dimensional PCA scores plots 

indicated that the first scan in the data set is an outlier, where the presence of 

this outlier was confirmed by returning to the original data. Neither PRE nor 

MCR produced this same result, although MCR of the O 1s data suggested 

that the second data point (spectrum) in the data set may be an outlier. Scree 

plots suggested that five PCs describe the cellulose data set, although most of 

the variance in the data sets was captured by only two PCs – for at least some 

applications, a two-abstract factor MCR model will be reasonable because it 

captures so much of the variance in the data set. However, as is often the case 

in factor-based analyses of data, even though higher abstract factors may 

account for quite small amounts of the variance in a data set, they may still 

contain useful information about it. Overall, MCR indicated that the cellulose 
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data set could be quite well described by only two abstract factors, which 

closely resembled the first and last spectra of the data set. In other words, 

MCR makes the interesting prediction that the spectra in the data set are 

essentially linear combinations of two abstract factors (basically the first and 

last spectra of the data set), which represent two chemical states. In general, 

concatenated (combined C 1s and O 1s spectra) gave the most chemically 

meaningful results in the MCR analysis. MCR is unique in its ability to 

produce abstract factors that closely resemble real, underlying spectra. Peak 

fitting of the original C 1s data, and of the two MCR components that describe 

it, better revealed the significant chemical changes the material underwent as 

it carbonized. While PCA is, and will continue to be, extremely important in 

chemometrics/informatics, its orthogonality constraints do not allow it to 

produce the same type of intuitive information.  

ii. None of the chemometrics/informatics methods applied to the tartaric acid 

data set (PRE, PCA, MCR, and cluster analysis) suggested that there were any 

outliers or discontinuities in it. Rather, PRE and especially PCA, suggested 

quite smooth trajectories (changes) for the spectra. Scree plots suggested that 

4 – 5 PCs describe the tartaric acid data set. Reconstruction of this data set 

from abstract factors suggested that even a 6th PC may contain meaningful 

information. As is common in MCR analyses, models of the data set with 

successively more abstract factors were considered. Models with 3 and 4 

abstract factors were not favored because of the lack of chemical 

reasonableness in their scores. The scores in the models with 5 and 6 abstract 
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factors were both more chemically reasonable and they suggested the 

presence of intermediates in the decomposition of this material. In our 

opinion, this is an extremely important result. It is the first time something 

like this has been observed. It suggests that MCR can be used to identify 

intermediates/intermediate states in XPS data sets where decomposition and 

other chemical changes are occurring. The PCs from the PCA analysis were 

not fit in either this analysis or the previous one as their more abstract nature 

simply does not allow it. While cluster analysis provided a series of average 

spectra that seemed to reveal the chemical evolution of the tartaric acid as it 

degraded, it did not suggest intermediates in the decomposition of the 

material. While cluster analysis is easier to apply, and we do recommend it for 

EDA analyses (years ago, some of us successfully analyzed hyperspectral 

ToF-SIMS images using cluster analysis that produced very interpretable and 

useful results64), we have not, in general, found it to be as powerful as MCR. 

 

IV. SUMMARY AND CONCLUSIONS 

This article shows the application of some of the more common EDA methods to 

the analysis of two XPS data sets. It is intended to be a guide to using these methods. The 

current trend in XPS is to collect increasingly large data sets in degradation, depth 

profiling, operando, and imagining studies, which should make 

chemometrics/informatics techniques increasingly relevant in the field. The first step in 

an informatics analysis is to gather and consider whatever information one has about 

one’s material. A next logical step is to plot the raw data in different ways. One should 
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then develop a strategy for the analysis of one’s data. Next, the data are preprocessed, and 

chemometrics/informatics analyses are performed. Summary statistics are a quick method 

of analyzing data sets, where PRE is often sensitive to their underlying structure. PCA is 

another ‘first technique’ that should be applied in chemometrics/informatics analyses. 

Considerations for PCA include the number of PCs (abstract factors) to keep in an 

analysis, different preprocessing methods, and different ways of plotting/representing the 

results, including the addition of extra information to scores plots. Scree plots, 

reconstruction of the data from abstract factors, and consideration of the chemical 

reasonableness of a model can be used to determine the number of abstract factors that 

describe a data set. One should return to the original data after an informatics analysis to 

confirm predicted data structures or outliers in the raw data. We strongly recommend 

MCR as an EDA method for uncovering the underlying structure of complex XPS data 

sets. For example, MCR analysis of the cellulose data suggested that two states, 

representing the damaged and undamaged material, describe the data well. These 

loadings closely resembled the first and last scans of the data set. Concatenation of data 

can be useful in MCR (and PCA) analysis – by linking two or more spectra to become a 

single spectrum, the ratios of the peaks in each spectrum are ‘locked’, which can lead to 

more meaningful results. MCR factors of XPS narrow scans may be peak fit to better 

reveal their underlying chemistry. The protocol for peak fitting MCR factors may be 

based on fits of the raw data. The C/O area ratios from the C 1s and O 1s narrow scans in 

the cellulose data set correlated with the increase in reduced carbon in the material and 

were consistent with the proposed carbonization of the material. The degradation of 

tartaric acid appeared to be more complex. Models based on 2 – 4 abstract factors were 
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not entirely chemically reasonable. Five or six abstract factors appeared to better describe 

the data, where these models raised the possibility of a contaminated surface state, a 

cleaned surface state, and multiple intermediates. We believe this is the first time the 

evolution of an XPS data set has been revealed in this way. These data also show that the 

sample is carbonizing with X-ray exposure. The MCR loadings of the six-abstract factor 

model were peak fit. Finally, we showed cluster analysis of the tartaric acid data set. The 

average spectra of each cluster were also used to follow changes in this data set. 

 

V. Appendix 1 

This appendix focuses on small shifts observed in the peak positions of the O 1s 

tartaric acid spectra as they were collected by a Thermo Fisher Scientific K-alpha+ 

spectrometer (see these raw spectra in Figure 2d). As indicated in its structure (Figure 1) 

and discussed herein, two well-separated C 1s signals of equal area are expected from 

tartaric acid. In contrast, O 1s signals typically undergo less chemical shifting – they are 

less sensitive to the chemical state of oxygen. The O 1s spectra in the tartartic acid data 

set are featureless and rather stable in shape – they can be well approximated as a single 

peak. Figure 23 shows the first 20 O 1s spectra in the tartaric acid data set. These spectra 

shift by a fraction of an eV to higher binding energy. We took two approaches to 

analyzing this (and its accompanying C 1s) data. In the first, the raw data were used as 

collected. This approach was taken in all the analyses shown in this work, except those in 

Figures 12 – 14. In the second, the O 1s signals in Figure 23 were aligned to a common 

value, where their accompanying C 1s spectra were shifted by the same amount. In all 

likelihood, the consequences of not shifting these O 1s to a common binding energy 
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value were that (i) more abstract factors were needed to describe the data set (the spectra 

were probably more spread out in the hyperspace they occupy), (ii) the resulting 

chemometrics/informatics analysis was somewhat more complicated because a larger 

number of abstract factors was probably needed to describe data, (iii) it was probably 

somewhat more challenging to determine the dimensionality of the data set (the number 

of abstract factors that best describe it), (iv) the abstract factors were probably a little 

harder to interpret because they had to account for both sample charging (peak shifts) and 

chemical effects, and (v) attempts that might be made to denoise the spectra would 

require a larger number of abstract factors than if the spectra were aligned. A negative 

effect of aligning the O 1s spectra in this data set is that any real chemical shifts in these 

data, which may very well be present, are lost. 
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Figure 23. The first 20 raw O 1s spectra from the tartaric acid data set fitted using a 
single component to obtain the peak position/maximum. 
 

 

SUPPLEMENTAL MATERIAL 

See supplementary material at [URL will be inserted by AIP Publishing] for summary 

statitics analyses of the data, PCA of the unpreprocessed cellulose data, comparison of 

component 1 and scan 22 in the MCR analysis of tartaric acid C 1s narrow scans with six 
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components, and MCR analyses with different numbers of components of the 

concatenated C 1s and O 1s narrow scans of the tartaric acid data sets. 
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