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Abstract

Establishing equivalences between programs is crucial both for verifying cor-
rectness of programs and for justifying optimisations and program transforma-
tions. There exist several equivalence relations for programs, and bisimulations
are among the most versatile of these equivalences. Among bisimulations one
distinguishes strong bisimulation that requires that each action of a program is
simulated by a single action of the equivalent program, and weak bisimulation
that allows some of the actions to be invisible, and thus not simulated.

pNet is a generalisation of automata that model open systems. They fea-
ture variables and hierarchical composition. Open pNets are pNets with holes,
i.e. placeholders that can be filled later by sub-systems. However, there is
no standard tool for defining the semantics of an open system in this context.
This article first defines open automata that are labelled transition systems with
parameters and holes. Relying on open automata, it then defines bisimilarity
relations for the comparison of systems specified as pNets. We first present
a strong bisimilarity for open pNets called FH-bisimilarity. Next we offer an
equivalence relation similar to the classical weak bisimulation equivalence, and
study its properties. Among these properties we are interested in compositional-
ity: if two systems are proven equivalent they will be indistinguishable by their
context, and they will also be indistinguishable when their holes are filled with
equivalent systems. We identify sufficient conditions to ensure compositionality
of strong and weak bisimulation. The contributions of this article are illustrated
using a transport protocol as running example.
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1. Introduction

In the nineties, several works extended the basic behavioural models based
on labelled transition systems to address value-passing or parameterised sys-
tems, using various symbolic encodings of the transitions [15, 35]. These works
use the term parameter to designate variables whose value have a strong influ-
ence the system structure and behaviour. In parameterised systems, parameters
can typically be the number of processes in the system or the way they inter-
act. In [32, 25], Lin, Ingolfsdottir and Hennessy developed a full hierarchy of
bisimulation equivalences, together with a proof system, for value passing CCS,
including notions of symbolic behavioural semantics and various symbolic bisim-
ulations (early and late, strong and weak, and their congruent versions). They
also extended this work to models with explicit assignments [38]. Separately
Rathke [26] defined another symbolic semantics for a parameterised broadcast
calculus, together with strong and weak bisimulation equivalences, and devel-
oped a symbolic model-checker based on a tableau method for these processes.
Thirty years later, no verification platform uses this kind of approaches to pro-
vide proof methods for value-passing processes or open process expressions,
perhaps because of the difficulty to apply these methods on industrial systems.

This article provides a theoretical background that allows us to implement
such a verification platform. We build upon the concept of pNets that we have
employed to give a behavioural semantics of distributed components and verify
the correctness of distributed applications in the past 15 years. pNets is a low
level semantic framework for expressing the behaviour of various classes of dis-
tributed languages, and as a common internal format for our tools. pNets sup-
port the specification of parameterised hierarchical labelled transition systems:
labelled transition systems with parameters can be combined hierarchically.

We develop here a semantics for a model of interacting processes with pa-
rameters and holes. Our approach is originally inspired from Structured Op-
erational Semantics with conditional premises as in [20, 45]. But we aim at a
more constructive and implementable approach to compute the semantics (in-
tuitively transitions including first order predicates) and to check equivalences
for these open systems. The main interest of our symbolic approach is to de-
fine a method to prove properties directly on open structures; these properties
will then be preserved by any correct instantiation of the holes. As a conse-
quence, our model allows us to reason about composition operators as well as
about realistic distributed systems. The parametric nature of the model and
the properties of compositionality of the equivalence relations are thus the main
strengths of our approach.

pNets. pNet is a convenient model to model concurrent systems in a hierarchical
and parameterised way. The coordination between processes is expressed as
synchronisation vectors that allow for the definition of complex and expressive
synchronisation patterns. Open pNets are pNets for which some elements in the
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hierarchy are still undefined, such undefined elements are called holes. A hole
can be filled later by providing another pNet. This article first defines pNets
and illustrates with an example how they can be used to provide the model of
a communicating system.

A semantics for open pNets based on open automata. The semantics of pNets
can be expressed as a translation to a labelled transition system (LTS), but only
if the pNet has no parameter and no hole. Adding parameters to a LTS is quite
standard [38] but enabling holes inside LTSs is not a standard notion.

To define a semantics for open pNets we thus need LTSs that have both
standard variable parameters, and process parameters, i.e. holes that can be
filled by processes. We call such LTSs with parameters and holes open automata.
The main goal of this article is to define the theory behind open automata and
to use them to provide a semantics and prove compositionality properties for
open pNets. The transitions of open automata are much more complex than
transitions of an LTS as the firing of a transition depends on parameters and
actions that are symbolic. This article defines the notion of open transition,
namely a transition that is symbolic in terms of parameters and coordinated
actions.

Note that even if open transitions look similar to the notion of Transition
System Specification [23, 22] and other forms of SOS rules, they are not struc-
tural rules, but rules defining the behaviour of the global states of the system.

Unlike pNets, open automata are not hierarchical structures, we consider
them here as a mathematical structure that is convenient for formal reasoning
but not adapted to the definition of a complex and structured system. Open
transitions are expressed in terms of logics while the communication in pNets
is specified as synchronisation vectors that specify synchronised actions. Open
automata could alternatively be seen as an algebra that can be studied inde-
pendently from its application to pNets but their compositionality properties
make more sense in a hierarchical model like pNets.

Previous works and contribution
While most of our previous works relied on closed, fully-instantiated se-

mantics [6, 2, 27], it is only recently that we could design a first version of a
parameterised semantics for pNets with a strong bisimulation equivalence [28].
This article builds upon this previous parameterised semantics and provides a
clean and complete version of the semantics with a slightly simplified formalism
that makes proofs easier. It also adds a notion of global state to automata.
Moreover, in [28] the study of compositionality was only partial, and in partic-
ular the proof that bisimilarity is an equivalence is one new contribution of this
article and provides a particularly interesting insight on the semantic model
we use. The new formalism allowed us to extend the work and define weak
bisimulation for open automata, which is entirely new. This allows us to define
a weak bisimulation equivalence for open pNets with valuable compositionality
properties. To summarise, the contribution of this paper are the following:
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• The definition of open automata: an algebra of parameterised automata
with holes, and a strong bisimulation relation. This is an adaptation of [28]
with an additional result stating that strong FH-bisimilarity is indeed an
equivalence relation.

• A semantics for open pNets expressed as translation to open automata.
This is an adaptation of [28] with a complete proof that strong FH-
bisimilarity is compositional.

• A theory of weak bisimulation for open automata, and a study of its
properties. It relies on the definition of weak open transitions that are
derived from transitions of the open automaton by concatenating invisible
action transitions with one (visible or not) action transition. The precise
and sound definition of the concatenation is also a major contribution of
this article.

• A resulting weak FH-bisimilarity equivalence for open pNets and a simple
static condition on synchronisation vectors inside pNets that is sufficient
to ensure that weak FH-bisimilarity is compositional.

• An illustrative example based on a transport protocol, showing the con-
struction of the weak open transitions, and the proof of weak FH-bisimulation.

What is new about open automata bisimulation?
Bisimulation over a symbolic and open model like open pNets or open au-

tomata is different from the classical notion of bisimulation because it cannot
rely on the equality over a finite set of action labels. Classical bisimulations
require to exhibit, for each transition of one system, a transition of the other
system that simulates it. Instead, bisimulation for open automata relies on the
simulation of each open transition of one automaton by a set of open transitions
of the other one, that should cover all the cases where the original transition
can be triggered. This is similar to the early and late symbolic bisimulation
equivalences for value-passing CCS [25], though we use more general definitions
in our setting.

Compositionality of bisimilarity in our model comes from the specification
of the interactions, including actions of the holes. This is quite different from
the works on contextual equivalences, e.g. [35, 36]; we will provide a detailed
comparison in Section 6. In pNets, synchronisation vectors define the possible
interactions between the pNet that fills the hole and the surrounding pNets.
In open automata, this is reflected by symbolic hypotheses that depend on the
actions of the holes. This additional specification is the price to pay to obtain
the compositionality of bisimilarity that cannot be guaranteed in traditional
process algebras.

This approach also allows us to specify a sufficient condition on transitions to
make weak bisimilarity compositional; namely it is not possible to synchronise
on invisible actions from the holes or prevent them to occur. This is loosely
related to works on the syntactic conditions on SOS rules to check whether
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weak bisimulation is a congruence for some process algebra operators [23]. Our
approach is semantical and more global: our sufficient condition applies to all
the synchronisations at a given composition level of an (open) system and not
on individual rules. It is expressed on the open automaton (see Definition 15).

Structure
This article is organised as follows. Section 2 provides the definition of pNets

and introduces the notations used in this paper, including the definition of open
pNets. Section 3 defines open automata, i.e. automata with parameters and
transitions conditioned by the behaviour of “holes”; a strong bisimulation equiv-
alence for open automata is also presented in this section. Section 4 gives the
semantics of open pNets expressed as open automata, and states composition-
ality properties of strong bisimilarity for open pNets. Section 5 defines a weak
bisimulation equivalence on open automata and derives weak bisimilarity for
pNets, together with compositionality properties of weak bisimilarity. Finally,
Section 6 discusses related works and Section 7 concludes the paper.

2. Background and Notations

This section introduces the notations we will use in this article, and recalls
the definition of pNets [28] with an informal semantics of the pNet constructs.
The only significant difference compared to our previous definitions (from [28])
is that we remove here the restriction that was stating that variables should be
local to a state of a labelled transition system.

2.1. Notations
Term algebra. Our models rely on a notion of parameterised actions, which are
symbolic expressions using data types and variables. As our model aims at
encoding the low-level behaviour of possibly very different programming lan-
guages, we do not want to impose one specific algebra for denoting actions, nor
any specific communication mechanism. So we leave the constructors of the
algebra that will be used to build expressions and actions unspecified. More-
over, we use a generic action interaction mechanism, based on (some sort of)
unification between two or more action expressions, to express various kinds of
communication or synchronisation mechanisms.

Formally, we assume the existence of a term algebra T, and denote as Σ the
signature of the data and action constructors. Within T, we distinguish a set
of data expressions E, including a set of boolean expressions B (B ⊆ E), and a
set of action expressions called the action algebra A, with A ⊆ T,E ∩ A = ∅;
naturally action terms will use data expressions as sub-terms1. The function
vars(t) identifies the set of variables in a term t ∈ T.

1In our tools, we use datatypes for the different kinds of terms. In this article, we use
different sets of variables for terms of different kinds.
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We let ei range over expressions (ei ∈ E), op be operators, and xi and
yi range over variable names. We additionally rely on a set of action names,
ranged over by a, b, . . . . We define two kinds of parameterised actions. The
first kind supports two kinds of parameters: input parameters that are variables
and output parameters that can be any expression. The second kind makes no
distinction between input and output parameters. The actions that distinguish
input variables will be used in the definition of pLTS and are defined as follows:

α ∈ A ::= a(p1, . . . , pn) action terms
pi ::= ?x | ei parameters (input var or expression)
ei ::= Value | x | op(e1, .., en) Expressions

The input variables in an action term are those marked with a ?. We addi-
tionally impose that each input variable does not appear anywhere else in the
same action term: pi =?x⇒ ∀j 6= i. x /∈ vars(pj). We define iv(t) as the set of
input variables of a term t (without the ’?’ marker). Input variables are used
in guards and to update the local state, they can only appear in well-identified
expressions. Action algebras can encode naturally usual point-to-point message
passing calculi (using a(?x1, ..., ?xn) for inputs, a(v1, .., vn) for outputs), but
they also allow for more general synchronisation mechanisms, like gate negoti-
ation in Lotos, or broadcast communications.

The set of actions that do not distinguish input variables is denoted AS , it
will be used in synchronisation vectors of pNets:

α ∈ AS ::= a(e1, . . . , en)

Indexed sets. This article extensively uses indexed structures (maps) over some
countable indexed sets. The indices can typically be integers, bounded or not.
We use indexed sets in pNets because we want to consider a set of processes, and
specify separately how to synchronise them. Roughly this could also be realised
using tuples, however indexed sets are more general, can be infinite, and give a
more compact representation than using the position in a possibly long tuple.

An indexed family is denoted as follows: ti∈Ii is a family of elements ti
indexed over the set I. Such a family is equivalent to the mapping (i7→ti)i∈I , and
we will also use mapping notations to manipulate indexed sets. To specify the
set over which the structure is indexed, indexed structures are always denoted
with an exponent of the form i ∈ I. Consequently, ti∈Ii defines first I the set
over which the family is indexed, and then ti the elements of the family. For
example ti∈{3}i is the mapping with a single entry t3 at index 3; exceptionally,
for mappings with only a few entries we use the notation (3 7→t3) instead. In
this article, sentences of the form “there exists ti∈Ii ” means there exist I and a
function that maps each element of I to a term ti.

When this is not ambiguous, we shall abuse notations for sets, and typically
write “indexed set over I” when formally we should speak of multisets, and
“x ∈ Ai∈Ii ” to mean ∃i ∈ I. x = Ai. To simplify equations, an indexed set can
be denoted t instead of ti∈Ii when I is irrelevant or clear from the context.
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The disjoint union on sets is ] and we only use A ] B when A and B are
disjoint. We extend it to union of indexed sets provided they are indexed over
disjoint families; ] is then defined by the merge of the two sets. The elements of
the union of two indexed sets are then accessed by using an index of one of the
two joined families. The subtraction operation on indexed sets is \, it reduces
the set of indices such that dom(A \B) = dom(A) \B.

Substitutions. This article also uses substitutions. Applying a substitution in-
side a term t is denoted t{{yi ← ei}}i∈I and consists in replacing in parallel all the
occurrences of variables yi in the term t by the terms ei. Note that a substitution
is defined by a partial function that is applied on the variables inside a term.
We let Post range over partial functions that are used as substitution and use
the notation {yi ← ei}i∈I to define such a partial function2. These partial func-
tions are sometimes called substitution functions in the following. Thus, {{Post}}
is the operation that applies, in a parallel manner, the substitution defined by
the partial function Post. � is a composition operator on these partial func-
tions, such that for any term t we have: t{{Post � Post′}} = (t{{Post′}}){{Post}}.
This property must also be valid when the substitution does not operate on all
variables. We thus define a composition operation as follows:

(xk←ek)k∈K � (x′k′ ← e′k′)k
′∈K′=(xk ← ek{{(x′k′←e′k′)k

′∈K′}})k∈K

∪ (x′k′←e′k′)k
′∈K′′

where K ′′ = {k′ ∈ K ′|x′k′ 6∈ {xk}k∈K}

2.2. The principles of Parameterised Networks (pNets)
pNets are tree-like structures, where the leaves are either parameterised la-

belled transition systems (pLTSs), expressing the behaviour of basic processes,
or holes, used as placeholders for unknown processes. Every node of the tree is a
pNet, it acts as a synchronising artefacts, using a set of synchronisation vectors
that express the possible synchronisation between the actions of a subset of the
sub-trees. The pNets model is hierarchical in the structure of the processes, this
contrasts with Statecharts [24] that model high-level behaviour by organising
the states (but not processes) in a hierarchy. We introduce pNets through a
simple example below, and define formally pLTSs and pNets afterwards:

Example 1 (CCS choice). Here is the encoding of a choice operator.

0 rl
rl

L R

1r1l

SV+ =

< −, b, r >→ b

∀a, b : Action
< a,−, l >→ a

It consists of one pNet (Definition 2
below) with two holes and a sub-
net. The pNet is represented by
the top box with three circles and
two synchronisation vectors on the
right. The sub-net is a pLTS that is
represented by the bottom box.

2When using this notation, we suppose, without loss of generality that each yi is different.
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Each hole is represented by an empty disc, when the hole is filled it becomes a
black disc. The left hole is indexed by L and the right hole by R. The sub-net
is a LTS with three states and emitting actions l and r. In the synchronisation
vector a and b range over arbitrary action terms , e.g. including action param-
eters; l and r on the contrary are specific actions. The set of synchronisation
vectors is infinite but admits a simple finite representation.

The behaviour of the pNet is defined with synchronisation vectors also shown
on the figure. In the examples, we write them on the form < a,−, l >→ a. This
states that if the first hole L performs the action a and the third sub-net, i.e.
the LTS, performs the action l, both of them progress synchronously, and an
action a is emitted by the pNet. The symbol − at the second position denotes
that the second hole does nothing. On the formal side, numbering and ordering
the vectors is cumbersome, this is why we adopt indexed families of actions.
The LTS is sometimes called the “control part”, it controls the evolution of the
rest of the pNet. The first action of one of the holes decides which branch of
the LTS is activated; all subsequent actions will be performed by the same side.

2.3. Parameterised Labelled Transition systems (pLTS)
A pLTS is a labelled transition system with variables; variables can be used

inside states, actions, guards, and assignments. Note that we make no assump-
tion on finiteness of the set of states nor on finite branching of the transition
relation. Compared to our previous works [28, 2] we only global variables, which
makes the model easier to use.

Definition 1 (pLTS). A pLTS is a tuple pLTS , 〈〈S, s0, V,→〉〉 where:

• S is a set of states.

• s0 ∈ S is the initial state.

• V is a set of global variables for the pLTS.

• →⊆ S ×L× S is the transition relation and L is the set of labels. Labels
have the form:
〈α, eb, (xj := ej)j∈J〉, where α ∈ A is a parameterised action, eb ∈ B is
a guard, and the variables xj (that are pairwise distinct) are assigned the

expressions ej ∈ E. If s 〈α, eb, (xj:=ej)j∈J 〉−−−−−−−−−−−−−→ s′ ∈→ then vars(α)\iv(α)⊆V ,
vars(eb)⊆V ∪ vars(α), and ∀j∈J. (vars(ej)⊆V ∪ iv(α) ∧ xj ∈ V ).

A set of assignments between two states is performed in parallel so that their
order do not matter and they all use the values of variables before the transition
or the values received as action parameters.

2.4. Parameterised Networks (pNets)
Now we define pNet nodes as constructors for hierarchical behavioural struc-

tures. A pNet has a set of sub-pNets that can be either pNets or pLTSs, and
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a set of holes, playing the role of process parameters. A pNet is thus a compo-
sition operator that can receive processes as parameters; it expresses how the
actions of the sub-processes synchronise.

Each sub-pNet exposes a set of actions, called internal actions. Synchro-
nisation vectors define the synchronisation between global actions exposed by
the pNet and internal actions of its sub-pNets: it synchronises one or several
internal actions, and exposes a single resulting global action.

We now define the structure of pNets, the following definition relies on the
definition of holes, leaves and sorts formalised below in Definition 3. Informally,
holes are process parameters, leaves provide the set of pLTSs at the leaves of
the hierarchical structure of a pNet, and sorts give the signature of a pNet, i.e.
the actions it exposes.

Definition 2 (pNets). A pNet P is a hierarchical structure where leaves are
pLTSs and holes

P , pLTS | 〈〈P i∈Ii ,Sortj∈Jj ,SVk∈Kk 〉〉
We denote vars(P ) the set of variables used by the pLTSs inside P and Sort(P )
the signature of the actions emitted by P ; both are defined below, in Definition 3.
A pNet is composed of the following:

• I is a set of indices and P i∈Ii is the family of sub-pNets indexed over I.
vars(Pi) and vars(Pj) must be disjoint for i 6= j.

• J is a set of indices, called holes. I and J are disjoint: I∩J = ∅, I∪J 6= ∅.

• Sortj ⊆ AS is a set of action terms, denoting the sort of hole j.

• SVk∈Kk is a set of synchronisation vectors.
∀k ∈ K.SVk = αl∈Ik]Jkl → α′k[ek] where α′k ∈ AS , Ik ⊆ I, Jk ⊆ J ,
∀i∈Ik. αi∈Sort(Pi), ∀j∈Jk. αj ∈Sortj , and vars(α′k) ⊆ ⋃l∈Ik]Jk vars(αl).
The global action of a vector SVk is α′k. ek ∈ B is a guard associated to
the vector such that vars(ek) ⊆ ⋃l∈Ik]Jk vars(αl).

Synchronisation vectors are identified modulo renaming of variables that appear
in their action terms, e.g. the vectors < a(x), b(x) >→ τ and < a(y), b(y) >→ τ
are equivalent.

The preceding definition relies on the auxiliary functions defined below:

Definition 3 (Sorts, holes, leaves, variables of pNets).

• The sort of a pNet is its signature, i.e. the set of actions in AS it can
perform, where each action signature is an action label plus the arity of
the action.

Sort(〈〈S, s0, V,→〉〉) = {Sort(α)|s 〈α, eb, (xj:=ej)j∈J 〉−−−−−−−−−−−−−→ s′ ∈→}
Sort(〈〈P,Sort,SV 〉〉) = {Sort(α′)|α→ α′[eb] ∈ SV }
Sort(α(p1, .., pn)) = (α, n)
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• The set of variables of a pNet P , denoted vars(P ) is disjoint union the set
of variables of all pLTSs that compose P .

• The set of holes Holes(P ) of a pNet is the set of indices of the holes of the
pNet itself plus the indices of all the holes of its sub-pNets. It is defined
inductively (we suppose that those index sets are disjoint):

Holes(〈〈S, s0, V,→〉〉)=∅
Holes(〈〈P i∈Ii ,Sortj∈Jj ,SV〉〉) = J ]

⋃
i∈I

Holes(Pi)

∀i ∈ I. Holes(Pi) ∩ J = ∅
∀i1, i2 ∈ I. i1 6= i2 ⇒ Holes(Pi1) ∩Holes(Pi2) = ∅

• The set of leaves of a pNet is the set of all pLTSs occurring in the structure,
as an indexed family of the form Leaves(P ) = 〈〈Pi〉〉i∈L.

Leaves(〈〈S, s0, V,→〉〉)=∅
Leaves(〈〈P i∈Ii ,Sort,SV 〉〉) =

⊎
i∈I

Leaves(Pi) ] {i7→Pi|Pi is a pLTS}

For example, the controller of Example 1 has the sort {l, r} and holes {L,R}.
Note that Holes(P ) is a set of indices because holes are characterized only by
their indices, while entities at the leaves are pLTSs and thus Leaves(P ) is a set
of pLTSs. A pNet Q is closed if it has no hole: Holes(Q) = ∅; else it is said to
be open. Sort comes naturally with a compatibility relation that is similar to a
type-compatibility check. We simply say that two sorts are compatible if they
consist of the same actions with the same arity. In practice, it is sufficient to
check the equality of the two sets of action signatures of the two sorts3.

The informal semantics of pNets is as follows. pLTSs behave more or less
like classical automata with conditional branching and variables. The actions
on the pLTSs can send or receive values, potentially modifying the value of
variables. pNets are synchronisation entities: a pNet node composes several
sub-pNets and defines how the sub-pNets interact, where a sub-pNet is either
a pNet or a pLTS. The synchronisation between sub-pNets is defined by syn-
chronisation vectors (originally introduced in [3]) that express how an action of
a sub-pNet can be synchronised with actions of other sub-pNet, and how the
resulting synchronised action is visible from outside of the pNet. The synchro-
nisation mechanism is very expressive, including pattern-matching/unification
between the parameterized actions within the vector, and an additional predi-
cate over their variables. Consider a pNet node that assembles several pLTSs,
the synchronisation vectors specify the way that transitions of the composed
pNet are built from the transitions of the sub-nets. This can be seen as “condi-
tional transitions” of the pNet, or alternatively, as a syntax to encode structural

3A more complex compatibility relation could be defined, but this is out of the scope of
this article.
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operational semantics (SOS rules) [42] of the system: each vector expresses not
only the actions emitted by the pNet but also what transitions of the composed
pLTSs must occur to trigger this global transition. Synchronisation vectors can
also express the exportation of an action of a sub-pNet to the next level, or to
hide an interaction and make it non-observable. Finally, a pNet can leave sub-
pNets undefined and instead declare holes with a well-defined signature. Holes
can then be filled with a sub-pNet. This is defined as follows.

Definition 4 (pNet composition). An open pNet: P =〈〈P i∈Ii ,Sortj∈Jj ,SV 〉〉
can be (partially) filled by providing a pNet Q to fill one of its holes. Suppose
j0 ∈ J and Sort(Q) ⊆ Sortj0 , then:

P [Q]j0
= 〈〈P i∈Ii ] {j0 7→Q},Sortj∈J\{j0}

j ,SV 〉〉

pNets are composition entities equipped with a rich synchronisation mecha-
nism: synchronisation vectors allow the expression of synchronisation between
any number of entities and at the same time the passing of data between pro-
cesses. Their strongest feature is that the data emitted by processes can be used
inside the synchronisation vector to do addressing: it is easy to synchronise a
process indexed by n with the action a(v, n) of another process. This is very
convenient to model systems and encode futures or message routing.

pNets have been used to model distributed components using the Grid Com-
ponent Model, illustrating the expressiveness of the model [2]. These works show
that pNets are convenient to express the behaviour of a system in a composi-
tional way. Unfortunately, the semantics of pNets and the existing tools at that
point were only able to deal with a closed and completely instantiated system:
pNets could be used as composition operators in the definition of the semantics,
which was sufficient to perform finite-state model checking on a closed system,
but there was no theory for the use of pNets as operators and no tool for proving
properties on open system. Consequently, much of the formalisation efforts did
not use holes and the interplay between holes, sorts, and synchronisation vector
was not formalised. In previous works [2], only closed pNets were equipped with
a semantics, which was defined as labelled transition systems. The theory of
pNets as operators for open systems is given in the following sections. Compar-
ing formally the existing direct operational semantics and the semantics derived
from open automata in the current article would be an interesting partial proof
of soundness for our semantics. The proof could only be partial as the formal
semantics that exists only consider closed and fully instantiated pNets. Proving
an equivalence between the semantics presented in this article and the opera-
tional one shown in [2] is outside the scope of this article because we focus here
on the modelling of holes that were not considered in the previous semantics.
It is however easy to see that, in case there is no hole the structure of the open
automaton that defines the semantics here is very close to the pLTS that is used
to define the semantics, even though the formalisms are slightly different.
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2.5. Running example
To illustrate this work, we use a simple communication protocol, that pro-

vides safe transport of data between two processes, over unsafe media.
Figure 1 (left) shows the example principle, which corresponds to the hier-

archical structure of a pNet: two unspecified processes P and Q (holes) commu-
nicate messages, with a data value argument, through the two protocol entities.
Process P sends a p-send(m) message to the Sender; this communication is
denoted as in(m). At the other end, process Q receives the message from the
Receiver. The holes P and Q can also have other interactions with their envi-
ronment, represented here by actions p-a and q-b. The underlying network is
modelled by a medium entity transporting messages from the sender to the re-
ceiver, and that is able to detect transport errors and signal them to the sender.
The return ack message from Receiver to Sender is supposed to be safe. The
final transmission of the message to the recipient (the hole Q) includes the value
of the “error counter” ec.

Figure 1 (right) shows a graphical view of the pNet SimpleProtocolSpec that
specifies the system. The pNet is made of the composition of two pNets: a
SimpleSystem node, and a PerfectBuffer sub-pNet. The full system implemen-
tation should be equivalent (e.g. weakly bisimilar) to this SimpleProtocolSpec.
The pNet has a tree-like structure. The root node of the tree SimpleSystem is
the top level of the pNet structure. It acts as the parallel operator. It consists of
three nodes: two holes P andQ and one sub-pNet, denoted PerfectBuffer. Nodes
of the tree are synchronised using four synchronisation vectors, that express the
possible synchronisations between the parameterised actions of a subset of the
nodes. For instance, in the vector < p-send(m), in(m),_ >→ in(m) only P
and PerfectBuffer nodes are involved in the synchronisation. The synchronisa-
tion between these processes occurs when process P performs p-send(m) action
sending a message, and the PerfectBuffer accepts the message through an in(m)
action at the same time; the result that will be returned at upper level is the
action in(m).

Figure 2 shows the pNet model of the protocol implementation, called
SimpleProtocolImpl. When the Medium detects an error (modelled by a lo-
cal τ action), it sends back a m-error message to the Sender. The Sender
increments its local error counter ec, and resends the message (including ec) to
the Medium, that will, eventually, transmit m, ec to the Receiver.

3. A model of process composition

The semantics of open pNets will be defined as an open automaton. An
open automaton is an automaton where each transition composes transitions of
several LTSs with action of some holes, the transition occurs if some predicates
hold, and can involve a set of state modifications. This section defines open
automata and a bisimulation theory for them. This section is an improved
version of the formalism described in [28], extending the automata with a notion
of global variable, which makes the state of the automaton more explicit. We

12



P

Q

Sender

Receiver

M
ed

iu
mack

send(m, ec)

error

p-a

q-b

send(m, ec)

out(m, ec)

q-recv(m,ec)

in(m)

p-send(m)

b0 b1

P Q
<-, out(m,ec), q-recv(m,ec)> → out(m,ec)

SVSimpleSystem =

<p-send(m), in(m), -> → in(m)

<p-a, -, -> → p-a [∀x. p-a 6= p-send(x)]

<-, -, q-b> → q-b [∀x,y. q-b 6= q-recv(x,y)]

<-, τ , -> → τ

vars:
b ec: Nat
b msg: Data

PerfectBuffer

SimpleSystem

in(?m){b_ec := 0, b_msg := m}

{b_ec := b_ec+ 1}
out(b_msg,b_ec)

τ

Figure 1: pNet structure of the example and its specification expressed as a pNet called
SimpleProtocolSpec

also adopt a semantics and logical interpretation of the automata that intuitively
can be stated as follows: “if a transition belongs to an open automaton, any
refinement of this transition also belongs to the automaton”. Our open automata
are clearly inspired by the work of De Simone on SOS rule [15] formats. A precise
comparison with related works can be found in Section 6.

3.1. Open automata
Open automata (OA) are not composition structures but they are made of

transitions that are dependent of the actions of the holes, and they can use
variables (potentially with only symbolic values).

Definition 5 (Open transitions). An open transition (OT) over a set J of
holes with sorts Sortj∈Jj , a set V of variables, and a set of states S is a structure
of the form:

·································βj∈J
′

j ,Pred,Post
s
α−→ s′

where J ′ ⊆ J is the set of holes involved in the transition; s, s′ ∈ S are states of
the automaton; and βj is a transition of the hole j, with Sort(βj) ⊆ Sortj . α is
the resulting action of this open transition. Pred is a predicate, Post is a set of
assignments that are effective after the open transition, and are represented as
a substitution function: (xk ← ek)k∈K . Predicates and expressions of an open
transition can refer to the variables inside V and the different terms βj and α.
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s0 s1

s2

r0 r1

r2

m1m0

m2

P Q

vars:
s ec: Nat
m, s msg: Data

vars:
ec, m ec: Nat
m, m msg: Data

{r_ec := ec, r_msg := m}

r-ack

r-recv(?m,?ec)

r-send
(r_msg,r_ec)

vars:
ec, r ec: Nat
m, r msg: Data

<-, out(m,ec), q-recv(m,ec)> → out(m,ec)

SVSimpleSystem =

<p-send(m), in(m), -> → in(m)

<p-a, -, -> → p-a [∀x. p-a 6= p-send(x)]

<-, -, q-b> → q-b [∀x,y. q-b 6= q-recv(x,y)]

<-, τ , -> → τ

SVSimpleProtocol =

<s-recv(m), -, -> → in(m)

<s-send(m,ec), m-recv(m,ec), -> → τ

<-, m-send(m,ec), r-recv(m,ec)> → τ

<s-error, m-error, -> → τ

<s-ack, -, r-ack> → τ

<-, -, r-send(m,ec)> → out(m,ec)

<-, τ , -> → τ

Sender

{s_ec := 0, s_msg := m}
s-recv(?m)

{s_ec := s_ec+ 1}
s-error

Receiver

s-send
(s_msg,s_ec)s-ack

Medium

m-error

m-send
(m_msg,m_ec)

m-recv(?m,?ec)

{m_ec := ec, m_msg := m}

τ

SimpleSystem

SimpleProtocol

Figure 2: The SimpleProtocolImpl pNet resulting from the composition of the SimpleSystem
and the SimpleProtocol pNets.

More precisely:

vars(Pred) ⊆ V ∪ vars(α) ∪
⋃
j∈J′

vars(βj) ∧

∀k. xk ∈ V ∧ ∀k. vars(ek) ⊆ V ∪ vars(α) ∪
⋃
j∈J′

vars(βj)

The assignments are applied simultaneously because the variables in V can be
in both sides (xks are distinct). Open transitions are identified modulo logical
equivalence on their predicate.

It is important to understand the difference between the red dotted rule and
a classical inference rule. They correspond to two different logical levels. On one
side, classical (black) inference rules act at the mathematical level of the paper
proofs (as e.g. the rules in Definition 13). They use an expressive logic (like any
other computer science article). On the other side, open transition rules (with
dotted lines) are logical implications that belong to the open automata algebra.
Their logic has a specific syntax that can be mechanized; this logic includes the
boolean expressions B, boolean operators, and term equality.
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An open automaton is an automaton where transitions are open transitions.

Definition 6 (Open automaton). An open automaton is a structure
A = 〈〈J,S, s0, V, T 〉〉 where:
• J is a set of indices.

• S is a set of states and s0 is an initial state belonging to S.

• V is a set of variables of the automaton and each v ∈ V may have an
initial value init(v).

• T is a set of open transitions and for each t ∈ T there exists J ′ with
J ′ ⊆ J , such that t is an open transition over J ′ and S.

While the definition and usage of the open transition can be considered
purely syntactically, we take in this article a semantic and logical understanding
of open automata. We see open transitions as logical formulas with a constrained
syntax and logics rather than purely syntactical terms. Consequently, the open
transition sets in open automata are closed by a simple form of refinement
that allows us to refine the predicate, or substitute any free variable by an
expression. Formally, for each predicate Pred for each partial function Post, if
V ∩dom(Post) = ∅, we have:

·····························β,Pred ′,Post ′

s
α−→ s′

∈ T =⇒ ·····················································································
β{{Post}},Pred ′{{Post}} ∧ Pred,Post�Post ′

s
α{{Post}}−−−−−−→ s′

∈ T

Because of the semantic interpretation of open automata, the set of open
transition of an open automaton is infinite (for example because every free
variable can be substituted by any term). This raises an issue when a finite
representation is needed, which is the case both in our tools, and when writing
examples. When needed, we can rely on a canonical representation of the open
automaton, provided that a finite subset of the open transitions is sufficient to
generate, by substitution, the other ones. Thus, we use this canonical represen-
tation in our examples. In the following, we will abusively write that we define
an “open automaton” when we provide its canonical representation.

Another aspect of the semantic interpretation is that we consider terms up
to semantic equivalence, i.e. equivalence of two predicates Pred and Pred ′ can
be denoted Pred = Pred ′, where the = symbol is interpreted semantically.

Though the definition is simple, the fact that transitions are complex struc-
tures relating events must not be underestimated. The first element of theory
for open automata, i.e. the definition of a strong bisimulation, is given below.

3.2. Bisimulation for open Automata
We define now a bisimulation relation tailored to open automata and their

parametric nature. This relation relates states of the open automata and guar-
antees that the related states are observationally equivalent, i.e. equivalent
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states can trigger transitions with identical action labels. Its key characteristics
are 1) the introduction of predicates in the bisimulation relation: the relation
between states may depend on the value of the variables; 2) bisimulation relates
elements of the open transitions and takes into account predicates over variables,
actions of the holes, and state modifications. We name it FH-bisimulation, as
a short cut for the “Formal Hypotheses” over the holes behaviour manipulated
in the transitions, but also as a reference to the work of De Simone [15], that
pioneered this idea. Indeed, our definition uses both hypotheses on the be-
haviour of holes, as in [15], and symbolic manipulation of action expressions, as
in symbolic bisimulations of [25].

One of the original aspects of FH-bisimulation is due to the symbolic na-
ture of open automata. Indeed, a single state of the automaton represents a
potentially infinite number of concrete states, depending on the value of the
automaton variables, and a single open transition of the automaton may also
be instantiated with an unbounded number of values for the transition param-
eters. Consequently it would be too restrictive to impose that each transition
of one automaton is matched by exactly one transition of the bisimilar automa-
ton. Thus the definition of bisimulation requires that, for each open transition
of one automaton, there exists a matching set of open transitions covering the
original one. Indeed depending on the value of action parameters or automaton
variables, different open transitions might simulate the same one.

The parametric nature of the automata entails a second original aspect of
FH-bisimulation: the nature of the bisimulation relation itself. A classical re-
lation between states can be seen as a function mapping pairs of states to a
boolean value (true if the states are related, false if they are not). An FH-
bisimulation relation maps pairs of states to boolean expressions that use vari-
ables of the two systems. Formally, a relation over the states of two open au-
tomata 〈〈J,S1, s0, V1, T1〉〉 and 〈〈J,S2, t0, V2, T2〉〉 has the signature S1 ×S2 → B.
We suppose without loss of generality that the variables of the two open au-
tomata are disjoint. We adopt a notation similar to standard relations and
denote it R = {(s, t|Preds,t)}, where: 1) For any pair (s, t) ∈ S1 × S2, there
is a single (s, t|Preds,t) ∈ R stating that s and t are related if Preds,t is True,
i.e. the states are related when the value of the automata variables satisfy the
predicate Preds,t. 2) The free variables of Preds,t belong to V1 and V2, i.e.
vars(Preds,t) ⊆ V1 ∪ V2. FH-bisimulation is defined formally4:

Definition 7 (Strong FH-bisimulation).
Suppose A1 = 〈〈J,S1, s0, V1, T1〉〉 and A2 = 〈〈J,S2, t0, V2, T2〉〉 are open automata
with identical holes of the same sort, with disjoint sets of variables (V1∩V2 = ∅).

Then R is an FH-bisimulation if and only if for all states s ∈ S1 and t ∈ S2,
(s, t|Preds,t) ∈ R, we have the following:

• For any open transition OT in T1:

4In this article, we denote βjx a double indexed set, instead of the classical βj, x. Indeed
the standard notation would be too heavy in our case.
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·············································βj∈J
′

j ,PredOT ,PostOT
s
α−→ s′

there exists an indexed set of open transitions
OT x∈Xx ⊆ T2:

················································βj∈Jxjx ,PredOTx ,PostOTx
t
αx−−→ tx

....

PredOT

J J J
PredOTx

ts R

PredOT1

s′
t1

tx

Preds,t

R
R

Preds′,t1

Preds′,tx

such that ∀x. J ′ = Jx and there exists some Preds′,tx such that
(s′, tx|Preds′,tx) ∈ R and

Preds,t ∧ PredOT =⇒∨
x∈X

(∀j.βj = βjx ∧ PredOTx ∧ α=αx ∧ Preds′,tx{{PostOT ]PostOTx}})

• and symmetrically any open transition from t in T2 can be covered by a
set of transitions from s in T1.

Two open automata are FH-bisimilar if there exists an FH-bisimulation that
relates their initial states5. We call this relation FH-bisimilarity.
Classically, Preds′,tx{{PostOT ]PostOTx}} applies in parallel the substitution de-
fined by the partial functions PostOT and PostOTx (parallelism is crucial inside
each Post set but not between PostOT and PostOTx that are independent), ap-
plying the assignments of the involved rules. We can prove that bisimilarity is
an equivalence relation.

Note that, if there is a FH-bisimulation R such that (s, t|Pred) ∈ R, and
additionally Pred ′ ⇒ Pred and it does not mean that there is a FH-bisimulation
R′ such that (s, t|Pred ′), indeed pair of states such that Pred is true and Pred ′
is false might be necessary to prove the FH-bisimulation.
Example 2. The simulation of one transition by many others is one non-
standard aspect of this definition. This is made necessary by the parameterised
nature of our model. Consider the following open transition.

···································
β,True, {{y ← x}}

s1
α(x)−−−→ s′1

Bisimulation should allow it to be matched by the two following ones (depending
on the value of x), to prove that the relation R = {(s1, s2,True), (s′1, s′2,True)}
is a bisimulation.

····································
β, x ≥ 0, {{y ← x}}

s2
α(x)−−−→ s′2

····································
β, x < 0, {{y ← x}}

s2
α(x)−−−→ s′2

5In other words, the predicate relation associated to the initial states is True.
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This example illustrates the necessity of multiple transitions in the definition of
bisimulation in a naive and minimalistic way. It can easily be extended into a
non-trivial example with more states and different usage of the variables.

Theorem 1 (FH-bisimilarity is an equivalence). FH-bisimilarity is re-
flexive, symmetric and transitive.

The proof of this theorem can be found in Appendix A.1. The only non-
trivial part of the proof is about transitivity. It relies on the following elements.
First, the transitive composition of two relations with predicate is defined; this is
not exactly standard as it requires to define the right predicate for the transitive
composition and producing a single predicate to relate any two states. Then the
fact that one open transition is simulated by a family of open transitions leads
to a doubly indexed family of simulating open transition; this needs particular
care, also because of the use of renaming (Post) when proving that the predicates
satisfy the definition (property on Preds,t ∧ PredOT in the definition).

Finite versus infinite open automata, and decidability
As mentioned in page 6, we adopt here a semantic view on open automata.

More precisely, in [29], we define semantic open automata (infinite as in Def-
inition 6), and structural open automata (finite) that can be generated as
the semantics of pNets (see Definition 9), and used in their implementation.
Then we define an alternative version of our bisimulation, called structural FH-
bisimulation, based on structural open automata, and prove that the semantic
and structural FH-bisimulations coincide. In the sequel, all mentions of finite
automata, and algorithms for bisimulations, implicitly refer to their structural
versions.

If we assume that everything is finite (states and transitions in the open
automata), then it is easy to prove that it is decidable whether a relation is a
FH-bisimulation, provided the logic of the predicates is decidable (a proof of
this claim can be found in [28]). Formally:

Theorem 2 (Decidability of FH-bisimulation). Let A1 and A2 be finite
open automata and R a relation over their states S1 and S2 constrained by a set
of predicates. Assume that the predicate inclusion is decidable over the action
algebra A. Then it is decidable whether the relation R is an FH-bisimulation.

4. Semantics of Open pNets

This section defines the semantics of an open pNet as a translation into
an open automaton. In this translation, the states of the open automaton are
obtained as products of the states of the pLTSs at the leaves of the composi-
tion. The predicates on the transitions result both from the predicates on the
transitions of the pLTSs, and from the synchronisation vectors involved in the
transition.
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The definition of bisimulation for open automata allows us to derive a bisim-
ilarity relation for open pNets. As pNets are composition structures, it then
makes sense to prove compositionality lemmas: we prove that the composition
of strongly bisimilar pNets are themselves bisimilar.

4.1. Deriving an open automaton from an open pNet
To derive an open automaton from a pNet, we first describe the set of states

of the automaton. Then we show the construction rule for transitions of the
automaton, which relies on the derivation of predicates unifying synchronisation
vectors and the actions of the pNets involved in a given synchronisation.

States of open pNets are tuples of states. We denote them as / . . . . for
distinguishing tuple states from other tuples.

Definition 8 (States of open pNets). A state of an open pNet is a (not
necessarily finite) tuple of the states of its leaves.

For any pNet P, let Leaves(P ) = 〈〈Si, si0, V,→i〉〉i∈L be the set of pLTS at
its leaves, then States(P ) = {/si∈Li . |∀i ∈ L.si ∈ Si}. A pLTS being its own
single leave: States(〈〈S, s0, V,→〉〉) = {/s . |s ∈ S}.

The initial state is defined as: InitState(P ) = /si0
i∈L..

To be precise, the state of each pLTS is entirely characterized by both the state
of the automaton, and the values of its variables V .

Predicates. We define a predicate Predsv relating a synchronisation vector (of
the form (α′i)

i∈I
, (β′j)

j∈J → α′[eb]), the actions of the involved sub-pNets and
the resulting actions. This predicate verifies:

Predsv
((

(α′i)
i∈I
, (β′j)

j∈J → α′[eb]
)
, αi∈Ii , βj∈Jj , α

)
⇔

∀i ∈ I. αi = α′i ∧ ∀j ∈ J. βj = β′j ∧ α = α′ ∧ eb

Somehow, this predicate entails a verification of satisfiability in the sense
that if the predicate Predsv is not satisfiable, then the transition associated
with the synchronisation will not occur in the considered state, or equivalently
will occur with a False precondition. If the action families do not match or if
there is no valuation of variables such that the above formula can be ensured
then the predicate is undefined.

The definition of this predicate is not constructive. In our tool [44], we
construct a logical formula encoding the matching and unification condition
involved, and we let an SMT engine (in the current implementation Z3 [33])
decide its satisfiability.

Example 3 (An open-transition). At the upper level, the SimpleSystem
pNet of Figure 2 has 2 holes and SimpleProtocol as a sub-pNet, itself containing
3 pLTSs. One of its possible open transitions (synchronizing the hole P with
the Sender within the SimpleProtocol) is:
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s
〈α, eb, (xj:=ej)j∈J 〉−−−−−−−−−−−−−→ s′ ∈→

〈〈S, s0,→〉〉 |= ······································
∅, eb, {xj ← ej}j∈J

/s .
α−→ / s′.

Tr1

and

Leaves(〈〈Pm∈Im ,Sort,SV k∈K
k 〉〉)=pLTS l∈Ll k∈K

SVk=(α′m)m∈I1]I2]J → α′[eb]

∀m∈I1. Pm |= ····················································
βj∈Jmj ,Predm,Postm

/si∈Lmi .
αm−−→ / (s′i)i∈Lm.

∀m∈I2. Pm |= ···································
∅,Predm,Postm
/sm .

αm−−→ / s′m.
J ′ =

⊎
m∈I1

Jm ] J

Pred =
∧

m∈I1]I2

Predm ∧ Predsv(SVk, αm∈I1]I2
m , βj∈Jj , α)

∀i ∈ L\
( ⊎
m∈I1

Lm ] I2

)
. s′i = si fresh(α′m, α′, β

j∈J
j , α)

〈〈Pm∈Im ,Sort,SV k∈K
k 〉〉 |= ····················································

βj∈J
′

j ,Pred,
⊎

m∈I1]I2

Postm

/si∈Li .
α−→ / (s′i)i∈L.

Tr2

Figure 3: Rules Tr1 and Tr2 defining the semantics of open pNets

OT1 = ··········································································
{P7→p-send(m)}, [m=m’], (s_msg← m)

/s0,m0, r0 .
in(m’)−−−−→ / s1,m0, r0.

The global states here are triples, the product of states of the 3 pLTSs
(holes have no state). The assignment performed by the open transition uses
the variable m from the action of hole P to set the value of the sender variable
named s_msg.

We build the semantics of open pNets as an open automaton over the states
given by Definition 8. The open transitions first project the global state into
states of the leaves, then apply pLTS transitions on these states, and compose
them with the sort of the holes. The semantics instantiates fresh variables using
the predicate fresh(x), additionally, for an action α, fresh(α) means all variables
in α are fresh.

Definition 9 (Semantics of open pNets). The semantics of a pNet P is an
open automaton A= 〈〈Holes(P ),States(P ), InitState(P ), vars(P ), T 〉〉 where T is
the smallest set of open transitions such that T = {OT |P |= OT} and P |= OT
is defined by the rules in Figure 3.
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• The rule Tr1 for a pLTS checks that the guard is verified and transforms
assignments into post-conditions.

• The rule Tr2 deals with pNet nodes: for each possible synchronisation
vector (of index k) applicable to the rule subject, the premises include one
open transition for each sub-pNet involved, one possible action for each
hole involved, and the predicate relating these with the resulting action of
the vector. The sub-pNets involved are split between two sets, I2 for sub-
pNets that are pLTSs (with open transitions obtained by rule Tr1), and
I1 for the sub-pNets that are not pLTSs (with open transitions obtained
by rule Tr2), J is the set of holes involved in the transition6.

A key to understand Tr2 is that the open transitions are expressed in terms of
the leaves and holes of the whole pNet structure, i.e. a flattened view of the
pNet. For example, L is the index set of the Leaves, Lm the index set of the
leaves of one sub-pNet indexed m, so all Lm are disjoint subsets of L. Thus the
states in the open transitions, at each level, are tuples including states of all the
leaves of the pNet, not only those involved in the chosen synchronisation vector.

Note that the construction is symbolic, and each open transition deduced
expresses a whole family of behaviours, for any possible value of the variables.

In [28], we have shown a detailed example of the construction of a complex
open transition, building a deduction tree using rules Tr1 and Tr2. We have
also shown in [28] that an open pNet with finite synchronisation sets, finitely
many leaves and holes, and each pLTS at leaves having a finite number of
states and (symbolic) transitions, induces a finite automaton. The algorithm
for building such an automaton can be found in [43].

b1

b0p-a
SS1 :

{P7→p-a}, [∀x.p-a 6= p-send(x)], ()

τ
{}, T rue, (b_ec← b_ec+ 1)SS4 :

{Q7→q-recv(b_msg,b_ec)},True, ()
out(b_msg,b_ec)

SS7 :

vars:
b ec: Nat
m, b msg: Data

q-b

{Q7→q-b}, [∀x,y.q-b 6= q-recv(x,y)], ()SS6 :

in(m)

{P7→p-send(m)}, T rue, (b_ec← 0, b_msg← m)SS3 :

{Q7→q-b}, [∀x,y.q-b 6= q-recv(x,y)], ()
q-b

SS2 :

{P7→p-a}, [∀x.p-a 6= p-send(x)], ()
p-a

SS5 :

Figure 4: Open automaton for SimpleProtocolSpec

6Formally, if SVk = (α′)m∈Mm → α′[eb] is a synchronisation vector of P then J = M ∩
Holes(P ), I2 = M ∩ Leaves(P ), I1 = M \ J \ I2. We could replace I1 and I2 by their formal
definition in Tr2 but the rule would be more difficult to read.
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Example
Figure 4 shows the open automaton computed from the SimpleProtocolSpec

pNet given in Figure 1. For later references, we name SSi the transitions of this
(strong) specification automaton while transitions of the SimpleProtocolImpl
pNet are labelled SIi. In the figures we annotate each open automaton with
the set of its variables.

202 210

220

000 100

201

τ
{}, T rue, ()SIτ :

τ
{}, T rue, ()SI5 :

τ

(m_msg← s_msg, m_ec← s_ec)
{}, T rue,

SI4 :

{Q7→q-recv(r_msg,r_ec)}, T rue, ()SI8 :
out(r_msg,r_ec)

SI1 :
{P 7→p-a}, [∀x. p-a 6= p-send(x)], ()

p-a

in(m)

(s_msg← m, s_ec← 0)
{P7→p-send(m)}, T rue,

SI3 :

q-b

{Q 7→q-b}, [∀x,y. q-b 6= q-recv(x,y)], ()SI2 :

τ
SI6 :

(s_ec← s_ec+1)
{}, T rue,

{}, T rue,
(r_msg← m_msg, r_ec← m_ec)

τ
SI7 :

vars:
s ec, m ec, r ec: Nat
m, s msg, m msg, r msg: Data

SI1

SI2

SI2

SI1

SI1

SI1

SI2

SI1

SI2

SI2

Figure 5: Open automaton for SimpleProtocolImpl

Figure 5 shows the open automaton of SimpleProtocolImpl from Figure 2. In
this drawing, we have short labels for states, representing /s0,m0, r0. by 000.
Note that open transitions are denoted SIi and tau open transition by SIτ . The
resulting behaviour is quite simple: we have a main loop including receiving a
message from P and transmitting the same message to Q, with some intermedi-
ate τ actions from the internal communications between the protocol processes.
In most of the transitions, you can observe that data is propagated between the
successive pLTS variables (holding the message, and the error counter value).
On the right of the figure, there is a loop of τ actions (SI4, SI5 and SI6) showing
the handling of errors and the incrementation of the error counter.

4.2. pNet Composition Properties: composition of open transitions
The semantics of open pNets allows us to prove two crucial properties re-

lating pNet composition with pNet semantics: open transition of a composed
pNet can be decomposed into open transitions of its composing sub-pNets, and
conversely, from the open transitions of sub-pNets, an open transition of the
composed pNet can be built.

We start with a decomposition property: from one open transition of P [Q]j0 ,
we exhibit corresponding behaviours of P and Q, and determine the relation
between their predicates.
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Lemma 1 (Open transition decomposition). Consider two pNets P and
Q that are not pLTSs7. Let Leaves(Q) = p

l∈LQ
l and suppose:

P [Q]j0 |= ······································
βj∈Jj ,Pred,Post

/si∈Li .
α−→ / s′ i∈Li .

with J ∩ Holes(Q) 6= ∅ or ∃i ∈ LQ. si 6= s′i, i.e. Q takes part in the reduction.
Then there exist αQ, Pred ′, Pred ′′, Post ′, Post ′′ s.t.:

P |= ·······························································
β
j∈(J\Holes(Q))∪{j0}
j ,Pred ′,Post ′

/s
i∈L\LQ
i .

α−→ / s
′ i∈L\LQ
i .

and Q |= ······················································
β
j∈J∩Holes(Q)
j ,Pred ′′,Post ′′

/s
i∈LQ
i .

αQ−−→ / s
′ i∈LQ
i .

and Pred ⇐⇒ Pred ′ ∧ Pred ′′ ∧ αQ = βj0 , Post = Post ′ ] Post ′′ where Post ′′
is the restriction of Post over variables of Q.

Lemma 2 is combining an open transition of P with an open transition of Q,
and building a corresponding transition of P [Q]j0 by assembling their elements.

Lemma 2 (Open transition composition). Suppose j0 ∈ J and:

P |= ······································
βj∈Jj ,Pred,Post

/si∈Li .
α−→ / s′ i∈Li .

and Q |= ··············································
β
j∈JQ
j ,Pred ′,Post ′

/s
i∈LQ
i .

αQ−−→ / s
′ i∈LQ
i .

Then, we have:

P [Q]j0 |= ·······································································································
β

(j∈J\{j0})]JQ
j ,Pred ∧ Pred ′ ∧ αQ = βj0 ,Post ] Post ′

/s
i∈L]LQ
i .

α−→ / s
′ i∈L]LQ
i .

Note that this does not mean that any two pNets can be composed and
produce an open transition. Indeed, the predicate Pred ∧ Pred ′ ∧ αQ = βj0 is
often not satisfiable, in particular if the action αQ cannot be matched with βj0 .
Note also that βj0 is only used as an intermediate term inside formulas in the
composed open transition: it does not appear as global action, and will not
appear as an action of a hole.

4.3. Bisimulation for open pNets – a composable bisimulation theory
As our symbolic operational semantics provides an open automaton, we can

apply the notion of strong (symbolic) bisimulation on automata to open pNets.

Definition 10 (FH-bisimulation for open pNets). Two pNets are FH-
bisimilar if their associated open automata are bisimilar.

7A similar lemma can be proven for a pLTS Q.
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We can now prove that pNet composition preserves FH-bisimilarity. More
precisely, one can define two preservation properties, namely 1) when one hole
of a pNet is filled by two bisimilar other (open) pNets; and 2) when the same
hole in two bisimilar pNets are filled by the same pNet, in other words, com-
posing a pNet with two bisimilar contexts. The general case will be obtained
by transitivity of the bisimilarity relation (Theorem 1).

Theorem 3 (Congruence). Consider an open pNet
P = 〈〈P i∈Ii ,Sortj∈Jj ,SV〉〉. Let j0 ∈ J be a hole. Let Q and Q′ be two FH-
bisimilar pNets such that8 Sort(Q) = Sort(Q′) = Sortj0 . Then P [Q]j0 and
P [Q′]j0 are FH-bisimilar.

Theorem 4 (Context equivalence). Consider two open pNets
P = 〈〈P i∈Ii ,Sortj∈Jj ,SV〉〉 and P ′ = 〈〈P ′i∈Ii ,Sortj∈Jj ,SV’〉〉 that are FH-bisimilar
(they thus have the same holes). Let j0 ∈ J be a hole, and Q be a pNet such
that Sort(Q) = Sortj0 . Then P [Q]j0 and P ′[Q]j0 are FH-bisimilar.

Finally, the previous theorems can be composed to state a general theorem
about composability and FH-bisimilarity.

Theorem 5 (Composability). Consider two FH-bisimilar pNets with an ar-
bitrary number of holes, when replacing, inside those two original pNets, a subset
of the holes by FH-bisimilar pNets, we obtain two FH-bisimilar pNets.

This theorem is quite powerful, as it somehow implies that the theory of open
pNets can be used to study properties of process composition. Open pNets can
indeed be applied to study process operators and process algebras, as shown
in [28] where compositional properties are extremely useful. In the case of in-
teraction protocols [12], compositionality of bisimulation can justify abstractions
used in some parts of the application.

5. Weak bisimulation

Weak symbolic bisimulation [25] was introduced to relate transition systems
that have indistinguishable behaviour, with respect to some definition of in-
ternal actions that are considered local to some subsystem, and consequently
cannot be observed, nor used for synchronisation with their context. The notion
of non-observable actions varies in different contexts, e.g. tau in CCS [40, 41],
and i in Lotos [10]. We could define classically a set of internal/non-observable
actions depending on a specific action algebra. However in this paper, to sim-
plify the notations, we will simply use τ as the single non-observable action;
the generalisation of our results to a set of non-observable actions is trivial.
Naturally, a non-observable action cannot be synchronised with actions of other

8Note that Sort(Q) = Sort(Q′) is ensured by strong bisimilarity.
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systems in its environment. We show here that under such assumption of non-
observability of τ actions, see Definition 11, we can define a weak bisimulation
relation that is compositional, in the sense of open pNet composition. In this
section we will first define a notion of weak open transition similar to open tran-
sition. In fact a weak open transition is made of several open transitions labelled
as non-observable transitions, plus potentially one observable open transition.
This allows us to define weak open automata, and a weak bisimulation relation
based on these weak open automata. Finally, we apply this weak bisimulation
to open pNets, obtain a weak bisimilarity relation for open pNets, and prove
that this relation has compositional properties.

5.1. Preliminary definitions and notations
We first specify in terms of open transition, what it means for an action to be

non-observable. We first define (in Definition 11) systems that cannot observe
τ actions of sub-systems; namely pNets that cannot change their state, or emit
an observable action when one of its holes emits a τ action.

More precisely, we state that τ is not observable if the automaton always
allows any τ transition from holes, and additionally the global transition result-
ing from a τ action of a hole is a τ transition not changing the pNet’s state. We
define Id(V ) as the identity function on the set of variables V .

Definition 11 (Non-observability of τ actions for open automata).
An open automaton A = 〈〈J,S, s0, V, T 〉〉 cannot observe τ actions if and only
if for all j in J and s in S we have:

1.
·····································(j 7→τ),True, Id(V )

s
τ−→ s

∈ T

and

2. for all βj , J , α, s, s′, Pred, Post such that

································βj∈Jj ,Pred,Post
s
α−→ s′

∈ T

If there exists j such that βj = τ then we have:

α = τ ∧ s = s′ ∧ Pred = True ∧ Post = Id(V ) ∧ J = {j}

The first statement of the definition states that the open automaton must allow
a hole to do a silent action at any time, and must not observe it, i.e. it cannot
change its internal state because a hole did a τ transition. The second statement
ensures that there cannot be in the open automaton other transitions that would
be able to observe a τ action from a hole: statement (2) states that all the open
transitions where a hole does a τ action must be of the shape given in statement
(1). In this second statement, the condition J = {j} is a bit restrictive, it could
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safely be replaced by ∀j ∈ J. βj = τ , allowing the other holes to perform τ
transitions too (because these τ actions cannot be observed). This possible
synchronisation of τ actions would not be a problem as condition 1 still ensures
that each process can do a τ separately.

By definition, one weak open transition contains several open transitions,
where each open transition can require an observable action from a given hole,
the same hole might have to emit several observable actions for a single weak
open transition to occur. Consequently, for a weak open transition to trigger, a
sequence of actions from a given hole may be required.

Thus, we let γ range over sequences of action terms and use ⊕ as the concate-
nation operator that appends sequences of action terms: given two sequences of
action terms γ ⊕ γ′ concatenates the two sequences. The operation is lifted to
indexed sets of sequences: at each index i, γ1 ⊕ γ2 concatenates the sequences
of actions at index i of γ1 and the one at index i of γ2

9. [a] denotes a sequence
with a single element. These new actions are sequences of observable actions,
we thus need an operator to build them from a set of actions that occur in
open transitions, i.e. an operator that takes a set of actions performed by one
hole and produces a sequence of observable actions. Thus we define (β)∇ as
the mapping β with only observable actions of the holes in I, but where each
element is either empty or a list of length 1:

(βi∈Ii )∇ = [βi]i∈I
′
where I ′ = {i|i ∈ I ∧ βi 6= τ}

As an example the (β)∇ built from the transition OT1 in Example 3, page 19
is P7→[p-send(m)]. Remark that in our simple example no τ transition involves
any visible action from a hole, so we have no β sequences of length longer than
1 in the weak automaton.

5.2. Weak open transition definition
Because of the non-observability property (Definition 11), it is possible to

add any number of τ transitions of the holes before or after any open transition
freely. This property justifies the fact that we can abstract away from τ transi-
tions from holes in the definition of a weak open transition. We define weak open
transitions similarly to open transitions except that holes can perform sequences
of observable actions instead of single actions (observable or not). Compared to
the definition of open transition, this small change has a significant impact as
a single weak transition is the composition of several transitions of the holes.

Definition 12 (Weak open transition (WOT)). A weak open transition
over a set J of holes with sorts Sortj∈Jj and a set of states S is a structure
of the form:

·································γj∈J
′

j ,Pred,Post
s
α=⇒ s′

9One of the two sequences is empty when i 6∈ dom(γ1) or i 6∈ dom(γ2) .

26



····························∅,True, Id(V )
s
τ=⇒ s

∈ WT WT1 and
·························β,Pred,Post

s
α−→ s′

∈ T

·······························(β)∇,Pred,Post
s
α=⇒ s′

∈ WT
WT2

and

·······························γ1,Pred1,Post1
s
τ=⇒ s1

∈ WT ·······························γ2,Pred2,Post2
s1

α=⇒ s2
∈ WT

·······························γ3,Pred3,Post3
s2

τ=⇒ s′
∈ WT γ = γ1 ⊕ γ2{{Post1}} ⊕ γ3{{Post2�Post1}}

α′ = α{{Post1}} Pred = Pred1 ∧ Pred2{{Post1}} ∧ Pred3{{Post2�Post1}}

·························································
γ,Pred,Post3�Post2�Post1

s
α′=⇒ s′

∈ WT
WT3

Figure 6: Weak transition definition

Where J ′ ⊆ J , s, s′ ∈ S and γj is a list of transitions of the hole j, with each
element of the list in Sortj . α is an action label denoting the resulting action
of this open transition. Pred and Post are defined similarly to Definition 5. We
use WT to range over sets of weak open transitions.

A weak open automaton 〈〈J,S, s0, V,WT 〉〉 is similar to an open automaton
except that WT is a set of weak open transitions over J and S.

A weak open transition labelled α can be seen as a sequence of open tran-
sitions that are all labelled τ except one that is labelled α; however conditions
on predicates, effects, and states must be verified for this sequence to be fired.

We are now able to build a weak open automaton from an open automaton.
This is done in a way that resembles the process of τ saturation: we add τ open
transitions before or after another open transition, regardless of whether it is
observable or not.

Definition 13 (Building a weak open automaton).
Let A = 〈〈J,S, s0, V, T 〉〉 be an open automaton. The weak open automaton
derived from A is an open automaton 〈〈J,S, s0, V,WT 〉〉 where WT is derived
from T by saturation, applying the rules of Figure 6.

Rule WT1 states that it is always possible to perform a non-observable transi-
tion, where the state is unchanged and the holes perform no action. Rule WT2
states that each open transition is a weak open transition. Finally, Rule WT3
allows any number of τ transitions before or after any weak open transition.
This rule carefully composes predicates, effects, and actions of the holes. In-
deed, predicate Pred2 manipulates variables of s1 that result from the first weak
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open transition. Their values thus depend on the initial state but also on the
effect (as a substitution function Post1) of the first weak open transition. In the
same manner, Pred3 must be applied the substitution defined by the composi-
tion Post2�Post1. Similarly, effects on variables must be applied to obtain the
global effect of the composed weak open transition, to observable actions of the
holes, and to the global action of the weak open transition.

b0b1

b1 b0

out(b_msg,b_ec)

{Q7→q-recv(b_msg,b_ec)}, T rue, ()

τ
{}, T rue, (b_ec← b_ec+ n)

∀n ≥ 0

τ
{}, T rue, (b_ec← b_ec+ 1)

True, (b_ec← b_ec+ n)
{Q7→q-recv(b_msg,b_ec){{b_ec← b_ec+ n}}},

out(b_msg,b_ec){{b_ec← b_ec+ n}}
∀n ≥ 0

Wτ
Wτ

Figure 7: Construction of an example of weak open transition

Example 4 (A weak open-transition). Figure 7 shows the construction of
one of the weak transitions of the open automaton of SimpleProtocolSpec. On
the top we show the subset of the original open automaton (from Figure 4)
considered here, and at the bottom the generated weak transition. For read-

ability, we abbreviate the weak open transitions encoded by ·······················
{}, T rue, ()
s
τ=⇒ s′

as Wτ .

The weak open transition shown here is the transition delivering the result of
the algorithm to hole Q by applying rules: WT1,WT2, and WT3. First rule
WT1 adds a WTτ loop on each state. Rule WT2 transforms each 2 OTs into
WOTs. Then consider application of Rule WT3 on a sequence of 3 WOTs.

·························································{}, T rue, (b_ec← b_ec + 1)
b1 τ=⇒ b1

; ·························································
{}, T rue, (b_ec← b_ec + 1)

b1 τ=⇒ b1
; ·······················
{}, T rue, ()

b1 τ=⇒ b1
. The

result will be: ·························································
{}, T rue, (b_ec← b_ec + 2)

b1 τ=⇒ b1
. We can iterate this construction an

arbitrary number of times, getting for any natural number n a weak open tran-

sition: ··············································
∅, T rue, (ec← ec + n)

b1 τ=⇒ b1
∀n ≥ 0. Finally, applying again WT3, and using

the central open transition having out(b_msg,b_ec) as α, we get the resulting
weak open transition between b1 and b0 (as shown in Figure 7). Applying the
substitutions finally yields the weak transitions family WS7 in Figure 8.

Example 5 (Weak open automata). Figures 8 and 9 respectively show the
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weak automata of SimpleProtocolSpec and SimpleProtocolImpl. We encode weak
open transitions by WS on the specification model and by WI on the imple-
mentation model.

b0

b1

(b_ec← b_ec+ n) ∀n ≥ 0WS5 :
p-a

{P7→p-a}, [∀x.p-a 6= p-send(x)],

{Q7→q-recv(b_msg,b_ec+ n)}, T rue,
(b_ec← b_ec+ n)

out(b_msg,b_ec+ n)
∀n ≥ 0WS7 :

WS1 : p-a

{P7→p-a}, [∀x. P-a 6= p-send(x)], ()

q-b

(b_ec← b_ec+ n)
{Q7→q-b}, [∀x,y. q-b 6= q-recv(x,y)],

∀n ≥ 0WS6 : τ

{}, T rue, (b_ec← b_ec+ n)
∀n ≥ 0WS4 :

in(m)

(b_ec← n, b_msg← m)
{P7→p-send(m)}, T rue,

WS3 : ∀n ≥ 0

q-b

{Q7→q-b}, [∀x,y. q-b 6= q-recv(x,y)], ()WS2 :

vars:
b ec: Nat
m, b msg: Data

Wτ

Wτ

Figure 8: Weak Open Automaton of SimpleProtocolSpec

For readability, we only give names to the weak open transitions of
SimpleProtocolImpl in Figure 9; we detail some of these transitions below and
the full list is included in Appendix C. Let us point out that the weak OT loops
(WI1,WI2 and Wτ ) on state 000 are also present in all other states, we did not
repeat them. Additionally, many WOTs are similar, and numbered accordingly
as 3, 3a, 3b, 3c and 8, 8a, 8b, 8c respectively: they only differ by their respective
source or target states; the "variant" WOTs appear in blue in Figure 9, note that
composed WOTs also appear in blue.

100000

201

202

210

220

WI6

WI7

WI4

WI5

WI8c

WI7b

WI8b

WI8a

WI3a

WI7a

WI3c

WI456

WI645

WI6a

WI5a

WI564

WI4aWI3b

WI1

WI2

WIτ

WI8

WI3

Wτ

WI1
WI2

s ec, m ec, r ec: Nat

m, s msg, m msg, r msg: Data

vars:

Figure 9: Weak Open Automaton of SimpleProtocolImpl
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Now let us give some details about the construction of the weak automaton
of the SimpleProtocolImpl pNet, obtained by application of the weak rules as
explained above. We concentrate on weak open transitions WI3 and WI4. Let
us denote as postn the effect (as a substitution function) of the strong open
transitions SIn from Figure 5:

post3 = (s_msg← m, s_ec← 0)
post4 = (m_msg← s_msg, m_ec← s_ec)
post5 = ()
post6 = (s_ec← s_ec+1)

Then the effect of one single 100 OT4−−−→ 210 OT5−−−→ 220 OT6−−−→ 100 loop is10:

post456 = post6� post5� post4 = (s_ec← s_ec + 1)

So if we denote post456∗ any iteration of this loop, we get post456∗ = (s_ec←
s_ec + n) for any n ≥ 0, and the Post of the weak OT WI3 is:
Post3 = post456∗� post3 = (s_msg← m, s_ec← n),∀n ≥ 0 and Post of WI3a
is:
post4�post456∗� post3 = (m_msg← m, m_ec← n),∀n ≥ 0.

We can now show some of the weak OTs of Figure 9 (the full table is included
in Appendix C). As we have seen above, the effect of rule WT3 when a silent
action have an effect on the variable ec will generate an infinite family of WOTs,
depending on the number of iterations through the loops. We denote these
families using a "meta-variable" n, ranging over Nat.

WI1 = ·····································································
{P7→p-a}, [∀x.p-a 6= p-send(x)], ()

s
p-a==⇒ s

(for any s ∈ S)

∀n ≥ 0.WI3(n) = ····························································································
{P 7→p-send(m)},True, (s_msg← m, s_ec← n)

000 in(m)===⇒ 100

∀n≥0.WI4(n)= ······················································································································
{},True, (m_msg←s_msg, m_ec←s_ec+n, s_ec←s_ec+n)

100 τ=⇒ 210

∀n ≥ 0.WI456(n) = ·························································
{},True, (s_ec← s_ec + n)

100 τ=⇒ 100
The Post of the weak OT WI6a is:

Post6a= post4� post456∗� post6
=(m_msg←s_msg, m_ec←s_ec)�(s_ec←s_ec+n)�(s_ec←s_ec+1)
=(m_msg← s_msg, m_ec← s_ec + 1+n, s_ec← s_ec + 1+n)

So we get:

∀n ≥ 0.WI6a(n) = ·············································································································
{}, T rue, (m_ec← s_ec + 1 + n, s_ec← s_ec + 1 + n)

220 τ=⇒ 210

10when showing the result of Posts composition, we will omit the identity substitution
functions introduced by the� definition in page 7.
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5.3. Composition properties: composition of weak open transitions
We now have two different semantics for open pNets: a strong semantics,

defined as an open automaton, and as a weak semantics, defined as a weak
open automaton. Like the open automaton, the weak open automaton features
valuable composition properties. We can exhibit a composition property and a
decomposition property that relate open pNet composition with their semantics,
defined as weak open automata. These are however technically more complex
than the ones for open automata because each hole performs a set of actions,
and thus a composed transition is the composition of one transition of the
top-level pNet and a sequence of transitions of the sub-pNet that fills its hole.
Composition and decomposition properties can be found as Lemma 6, Lemma 7,
and Lemma 8 in Appendix B.2.

5.4. Weak FH-bisimulation
For defining a bisimulation relation between weak open automata, two op-

tions are possible. One option is that we define a simulation similar to the
strong simulation but based on weak open automata, this would look like the
FH-simulation but would need to be adapted to weak open transitions. Al-
ternatively, we could define directly and classically a weak FH-simulation as a
relation between two open automata, relating the open transitions of the first
one with the transitions of the weak open automaton derived from the second
one.

The definition below specifies how a set of weak open transitions can simulate
an open transition, and under which condition; this is used to relate, by weak
FH-bisimulation, two open automata by reasoning on the weak open automata
that can be derived from the strong ones.

Definition 14 (Weak FH-bisimulation).
Let A1 = 〈〈J,S1, s0, V1, T1〉〉 and A2 = 〈〈J,S2, t0, V2, T2〉〉 be open automata with
disjoint sets of variables. Let 〈〈J,S1, s0, V1,WT 1〉〉 and 〈〈J,S2, t0, V2,WT 2〉〉 be
the weak open automata derived from A1 and A2 respectively. Let R a relation
over S1 and S2, as in Definition 7.

Then R is a weak FH-bisimulation iff for any states s ∈ S1 and t ∈ S2 such
that (s, t|Preds,t) ∈ R, we have the following:

• For any open transition OT in T1:

·············································βj∈J
′

j ,PredOT ,PostOT
s
α−→ s′

there exists an indexed set of weak open transitions WOT x∈X
x ⊆ WT 2:

················································γj∈Jxjx ,PredOTx ,PostOTx
t
αx=⇒ tx
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such that ∀x. {j ∈ J ′|βj 6= τ} = Jx, (s′, tx|Preds′,tx) ∈ R; and

Preds,t ∧ PredOT =⇒∨
x∈X

(
∀j ∈ Jx.(βj)∇=γjx∧PredOTx∧α=αx∧Preds′,tx{{PostOT ] PostOTx}}

)
• and symmetrically any open transition from t in T2 can be covered by a

set of weak transitions from s in WT 1.

Two open automata are weak FH-bisimilar if there exists a weak FH-
bisimulation relation that relates their initial states. This relation is called
weak FH-bisimilarity. Two pNets are weak FH-bisimilar if their associated open
automata are weakly bisimilar.

Compared to strong bisimulation, except the use of weak open transitions
to simulate an open transition, the condition on predicate is slightly changed
concerning actions of the holes. Indeed, only the visible actions of the holes
must be compared and they form a list of actions, but of length at most one.

Our first important result is that weak FH-bisimilarity is an equivalence in
the same way as strong FH-bisimilarity.

Theorem 6 (Weak FH-bisimilarity is an equivalence).
Weak FH-bisimilarity is reflexive, symmetric and transitive.

The proof is detailed in Appendix B.1, it follows a similar pattern as the proof
that strong FH-bisimilarity is an equivalence, but technical details are different,
and in practice we rely on a variant of the definition of weak FH-bisimilarity;
this equivalent version simulates a weak open transition with a set of weak open
transition. The careful use of the best definition of weak FH-bisimilarity makes
the proof similar to the strong FH-bisimilarity case.

Proving bisimulation in practice
In practice, we are dealing with finite representations of the (infinite) open

automata. In [29], we defined a slightly modified definition of the “coverage”
proof obligation, in the case of strong FH-bisimulation. This modification is
required to manage in a finite way all possible instantiations of an OT. In the
case of weak FH-bisimulation, the proof obligation from Definition 14 becomes:

∀fvOT .
{

Preds,t ∧ PredOT =⇒∨
x∈X

[
∃fvOTx .

(
∀j∈Jx.(βj)∇=γjx∧PredOTx∧α=αx∧Preds′,tx{{PostOT ]PostOTx}}

)]}
where fvOT denotes the set of free variables of all expressions in OT .
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5.5. Weak FH-bisimulation for open pNets
Before defining a weak open automaton for the semantics of open pNets, it

is necessary to state under which condition a pNet is unable to observe silent
actions of its holes. In the setting of pNets this can simply be expressed as a
condition on the synchronisation vectors. Precisely, the set of synchronisation
vectors must contain vectors that let silent actions go through the pNet, i.e.
synchronisation vectors where one hole does a τ transition, and the global visible
action is a τ . Additionally, no other synchronisation vector must be able to react
on a silent action from a hole, i.e. if a synchronisation vector observes a τ from
a hole it cannot synchronise it with another action nor emit an action that is
not τ . This is formalised as follows:

Definition 15 (Non-observability of silent actions for pNets).
A pNet 〈〈P i∈Ii ,Sortj∈Jj ,SV〉〉 cannot observe silent actions if it verifies:
∀i ∈ I ] J. (i7→τ)→ τ [True] ∈ SV and

∀
(

(αi)i∈I
′
→ α′[eb] ∈ SV

)
,∀i ∈ I ′ ∩ J. αi = τ =⇒ α′ = τ ∧ I ′ = {i}

With this definition, it is easy to check that the open automaton that gives
the semantics of such an open pNet cannot observe silent actions in the sense
of Definition 11.

Property 1 (Non-observability of silent actions). The semantics of a
pNet, as provided in Definition 9, that cannot observe silent actions is an open
automaton that cannot observe silent actions.

Under this condition, it is safe to define the weak open automaton that
provides a weak semantics to a given pNet. This is simply obtained by applying
Definition 13 to generate a weak open automaton from the open automaton that
is the strong semantics of the open pNet, as provided by Definition 9.

Definition 16 (Semantics of pNets as a weak open automaton). Let
A be the open automaton expressing the semantics of an open pNet P ; let
〈〈J,S, s0, V,WT 〉〉 be the weak open automaton derived from A; we call this
weak open automaton the weak semantics of the pNet P . Then, we denote
P |= WOT whenever WOT ∈ WT .

From the definition of the weak open automata of pNets, we can now study
the properties of weak bisimulation concerning open pNets.

5.6. Properties of weak bisimulation for open pNets
When silent actions cannot be observed, weak FH-bisimilarity is a congru-

ence for open pNets: if P and Q are weakly bisimilar to P ′ and Q′ then the
composition of P and Q is weakly bisimilar to the composition of P ′ and Q′,
where composition is the hole replacement operator: P [Q]j and P ′[Q′]j are
weak FH-bisimilar. This can be shown by proving the two following theorems.
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The detailed proof of these theorem can be found in Appendix B.2. The proof
strongly relies on the fact that weak FH-bisimulation is an equivalence, but also
on the composition properties for open automata.

Theorem 7 (Congruence for weak FH-bisimilarity). Consider an open
pNet P that cannot observe silent actions, of the form P = 〈〈P i∈Ii ,Sortj∈Jj ,SV〉〉.
Let j0 ∈ J be a hole. Let Q and Q′ be two weak FH-bisimilar pNets such that11

Sort(Q) = Sort(Q′) ⊆ Sortj0 . Then P [Q]j0 and P [Q′]j0 are weak FH-bisimilar.

Theorem 8 (Context equivalence for weak FH-bisimilarity). Consider
two open pNets P = 〈〈P i∈Ii ,Sortj∈Jj ,SV〉〉 and P ′ = 〈〈P ′i∈Ii ,Sortj∈Jj ,SV’〉〉 that
are weak FH-bisimilar (recall they must have the same holes to be FH-bisimilar)
and that cannot observe silent actions. Let j0 ∈ J be a hole, and Q be a pNet
such that Sort(Q) ⊆ Sortj0 . Then P [Q]j0 and P ′[Q]j0 are weak FH-bisimilar.

Finally, the previous theorems can be composed to state a general theorem
about composability and weak FH-bisimilarity.

Theorem 9 (Composability of weak FH-bisimilarity). Consider two
weak FH-bisimilar pNets with an arbitrary number of holes, such that the two
pNets cannot observe silent actions. When replacing, inside those two original
pNets, a subset of the holes by weak FH-bisimilar pNets, we obtain two weak
FH-bisimilar pNets.

Example 6 (CCS Choice). Consider the + operator of CCS, shown in Ex-
ample 1. The pNet does not satisfy Definition 15. Indeed, if a or b is τ then the
+ operator can observe the τ transition. It is well-known that weak bisimilarity
is not a congruence in CCS, this corresponds to the fact that the + operator can
observe the τ transitions. Thus, even if we can define a weak FH-bisimilarity for
CCS with + it does not verify the necessary requirements for being a congruence.
On the other side, the parallel operator defined similarly satisfies Definition 15,
and indeed bisimilarity is a congruence for the parallel operator in CCS.

Running example
In Section 5 we have shown the full saturated weak automaton for both

SimpleProtocolSpec and SimpleProtocolImpl. We will show here how we can
check if some given relation between these two automata is a weak FH-
bisimulation.

Preliminary remarks:

• Both pNets trivially verify the “non-observability” condition: the vectors
having τ as an action of a sub-net are of the form “< −, τ,− >→ τ”.

11Note that Sort(Q) = Sort(Q′) is ensured by weak FH-bisimilarity.
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SimpleProtocolSpec
states

SimpleProtocolImpl
states Predicate

b0 000 True
b0 202 True
b1 100 b_msg = s_msg ∧ b_ec = s_ec
b1 210 b_msg = m_msg ∧ b_ec = m_ec
b1 220 b_msg = s_msg ∧ b_ec = s_ec
b1 201 b_msg = r_msg ∧ b_ec = r_ec

Table 1: Bisimulation for the running example.

• We must take care of variable name conflicts: in our example, the variables
of the 2 systems already have different names, but the action parameters
occurring in the transitions (m, msg, ec) are the same, that is not correct.
In the tools, this is managed by the static semantic layer; in the example,
we rename the only conflicting variablesm intom1 for SimpleProtocolSpec,
and m2 for SimpleProtocolImpl.

Now consider the relation R defined by the triples in Table 1.
Checking thatR is a weak FH-bisimulation means checking, for each of these

triples, that each (strong) OT of one of the states corresponds to a set of WOTs
of the other, using the conditions from Definition 14. We give here one example:
consider the second triple from the table, and transition SS3 from state b0. Its
easy to guess that it will correspond to WI3(0) of state 202 (and equivalently
state 000, see Figure 9):

SS3 = ·································································································
{P 7→p-send(m1)}, T rue, (b_msg← m1, b_ec← 0)

b0 in(m1)−−−−→ b1

WI3(0) = ·································································································
{P 7→p-send(m2)}, T rue, (s_msg← m2, s_ec← 0)

000 in(m2)====⇒ 100
Let us check formally the conditions:

• Their sets of active (non-silent) holes is the same: J ′ = Jx = {P}.

• Triple (b1, 100, b_msg = s_msg ∧ b_ec = s_ec) is in R.

• The verification condition

∀fvOT . {Pred ∧ PredOT =⇒
∨
x∈X

[
∃fvOTx .(

∀j ∈ Jx.(βj)∇=γjx∧PredOTx∧α=αx∧Preds′,tx{{PostOT ]PostOTx}}
) ]
}

gives us:
∀m1. {True ∧ True =⇒ ∃m2.
([p-send(m1)] = [p-send(m2)] ∧ True ∧ in(m1) = in(m2) ∧
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(b_msg = s_msg ∧ b_ec = s_ec){{(b_msg ← m1, b_ec ← 0) ] (s_msg ←
m2, s_ec←0)}})}

That is reduced to:
∀m1.∃m2. (p-send(m1) = p-send(m2)∧in(m1) = in(m2)∧m1 = m2∧0 = 0)

That is a tautology.

6. Related Works

To the best of our knowledge, there are not many research works on Weak
Bisimulation Equivalences between such complicate system models (open, sym-
bolic, data-aware, with loops and assignments). We give a brief overview of other
related publications, focussing first on Open and Compositional approaches,
then on Symbolic Bisimulation for data-sensitive systems.

Open and compositional systems
In [34, 33], the authors investigate several methodologies for the compo-

sitional verification of software systems, with the aim to verify reconfigurable
component systems. To improve scalability and compositionality, the authors
decompose the verification problem that is to be resolved by a SMT (satisfi-
ability modulo theory) solver into independent sub-problems on independent
sets of variables. These works clearly highlight the interest of incremental and
compositional verification in a very general setting. In our own work on open
pNets, adding more structure to the composition model, we show how to en-
force a compositional proof system that is more versatile than independent sets
of variables as the composition is structured and allows arbitrary synchroni-
sations between sub-entities. Our theory has also been encoded into an SMT
solver and it would be interesting to investigate how the examples of evolving
systems studied by Johnson et al. could be encoded into pNet and verified by
our framework. However, the models of Johnson et al. are quite different from
ours, in particular they are much less structured, and translating them is clearly
outside the scope of this article.

In previous work [19], we also have shown how (closed) pNet models could be
used to encode and verify finite instances of reconfigurable component systems.

Methodologies for reasoning about abstract semantics of open systems can be
found in [4, 5, 17], authors introduce behavioural equivalences for open systems
from various symbolic approaches. Working in the setting of process calculi,
some close relations exist with the work of the authors of [4, 5], where both
approaches are based on some kinds of labelled transition systems. The distin-
guishing feature of their approach is that the transitions systems are labelled
with logical formulae that provides an abstract characterization of the struc-
ture that a hole must possess and of the actions it can perform in order to
allow a transition to fire. Logical formulae are suitable formalisms that cap-
ture the general class of components that can act as the placeholders of the

36



system during its evolution. In our approach we purposely leave the algebra
of action terms undefined but the only operation we allow on action of holes is
the comparison with other actions. Defining properly the interaction between
a logical formulae in the action and the logics of the pNet composition seems
very difficult. mCRL2 [21] is another effective model for specifying and prov-
ing properties of concurrent systems. mCRL2 has an established tool-suite and
share similarities with pNets. However, pNets feature hierarchical composition
with more structure than mCRL2 that composes processes with a parallel op-
erator. Synchronisation of processes is expressed very differently; it is difficult
to precisely compare multi-actions of mCRL2 with synchronisation vectors of
pNets but synchronisation vector of pNets enforce a synchronisation based on
the structure while in mCRL2 synchronisation is specified in a versatile, flexible,
but less structured way.

In the same vein as context systems [36], pNets is a formalism for mod-
ular and possibly incomplete description of concurrent systems. The two for-
malisms are however different as the theory of contexts relies on a form of rewrite
rules, while pNets rely on parametric automata to express the system behaviour.
pNets have similar features as context systems [36] and static constructs [31].
Indeed all these approaches allow for modular and possibly incomplete descrip-
tion and structural composition of systems. The main originality of pNets com-
pared to these other compositional approaches is the parameterised nature of
the specification, which enables reasoning on value-passing systems but also on
rich synchronisations that depend on the value of parameters.

Decomposition techniques
Quotienting of process algebras [36] and decomposition techniques for

mCRL2 [37] share similarities with our approach; they propose to overcome the
state-space-explosion problem by decomposing formulas to be verified according
to the process composition. The decomposed problem must be equivalent to the
original one. However these techniques are expressed in a very different setting
from ours and it is difficult to precisely relate them to the more structural and
parameterised point of view we adopt here. We could try to apply such auto-
matic decomposition techniques to open pNets, but deriving a decomposition
for systems synchronised in a very parameterised way like we do requires further
investigations. Both parallel composition [36] and mCRL2 [37] feature a con-
crete verification setting where decomposition is useful, while open automata
provide a more general setting that could be used to represent both frameworks
and hopefully generalise process decomposition results of [36, 37].

Logical and semantics approaches
Among the approaches for modelling open systems, one can cite [7] that

uses transition conditions depending on an external environment, and introduce
bisimulation relations based on this approach. The approach of [7] is highly
based on logics and their bisimulation theory is richer than ours in this aspect,
while our theory is highly structural and focuses on relation between structure
and equivalence. Also, we see composition as a structural operation putting
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systems together, and do not focus on the modelling of an unknown outside
world. Overall we believe that the two approaches are complementary but
comparing precisely the two different bisimulation theories is not trivial.

There is also a clear relation with the seminal works on rule formats for
Structured Operational Semantics, e.g. De Simone format, GSOS, and condi-
tional rules with or without negative premises [15, 9, 23, 45]. The Open pNets
model provides a way to define operators similar to these rules formats, but
with quite different aim and approach. A formal comparison would be inter-
esting, though not trivial. What we can say easily is that: the pNet format
syntactically encompasses De Simone, GSOS, and conditional premises rules.
Then our compositionality result is more powerful than their classical results,
but this is not a surprise, as we rely on a (sufficient) syntactic hypothesis on a
particular system, rather than the general rules defining an operator. Last, we
intentionally do not accept negative premises, that would be more to put into
practice in our implementation. This extension could be studied in future work.

Symbolic and data-sensitive systems
As mentioned in the Introduction, we were substantially inspired by the

works of Lin et al. [32, 25, 38]. They developed the theory of symbolic transition
graphs (STG), and the associated symbolic (early and late, strong and weak)
bisimulations. Moreover, they studied STGs with assignments as a model for
message-passing processes. Our work extends those contributions in several
ways: first our models are compositional, and our bisimulations come with
effective conditions for being preserved by pNet composition (i.e. congruent),
even for the weak version. This result is more general than the bisimulation
congruences for value-passing CCS in [32]. Then our settings for management
of data types are much less restrictive, thanks to our use of satisfiability engines,
while Lin’s algorithms were limited to data-independent systems.

In a similar way, [1] presents a notion of ”data-aware” bisimulations on data
graphs, in which computation of such bisimulations is studied based on XPath
logical language extended with tests for data equality.

Research related to the keyword "Symbolic Bisimulation" refer to two very
different domains, namely BDD-like techniques for modelling and computing
finite-state bisimulations, that are not related to our topic; and symbolic se-
mantics for data-dependant or high-order systems, that are very close in spirit
to our approach. In this last area, we can mention Calder’s work [14], that
defines a symbolic semantic for full Lotos, with a symbolic bisimulation over it;
Borgstrom et al., Liu et al, Delaune et al. and Buscemi et al. providing sym-
bolic semantics and equivalence for different variants of pi calculus respectively
[11, 16, 39, 13]; and more recently Feng et al. provide a symbolic bisimulation
for quantum processes [18]. All the above works are based on models definitely
different from ours, and none of them allows system to be as much parameterised
as open pNets; this additional expressiveness is due to the open and symbolic
nature of our constructs.
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7. Conclusion and discussion

pNets (Parameterised Networks of Automata) is a formalism adapted to
the representation of the behaviour of parallel or distributed systems. One
strength of pNets is their parameterised nature, making them suitable for to
the representation of systems of arbitrary size, and making the modelling of
parameterised systems possible. Parameters are also crucial to reason about
interaction protocols that can address one entity inside an indexed set of pro-
cesses. pNets have been successfully used to represent behavioural specification
of parallel and distributed components and verify their correctness [2, 27]. VCE
is the specification and verification platform that uses pNets as an intermediate
representation. In this platform we have developed tool support for computing
the symbolic semantics in term of open automata; this is presented in [43, 44],
together with a case-study based on the on-board control software of satellites.
In [8] we present how to encode reactive systems from the BIP specification
language and check their temporal properties using VCE. In [29, 30] we de-
scribe our strong bisimulation algorithms, with illustration on the equivalence
of different encodings of operators.

Open pNets are pNets with holes; they are adapted to represent processes
parameterised by the behaviour of other processes, like composition operators
or interaction protocols that synchronise the actions of processes that can be
provided afterwards. Open pNets are hierarchical composition of automata with
holes and parameters. We defined here a semantics for open pNets and a com-
plete bisimulation theory for them. The semantics of open pNets relies on the
definition of open automata that are automata with holes and parameters, but
no hierarchy. Open automata are a flattened view of the pNet; their behaviour
is expressed as open transitions that allow for a more semantic interpretation
of process parameters (holes) than pNets. In the end, open automata are la-
belled transition systems with parameters and holes, a notion that is useful to
define semantics, but makes less sense for the high level modelling of a system,
compared to pNets. Open automata is the formalism that makes it possible to
define FH-bisimilarity.

This article defines a strong and a weak bisimulation relation that
are adapted to parameterised systems and hierarchical composition. FH-
bisimulation handles pNet parameters in the sense that two states might be
or not in relation depending on the value of parameters. Strong FH-bisimilarity
is compositional in the sense that it is maintained when composing processes.
We also identified a simple and realistic condition on the semantics of non-
observable actions that allows weak FH-bisimilarity to be also compositional.
Overall we believe that this article paved the way for a solid theoretical foun-
dation for compositional verification of parallel and distributed systems.

The pNets formalism supports the refinement checking at the automaton
level through a simulation, with symbolic evaluation of guards and transitions.
The definition of simulation on open automata should be stronger than a clas-
sical simulation since it matches a transition with a family of transitions. Such
a relation should be able to check the refinement by taking into account state
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duplication, transition removal, guard strengthening, variable modification. Ad-
ditionally, composition of pNets gives the possibility to either add new holes to
a system or fill holes. A useful simulation relation should thus support the com-
parison of automata that do not have the same number of holes. Designing such
a simulation relation is a non-trivial extension that we leave for future work.

We are currently looking at further properties of FH-bisimulation, but also
the relations with existing equivalences on both closed and open systems. In
particular, our model being significantly different from those considered in [32],
it would be interesting to compare our “FH” family of bisimulations with the
hierarchy of symbolic bisimulations from those authors. We also plan to apply
open pNets to the study of complex composition operators in a symbolic way,
for example in the area of parallel skeletons, or distributed algorithms.

Recently we published preliminary work on methods for checking weak FH-
bisimulation [46]. The challenges here, in the context of our symbolic systems,
are not so much algorithmic complexity, as was the case with classical weak
bisimulation on finite models, but decidability and termination. The naive
approach, using an explicit construction of the weak transition, may in itself
introduce non-termination, so we prefer a direct implementation of the weak
bisimulation definition, without constructing the weak automata beforehand,
but searching on demand to construct the required weak transitions. We illus-
trate this approach on a simple error-correcting transport protocol case-study.
Beside, we explore in [47] more pragmatic approaches using weak bisimulation
preserving (pattern-based) reduction rules.
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Appendix A. Proof on FH-bisimulation

Appendix A.1. Bisimilarity is an equivalence: Proof of Theorem 1

Suppose R is an FH-bisimilarity. Then R is an equivalence, that is, R is re-
flexive, symmetric and transitive.

Proof. It is trivial to check reflexivity and symmetry. Here we focus on the
transitivity. To prove transitivity of strong FH-bisimilarity on pNets it is suffi-
cient to prove transitivity of the strong FH-bisimilarity on states. Consider
3 open automata T1, T2, T3 and states s, t, u in those automata12. Sup-
pose we have R an FH-bisimulation relation between states of T1 and of T2;
members of R are of the form (s, t|Preds,t). Suppose we also have R′ an FH-
bisimulation relation between states of T2 and of T3; members of R′ are of the
form (t, u|Predt,u).

Let R′′ be the relation:

R′′ = {(s, u|Preds,u)
∣∣∣Preds,u =

∨
(s, t|Preds,t) ∈ R
(t, u|Predt,u) ∈ R′

Preds,t ∧ Predt,u}

This relation is the adaptation of the transitivity to the conditional relation-
ship that defines a bisimulation. Indeed the global disjunction together with the
conjunction of predicates plays exactly the role of the intermediate element in a
transitivity rule: “there exists an intermediate state” corresponds to the global
disjunction, and the conjunction of states expresses the intermediate predicate
is used to ensure satisfiability of the predicate relating the first state to the last
one.

The relation is built as follows: for each pair of states s, u, for each state
t such that R relates s and t, and R′ relates t and u, we take the conjunction
of the two predicates. The predicates for different values of t are collected by a
disjunction.

We will show that R′′ is an FH-bisimulation. Consider (s, u|Preds,u) ∈ R′′.
Then there is a set of states of T2 relating s and u, let (tp)p∈P be this family.
We have Preds,u =

∨
p∈P

Preds,p ∧ Predp,u.

For any p ∈ P by definition of R′′, (s, tp|Preds,p) ∈ R, and (tp, u|Pred ′p,u) ∈
R′. We have the following by definition of bisimulation: For any open transition
OT in T1 originating from s.

·············································βj∈J1
j ,PredOT ,PostOT

s
α−→ s′

12We omit the constraints stating that each sx, tx, ux is in the states of T1, T2, T3 for the
sake of readability.
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There exists an indexed set of open transitions OT x∈Xpx ⊆ T2:

·····················································
β
j∈Jpx
jpx ,PredOTpx ,PostOTpx

tp
αpx−−→ tpx

(∗)

such that ∀x, J1 = Jpx, (s′, tpx|Predpx) ∈ R; and

Preds,p ∧ PredOT
=⇒

∨
x∈X

(
∀j.βj = βjpx ∧PredOTpx ∧α=αpx ∧Predpx{{PostOT ]PostOTpx}}

)
For any open transition OTpx, since (tp, u|Pred ′p,u) ∈ R′ there exists an

indexed set of open transitions OT y∈Ypxy ⊆ T3:

··························································
β
j∈Jpxy
jpxy ,PredOTpxy ,PostOTpxy

u
αpxy−−−→upxy

(∗∗)

such that ∀y, Jpx = Jpxy, (tpx, upxy|Predpxy) ∈ R′; and

Pred ′p,u ∧ PredOTpx =⇒∨
y∈Y

(
∀j.βjpx=βjpxy ∧PredOTpxy∧αpx=αpxy∧Predpxy{{PostOTpx]PostOTpxy}}

)
This is verified for each p ∈ P .

Overall, we have a family of open transitions OT p∈P,x∈X,y∈Ypxy ⊆ T3 that should
simulate OT .

First, we have ∀y,∀x, ∀p, J1 = Jpx = Jpxy, (s′, upxy|Pred ′pxy) ∈ R′′ for
some Pred ′pxy. Indeed for any p, x, and y, tpx relates s′ and upxy, we have
(s′, tpx|Predpx) ∈ R and (tpx, upxy|Predpxy) ∈ R′. More precisely, tpx ∈ (t′p)p∈P

′

where (t′p)p∈P
′ and P ′ ⊆ P is the set of states relating s′ and upxy (the states

used in the open transition must belong to the set of states ensuring the transi-
tive relation). Additionally, for all p, x, y, Predpx ∧ Predpxy =⇒ Pred ′pxy (this
is one element of the disjunction defining the predicate Pred ′pxy relating s′ and
upxy in the definition of R′′).

One can notice that, as bisimulation predicates are used to relate states that
belong to two different open automata, the free variables of these predicates
that do not belong to the two related automata can safely be renamed to avoid
any name clash. In practice, we can suppose that Pred ′pxy does not contain the
variables of T2 because it is used to relate states of T1 and T3 . Indeed if Pred ′pxy
uses variables of T2, we can consider instead another predicate that is equivalent
to Pred ′pxy and does not contain the variables of T2 (this is safe according to
the semantic interpretation of open automata and relations). Similarly, we can
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suppose that Predpx contains no variable in T3, and Predpxy contains no variable
in T1.

Second, by definition of bisimulation we need (recall that Preds,u is the
original predicate relating s and u by definition of the transitive closure):
Preds,u ∧ PredOT =⇒∨
x∈X

∨
y∈Y

∨
p∈P

(
∀j.βj = βjpxy ∧ PredOTpxy ∧ α=αpxy ∧ Pred ′pxy{{PostOT ] PostOTpxy}}

)
.

From (*) and (**) we have:
for all p, Preds,p ∧ PredOT ∧ Predp,u
=⇒

∨
x∈X

(
∀j.βj = βjpx ∧ PredOTpx ∧ α=αpx ∧ Predpx{{PostOT ] PostOTpx}}

)
∧ Predp,u

=⇒
∨
x∈X

(
∀j.βj = βjpx∧ (PredOTpx ∧Predp,u)∧α=αpx∧Predpx{{PostOT ]PostOTpx}}

)
=⇒

∨
x∈X

(
∀j.βj = βjpx ∧

∨
y∈Y

(
∀j′.βj′px = βj′pxy ∧ PredOTpxy ∧ αpx=αpxy

∧ Predpxy{{PostOTpx ] PostOTpxy}}
)
∧ α=αpx ∧ Predpx{{PostOT ] PostOTpx}}

)
=⇒

∨
x∈X

∨
y∈Y

(
∀j, j′.βj = βjpx ∧ βj′px = βj′pxy ∧

(
PredOTpxy ∧ α= αpx=αpxy

∧ Predpxy{{PostOTpx ] PostOTpxy}} ∧ Predpx{{PostOT ] PostOTpx}}
))

By construction, four substitution functions {{ }} only have an effect on
the variables of the open automaton they belong to, they also produce terms
containing only variables of the open automaton they belong to. Finally,
because of the domain of the substitution functions of the predicates, we have:
Predpx{{PostOT ] PostOTpx}} ∧ Predpxy{{PostOTpx ] PostOTpxy}} ⇔
Predpx{{PostOT ] PostOTpx ] PostOTpxy}} ∧ Predpxy{{PostOT ] PostOTpx ]
PostOTpxy}}
=⇒ Pred ′pxy{{PostOT ] PostOTpx ] PostOTpxy}} ⇔
Pred ′pxy{{PostOT ] PostOTpxy}}

This allows us to conclude, with Preds,u =
∨
p∈P Preds,p ∧ Predp,u:

Preds,u ∧ PredOT
=⇒

∨
p∈P

(Preds,p ∧ Predp,u ∧ PredOT )

=⇒
∨
p∈P

∨
x∈X

∨
y∈Y

(
∀j, j′.βj = βjpx ∧ βj′px = βj′pxy ∧ PredOTpxy

∧ α=αpx=αpxy ∧ Pred ′pxy{{PostOT ] PostOTpxy}}
)

=⇒
∨
x∈X

∨
y∈Y

∨
p∈P

(
∀j.βj=βjpxy∧PredOTpxy∧α=αpxy∧Pred ′pxy{{PostOT ]PostOTpxy}}

)
Concerning the other direction of bisimulation, it is sufficient to notice that

the role of s and u in the definition of R′′ is symmetrical, and thus the proof is
similar. �
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Appendix A.2. Composition Lemmas
The proofs of the composition theorems for FH-bisimilarity rely on two main

lemmas, dealing respectively with the decomposition of a composed behaviour
between the context and the internal pNet, and with their recomposition.

Lemma 1: Open transition decomposition

Consider two pNets P and Q that are not pLTSs13. Let Leaves(Q) = p
l∈LQ
l ;

suppose:

P [Q]j0 |= ·······································
βj∈Jj ,Pred,Post

/si∈Li .
α−→ / s′ i∈Li .

with J ∩ Holes(Q) 6= ∅ or ∃i ∈ LQ. si 6= s′i, i.e. Q takes part in the reduction.
Then, there exist αQ, Pred ′, Pred ′′, Post ′, Post ′′ s.t.:

P |= ································································
β
j∈(J\Holes(Q))∪{j0}
j ,Pred ′,Post ′

/s
i∈L\LQ
i .

α−→ / s
′ i∈L\LQ
i .

and Q |= ·······················································
β
j∈J∩Holes(Q)
j ,Pred ′′,Post ′′

/s
i∈LQ
i .

αQ−−→ / s
′ i∈LQ
i .

and Pred ⇐⇒ Pred ′ ∧ Pred ′′ ∧ αQ = βj0 , Post = Post ′ ] Post ′′ where Post ′′
is the restriction of Post over variables vars(Q).

Preliminary note: The introduction of fresh variables introduce alpha-
conversion at many points of the proof; we only give major arguments concerning
alpha-conversion to make the proof readable; in general, fresh variables appear
in each transition inside terms βj , v, and Pred.

Proof. Consider rule Tr2 in Definition 9, applied to the pNet P [Q]j0 .

Leaves(〈〈Pm∈Im ,Sort,SVk∈K
k 〉〉)=pLTSl∈Ll k∈K SVk=(α′m)m∈I1]I2]J → α′[eb]

∀m∈I1.Pm |= ·····················································
βj∈Jmj ,Predm,Postm

/si∈Lmi .
αm−−→ / (s′i)i∈Lm.

∀m∈I2.Pm |= ···································
∅,Predm,Postm

/sm .
αm−−→ / s′m.

J ′ =
⊎
m∈I1

Jm ] J Pred =
∧

m∈I1]I2

Predm ∧ Predsv(SVk, αm∈I1]I2
m , βj∈Jj , α)

∀i ∈ L\

( ⊎
m∈I1

Lm ] I2

)
. s′i = si fresh(α′m, α′, βj , α)

〈〈Pm∈Im ,Sort,SVk∈K
k 〉〉 |= ······················································

βj
j∈J′ ,Pred,

⊎
m∈I1]I2

Postm

/si∈Li .
α−→ / (s′i)i∈L.

Tr2

13A similar lemma can be proven for a pLTS Q.

48



We know each premise is True for P [Q]j0 . j0 ∈ I1 because Q is not a pLTS.
We try to prove the equivalent premise for P .

First, K and the synchronisation vector SVk are unchanged (however j0
passes from the set of sub-pNets to the set of holes). We have Leaves(P [Q]j0) =
Leaves(P ) ] Leaves(Q).

Now focus on the OTs of the sub-pNets. For each m ∈ I1 ] I2 we have one
of the two following OT:
either m in I1

Pm |= ····················································
βj∈Jmj ,Predm,Postm

/si∈Lmi .
αm−−→ / (s′i)i∈Lm.

or, m in I2

Pm |= ···································
∅,Predm,Postm
/sm .

αm−−→ / s′m.

Only elements of (I1]I2)\{j0} are useful to assert the premise for reduction
of P ; the last one ensures the open transition for the pNet Q (note that Q is
at place j0, and by definition of the open transition for P [Q]j0 , Lj0 = LQ, and
Jj0 = J ∩Holes(Q)):

Q |= ·······················································
β
j∈J∩Holes(Q)
j ,Predj0 ,Post ′′

/s
i∈LQ
i .

αj0−−→ / (s′i) i∈LQ.

This already ensures the second part of the conclusion of the lemma, i.e. the
OT for Q if we choose αQ = αj0 and Pred ′′ = Predj0 . Considering the OT of P
we have another J ′ that is J ′p = J ′ \ Holes(Q) ] {j0}; we denote I ′1 = I1 \ {j0}
the predicate is Pred ′ =

∧
m∈I′1]I2

Predm ∧ Predsv(SVk, α
m∈I′1]I2
m , β

j∈J∪{j0}
j , α)

where

Predsv(SVk, α
m∈I′1]I2
m , β

j∈J∪{j0}
j , α)⇔

∀i ∈ I ′1 ] I2. αi = α′i ∧ ∀j ∈ J ∪ {j0}. βj = α′j ∧ α = α′ ∧ eb

Modulo renaming of fresh variables, this is identical to the predicate that
occurs in the source open transition except αj0 = α′j0

has been replaced by
βj0 = α′j0

. As αj0 = αQ and βj0 is free, we have βj0 = α′j0
∧ βj0 = αQ ⇐⇒

αj0 = α′j0
. Thus, Pred ⇐⇒ (Pred ′ ∧ Pred ′′) ∧ αQ = βj0 . Finally, Post into

conditions of the context P and the pNet Q (they are built similarly as they
only deal with leaves): Post = Post ′ ] Post ′′. This concludes the proof as we
checked all the premises of the open transition for both P and Q. We obtain
the following reduction by the rule Tr2:
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Leaves(〈〈Pm∈I\{j0}
m ,Sort,SVk∈K

k 〉〉)=pLTSl∈Ll k∈K SVk=(α′m)m∈I1]I2]J → α′[eb]

∀m∈I1 \ {j0}.Pm |= ·····················································
βj∈Jmj ,Predm,Postm

/si∈Lmi .
αm−−→ / (s′i)i∈Lm.

∀m∈I2.Pm |= ···································
∅,Predm,Postm

/sm .
αm−−→ / s′m.

J ′ =
⊎

m∈I1\{j0}

Jm ] J

Pred ′ =
∧

m∈I1]I2\{j0}

Predm ∧ Predsv(SVk, αm∈I1]I2\{j0}
m , β

j∈J∪{j0}
j , α)

∀i ∈ L\

 ⊎
m∈I1\{j0}

Lm ] I2

 . s′i = si fresh(α′m, α′, βj , α)

〈〈Pm∈I\{j0}
m ,Sort,SVk∈K

k 〉〉 |= ··························································································

βj
j∈J\Holes(Q)]{j0},Pred ′,

⊎
m∈I1\{j0}]I2

Postm

/s
i∈L\LQ
i .

α−→ / (s′i)i∈L\LQ.
�

In general, the actions that can be emitted by Q is a subset of the possible
actions of the holes, and the predicate involving vQ and the synchronisation
vector is more restrictive than the one involving only the variable βj0 . This has
no impact on the previous proof and this restriction results from the composition
of predicates.

Lemma 2: Open transition composition

Consider two pNets P and Q where P is not a pLTS. Suppose j0 ∈ J and:

P |= ·······································
βj∈Jj ,Pred,Post

/si∈Li .
α−→ / s′ i∈Li .

and Q |=

···············································
β
j∈JQ
j ,Pred ′,Post ′

/s
i∈LQ
i .

αQ−−→ / s
′ i∈LQ
i .

Then, we have:

P [Q]j0 |= ··········································································································
β

(j∈J\{j0})]JQ
j ,Pred ∧ Pred ′ ∧ αQ = βj0 ,Post ] Post ′

/s
i∈L]LQ
i .

α−→ / s
′ i∈L]LQ
i .

Note that this does not mean that any two pNets can be composed and
produce an open transition. Indeed, the predicate Pred ∧ Pred ′ ∧ αQ = βj0 will
not be satisfiable if the action of αQ cannot be matched with βj0 . Note also
that βj0 is now only used as an intermediate term inside formulas: it does not
appear neither as global action nor as an action of a hole.
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Proof. Let P = 〈〈Pm∈Im ,Sort,SVk∈Kk 〉〉. Consider first the open transition
derived from P . Consider each premise of the open transition (constructed by
Tr2 rule in Definition 9).

Leaves(〈〈Pm∈Im ,Sort,SVk∈K
k 〉〉)=pLTSl∈Ll k∈K SVk=(α′m)m∈I1]I2]J → α′[eb]

∀m∈I1.Pm |= ·····················································
βj∈Jmj ,Predm,Postm

/si∈Lmi .
αm−−→ / (s′i)i∈Lm.

∀m∈I2.Pm |= ···································
∅,Predm,Postm

/sm .
αm−−→ / s′m.

J ′ =
⊎
m∈I1

Jm ] J Pred =
∧

m∈I1]I2

Predm ∧ Predsv(SVk, αm∈I1]I2
m , βj∈Jj , α)

∀i ∈ L\

( ⊎
m∈I1

Lm ] I2

)
. s′i = si fresh(α′m, α′, βj , α)

〈〈Pm∈Im ,Sort,SVk∈K
k 〉〉 |= ······················································

βj
j∈J′ ,Pred,

⊎
m∈I1]I2

Postm

/si∈Li .
α−→ / (s′i)i∈L.

Tr2

We know each premise is True for P and try to prove the equivalent premise
for P [Q]j0 (using the open transition of Q). P [Q]j0 exhibits a similar Tr2 rule
where K and the synchronisation vector are unchanged (j0 is now in the set
of sub-pNets); SVk = (α′j)j∈I]{j0}]J → α′[eb]. Leaves(P [Q]j0) = Leaves(P ) ]
Leaves(Q). I and J are the set of leaves and holes of P , I1 ] I2 and J ′ are the
sets of moving leaves and holes in the reduction of P . All sub-pNets of must be
reduced, we need:

∀m∈I1 ] {j0}.Pm |= ····················································
βj∈Jmj ,Predm,Postm

/si∈Lmi .
αm−−→ / (s′i)i∈Lm.

∀m∈I2.Pm |= ···································
∅,Predm,Postm
/sm .

αm−−→ / s′m.

the sub-pNet at position j0 is the one filled byQ (we define Pj0 = Q and similarly
Jm = JQ, Predm = Pred ′, Postm = Post ′,. . . are the elements of the OT of Q)
which offers an open transition by hypothesis, the other open transitions are
immediate consequence of the open transition that can be performed by P
(premises of Tr2). The set of moving leaves is the union of the moving leaves
in the open transition for P and the ones for Q; similarly the moving holes are
the union of the moving holes, minus j0: J ′PQ = J \ {j0} ] JQ. The predicate
for the open transition is:
Pred ′′ =

∧
m∈I1]I2

Predm ∧ Pred ′ ∧ Pred(SVk, vi∈I1]I2
i ] (j0 7→vQ), βj∈Jj , α).

By definition we have:
Pred(SVk, αi∈Ii ] (j0 7→αQ), βj∈Jj , v) ⇔ ∀i ∈ I. αi = α′i ∧ ∀j ∈ J. βj = α′j ∧ α =
α′ ∧ αQ = αj0 ∧ eb, this is equivalent to ∀i ∈ I. αi = α′i ∧ ∀j ∈ J. βj = α′j ∧ α =
α′∧αQ = βj0 ∧βj0 = αj0 ∧eb and by definition of Pred (as obtained by applying
Tr2 rule), Pred ′′ ⇐⇒ Pred ∧ Pred ′ ∧ αQ = βj0 . The post-condition gathers
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the post-conditions related to all the leaves:
⊎

m∈I1∪{j0}]I2

Postm = Post ] Post ′.

Finally, the composed open transition can be built by Tr2 rule as follows:

Leaves(〈〈Pm∈I∪{j0}
m ,Sort,SVk∈K

k 〉〉)=pLTSl∈Ll k∈K SVk=(α′m)m∈I1]I2]J → α′[eb]

∀m∈I1 ∪ {j0}.Pm |= ·····················································
βj∈Jmj ,Predm,Postm

/si∈Lmi .
αm−−→ / (s′i)i∈Lm.

∀m∈I2.Pm |= ···································
∅,Predm,Postm

/sm .
αm−−→ / s′m.

J ′PQ = J \ {j0} ] JQ

Pred ′′ =
∧

m∈I1]I2

Predm ∧ Pred ′ ∧ Pred(SVk, vi∈I1]I2
i ] (j0 7→vQ), βj∈Jj , α)

∀i ∈ L\

 ⊎
m∈I1∪{j0}

Lm ] I2

 . s′i = si fresh(α′m, α′, βj , α)

〈〈Pm∈Im ,Sort,SVk∈K
k 〉〉 |= ···························································

βj
j∈J′PQ ,Pred ′′,Post ] Post ′

/s
i∈L]LQ
i .

α−→ / (s′i)i∈L]LQ.

This provides the desired conclusion. �

Note that we also have the following lemma (trivial):

Lemma 3 (Open transition composition – inactive).
This lemma is the simple case where the pNet filling the hole is not involved in
the transition. Suppose j0 6∈ J and LQ = Leaves(Q):

P |= ······································
βj∈Jj ,Pred,Post

/si∈Li .
α−→ / s′ i∈Li .

Then, for any state /si∈LQi . of Q, we have:

P [Q]j0 |= ······································································
βj∈Jj ,Pred,Post

/si∈Li ] si∈LQi .
α−→ / s′ i∈Li ] si∈LQi .

The proof is trivial.

Appendix A.3. Proof of Theorem 3

Congruence: Consider an open pNet: P = 〈〈P i∈Ii ,Sortj∈Jj ,SV〉〉. Let j0 ∈
J be a hole. Let Q and Q′ be two FH-bisimilar pNets such that Sort(Q) =
Sort(Q′) ⊆ Sortj0

14. Then P [Q]j0 and P [Q′]j0 are FH-bisimilar.

14Note that Sort(Q) = Sort(Q′) is ensured by strong bisimilarity.
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Proof. The proof of Theorem 3 exhibits classically a bisimulation relation for
a composed system. It considers then an open transition of P [Q]j0 that should
be simulated. It then uses Lemma 1 to decompose the open transition of P [Q]j0

and obtain an open transition of P and Q; the FH-bisimulation property can be
applied to Q to obtain an equivalent family of open transitions of Q′; this family
is then recomposed by Lemma 2 to build a set of open transitions of P [Q′]j0

that will simulate the original one.
Let Leaves(Q) = pl∈Ll , Leaves(Q′) = p′

l∈L′
l , Leaves(P ) = pl∈LPl . Consider

Q FH-bisimilar to Q′. It means that there is a relation R that is an FH-
bisimulation between the open automata of the two pNets. We will consider the
relationR′ = {(s, t|Preds,t)|s = s′]s′′∧t = t′]s′′∧s′′ ∈ SP∧(s′, t′|Preds,t) ∈ R}
where SP is the set of states of the open automaton of P . We will prove
that R′ is an open FH-bisimulation. Consider a pair of FH-bisimilar states:
(/si∈LP]Li ., /ti∈L

′

i ] si∈LPi . |Preds,t) ∈ R′. Consider an open transition OT of
P [Q]j0 .

P [Q]j0 |= ························································
βj∈Jj ,PredOT ,PostOT

/si∈LP]Li .
α−→ / s′

i∈LP]L
i .

Let J ′ = J \Holes(Q) ∪ {j0}. By Lemma 1 we have:

P |= ·············································
βj∈J

′

j ,Pred ′,Post ′

/si∈LPi .
α−→ / s′ i∈LPi .

Q |= ·······················································
β
j∈J∩Holes(Q)
j ,Pred ′′,Post ′′

/si∈Li .
αQ−−→ / s′ i∈Li .

and PredOT ⇐⇒ Pred ′ ∧ Pred ′′ ∧ αQ = βj0 , PostOT = Post ′ ] Post ′′ (Post ′′
is the restriction of Post over vars(Q)). As Q is FH-bisimilar to Q′ and
(/si∈Li ., /ti∈L

′

i . |Preds,t) ∈ R there is a family OT ′x of open transitions of the
automaton of Q′ such that

Q′ |= ·······························································
β
j∈J∩Holes(Q)
jx ,PredOTx ,PostOTx

/ti∈L
′

i .
αx−−→ / ti∈L

′

ix .

and ∀x, (/si∈Li ., /ti∈L
′

ix . |Predsx) ∈ R; and
Preds,t ∧ Pred ′′ =⇒∨
x∈X

(
∀j ∈ J ∩Holes(Q).βj=βjx∧PredOTx ∧ αQ=αx ∧ Preds,x{{Post ′′ ] PostOTx}}

)
We can now apply Lemma 2 on each of the OT ′x together with the transition

of P and obtain a new family OTx of open transitions (where for i ∈ LP , ti = si
and tix = s′i, and for j ∈ Holes(P ), βjx = βj):

P [Q′]j0 |= ·······································································································
βj∈Jjx ,Pred ′ ∧ PredOTx ∧ αx = βj0x,Post ′ ] PostOTx

/t
i∈L′]LQ
i .

αx−−→ / t
i∈L′]LQ
ix .

Observe that we used the fact that J = (J \ Holes(Q) ∪ {j0}) \ {j0} ∪
(J ∩ Holes(Q)). Now we have to verify the conditions for the FH-bisimulation

53



between OT and OTx. ∀x, (/s′ i∈LP]Li ., /ti∈LP]L
′

ix .|Preds,x) ∈ R′ (by definition
of R′) and in three steps we get:
Preds,t ∧ PredOT =⇒ Preds,t ∧ Pred ′ ∧ Pred ′′ ∧ αQ = βj0

=⇒
∨
x∈X

(
∀j ∈ J ∩Holes(Q).βj = βjx ∧ PredOTx ∧ αQ=αx ∧ Preds,x{{Post ′′ ] PostOTx}}

)
∧

Pred ′ ∧ αQ = βj0

=⇒
∨
x∈X

(
∀j ∈ J ∩Holes(Q).βj = βjx ∧ Pred ′ ∧ PredOTx ∧ αQ=αx ∧ αQ=βj0x ∧

Preds,x{{Post ′′ ] PostOTx}}
)

Note that, βj0 can be transformed into βj0x because of the implication hy-
pothesis. The obtained formula reaches the goal except for two points:

• We need ∀j ∈ J instead of ∀j ∈ J ∩ Holes(Q) but adding prerequisite on
more variables does not change the validity of the formula (those variables
are not used).

• Concerning the last term, we need Predsx{{PostOT ] (Post ′ ] PostOTx)}},
i.e. Preds,x{{(Post ′ ] Post ′′) ] (Post ′ ] PostOTx)}}. We can conclude by
observing that Preds,x does not use any variable of P and thus the sub-
stitution {{Post ′}} has no effect on it.

Finally:
Preds,t ∧ PredOT =⇒∨
x∈X

(
∀j ∈ J.βj = βjx∧

(
Pred ′ ∧PredOTx ∧ αQ=βj0x

)
∧αQ=αx ∧Preds,x{{Post ′′]PostOTx}}

)
This proves the condition of the FH-simulation, the other direction is similar.
�

Appendix A.4. Proof of Theorem 4: Context equivalence
Consider two FH-bisimilar open pNets: P = 〈〈P i∈Ii ,Sortj∈Jj ,SV〉〉 and P ′ =

〈〈P ′i∈Ii ,Sortj∈Jj ,SV’〉〉 (recall they must have the same holes to be bisimilar). Let
j0 ∈ J be a hole, and Q be a pNet such that Sort(Q) ⊆ Sortj0 . Then P [Q]j0

and P ′[Q]j0 are FH-bisimilar.

Proof. The proof of Theorem 4 exhibits a bisimulation relation for a composed
system. It then uses Lemma 1 to decompose the open transition of P [Q]j0 and
obtain an open transition of P on which the FH-bisimulation property can be
applied to obtain an equivalent family of open transitions of P ′; this family is
then recomposed by Lemma 2 to build a set of open transitions of P ′[Q]j0 that
will simulate the original one.

Let Leaves(Q) = p
l∈LQ
l , Leaves(P ) = pl∈Ll , Leaves(P ′) = p′

l∈L′
l . Consider

P FH-bisimilar to P ′. It means that there is a relation R that is an FH-
bisimulation between the open automata of the two pNets. We will consider the
relation R′ = {(s, t|Preds,t)|s = s′]s′′∧t = t′]s′′∧s ∈ SQ∧(s′, t′|Preds,t) ∈ R}
where SQ is the set of states of the open automaton of Q. We will prove
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that R′ is an open FH-bisimulation. Consider a pair of FH-bisimilar states:
(/si∈L]LQ1i ., /si∈L

′

2i ] si∈LQ1i . |Pred) ∈ R′. Consider an open transition OT of
P [Q]j0 .

P [Q]j0 |= ························································
βj∈Jj ,PredOT ,PostOT

/s
i∈L]LQ
i .

α−→ / s′
i∈L]LQ
i .

Let J ′ = J \Holes(Q) ∪ {j0}. By Lemma 1 we have:

P |= ········································
βj∈J

′

j ,Pred ′,Post ′

/si∈L1 .
α−→ / s′ i∈Li .

Q |= ·······················································
β
j∈J∩Holes(Q)
j ,Pred ′′,Post ′′

/s
i∈LQ
i .

αQ−−→ / s
′ i∈LQ
i .

and PredOT ⇐⇒ Pred ′ ∧ Pred ′′ ∧ αQ = βj0 , PostOT = Post ′ ] Post ′′ (Post ′′
is the restriction of Post over vars(Q)). As P is FH-bisimilar to P ′ and
(/si∈Li ., /ti∈L

′

i . |Preds,t) ∈ R there is a family OT ′x of open transitions of the
automaton of P ′ such that

P ′ |= ················································
βj∈J

′

jx ,PredOTx ,PostOTx
/ti∈L

′

i .
αx−−→ / ti∈L

′

ix .

and ∀x, (/si∈Li ., /ti∈L
′

ix . |Predsx) ∈ R; and
Preds,t ∧ Pred ′ =⇒

∨
x∈X

(
∀j ∈ J ′.βj = βjx∧PredOTx∧α=αx∧Preds,x{{Post ′ ] PostOTx}}

)
We can now apply Lemma 2 on each of the OT ′x together with the transition

of Q and obtain a new family OTx of open transitions (where for i ∈ LQ, ti = si
and tix = s′i, and for j ∈ Holes(Q), bjx = bj):

P ′[Q]j0 |= ··········································································································
βj∈Jjx ,PredOTx ∧ Pred ′′ ∧ αQ = βj0x,PostOTx ] Post ′′

/t
i∈L′]LQ
i .

αx−−→ / t
i∈L′]LQ
ix .

Observe that J = (J \ Holes(Q) ∪ {j0}) \ {j0} ∪ (J ∩ Holes(Q)). Now we
have to verify the conditions for the FH-bisimulation between OT and OTx.
∀x, (/s′ i∈L]LQi ., /t

i∈L′]LQ
ix . |Preds,x) ∈ R′ (by definition of R′) and in four

steps we get:
Preds,t ∧ PredOT =⇒ Preds,t ∧ Pred ′ ∧ Pred ′′ ∧ αQ = βj0

=⇒
∨
x∈X

(
∀j∈J ′.βj =βjx∧PredOTx∧αQ=βj0 ∧α=αx ∧ Preds,x{{Post ′ ]

PostOTx}}) ∧ Pred ′′
)

=⇒
∨
x∈X

(∀j∈J ′.βj =βjx ∧
(
PredOTx∧Pred ′′∧ αQ=βj0x

)
∧ α=αx ∧

Preds,x{{Post ′ ] PostOTx}})
The obtained formula reaches the goal except for two points:

• We need ∀j ∈ J instead of ∀j ∈ J ′ with J ′ = J \Holes(Q) ∪ {j0} but the
formula under the quantifier does not depend on bj0 now (thanks to the
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substitution). Concerning Holes(Q), adding prerequisite on more variables
does not change the validity of the formula (those variables are not used).

• We need Preds,x{{PostOT ] (PostOTx ] Post ′′)}}, i.e., Preds,x{{(Post ′ ]
Post ′′)] (PostOTx ]Post ′′)}}. We can conclude by observing that Preds,x
does not use any variable of Q and thus the substitution involving Post ′′
has no effect.

This proves the condition of the FH-simulation, the other direction is similar.
�

Appendix B. Weak FH-bisimilarity lemmas and proofs

We define a quantified composition operator for effects, i.e. Post elements

of the open transitions. We use
1⊙
i=n

Posti to denote Postn � . . . � Post0. By

convention
1⊙
i=0

Posti is the identity.

Appendix B.1. Weak FH-bisimilarity is an equivalence
In this section, we first define two alternative definitions, one for weak open

transition, one for weak bisimulation. We use these two alternative definitions
to show that weak bisimulation is an equivalence, we will also re-use these
alternative definitions in the proofs of the theorems in next sections.

Lemma 4 (Alternative definition of weak open transitions). Let A =
〈〈J,S, s0, V1, T 〉〉 be an open automaton and 〈〈J,S, s0, V2,WT 〉〉 be the weak open
automaton derived from A. The two following statements are equivalent

1. Either α = τ ∧ γ = ∅ ∧ Pred = True ∧ Post = Id(s) ∧ s = s′; or
there exist β1i, β2i, and β3i, Pred1i, Pred3i, Post1i, and Pred2, Post2,
n ≥ 0, m ≥ 0 s.t.15:

∀i ∈ [1..n].··································
β1i,Pred1i,Post1i
s1i

τ−→ s1(i+1)
∈ T ∧ ······························β2,Pred2,Post2

s2
α−→ s′2

∈ T ∧

∀i ∈ [1..m].··································
β3i,Pred3i,Post3i
s3i

τ−→ s3(i+1)
∈ T

15n = 0 (resp. m = 0) corresponds to the case where there is no τ transition before (resp.
after) the transition α.
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2. there exist γ, Pred, Post s.t.

························
γ,Pred,Post

s
α′=⇒ s′

∈ WT

where

α′ = α{{
1⊙

j=n
Post1j}}

s = s11 ∧ s1(n+1) = s2 ∧ s′2 = s31 ∧ s3(m+1) = s′

γ =
n⊕
i=1

(β1i{{
1⊙

j=i−1
Post1j}})∇ ⊕ (β2{{

1⊙
j=n

Post1j}})∇⊕

m⊕
i=0

(β3i{{
1⊙

j=i−1
Post3j�Post2�

1⊙
j=n

Post1j}})∇

Pred =
n∧
i=1

Pred1i{{
1⊙

j=i−1
Post1j}} ∧ Pred2{{

1⊙
j=n

Post1j}} ∧

( m∧
i=1

Pred3i{{
1⊙

j=i−1
Post3j�Post2�

1⊙
j=n

Post1j}}
)

Post =
1⊙

j=m
Post3j�Post2�

1⊙
j=n

Post1j

Proof. (⇒) We present an induction on n and m, focusing on the incremen-
tation on n: we prove that the property is valid for m = 0, n = 0 apply a first
induction proof for going from n to n+ 1, a similar induction can be applied to
go from m to m+ 1 (omitted).

• The base case there is one transition, so n = 0 and m = 0, we have:

·························β,Pred,Post
s
α−→ s′

∈ T

by rule WT2 we can directly conclude the implication:

·························β,Pred,Post
s
α−→ s′

∈ T ⇒ ·······························
(β)∇,Pred,Post

s
α=⇒ s′

∈ WT

• For the inductive step, first we have by induction hypothesis that the
formula holds for some lengths m and n. Induction step is to infer that
formula holds for transitions of length n + 1. We consider the case n′ =
n+ 1. We want to prove (1) ⇒ (2) in the lemma, and in (1) we focus on
the case where there is a set of open transitions (this is the case: s 6= s′).
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In other words, we consider the sequence of (n+m+ 2) open transitions:

(
∀i ∈ [1..n+ 1].···································

β1i,Pred1i,Post1i
s1i

τ−→ s1(i+1)
∈ T ∧ ·······························β2,Pred2,Post2

s2
α−→ s′2

∈ T ∧

∀i ∈ [1..m].···································
β3i,Pred3i,Post3i
s3i

τ−→ s3(i+1)
∈ T

)
By recurrence hypothesis we suppose that (1) ⇒ (2) holds for n and
m (compared to the line above, we remove the first τ transition). We have:

(
∀i ∈ [2..n+ 1].···································

β1i,Pred1i,Post1i
s1i

τ−→ s1(i+1)
∈ T ∧ ·······························

β2,Pred2,Post2
s2

α−→ s′2
∈ T ∧

∀i ∈ [1..m].···································
β3i,Pred3i,Post3i
s3i

τ−→ s3(i+1)
∈T
)
⇒·························
γ,Pred,Post

s′′
α′=⇒ s′

∈ WT

where

s′′ = s12 ∧ s1(n+2) = s2 ∧ s′2 = s31 ∧ s3(m+1) = s′

α′ =α{{
2⊙

j=n+1
Post1j}}

γ =
n+1⊕
i=2

(β1i{{
2⊙

j=i−1
Post1j}})∇ ⊕ (β2{{

2⊙
j=n+1

Post1j}})∇⊕

m⊕
i=1

(β3i{{
1⊙

j=i−1
Post3j�Post2�

1⊙
j=n

Post1j}})∇

Pred =
n+1∧
i=2

Pred1i{{
2⊙

j=i−1
Post1j}} ∧ Pred2{{

2⊙
j=n+1

Post1j}}∧

( m∧
i=1

Pred3i{{
1⊙

j=i−1
Post3j�Post2�

1⊙
j=n+1

Post1j}}
)

Post =
1⊙

j=m
Post3j�Post2�

2⊙
j=n+1

Post1j

We need to prove that by adding the following open transition the impli-
cation remains true:

····································β11,Pred11,Post11

s11
τ−→ s12

∈ T
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First by using rule WT2 we have:

····································β11,Pred11,Post11

s11
τ−→ s12

∈ T ⇒ ···········································
(β11)∇,Pred11,Post11

s11
τ=⇒ s12

∈ WT

On the other hand, by rule WT1 we have the following weak open tran-
sition:

···························∅,True, Id(s′)
s′

τ=⇒ s′
∈ WT

Finally by applying rule WT3 on the above weak open transitions:

·········································(β11)∇,Pred11,Post1
s11

τ=⇒ s12
∈WT

·························
γ,Pred,Post

s′′
α′=⇒ s′

∈WT ····························∅,True, Id(s′′)
s′

τ=⇒ s′
∈WT

γ′′ = (β11)∇ ⊕ γ{{Post1}} Pred ′′=Pred11 ∧ Pred{{Post11}}
Post ′′ = Id(s′′)�Post�Post11 α′′ = α′{{Post11}}

·································
γ′′,Pred ′′,Post ′′

s11
α′′=⇒ s′

∈WT
WT3

where we obtain the conclusion of the lemma, as required with the follow-
ing assertions (derived from previous assertions):

s11 = s11 ∧ s1(n+2) = s2 ∧ s′2 = s31 ∧ s3(m+1) = s′

α′′ =α{{
2⊙

j=n+1
Post1j}}{{Post11}} = α{{

1⊙
j=n+1

Post1j}}

γ′′ =
n+1⊕
i=1

(β1i{{
1⊙

j=i−1
Post1j}})∇ ⊕ (β2{{

1⊙
j=n+1

Post1j}})∇⊕

m⊕
i=1

(β3i{{
1⊙

j=i−1
Post3j�Post2�

1⊙
j=n

Post1j}})∇

Pred =
n+1∧
i=1

Pred1i{{
1⊙

j=i−1
Post1j}} ∧ Pred2{{

1⊙
j=n+1

Post1j}}∧

( m∧
i=1

Pred3i{{
1⊙

j=i−1
Post3j�Post2�

1⊙
j=n+1

Post1j}}
)

Post =
1⊙

j=m
Post3j�Post2�

1⊙
j=n+1

Post1j
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The right part of the disjunction, i.e.(
α = τ ∧ γ = ∅ ∧ Pred = True ∧ Post = Id(s) ∧ s = s′

)
is handled trivially by rule WT1.

(⇐) We proceed by structural induction on the rules building the weak transi-
tion (as described in the original definition). The recurrence hypothesis being
that the original definition implies the characterization (1), with the conditions
stated at the bottom of the theorem. We consider the different rules:

• Case rule WT1. We have:

··························∅,True, Id(s)
s
τ=⇒ s

∈ WT

We can directly conclude by the right part of the disjunction the following:

··························∅,True, Id(s)
s
τ=⇒ s

∈WT ⇒
(
α = τ∧γ = ∅∧Pred=True∧Post = Id(s)∧s=s′

)
• Case rule WT2. We have:

·························γ,Pred,Post
s
α=⇒ s′

∈ WT ⇒ ·························
β,Pred,Post

s
α−→ s′

∈ T

where γ = (β)∇.

These two cases above prove the implication with n = 0 and m = 0.

• Case rule WT3. We have:

·······························γ1,Pred1,Post1
s
τ=⇒ s′

∈ WT

·······························γ2,Pred2,Post2
s′

α=⇒ s′′
∈ WT ·······························γ3,Pred3,Post3

s′′
τ=⇒ s′′′

∈ WT

Pred = Pred1 ∧ Pred2{{Post1}} ∧ Pred3{{Post2�Post1}}
γ = γ1 ⊕ γ2{{Post1}} ⊕ γ3{{Post2�Post1}} α′ = α{{Post1}}

·························································
γ,Pred,Post3�Post2�Post1

s
α′=⇒ s′′′

∈ WT

1. By induction hypothesis this means each tau weak open transition
can be written as a series of n1 tau open transitions such n1 = n+m+
1, hence by simplification we have (strictly speaking, by induction we
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might also have the case α = τ ∧ γ = ∅ ∧ . . . but in this case, rule
WT1 allows us to obtain a similar reduction with n1 = 1):

·······························γ1,Pred1,Post1
s
τ=⇒ s′

∈WT ⇒ ∀i ∈ [1..n1].···································
β1i,Pred1i,Post1i
s1i

τ−→ s1(i+1)
∈ T

where

s = s11 ∧ s1(n1+1) = s′, γ1 =
n1⊕
i=1

(β1i{{
1⊙

j=i−1
Post1j}})∇

Pred1 =
n1∧
i=1

(Pred1i{{
1⊙

j=i−1
Postij}}), Post1 =

1⊙
i=n1

{{Post1i}}

2. Similarly, a series of m1 open transitions such that m1 = n+m+ 1
can be simplified as follows:

·······························γ3,Pred3,Post3
s′′

τ=⇒ s′′′
∈WT ⇒ ∀i ∈ [1..m1].···································

β3i,Pred3i,Post3i
s3i

τ−→ s3(i+1)
∈ T

where

s′′ = s31 ∧ s3(m1+1) = s′′′ ∧

γ3 =
m1⊕
i=1

(β3i{{
1⊙

j=i−1
Post3j}})∇ ∧

Pred3 =
m1∧
i=1

(Pred3i{{
1⊙

j=i−1
Post3j}}) ∧ Post3 =

1⊙
i=m1

{{Post3i}}

3. Concerning the middle reduction, by induction hypothesis there ex-
ists a set of open transitions in T such that:

·······························
γ2,Pred2,Post2

s′
α′=⇒ s′′

∈WT ⇒
(
∀i ∈ [1..n2].···································

β2i,Pred2i,Post2i
s2i

τ−→ s2(i+1)
∈ T ∧

·······························
β′,Pred ′,Post ′

s2
α′′−−→ s′2

∈ T ∧ ∀i ∈ [1..m2].···································
β′2i,Pred

′
2i,Post′2i

s′2i
τ−→ s′2(i+1)

∈ T
)
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where

s′ = s21 ∧ s2(n2+1) = s2 ∧ s′2 = s′21 ∧ s′2(m2+1) = s′′

α′′ =α′{{
1⊙

j=n2

Post2j}}

γ2 =
n2⊕
i=1

(β2i{{
1⊙

j=i−1
Post2j}})∇ ⊕ (β′{{

1⊙
j=n2

Post2j}})∇⊕

m2⊕
i=1

(β′2i{{
1⊙

j=i−1
Post ′2j�Post ′�

1⊙
j=n2

Post2j}})∇

Pred2 =
n2∧
i=1

Pred2i{{
1⊙

j=i−1
Post2j}} ∧ Pred ′{{

1⊙
j=n2

Post2j}}∧

( m2∧
i=1

Pred ′2i{{
1⊙

j=i−1
Post ′2j�Post ′�

1⊙
j=n2

Post2j}}
)

Post2 =
1⊙

j=m2

Post ′2j�Post ′�
1⊙

j=n2

Post2j

Therefore, we can deduce that we have:

························γ,Pred,Post
s
α=⇒ s′

∈ WT ⇒
(
∀i ∈ [1..(n1+n2)].···································

β4i,Pred4i,Post4i
s4i

τ−→ s4(i+1)
∈ T ∧

·······························
β′,Pred ′,Post ′

s2
α′′−−→ s′2

∈ T ∧ ∀i ∈ [1..(m1+m2)].···································
β5i,Pred5i,Post5i
s5i

τ−→ s5(i+1)
∈ T

)

such that

s4i =
{
s1i if i ≤ n1

s2i−n1 if i > n1
s5i =

{
s3i if i ≤ m1

s′2i−m1
if i > m1

and similarly for Pred4i, Pred5i, Post4i, and Post5i.
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Also, we have the following assertions:

s=s41 ∧ s4(n1+n2+1) = s2 ∧ s′2 = s51 ∧ s5(m1+m2+1) =s′

α′′ =α{{
1⊙

j=n1+n2

Post4j}}

γ =
n1+n2⊕
i=1

(β4i{{
1⊙

j=i−1
Post4j}})∇ ⊕ (β′{{

1⊙
j=n1+n2

Post4j}})∇⊕

m1+m2⊕
i=1

(β5i{{
1⊙

j=i−1
Post ′5i�Post ′�

1⊙
j=n1+n2

Post4i}})∇

Pred =
n1+n2∧
i=1

Pred4i{{
1⊙

j=i−1
Post4j}} ∧ Pred ′{{

1⊙
j=n1+n2

Post4j}}∧

m1+m2∧
i=1

Pred5i{{
1⊙

j=i−1
Post5j�Post ′�

1⊙
j=n1+n2

Post4j}}

Post =
1⊙

j=m1+m2

Post5j�Post ′�
1⊙

j=n1+n2

Post4j

This concludes the inductive step, showing that the decomposition ex-
pressed by the ⇐ direction of the lemma is always possible with the right
side conditions. �

Lemma 5 (Alternative definition of weak bisimulation). The definition
of weak bisimulation given in Definition 14 is equivalent to the following one:

Let A1 = 〈〈J,S1, s0, V1, T1〉〉 and A2 = 〈〈J,S2, t0, V2, T2〉〉 be open automata;
〈〈J,S1, s0, V1,WT 1〉〉 and 〈〈J,S2, t0, V2,WT 2〉〉 be the weak open automaton de-
rived from A1 and A2 respectively. For any states s ∈ S1 and t ∈ S2 such that
(s, t|Preds,t) ∈ R, we have:

• For any open transition WOT in WT 1:

···········································γj∈J
′

j ,PredOT ,PostOT
s
α=⇒ s′

there exists an indexed set of weak open transitions WOTx∈Xx ⊆ WT 2:

···············································γj∈Jxjx ,PredOTx ,PostOTx
t
αx=⇒ tx

such that ∀x, J ′ = Jx, (s′, tx|Preds′,x) ∈ R; and

Preds,t ∧ PredOT =⇒∨
x∈X

(∀j ∈ Jx.γj=γjx∧PredOTx ∧ α=αx∧Preds′,x{{PostOT ]PostOTx}})
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• and symmetrically any open transition from WOT in WT 2 can be covered
by a set of weak transitions from s in WT 1.

Proof. Note that Definition 14 is a particular case of the definition above,
thus we only need to prove one direction of the equivalence between the two
definitions, namely:
(⇒) We prove that Definition 14 implies the definition above. In other words,
suppose that Preds,t ∈ R and suppose that the following statement holds:

············································γj∈J
′

j ,PredOT ,PostOT
s
α=⇒ s′

∈ WT 1

Moreover, by using Lemma 4 we know that:

············································γj∈J
′

j ,PredOT ,PostOT
s
α=⇒ s′

∈ WT 1 ⇒
(
∀i ∈ [1..n].········································

β
j∈J′1
1ij ,Pred1i,Post1i
s1i

τ−→ s1(i+1)
∈ T1∧

·····································
β
j∈J′2
2j ,Pred2,Post2

s20
α′−→ s21

∈ T1∧

∀i ∈ [1..m].········································
β
j∈J′3
3ij ,Pred3i,Post3i
s3i

τ−→ s3(i+1)
∈ T1

)
where

s = s11 ∧ s1(n+1) = s20 ∧ s21 = s31 ∧ s3(m+1) = s′

α =α′{{
1⊙

j=n
Post1j}}

γj∈J
′

j =
n⊕
i=1

(β1i{{
1⊙

j=i−1
Post1j}})∇ ⊕ (β2{{

1⊙
j=n

Post1j}})∇⊕

m⊕
i=1

(β3i{{
1⊙

j=i−1
Post3j�Post2�

1⊙
j=n

Post1j}})∇

PredOT =
n∧
i=1

Pred1i{{
1⊙

j=i−1
Post1j}} ∧ Pred2{{

1⊙
j=n

Post1j}}∧

( m∧
i=1

Pred3i{{
1⊙

j=i−1
Post3j�Post2�

1⊙
j=n

Post1j}}
)

PostOT =
1⊙

j=m
Post3j�Post2�

1⊙
j=n

Post1j
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For the sake of simplicity, we prove the rule in the restricted case where n
and m are equal to 1, hence a single tau open transition will be considered on
each side of the potentially visible one. The proof may be easily generalized to
the multiple tau open transitions by using the same reasoning and WT3 rule.
Consider each open transition separately:

1. For the first open transition in T1:

·····································β
j∈J′1
1j ,Pred1,Post1

s11
τ−→ s12

by hypothesis we have (s, t|Preds,t) ∈ R and s = s11. Thus, by Definition
14 we can deduce there exists an indexed set of weak open transitions
WOTa∈Aa ⊆ WT 2:

················································γj∈Jaja ,PredOTa ,PostOTa
t
α1a==⇒ua

such that ∀a, Ja = {j ∈ J ′1|β1j 6= τ}, (s12, ua|Preds11,a) ∈ R and
Preds,t ∧ Pred1 =⇒∨
a∈A

(
∀j ∈ Ja.(β1j)∇=γja∧PredOTa∧α1a=τ ∧ Preds11,a{{Post1 ] PostOTa}}

)
Note that, because E ∩ A = ∅ (actions and expressions are disjoint) and
α1a = τ we have directly (α1a cannot be a variable, and cannot contain
expressions/variables because τ has no parameter):

················································γj∈Jaja ,PredOTa ,PostOTa
t
τ=⇒ua

2. Concerning the middle open transition in T1:

·····································
β
j∈J′2
2j ,Pred2,Post2

s20
α′−→ s21

we have (s11, ua|Preds11,a) ∈ R and s11 = s20. Again by Definition
14 we can deduce there exists an indexed set of weak open transitions
WOTb∈Bb ⊆ WT 2:

···············································
γj∈Jbjb ,PredOTb ,PostOTb

ua
α2b==⇒ vb

such that ∀b, Jb = {j ∈ J ′2|β2j 6= τ}, (s21, vb|Preds21,b) ∈ R;
Preds11,a ∧ Pred2 =⇒∨
b∈B

(
∀j ∈ Jb.(β2j)∇=γjb ∧ PredOTb∧ α′=α2b∧Preds21,b{{Post2 ] PostOTb}}

)
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3. Similarly to the case 1, we consider the third open transition in T1:

·····································β
j∈J′3
3j ,Pred3,Post3

s31
τ−→ s32

∈ T

From previous case, we have (s21, vb|Preds21,b) ∈ R, and we have s21 = s31.
Then, by Definition 14 there exists an indexed set of weak open transitions
WOTc∈Ca ⊆ WT 2:

···············································γj∈Jcjc ,PredOTc ,PostOTc
vb

τ=⇒wc

such that ∀c, Jc = {j ∈ J ′3|β3j 6= τ}, (s31, wc|Preds31,c) ∈ R and

Preds21,b ∧ Pred3 =⇒∨
c∈C

(
∀j ∈ Jc.(β3j)∇=γjc∧PredOTc∧Preds31,c{{Post3 ] PostOTc}}

)

Based on cases described above by applying WT3 rule on the resulting WOTs
we have:

················································
γj∈Jaja ,PredOTx ,PostOTa

t
τ=⇒ua

···············································
γj∈Jbjb ,PredOTy ,PostOTb

ua
α2=⇒ vb

···············································
γj∈Jcjc ,PredOTc ,PostOTc

vb
τ=⇒wc

γ′ = γj∈Jaja ⊕ γj∈Jbjb {{PostOTa}} ⊕ γj∈Jcjc {{PostOTb�PostOTa}}
Pred = PredOTa ∧ PredOTb{{PostOTa}} ∧ PredOTc{{PostOTb�PostOTa}}

Post = PostOTc�PostOTb�PostOTa α′′ = α2{{PostOTa}}

·························
γ,Pred,Post

t
α′′=⇒wc

It remains to be proven that the following statement holds:
Preds,t∧Pred =⇒

∨
x∈X

(
∀j ∈ J.γ′j = γj ∧ Pred ∧ α=α′′ ∧ Preds′,x{{PostOT ] Post }}

)
We have:
PredOT = Pred1 ∧ Pred2{{Post1}} ∧ Pred3{{Post2�Post1}}
PostOT = Post3�Post2�Post1
Moreover, we have the following statement:
Preds,t∧Pred1 =⇒

∨
a∈A

(
∀j ∈ Ja.(β1j)∇ = γja ∧ PredOTa ∧ Preds11,a{{Post1 ] PostOTa}}

)
With the conjunction of the predicate Pred2{{Post1}} on both sides of the im-
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plication, we get:

Preds,t ∧ Pred1) ∧ Pred2{{Post1}} =⇒∨
a∈A

(
∀j ∈ Ja.(β1j)∇=γja∧PredOTa∧

Preds11,a{{Post1 ] PostOTa}} ∧ Pred2{{Post1 ] PostOTa}}
)

Note that on the right side of the implication we added the substitution of
PostOTx without affecting the validity of the statement, because the domain
of the substitution function PostOTx is disjoint from the others. Hence a little
rewriting gives:

Preds,t ∧ Pred1) ∧ Pred2{{Post1}} =⇒∨
a∈A

(
∀j ∈ Ja.(β1j)∇=γja ∧ PredOTa∧ (Preds11,a ∧ Pred2){{Post1 ] PostOTa}}

)
By replacing the inner predicate (Preds11,ua ∧ Pred2) by the conclusion of

the statement given in case 2, the formula becomes:

Preds,t ∧ Pred1) ∧ Pred2{{Post1}} =⇒∨
a∈A

(
∀j ∈ Ja.(β1j)∇=γja∧PredOTa∧

(∨
b∈B

(∀j ∈ Jb.(β2j)∇=γjb∧PredOTb∧α′=α2b∧

Preds21,b{{Post2 ] PostOTb}}){{Post1 ] PostOTa}}
))

This can be rewritten into:

Preds,t ∧ Pred1) ∧ Pred2{{Post1}} =⇒∨
a∈A

∨
b∈B

(
∀j ∈ Ja.(β1j)∇=γja∧∀j ∈ Jb.(β2j)∇=γjb{{Post1]PostOTa}}∧PredOTa∧

PredOTb{{Post1 ] PostOTa}} ∧ (α′=α2b){{Post1 ] PostOTa}}∧
Preds21,b{{Post2�Post1 ] PostOTb�PostOTa}}

)
Since Post1 does not act on γjb, nor on PredOTb and α2. As well PostOTa does
not act on α′, nor on β2j the formula can be simplified as follows:

Preds,t ∧ Pred1) ∧ Pred2{{Post1}} =⇒∨
a∈A

∨
b∈B

(
∀j ∈ Ja.(β1j)∇=γja∧∀j ∈ Jb.(β2j)∇{{Post1}} = γjb{{PostOTa}}∧PredOTa∧

PredOTb{{PostOTa}} ∧ α′{{Post1}} = α2b{{PostOTa}}∧
Preds21,b{{Post2�Post1 ] PostOTb�PostOTa}}

)

67



Finally, the conjunction with the term Pred3{{Post2�Post1}} of the both sides
of the implication and rewriting, we get:

Preds,t ∧ Pred1) ∧ Pred2{{Post1}} ∧ Pred3{{Post2�Post1}} =⇒∨
a∈A

∨
b∈B

(
∀j ∈ Ja.(β1

j )∇=γja∧∀j ∈ Jb.(β2j)∇{{Post1}}=γjb{{PostOTa}}∧PredOTa∧

PredOTb{{PostOTa}} ∧ α′{{Post1}} = α2b{{PostOTa}} ∧ (Preds21,vb ∧ Pred3)

{{Post2�Post1 ] PostOTb�PostOTa}}
)

Again note that because of the domain of the substitution function is indepen-
dent from some predicates and expressions, we removed Post1 and we added the
term PostOTb� PostOTa in the substitution of the right side of the implication.
Finally, by replacing the predicate (Preds21,b ∧ Pred3) by the conclusion of the
implication given in case 3, we get:

Preds,t ∧ Pred1 ∧ Pred2{{Post1}} ∧ Pred3{{Post2�Post1}}︸ ︷︷ ︸
PredOT

=⇒

∨
a∈A

∨
b∈B

∨
c∈C

(
∀j ∈Ja.(β1j)∇=γja ∧ ∀j∈Jb.(β2j{{PostOTa}})∇=γjb{{PostOTa}}∧

∀j∈Jc.(β3j{{Post2 � Post1}})∇=γjc{{PostOTb�PostOTa}}∧
PredOTa ∧ PredOTb{{PostOTa}} ∧ PredOTc{{PostOTb�PostOTa}}︸ ︷︷ ︸

Pred

∧

α′{{Post1}}︸ ︷︷ ︸
α

= α2b{{PostOTa}}︸ ︷︷ ︸
α′′

∧ Preds31,c{{Post3�Post2�Post1︸ ︷︷ ︸
PostOT

]PostOTc�PostOTb�PostOTa︸ ︷︷ ︸
Post

}}
)

The three for all statements (on Ja, Jb and Jc) can be concatenated using ⊕, the
list union lifted to indexed sets (if γ = γ′ and γ′′ = γ′′′ then γ ⊕ γ′′ = γ′ ⊕ γ′′′).

∀j ∈ Ja ] Jb ] Jc.(β1j)∇ ⊕ (β2j{{PostOTa}})∇ ⊕ (β3j{{Post2�Post1}})∇ =
γja⊕γjb{{PostOTa}}⊕γjc{{PostOTb�PostOTa}}

We have s31 = s′, so can rewrite the formula:
Preds,t ∧ PredOT =⇒

∨
a∈A

∨
b∈B

∨
c∈C

(
∀j ∈ J.γ′j = γj ∧ Pred ∧ α =

α′′ ∧ Preds′,c{{PostOT ] Post }}
)

All the combinations of elements in A, B, and C provide a set X of weak
open transitions (each combination of one transition in A, one in B, and one in
C provides one weak open transition in the set X, i.e. each x ∈ X corresponds

68



to a triple (a, b, c) ∈ A × B × C); this defines a set of weak open transitions
indexed over X; each such open transition leads to a wc that we call tx. This
re-indexing allows us to conclude:
Preds,t ∧PredOT =⇒

∨
x∈X

(
∀j ∈ J.γ′j = γj ∧Pred∧α = α′′ ∧Preds′,x{{PostOT ]

Post }}
)

Theorem 6. Weak FH-bisimilarity is an equivalence. Suppose R is a weak
FH-bisimulation. Then R is an equivalence, that is, R is reflexive, symmetric
and transitive.

With the above lemma, we can use the same technique as for Theorem 1 to
prove that a weak FH-bisimilarity is an equivalence. Indeed, we essentially use
the same proof-scheme the main difference concerns β and γ. Indeed, while the
schema of the proof of transitivity was not directly applicable on the definition
of weak bisimulation, Lemma 5 provides a characterization of weak bisimulation
similar to the definition of strong bisimulation, and thus the same proof scheme
is directly applicable.

Appendix B.2. Composition properties
This section gives decomposition/composition lemmas and their proofs,

these are the equivalent of the composition lemmas for open transitions, but
applied to weak open automata.

Lemma 6 (Weak open transition decomposition). Let Leaves(Q) =
pLTS

l∈LQ
l ; suppose16:

P [Q]j0 |= ······································
γj∈Jj ,Pred,Post

/si∈Li .
α=⇒ / s′ i∈Li .

with J ∩ Holes(Q) 6= ∅ or ∃i ∈ LQ. si 6= s′i, i.e. Q takes part in the
reduction. Then there exist n, Pred ′, Post ′, and for all p ∈ [1..n] there ex-
ist βp, αp, Predp, Postp and a family γj∈Jppj and for all p ∈ [1..n+1] s i∈LQpi . s.t.:

16Note that the hypotheses of the lemma imply that Q is not a pLTS but a similar lemma
can be proven for a pLTS Q.
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P |= ································································
γ
j∈(Jp\Holes(Q))∪{j0}
j ,Pred ′,Post ′

/s
i∈L\LQ
i .

α=⇒ / s
′ i∈L\LQ
i .

and γj0 = [β0..βn]

and for all p ∈ [1..n] Q |= ·············································
γ
j∈Jp
pj ,Predp,Postp

/s
i∈LQ
pi .

αp=⇒ / s
i∈LQ
(p+1)i.

such that
n⋃
p=1

Jp = J∩Holes(Q), γj∈J∩Holes(Q)
j =

n⊕
p=1

(γj∈Jppj ){{
1⊙

i=p−1
Posti}},

Pred ⇐⇒ Pred ′ ∧
n∧
p=1

(αp{{
1⊙

i=p−1
Posti}} = βp ∧ Predp{{

1⊙
i=p−1

Posti}}),

Post = Post ′ ]
1⊙

p=n
Postp, and ∀i ∈ LQ. s(n+1)i = s′i ∧ s1i = si

where for any p, Postp only acts upon variables vars(Q).

Proof. Suppose that we have:

P [Q]j0 |= ······································
γj∈Jj ,Pred,Post

/sl∈Ll .
α=⇒ / s′ l∈Ll .

By Lemma 4 this implies the following:

∀p∈ [1..m1]P [Q]j0 |= ·········································
β1p,Pred1p,Post1p
/sl∈Lpl .

τ−→ / sl∈L(p+1)l.
, P [Q]j0 |= ·······································

β2,Pred2,Post2

/tl∈Ll .
α′−→ / t′

l∈L
l .

and ∀p ∈ [1..m2] P [Q]j0 |= ··········································
β3p,Pred3p,Post3p
/ul∈Lpl .

τ−→ / ul∈L(p+1)l.

where
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∀l ∈ L. sl = s1l ∧ s(m1+1)l = tl ∧ t′l = u1l ∧ u(m2+1)l = s′l

α =α′{{
1⊙

j=m1

Post1j}}

γj∈Jj =
m1⊕
i=1

(β1i{{
1⊙

j=i−1

Post1j}})∇⊕

(β2{{
1⊙

j=m1

Post1j}})∇ ⊕
m2⊕
i=1

(β3i{{
1⊙

j=i−1

Post3j�Post2�
1⊙

j=m1

Post1j}})∇

Pred =
m1∧
i=1

Pred1i{{
1⊙

j=i−1

Post1j}} ∧ Pred2{{
1⊙

j=m1

Post1j}}∧

m2∧
i=1

Pred3i{{
1⊙

j=i−1

Post3j�Post2�
1⊙

j=m1

Post1j}}

Post =
1⊙

j=m2

Post3j�Post2�
1⊙

j=m1

Post1j

We can apply Lemma 1 on each OT:

1. For each open transition OTp in the form (β1p = β
j∈J1p
1pj ):

P [Q]j0 |= ···········································
β
j∈J1p
1pj ,Pred1p,Post1p
/sl∈Lpl .

τ−→ / sl∈L(p+1)l.

If Q moves then we obtain by Lemma 1:

P |= ··················································································
(β1pj)j∈(J1p\Holes(Q))∪{j0},Pred ′1p,Post ′1p

/s
l∈L\LQ
pl .

τ−→ / (s(p+1)l)l∈L\LQ.
and

Q |= ······································································
(β1pj)j∈J1p∩Holes(Q),Pred ′′1p,Post ′′1p

/s
l∈LQ
pl .

α1p−−→ / s
l∈LQ
(p+1)l.

such that
Pred1p⇐⇒ Pred ′1p ∧Pred ′′1p ∧α1p=β1pj0 , Post1p=Post ′1p ]Post ′′1p where
Post ′′1p is the restriction of Post1p over vars(Q).
Else Q does not move and we have:

P |= ·········································································
(β1pj)j∈(J1p\Holes(Q)),Pred ′1p,Post ′1p
/(spl)l∈L\LQ .

τ−→ / (s(p+1)l)l∈L\LQ.
and /(sp)

l∈LQ
l . = /(s(p+1)l)l∈LQ.

2. Similarly, we have similar open transitions on states upl (for the final τ
transitions).

3. Finally, for the open transition in the form (β2 = βj∈J2
2j ):
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P [Q]j0 |= ················································
βj∈J2

2j ,Pred2,Post2

/t
l∈LQ
l .

α′−→ / (t′l)l∈LQ.

If Q moves then we obtain by Lemma 1:

P |= ···········································································
(β2j)j∈(J2\Holes(Q))∪{j0},Pred ′2,Post ′2

/t
l∈L\LQ
l .

α′−→ / t
′ l∈L\LQ
l .

and

Q |= ································································
(β2j)j∈J2∩Holes(Q),Pred ′′2 ,Post ′′2

/t
l∈LQ
l .

α21−−→ / t
′ l∈LQ
l .

such that Pred2 ⇐⇒ Pred ′2 ∧Pred ′′2 ∧α20 = β2j0 , Post2 = Post ′2 ]Post ′′2
where Post ′′2 is the restriction of Post2 over variables vars(Q).
Else Q does not move and we have:

P |= ···········································································
(β2j)j∈(J2\Holes(Q))∪{j0},Pred ′2,Post ′2

/t
l∈L\LQ
l .

α′−→ / (tl)′ l∈L\LQ.
and / t

l∈LQ
l . = /(t′l) l∈LQ.

By using Lemma 4, and denoting J =
m1⋃
i=1

J1i ∪ J2 ∪
m2⋃
i=1

J3i, we can conclude

from cases (1), (2) and (3) that we have:

P |= ·····································································
(γ′j)j∈(J\Holes(Q))∪{j0},Pred ′,Post′

/s
l∈L\LQ
l .

α′′=⇒ / s
′ l∈L\LQ
l .

where α′′ = α′{{
1⊙

j=m1

Post ′1j}}

On the other hand, we have:

α = α′{{
1⊙

j=m1

Post ′1j}}{{
1⊙

j=m1

Post ′′1j}} = α′′{{
1⊙

j=m1

Post ′′1j}}.

As {{
1⊙

j=m1

Post ′′1j}} has no effect on variables of P and thus on variables of α′′, so

we have α = α′′.

∀l ∈ L. sl = s1l ∧ s(m1+1)l = tl ∧ t′l = u1l ∧ u(m2+1)l = s′l

(γ′j)
j∈(J\Holes(Q))∪{j0} =

m1⊕
i=1

(β1i{{
1⊙

j=i−1

Post ′1j}})∇ ⊕ (β2{{
1⊙

j=m1

Post ′1j}})∇⊕

m2⊕
i=1

(β3i{{
1⊙

j=i−1

Post ′3j�Post ′2�
1⊙

j=m1

Post ′1j}})∇
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Pred ′ =
m1∧
i=1

Pred ′1i{{
1⊙

j=i−1

Post ′1j}} ∧ Pred ′2{{
1⊙

j=m1

Post ′1j}}∧

m2∧
i=1

Pred ′3i{{
1⊙

j=i−1

Post ′3j�Post ′2�
1⊙

j=m1

Post ′1j}}

Post′ =
1⊙

j=m2

Post ′3j�Post ′2�
1⊙

j=m1

Post ′1j

Note that for all j ∈ J \Holes(Q), γ′j = γj because for all l Post ′1l coincides
with Post1l on the variables of β1ij , and similarly for Post ′2 and Post ′3l.

We introduce the following predicate (we will need it for reasoning about
the global predicate and will reason about it along the proof):

Predβ =
m1∧
p=1

(β1pj0 = α1p){{
1⊙

j=p−1
Post1j}} ∧ (β2j0 = α21){{

1⊙
j=m1

Post1j}}∧

m2∧
p=1

(β3pj0 = α3p){{
1⊙

j=p−1
Post3j�Post2�

1⊙
j=m1

Post1j}}

Concerning Q, we reduce the sequence of OTs to a path for which it moves in
all steps. In other words, if Q does not move at step q, then we have /sl∈LQql . =
/s
l∈LQ
(q+1)l. , then we skip the state /sl∈LQ(q+1)l., i.e. we rename all the following

states /sl∈LQpl . where p ≥ q + 1 into /sl∈LQ(p−1)l.. Note that self-loops where Q
does an action but stays at the same state are not removed. We proceed in the
same way for states named u. To simplify the proof, we suppose that in case 3,
Q moves, else transition 3 of Q should be skipped and the last spl are equal to
the first u1l. So we have:

∀p∈ [1..n1] Q |= ···································································
(β′1pj)j∈J∩Holes(Q),Pred ′′1p,Post ′′1p

/s
l∈LQ
pl .

α1p−−→ / s
l∈LQ
(p+1)l.

,

Q |= ······························································
(β′2j)j∈J∩Holes(Q),Pred ′′2 ,Post ′′2

/t
l∈LQ
l .

α21−−→ / t
′ l∈LQ
l .

and

∀p ∈ [1..n2] Q |= ···································································
(β′3pj)j∈J∩Holes(Q),Pred ′′3p,Post ′′3p

/u
l∈LQ
pl .

α3p−−→ / u
l∈LQ
(p+1)l.

such that n1 ≤ m1 and n2 ≤ m2.
By renaming all state names (s, u and t) with the same state name v. We

have:

∀p ∈ [1..(n1+n2+1)] Q |= ·······················································
β
j∈J∩Holes(Q)
pj ,Pred ′′p ,Post ′′p

/v
l∈LQ
pl .

α′p−−→ / v
l∈LQ
(p+1)l.

In this equation, and using case 1 above for all k ∈ [1 . . . n1] there is a p ∈ [1..m1]
such that α1p = α′k (following the re-indexing done in the removal of steps where
Q does not move), we know that Pred1p contains the predicate (α1p = β1pj0).
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Figure B.10: Composition of the subsequences

Because β1pj0 only contains variables of P and α′k only variables of Q, we have:

(α1p = β1pj0){{
1⊙

j=p−1
Post1j}} ⇐⇒ α1p{{

1⊙
j=p−1

Post ′′1j}} = β1pj0{{
1⊙

j=p−1
Post ′1j}}

⇐⇒ α′k{{
1⊙

j=k−1
Post ′′j }} = β1pj0{{

1⊙
j=p−1

Post ′1j}}

We can obtain similar equations for α′n1+1 related with β2j0 and the α′k for
k ≥ n1 + 2 related with β3pj0 for some p. Note that the substitutions are
however more complex in the other cases. Overall we obtain (we skip here the
details about the three cases 1, 2, and 3 above that all fall into the same equation
because of the re-indexing we perform):

Predβ ⇐⇒ γj0 = ([α′p{{
1⊙

j=p−1
Post ′′j }}|p ∈ [1..n1 + n2 + 1]])∇ (B.1)

Let us consider the sequence of (n1 +n2 +1) actions α′p some of them may be
non-observable (they are τ transitions). By considering the sequence of τ and
non-τ actions we split the sequence of actions into n + 1 sub-sequences, such
that each sub-sequence is a sequence of actions containing only one observable
action that will be named αp, and possibly many non-observable (τ) ones.

We can decompose each of the n + 1 sub-sequences in the following way
(see Figure B.10). For k ∈ [0..n] the position of the kth visible action is nk.
For l ∈ [1..n], n′l is any index between nl−1 and nl, additionally n′1 = 1 and
n′n+1 = n1 + n2 + 1. We obtain n sub-sequences made of the following OTs, for
all k ∈ [1..n] :

∀p∈ [n′k..(nk−1)] Q |= ·······················································
β
j∈J∩Holes(Q)
pj ,Pred ′′p ,Post ′′p
/v
l∈LQ
pl .

τ−→ / v
l∈LQ
(p+1)l.

,

Q |= ···························································
β
j∈J∩Holes(Q)
nkj

,Pred ′′nk ,Post ′′nk

/v
l∈LQ
nkl

.
α′nk−−−→ / v

l∈LQ
(nk+1)l.

and

∀p ∈ [(nk+1)..(n′k+1−1)] Q |= ·······················································
β
j∈J∩Holes(Q)
pj ,Pred ′′p ,Post ′′p
/v
l∈LQ
pl .

τ−→ / v
l∈LQ
(p+1)l.

Thereafter, by Lemma 4 we can deduce the following weak open transition:

Q |= ····························································
(γkj)j∈J∩Holes(Q),Predk,Postk
/v
l∈LQ
kl .

αk=⇒ / (v′kl)l∈LQ.
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with:

∀l ∈ LQ.vkl = v(n′
k

)l ∧ v′kl = v(n′
k

)l

αk =α′nk{{
n′
k⊙

j=nk−1

Post ′′j }}

γ
j∈J∩Holes(Q)
kj =

(nk−1)⊕
i=n′

k

(βj∈J∩Holes(Q)
ij {{

n′
k⊙

l=i−1

Post ′′l }})∇ ⊕ (βj∈J∩Holes(Q)
nkj

{{
n′
k⊙

l=nk−1

Post ′′l }})∇⊕

n′
k+1−1⊕
i=nk+1

(βj∈J∩Holes(Q)
ij {{

nk+1⊙
l=i−1

Post ′′l �Post ′′nk�
n′
k⊙

l=nk−1

Post ′′l }})∇

Predk =
nk−1∧
i=n′

k

Pred ′′i {{
n′
k⊙

j=i−1

Post ′′j }} ∧ Pred ′′nk{{
n′
k⊙

j=nk−1

Post ′′j }}∧

n′
k+1−1∧
i=nk+1

Pred ′′i {{
n′
k⊙

j=i−1

Post ′′j �Post ′′nk�
n′
k⊙

j=nk−1

Post ′′j }}

Postk =
n′
k⊙

j=n′
k+1−1

Post ′′j

Note that for all k ∈ [1..n − 1], v′kl = v(k+1)l, v1l = s1l = sl, and v′nl =
v(n1+n2+3)l = u(n2+1)l = s′l.

By definition of Postk, we have
1⊙

j=n′
k
−1

Post ′′j =
1⊙

j=k−1
Postj . Consequently, we

have:

α′nk{{
1⊙

j=nk−1
Post ′′j }}=α′nk{{

n′k⊙
j=nk−1

Post′′j �
1⊙

j=n′
k
−1

Post ′′j }}=αk{{
1⊙

j=n′
k
−1

Post ′′j }}=αk{{
1⊙

j=k−1
Postj}}

From equation B.1, we obtain the following equation (we recall that the actions
αk are the actions α′p that are observable):

Predβ ⇐⇒ γj0 =
p=n1+n2+2⊕

p=1
(α′p{{

1⊙
j=p−1

Postj}})∇

⇐⇒ γj0 = [αp{{
1⊙

j=p−1
Postj}}|p ∈ [1..n]]

We need now to show that the set of WOT obtained above verifies the
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conditions of the lemma, i.e. it is a set of WOT of the form:

Q |= ··············································
γ
j∈Jp
pj ,Predp,Postp

/s
i∈LQ
pi .

αp=⇒ / s
i∈LQ
(p+1)i.

with
n⋃
p=1

Jp = J ∩Holes(Q) trivial

γ
j∈J∩Holes(Q)
j =

n⊕
p=1

(γj∈Jppj ){{
1⊙

i=p−1
Posti)}}

Indeed we have:

γj∈Jj =
m1⊕
i=1

(β1i{{
1⊙

j=i−1
Post1j}})∇ ⊕ (β2{{

1⊙
j=m1

Post1j}})∇⊕

m2⊕
i=1

(β3i{{
1⊙

j=i−1
Post3j�Post2�

1⊙
j=m1

Post1j}})∇

And thus, because β
j∈J∩Holes(Q)
pj are equal to the concatenation of

(β′1pj)j∈J∩Holes(Q), (β′2j)j∈J∩Holes(Q), and (β′3pj)j∈J∩Holes(Q) (re-indexed be-
cause we skipped some transitions), and additionally (β′1pj)j∈J∩Holes(Q),
(β′2j)j∈J∩Holes(Q), and (β′3pj)j∈J∩Holes(Q) are identical to the hole labels
β
j∈J∩Holes(Q)
1kj , βj∈J∩Holes(Q)

2j , and β
j∈J∩Holes(Q)
3kj (re-indexed) when Q moves17.

We can assert a similar equality on post-conditions, i.e. between Post ′′p
and Post ′′1k, Post ′′2 , Post ′′3k where Post ′′1p is the restriction of Post1p over
vars(Q) (see initial decomposition, case 1, 2, and 3 above). Overall, we have
∀i ∈ LQ. s(n+1)i = s′i ∧ s0i = si (see above):

γ
j∈J∩Holes(Q)
j

=

m1⊕
i=1

((β′1i){{
1⊙

j=i−1

Post′′1j}})
∇ ⊕ (β′2{{

1⊙
j=m1

Post′′1j}})
∇⊕

m2⊕
i=1

(β′3i{{
1⊙

j=i−1

Post′′3j�Post′′2 �
1⊙

j=m1

Post′′1j}})
∇

=
n⊕
k=1

n′
k+1−1⊕
i=n′

k

(βj∈J∩Holes(Q)
ij

{{

n′
k⊙

j=i−1

Post′′j

1⊙
j=n′

k
−1

Post′′j }})
∇


=

n⊕
k=1

(
γ
j∈J∩Holes(Q)
kj

{{
1⊙

j=k−1

Postk}}

)

17more precisely, when Q moves either β
j∈J∩Holes(Q)
1kj is not empty and thus

(β′1pj)
j∈J∩Holes(Q) = β

j∈J∩Holes(Q)
1kj , or both are empty if the holes of Q perform no action.
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Next, we have:

Pred = Pred ′ ∧
n∧
p=1

(
(αp{{

1⊙
i=p−1

Posti}}) = βp ∧ (Predp{{
1⊙

i=p−1
Posti}})

)
Indeed we have:

Pred ⇐⇒

m1∧
i=1

Pred1i{{
1⊙

j=i−1

Post1j}} ∧ Pred2{{
1⊙

j=m1

Post1j}} ∧

m2∧
i=1

Pred3i{{
1⊙

j=i−1

Post3j�Post2�
1⊙

j=m1

Post1j}}

⇐⇒

m1∧
i=1

(
Pred ′1i ∧ Pred ′′1i ∧ α1i = β1ij0

)
{{

1⊙
j=i−1

Post1j}}

∧
(

Pred ′2 ∧ Pred ′′2 ∧ α21 = β2j0

)
{{

1⊙
j=m1

Post1j}}

∧

m2∧
i=1

(
Pred ′3i ∧ Pred ′′3i ∧ α3i = β3ij0

)
{{

0⊙
j=i−1

Post3j�Post2�
1⊙

j=m1

Post1j}}

⇐⇒

m1∧
i=1

(
(Pred ′1i{{

1⊙
j=i−1

Post ′1j}}) ∧ (Pred ′′1i{{
1⊙

j=i−1

Post ′′1j}}) ∧ (α1i = β1ij0 ){{
1⊙

j=i−1

Post1j}}

)

∧

(
Pred ′2{{

1⊙
j=m1

Post1j}} ∧ Pred ′′2 {{
1⊙

j=m1

Post1j}} ∧ (α21 = β2j0 ){{
1⊙

j=m1

Post1j}}

)

∧

m2∧
i=1

(
Pred ′3i{{

1⊙
j=i−1

Post3j�Post2�
1⊙

j=m1

Post1j}} ∧ Pred ′′3i{{
1⊙

j=i−1

Post3j�Post2�
1⊙

j=m1

Post1j}}

∧ (α3i = β3ij0 ){{
1⊙

j=i−1

Post3j�Post2�
1⊙

j=m1

Post1j}}

)

⇐⇒ Pred ′ ∧
n∧
k=1

Predk{{
1⊙

j=k−1

Postj}} ∧ Predβ

⇐⇒ Pred ′ ∧
n∧
k=1

Predk{{
1⊙

j=k−1

Postj}} ∧ (γj0 = [αi{{
1⊙

j=i−1

Postj}}|i ∈ [1..n]])

which is exactly what is needed with γj0 = [β0..βn].
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Finally we have Post = Post ′ ]
1⊙

p=n
Postp because

Post =
1⊙

j=m2

Post3j�Post2�
1⊙

j=m1

Post1j

=
1⊙

j=m2

Post ′3j�Post ′2�
1⊙

j=m1

Post ′1j ]
1⊙

j=m2

Post ′′3j�Post ′′2�
1⊙

j=m1

Post ′′1j

= Post ′ ]
1⊙

j=n′
n+1−1

Post ′′j

Which concludes because we have
1⊙

j=n′
k
−1

Post ′′j =
1⊙

j=k−1
Postj . �

Lemma 7 (Weak open transition composition). Suppose that we have a
weak open automaton such that the WOTs cannot observe silent actions (see
Definition 11). Suppose j0 ∈ J and:

P |= ··········································
βj∈Jj ,Pred,Post

/si∈Li .
α−→ / (s′i) i∈L.

and Q |= ·················································
γ,PredQ,PostQ

/s
i∈LQ
i .

αQ==⇒ / (s′i) i∈LQ.

Let Pred ′ = Pred∧ (βj0 = αQ∧PredQ) and Post ′ = Post]PostQ
Then, we have:

P [Q]j0 |= ··························································
γ ] (βj∈J\{j0}

j )∇,Pred ′,Post ′

/s
i∈L]LQ
i .

α=⇒ / (s′i) i∈L]LQ.

Proof. By Lemma 4 we can decompose the WOT of Q into a series of k + 1
and k′ + 1 tau open transitions and an α′Q open transition (observable or not
depending on αQ):

∀h∈ [1..k].Q |= ···············································
β1h,Pred1h,Post1h

/(s1h) . τ−→ / (s1(h+1)).
, Q |= ···································

β2,Pred2,Post2

/s21 .
α′Q−−→ / s22.

,

and ∀h ∈ [1..k′].Q |= ···············································
β3h,Pred3h,Post3h

/(s3h) . τ−→ / (s3(h+1)).

such that

s
i∈LQ
i = s11 ∧ s1(k+1)i = s21 ∧ s22 = s31 ∧ s3(k′+1)i = s′

i∈LQ
i

αQ =α′Q{{
1⊙
j=k

Post1j}}
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γ =
k⊕
h=1

(β1h{{
1⊙

j=h−1

Post1j}})∇ ⊕ (β2{{
1⊙
j=k

Post1j}})∇⊕

k′⊕
h=1

(β3h{{
1⊙

j=h−1

Post3j�Post2�
1⊙
j=k

Post1j}})∇

PredQ =
k∧

h=01

Pred1h{{
1⊙

j=h−1

Post1j}} ∧ Pred2{{
1⊙

h=k

Post1h}}∧

k′∧
h=1

Pred3h{{
1⊙

j=h−1

Post3j � Post2 �
1⊙

h=k

Post1h}}

PostQ =
1⊙

h=k′
Post3h � Post2 �

1⊙
j=k

Post1j

1. For the first k open tau transitions, by Definition 11 P can necessarily
make a tau open transition if the hole indexed j0 makes a tau action. So
by Lemma 2 we obtain k open transitions in the form:

P [Q]j0 |= ···································································
β1h,Pred1h,Post1h

/s1h ] si∈Li .
τ−→ / s1(h+1) ] si∈Li .

2. For the possibly observable open transition. By Lemma 2 with the lemma
hypotheses we obtain:

P [Q]j0 |= ··············································································································
βj

(j∈J\{j0}) ] β2,Pred ∧ Pred2 ∧ αQ = βj0 ,Post ] Post2
/si∈Li ] s21 .

α−→ / s′
i∈L
i ] s22.

3. We proceed in the same way as the first item for k′ last weak open tran-
sitions, and we obtain k′ open tau transitions.

Using Lemma 4, from cases (1), (2) and (3) we get:

P [Q]j0 |= ······································································
γc,Predc,Postc

/s11 ] si∈Li .
α′=⇒ / s′

i∈L
i ] s3(k′+1).

where α′ = α{{
1⊙
j=k

Post1j}} and α = α′ because Post1j acts on variables of Q

and α contains only variables of P .

γc =
k⊕
h=1

(β1h{{
1⊙

i=h−1

Post1i}})∇ ⊕ ((βj(j∈J\{j0}) ] β2){{
1⊙
i=k

Post1i}})∇⊕

k′⊕
h=1

(β3h{{
1⊙

i=h−1

Post3i�Post2�
1⊙
i=k

Post1i}})∇

=γ ] (β∈J\{j0}
j )∇ because Post1j does not act on variables of βj .
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Predc =
k∧
h=1

Pred1h{{
1⊙

i=h−1

Post1i}} ∧
(
Pred ∧ Pred2 ∧ α′Q = βj0

)
{{

1⊙
i=k

Post1i}}∧

k′∧
h=1

Pred3h{{
1⊙

i=h−1

Post3i�(Post ] Post2)�
1⊙
i=k

Post1i}}

Postc =(
1⊙

i=k′
Post3i)�(Post ] Post2)�

1⊙
i=k

Post1i

Note that we have si∈LQi = s11 ∧ s1(k+1)i = s21 ∧ s22 = s31 ∧ s3(k′+1)i = s′
i∈LQ
i .

Note also that Post only acts on variables of P while Post1i only acts on
variables of Q. We conclude on predicate and posts as follows18:

Predc = PredQ ∧ Pred{{
1⊙
i=k

Post1i}} ∧ (α′Q = βj0){{
1⊙
i=k

Post1i}}

= PredQ ∧ Pred ∧ αQ = βj0

Postc = Post ] PostQ
�

Lemma 8 (Weak open transition composition). Suppose that we have a
weak open automaton such that the WOTs cannot observe silent actions (see
Definition 11). Suppose j0 ∈ J and γj0 = [β0..βn] and additionally:

P |= ······································
γj∈Jj ,Pred,Post

/si∈Li .
α=⇒ / s′ i∈Li .

and ∀p ∈ [1..n] Q |= ·············································
γ
j∈Jp
pj ,Predp,Postp

/s
i∈LQ
pi .

αp=⇒ / s
i∈LQ
(p+1)i.

Let

JQ =
n⋃
p=1

Jp ∀i ∈ LQ. si = s0i ∧ s′i = s(n+1)i

∀j ∈ Jp, γj =
n⊕
p=1

γpj{{
1⊙

k=p
Postk}}

Pred ′ = Pred∧
n∧
p=1

(αp = βp ∧Predp){{
1⊙

i=p−1
Posti}} Post ′ = Post]

1⊙
p=n

Postp

Then, we have:

P [Q]j0 |= ·····················································
γ
j∈(J\{j0})]JQ
j ,Pred ′,Post ′

/s
i∈L]LQ
i .

α=⇒ / s
′ i∈L]LQ
i .

18Post1i only has an effect on variables of Q and thus does not modify Pred or βj0 .
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Proof. Suppose we have:

P |= ·······································
γj∈Jj ,Pred,Post

/si∈Li .
α=⇒ / s′ i∈Li .

By Lemma 4 this implies the following:

∀p∈ [1 ..m1].P |= ·······························································
β
j∈J1p
1pj ,Pred1p,Post1p

/(s1pi)i∈L .
τ−→ / (s1(p+1)i)i∈L.

,

P |= ·························································
βj∈J2

2j ,Pred2,Post2

/(s21i)i∈L .
α′−→ / (s22i)i∈L.

and ∀p ∈ [1 ..m2].P |= ·······························································
β
j∈J3p
3pj ,Pred3p,Post3p

/(s3pi)i∈L .
τ−→ / (s3(p+1)i)i∈L.

where:

∀i ∈ L. si = s11i ∧ s1(m1+1)i = s21i ∧ s22i = s31i ∧ s3(m2+1)i = s′i

α =α′{{
1⊙

j=m1

Post1j}}

γj∈Jj =
m1⊕
i=1

(βj∈J1p
1ij {{

1⊙
k=i−1

Post1k}})∇ ⊕ (βj∈J2
2j {{

10⊙
k=m1

Post1k}})∇⊕

m2⊕
i=1

(βj∈J3p
3ij {{

1⊙
k=i−1

Post3k�Post2�
1⊙

k=m1

Post1k}})∇

Pred =
m1∧
p=1

(
Pred1p{{

1⊙
j=p−1

Post1j}}
)
∧ Pred2{{

1⊙
p=m1

Post1p}}∧

m2∧
p=1

Pred3p{{
1⊙

j=p−1

Post3j � Post2 �
1⊙

p=m1

Post1p}}

Post =
1⊙

p=m2

Post3p � Post2 �
1⊙

j=m1

Post1j

Note that, for l ∈ {1, 3} if βlpj0 = τ , then, because of Definition 11, P
necessarily makes a τ open transition and remains in the same state, e.g. s1pi =
s1(p+1)i. Thus without loss of generality, we can bypass such an open transition
and obtain another decomposition of the WOT without the open transition that
requires βlpj0 = τ . We can thus suppose that for all p and l we have βlpj0 6= τ or
j0 6∈ J1p. To avoid a special case, we suppose that the hole j0 moves during the
OT α′, i.e. β2j0 = βm for some m. Additionally, βm 6= τ , else we would have
α = α′ = τ and the α′ OT could be also removed from the reduction, leading
to a particular and simpler case.

We introduce ni∈[1..m−1]
i , and (n′i)i∈[m+1..n] the indices of the steps in which

the hole j0 moves in the 3 sets of OTs above (βm is the action that matches the
hole j0 in the OT α′), in other words, we have for all i, β1nij0 a visible action,

81



as additionally:

γj0 = [β0..βn]

=
m1⊕
i=1

j0∈J1i

(β1ij0{{
1⊙

k=i−1

Post1k}})∇ ⊕ (β2j0{{
1⊙

k=m1

Post1k}})∇⊕

m2⊕
i=0

j0∈J3i

(β3ij0{{
1⊙

k=i−1

Post3k�Post2�
1⊙

k=m1

Post1k}})∇

We have, by definition of ni and n′i:

∀i ∈ [1 ..m−1], β1nij0{{
1⊙

k=ni−1
Post1k}} = βi, β2j0{{

1⊙
k=m1

Post1k}} = βm, and

∀i ∈ [m+1 .. n], β3n′
i
j0{{

1⊙
k=n′

i
−1

Post3k�Post2�
1⊙

k=m1

Post1k}} = βi

Now, we compose OTs for each of the case above (depending on the OT of P ):

1. For the first τ OTs, i.e. p ∈ [1 ..m1]. We have:
Either there is i such that p = ni, and thus βi and β1pj0 are defined. In
this case by Lemma 7, we have:

P [Q]j0 |= ··············································································
γ′1p,Pred ′1p,Post ′1p

/sj∈L1pj ] s
j∈LQ
ij .

τ=⇒ / s j∈L1(p+1)j ] s
j∈LQ
(i+1)j.

with

γ′1p = γj∈Jiij ] (βj∈J1p\{j0}
1pj )∇ Pred ′1p = Pred1p ∧ (β1pj0 = αi ∧ Predi)

Post ′1p = Post1p ] Posti

Or j0 6∈ dom(β1p) and Q does not move in the composed reduction. In this
case there is no i such that p = ni, but there is i such that p ∈]ni..ni+1[,
and

P [Q]j0 |= ··············································································
β1p,Pred1p,Post1p

/sj∈L1pj ] s
j∈LQ
ij .

τ−→ / sj∈L1(p+1)j ] s
j∈LQ
ij .

and thus we also have a weak OT by Definition 13 (rule (WT2)):

P [Q]j0 |= ·············································································
γ′1p,Pred ′1p,Post ′1p

/sj∈L1pj ] s
j∈LQ
ij .

τ=⇒ / sj∈L1(p+1)j ] s
j∈LQ
ij .

with γ′1p = (β1p)∇,Pred ′1p = Pred1p,Post ′1p = Post1p
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2. Similarly, for the middle OT with label α:

P [Q]j0 |= ···················································································································
γ′2,Pred ′2,Post ′2

/(s21j)j∈L ] (smj)j∈LQ .
α′=⇒ / (s22j)j∈L ] (s(m+1)j)j∈LQ.

with

γ′2 = γj∈Jmmj ] (βj∈J2\{j0}
2j )∇ Pred ′2 = Pred2 ∧ (β2j0 = αm ∧ Predm)

Post ′2 = Post2 ] Postm

3. For the last τ OTs, i.e. p ∈ [1 ..m2]. We have similarly to the first case:
Either there is i such that p = n′i, and thus βi and β1pj0 are defined. In
this case by Lemma 7, we have:

P [Q]j0 |= ··············································································
γ′3p,Pred ′3p,Post ′3p

/sj∈L3pj ] s
j∈LQ
ij .

τ=⇒ / s j∈L3(p+1)j ] s
j∈LQ
(i+1)j.

with

γ′3p = γj∈Jiij ] (βj∈J3p\{j0}
3pj )∇ Pred ′3p = Pred3p ∧ (β3pj0 = αi ∧ Predi)

Post ′3p = Post3p ] Posti

Or j0 6∈ dom(β3p) and Q does not move in the composed reduction. In this
case there is no i such that p = n′i, but there is i such that p ∈]n′i..n′i+1[,
and

P [Q]j0 |= ··············································································
β3p,Pred3p,Post3p

/sj∈L3pj ] s
j∈LQ
ij .

τ−→ / sj∈L3(p+1)j ] s
j∈LQ
ij .

and thus we also have a weak OT by definition 13 (rule WT2):

P [Q]j0 |= ·············································································
γ′3p,Pred ′3p,Post ′3p

/sj∈L3pj ] s
j∈LQ
ij .

τ=⇒ / sj∈L3(p+1)j ] s
j∈LQ
ij .

with γ′3p = β3p,Pred ′3p = Pred3p,Post ′3p = Post3p

By definition of weak open transition (Definition 13, rule WT3), we obtain:

P [Q]j0 |= ·····················································································
γ′,Pred ′′,Post ′′

/sj∈L10j ] s
j∈LQ
0j .

α′′=⇒ / s j∈L3(m2+1)j ] s
j∈LQ
(n+1)j.
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where

α′′ =α′{{
1⊙

j=m1

Post′1j}}

γ′ =
m1⊕
i=1

γ′1i{{
1⊙

k=i−1

Post ′1k}} ⊕ γ′2{{
1⊙

k=m1

Post ′1k}}⊕

m2⊕
i=1

γ′3i{{
1⊙

k=i−1

Post ′3k�Post ′2�
1⊙

k=n

Post ′1k}}

Pred ′′ =
m1∧
i=1

Pred ′1i{{
1⊙

j=i−1

Post ′1j}} ∧ Pred ′2{{
1⊙

j=m1

Post ′1j}}∧

m2∧
i=1

Pred ′3i{{
1⊙

j=i−1

Post ′3j�Post ′2�
1⊙

j=m2

Post ′1j}}

Post ′′ =
1⊙

j=m2

Post ′3j�Post ′2�
1⊙

j=m1

Post ′1j

However it must be noticed that in steps 1 and 3, we have two kinds of
WOTs with different signatures (depending on whether Q moves or not). It is
still possible to glue them together in a global rule with two more terms for Pred
and Post terms. This global merge is possible because the post-conditions of P
only act on variables of P and those of Q on variables of Q (for example Posti
has no effect on Pred1p and thus does not need to be taken into account when
dealing with WOTs where Q does not move).

We now compare each element of the obtained WOT with the conclusion of
the lemma:

α′′ = α′{{
1⊙

j=m1

Post ′1j}}

= α′{{
1⊙

j=m1

Post1j}} α′ only contains variables of P untouched by Posti

= α

For γ′ we distinguish elements in the holes of P and of Q.
First suppose j ∈ J \ {j0} we have γ′j = γj because Post ′ij has no effect on

variables of P and on β1pj , consequently we have:

γ′j =
m1⊕
i=1

(β1ij{{
1⊙

k=i−1

Post1k}})∇ ⊕ (β2j{{
1⊙

k=m1

Post1k}})∇⊕

m2⊕
i=1

(β3ij{{
1⊙

k=i−1

Post3k�Post2�
1⊙

k=m1

Post1k}})∇
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Second, when j ∈ Jt for some t, γ′j is the concatenation of elements of
γ′1ij , γ′2j , γ′3ij that are not empty. By construction the concatenation of these
elements is γtj , for t ∈ [0..n]. Postik has no effect on γtj but Postk has. We
obtain:

γ′j =
m1⊕
i=1

γ′1ij{{
1⊙

k=i−1

Post ′1k}} ⊕ γ′2j{{
1⊙

k=m1

Post ′1k}}⊕

m2⊕
i=1

γ′3ij{{
1⊙

k=i−1

Post ′3k�Post ′2�
1⊙

k=n

Post ′1k}}

=
n⊕
t=1

γtj{{
1⊙

k=t−1

Postk}}

Concerning predicates, we also separate predicates on P from predicates on
Q, and from the equality on the action filling the hole:

Pred ′′ =
( m1∧
i=1

Pred ′1i{{
1⊙

j=i−1

Post ′1j}} ∧ Pred ′2{{
1⊙

j=m1

Post ′1j}}

∧
m3∧
i=1

Pred ′3i{{
1⊙

j=i−1

Post ′3j�Post ′2�
1⊙

j=m1

Post ′1j}}
)

=
( m1∧
p=1

Pred1p{{
1⊙

j=p−1

Post1j}} ∧ Pred2{{
1⊙

p=m1

Post1p}} ∧
m2∧
p=1

Pred3p{{
1⊙

j=p−1

Post3j ⊗ Post2 ⊗
1⊙

p=m1

Post1p}}
)

∧
n∧
t=1

Predt
1⊙

i=t−1

Posti ∧
(m−1∧
i=1

(β1nij0 = αi){{
1⊙

j=ni−1

Post ′1j}} ∧ (β2j0 = αm){{
1⊙

j=m1

Post ′1j}}

∧
n∧

i=m+1

(β3n′
i
j0 = αi){{

1⊙
j=n′

i
−1

Post ′3j�Post ′2�
1⊙

j=m1

Post ′1j}}
)

=
( m1∧
p=1

Pred1p{{
1⊙

j=p−1

Post1j}}
)
∧ Pred2{{

1⊙
p=m1

Post1p}} ∧
m2∧
p=1

Pred3p{{
1⊙

j=p−1

Post3j⊗Post2⊗
1⊙

p=m1

Post1p}}
)

∧
n∧
t=1

Predt
1⊙

i=t−1

Posti ∧
(m−1∧
i=1

(βi = αi){{
1⊙

j=i−1

Postj}} ∧ (βm = αm){{
1⊙

j=m

Postj}}

∧
n∧

i=m+1

(βi = αi){{
m⊙

j=i−1

Postj�Postm�
1⊙

j=m−1

Postj}}
)

= Pred
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Finally, concerning post-conditions:

Post ′′ =
1⊙

j=m2

Post ′3j�Post ′2�
1⊙

j=m1

Post ′1j

=

(
1⊙

j=m2

Post ′3j�Post ′2�
1⊙

j=m1

Post ′1j

)
]

1⊙
j=n

Postj

= Post ]
1⊙

j=n

Postj

This allows us to conclude concerning the lemma. �
Theorem 7. Congruence. Consider an open pNet: P = 〈〈P i∈Ii ,Sortj∈Jj ,SV〉〉.
Let j0 ∈ J be a hole. Let Q and Q′ be two weak FH-bisimilar pNets such that
Sort(Q) = Sort(Q′) = Sortj0 . Then P [Q]j0 and P [Q′]j0 are weak FH-bisimilar.

Proof. Consider Q weak FH-bisimilar to Q′. It means that there exists an
FH-bisimulation RQ,Q′ relating the two pNets Q and Q′. We define a relation
R relating states of P [Q]j0 with states of P [Q′]j0 :

R = {(/SP ] SQ., /SP ] SQ′.,PredQ,Q′)| (SQ, SQ′ ,PredQ,Q′) ∈ RQ,Q′}

To prove weak FH-bisimilarity of P [Q]j0 and P [Q′]j0 , we consider an open
transition OT of P [Q]j0 , and an equivalent state of P [Q′]j0 , and we try to find
a family of WOT of P [Q′]j0 that simulates OT . Consider an OT of P [Q]j0 it is
of the form (notations introduced to prepare the decomposition):

P [Q]j0 |= ····················································································
β
j∈(JP]JQ)
j ,PredP ∧ PredQ,PostP ] PostQ

/SP ] SQ . α−→ / S′P ] S′Q.

By the decomposition lemma for OTs (Lemma 1), we obtain the 2 following
OTs (equality side-conditions have been unlined for clarity):

P |= ······························································
βj∈JPj ] (j0 7→αQ),PredP ,PostQ

/SP .
α−→ / S′P .

and Q |= ········································
β
j∈JQ
j ,PredQ,PostQ
/SQ .

αQ−−→ / S′Q.

By definition of R we have (SQ, SQ′ |PredQ,Q′) ∈ RQ,Q′ . And thus, by
definition of weak FH-bisimulation, there exists a family of weak open transitions
WOTx:

···············································γ
j∈JQ
jx ,PredQ′x,PostQ′x
/SQ′ .

αx=⇒ / S′Q′x.

where
∀x. (S′Q, S′Q′x|PredQ,Q′x) ∈ RQ,Q′

86



and

PredQ,Q′ ∧ PredQ =⇒( ∨
x∈X

(∀j ∈ JQ. (βj)∇ = γjx)⇒ (PredQx∧αQ = αx∧PredQ,Q′x{{PostQ′x]PostQ}})
)

Composing the OT of P with the WOTs of Q′ by Lemma 7 we obtain:

P [Q′]j0 |= ········································································································
(βj∈JPj )∇ ] γj∈JQjx ,PredP ∧ PredQ′x,PostP ] PostQ′x

/SP ] SQ′ . α=⇒ / S′P ] S′Q′x.

with
∨
x∈X

(
∀j ∈ JQ. (βj)∇ = γjx =⇒ αQ = αx

)
that ensures that the open tran-

sitions can be recomposed when the OT fires.
Side conditions necessary to prove weak-FH bisimulations are:

∀x. (S′P ] S′Q, S′P ] S′Q′x|PredQ,Q′x) ∈ R

which is true, and

PredQ,Q′ ∧ PredP ∧ PredQ =⇒( ∨
x∈X

(∀j ∈ JQ. (βj)∇ = γjx ∧ ∀j ∈ JP . (βj)∇ = (βj)∇))⇒

(PredP ∧ PredQ′x ∧ α = α ∧ PredQ,Q′x{{PostP ] PostQ′x ] PostQ}})
)

We conclude by observing that PostP has no effect on variables of Q and Q′,
and thus on PredQ,Q′x. �
Theorem 8. Context equivalence. Consider two FH-bisimilar open pNets:
P = 〈〈P i∈Ii ,Sortj∈Jj ,SV〉〉 and P ′ = 〈〈P ′i∈Ii ,Sortj∈Jj ,SV’〉〉 (recall they must have
the same holes to be bisimilar). Let j0 ∈ J be a hole, and Q be a pNet such
that Sort(Q) = Sortj0 . Then P [Q]j0 and P ′[Q]j0 are FH-bisimilar.

Proof. Consider P weak FH-bisimilar to P ′. There exists an FH-bisimulation
RP,P ′ relating P and P ′. We define a relation R relating states of P [Q]j0 with
states of P ′[Q]j0 :

R = {(/SP ] SQ., /SP ′ ] SQ.,PredP,P ′)| (SP , SP ′ ,PredP,P ′) ∈ RP,P ′}

To prove weak FH-bisimilarity of P [Q]j0 and P ′[Q]j0 , we consider an open
transition OT of P [Q]j0 , and an equivalent state of P ′[Q]j0 , and we try to find
a family of WOT of P ′[Q]j0 that simulates OT . Consider an OT of P [Q]j0 it is
of the form (notations introduced to prepare the decomposition):

P [Q]j0 |= ··································································································
β
j∈(JP]JQ)
j ,PredP ∧ PredQ ∧ Pred,PostP ] PostQ

/SP ] SQ . α−→ / S′P ] S′Q.
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By the decomposition lemma for OTs (Lemma 1), we obtain the 2 following
OTs (equality side-conditions have been unlined for clarity):

P |= ······························································
βj∈JPj ] (j0 7→αQ),PredP ,PostQ

/SP .
α−→ / S′P .

and Q |= ········································
β
j∈JQ
j ,PredQ,PostQ
/SQ .

αQ−−→ / S′Q.

With Pred ⇐⇒ αQ = βj0

By definition of R we have (SP , SP ′ ,PredP,P ′) ∈ RP,P ′ . And thus, by defi-
nition of weak FH-bisimulation, there exists a family of weak open transitions
WOTx:

························································γ
j∈JP]{j0}
jx ,PredP ′x,PostP ′x

/SP ′ .
αx=⇒ / S′P ′x.

where
∀x. (S′P , S′P ′x,PredP,P ′x) ∈ RP,P ′

and

PredP,P ′ ∧ PredP =⇒
( ∨
x∈X

(∀j ∈ JP . (βj)∇ = γjx ∧ (αQ)∇ = γj0)⇒

(PredP ′x ∧ α = αx ∧ PredP,P ′x{{PostP ′x ] PostP }})
)

We here need a special case of Lemma 8 where the inner pNet Q does a
simple OT. This is just a particular case of the theorem but where notations
get simplified because the inner pNet does a single transition. This way we can
compose the WOTs of P ′ with the OT of Q and obtain, with γj0 = [β]:

P ′[Q]j0 |= ····························································································································
(βj∈JQj )∇ ] γj∈JPjx ,PredP ′x ∧ PredQ ∧ αQ = β,PostP ′x ] PostQ

/SP ′ ] SQ . αx=⇒ / S′P ′x ] S′Q.

Side conditions necessary to prove weak FH-bisimulations are:

∀x. (S′P ] S′Q, S′P ′x ] S′Q,PredP,P ′x) ∈ R

which is true, and

PredP,P ′ ∧ PredP ∧ PredQPred =⇒( ∨
x∈X

(∀j ∈ JP . (βj)∇ = γjx ∧ ∀j ∈ JQ. (βj)∇ = (βj)∇)⇒

(PredP ′x ∧PredQ ∧αQ = β ∧αx = α∧PredP,P ′x{{PostP ′x ]PostP ]PostQ}})
)

We conclude by observing that PostQ has no effect on variables of P and P ′,
and thus on PredP,P ′x and Pred leading to the conclusion about αQ = β. �
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Appendix C. Full details of the Simple Protocol Example

The first piece of code is the textual definition of the SimpleProtocolSpec
pNet, that was drawn in Figure 2, page 14. This code should be intuitive enough
to read, with the following language conventions, that brings some user-friendly
features, mapped by the editor into pure pNet constructs.

• Constants of any type (including Action) must be declared as “const”.
They are used either as functions with argument, as typically in(msg), or
constants without argument, typically as "tau()".

• Variables can be declared as global variables of a pLTS (e.g. m_msg in
PerfectBuffer), or a pNet Node in the case of synchronisation vec-
tor variables (e.g. p_a), or as input variables in a pLTS, as ?msg in
PerfectBuffer.

• The variables in the guards of synchronisation vectors (e.g. in SV1) do
not need to be explicitly quantified: by convention, all variables in a guard
that do not appear inside the vector actions will be recognised as bound
by a forall quantifier inside the guard.

• The tools will check that everything is correctly declared, that variables are
used properly and do not conflict between different objects, that vectors
have coherent length, etc.

SimpleProtocolSpec :
import " Data_Alg .algp"
root SimpleProtocolSpec
const in , out: Action
const p_send , q_recv : Action
const tau: Action

pLTS PerfectBuffer
initial b0
vars ?m:Data
vars b_msg :Data b_ec:Nat

state b0
transition in(m) -> b1 { b_msg :=m, b_ec :=0}

state b1
transition out(b_msg , b_ec) -> b0
transition synchro (tau ()) -> b1 {b_ec := b_ec +1}

pNet SimpleProtocolSpec
holes P,Q
subnets P, PerfectBuffer ,Q
vars p_a ,q_b: Action m:Data ec:Nat

vector SV0 <p_send (m),in(m),_>-> synchro (in(m))
vector SV1 <p_a ,_,_>->p_a [p_a != p_send (x)]
vector SV2 <_,out(m,ec), q_recv (m,ec)>-> synchro (out(m,ec ))
vector SV3 <_,_,q_b >->q_a [q_b != q_recv (x,y)]
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The corresponding generated Open Automaton was given in Figure 4, page
21.

Next is the code for the SimpleProtocolImpl pNet:

SimpleProtocolImpl :
import " Data_Alg .algp"
root SimpleProtocolImpl

const in ,out: Action
const tau ,p_send ,q_recv ,m_recv ,m_send , m_error : Action
const s_recv ,s_send ,s_ack ,s_error ,r_recv ,r_ack , r_send : Action

pLTS Sender
initial s0
vars ?m:Data
vars s_msg :Data s_ec:Nat

state s0
transition s_recv (m) -> s1 { s_msg :=m, s_ec :=0}

state s1
transition s_send (s_msg , s_ec) -> s2

state s2
transition s_ack () -> s0
transition s_error () -> s1 {s_ec := s_ec +1}

pLTS Medium
initial m0
vars ?m:Data ?ec:Nat
vars m_msg :Data m_ec:Nat

state m0
transition m_recv (m,ec) -> m1 { m_msg :=m, m_ec := ec}

state m1
transition m_send (m_msg , m_ec) -> m0
transition synchro (tau ()) -> m2

state m2
transition m_error () -> m0

pLTS Receiver
initial r0
vars ?m:Data ?ec:Nat
vars r_msg :Data r_ec:Nat

state r0
transition r_recv (m,ec) -> r1 { r_msg :=msg , r_ec := ec}

state r1
transition r_send (r_msg , r_ec) -> r2

state r2
transition r_ack () -> r0

pNet SimpleProtocol
subnets Sender ,Medium , Receiver
vars m:Data c:Nat

vector SV0 <s_recv (m),_, _>->in(m)
vector SV1 <s_send (m,ec), m_recv (m,ec),_>-> synchro (tau ())
vector SV2 <_, m_send (m,ec), r_recv (m,ec)>-> synchro (tau ())
vector SV3 <s_ack (),_, r_ack ()>-> synchro (tau ())
vector SV4 <s_error (), m_error (),_>-> synchro (tau ())
vector SV5 <_,_, r_send (m,ec)>->out(m,ec)

pNet SimpleProtocolImpl
holes P,Q
subnets P, SimpleProtocol ,Q
vars p_a ,q_a: Action m:Data c:Nat

vector SV0 <p_send (m),in(m),_>-> synchro (in(m))
vector SV1 <p_a ,_,_>->p_a [p_a != p_send (x)]
vector SV2 <_,out(m,ec), q_recv (m,ec)>-> synchro (out(m,ec ))
vector SV3 <_,_,q_b >->q_b [q_b != q_recv (x,y)]
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Figure C.11: Weak Open Automaton for SimpleProtocolImpl

In Figure C.11 we recall the weak open automaton of SimpleProtocolImpl.
This drawing is based on the observation that states 202 and 000 are only
linked by a "pure τ " transition, and have exactly the same possible behaviours.
In this configuration we can guarantee that they are weak bisimilar, and we
have merged their (incoming and outgoing) transitions in the figure. We denote
this equivalence class of states as {000, 202}.

Full details of the weak transitions is listed here:
In the first 3 weak transitions, S denotes the set of all global states.

Wτ = ·······················
{}, T rue, ()
S

τ=⇒S

WI1 = ·····································································
{P 7→p-a}, [∀x.p-a 6= p-send(x)], ()

S
p-a==⇒S

WI2 = ···············································································
{Q 7→q-b}, [∀x,y.q-b 6= q-recv(x,y)], ()

S
q-b==⇒S

All the following transitions are parameterised by an integer n ∈ Nat, mean-
ing they stand for the corresponding (infinite) set of weak OTs. In some cases,
this set is further restricted (see e.g. WI7b(n)), in which cases we have added
an explicit quantifier.

WI3(n) = ·····························································································
{P 7→p-send(m)}, T rue, (s_msg← m, s_ec← n)

{000, 202} in(m)===⇒ 100

WI3a(n) = ···················································································································
{P7→p-send(m)}, T rue, (m_msg← m, m_ec← n, s_ec← n)

{000, 202} in(m)===⇒ 210

WI3b(n) = ······································································
{P7→p-send(m)}, T rue, (s_ec← n)

{000, 202} in(m)===⇒ 220
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WI3c(n) = ·····························································································
{P7→p-send(m)}, T rue, (r_msg← m, r_ec← n)

{000, 202} in(m)===⇒ 201

WI4(n) = ·······························································································································
{}, T rue, (m_msg← s_msg, m_ec← s_ec + n, s_ec← s_ec + n)

100 τ=⇒ 210

WI4a(n) = ·························································
{}, T rue, (s_ec← s_ec + n)

100 τ=⇒ 220

WI5(n) = ·························································
{}, T rue, (s_ec← s_ec + n)

210 τ=⇒ 220

WI5a(n) = ·································································
{}, T rue, (s_ec← s_ec + 1 + n)

210 τ=⇒ 100

WI6(n) = ·································································
{}, T rue, (s_ec← s_ec + 1 + n)

220 τ=⇒ 100

WI6a(n) = ··············································································································································
{}, T rue, (m_msg← s_msg, m_ec← s_ec + 1 + n, s_ec← s_ec + 1 + n)

220 τ=⇒ 210
Because

Post6a = post4� post∗456� post6

= ((m_msg← s_msg, m_ec← s_ec)�(s_ec← s_ec + n))�(s_ec← s_ec + 1)
= (m_msg← s_msg, m_ec← (s_ec + 1) + n, s_ec← (s_ec + 1) + n)

WI456∗(n) = ·························································
{}, T rue, (s_ec← s_ec + n)

100 τ=⇒ 100

WI564∗(n) = ··············································································································································
{}, T rue, (m_msg← s_msg, s_ec← s_ec + 1 + n, m_ec← s_ec + 1 + n)

210 τ=⇒ 210

WI645∗(n) = ·································································
{}, T rue, (s_ec← s_ec + 1 + n)

220 τ=⇒ 220

WI7(n) = ··························································································
{}, T rue, (r_msg← s_msg, r_ec← s_ec + n)

210 τ=⇒ 201

WI7a(n) = ··························································································
{}, T rue, (r_msg← s_msg, r_ec← m_ec + n)

220 τ=⇒ 201

∀n ≥ 1.WI7b(n) = ··························································································
{}, T rue, (r_msg← m_msg, r_ec← s_ec + n)

100 τ=⇒ 201

WI8 = ·············································································
{Q 7→q-recv(r1-msg,r1-ec)}, T rue, ()

201 out(r1-msg,r1-ec)===========⇒{202, 000}

∀n ≥ 1.WI8a(n) = ················································································
{Q7→q-recv(m_msg,m_ec + n)}, T rue, ()

210 out(m_msg,m_ec+n)===========⇒{202, 000}

∀n ≥ 1.WI8b(n) = ················································································
{Q7→q-recv(s_msg,s_ec + n)}, T rue, ()

220 out(s_msg,m_ec+n)===========⇒{202, 000}
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∀n ≥ 1.WI8c(n) = ················································································
{Q 7→q-recv(s_msg,s_ec + n)}, T rue, ()

100 out(s_msg,s_ec+n)===========⇒{202, 000}
Then for all τ transitions above we have a similar WOT that include a non-τ

move from an external action of P or Q, like for example:

WI4P (n) = ············································································································

{P7→p-a}, [∀x.p-a 6= p-send(x)],
(m_msg← s_msg, m_ec← s_ec + n, s_ec← s_ec + n)

100 p-a==⇒ 210

and WI4Q(n) = ············································································································

{Q 7→q-b}, [∀x,y.q-b 6= q-recv(x,y)],
(m_msg← s_msg, m_ec← s_ec + n, s_ec← s_ec + n)

100 q-b==⇒ 210
but also e.g.:

WI456∗P (n) = ·········································································································································
{P7→p-a}, [∀x.p-a 6= p-send(x)], (s_msg← s_msg, s_ec← s_ec + n)

100 p-a==⇒ 100

The following table give a summary of WOTs, when sharing their names as
much as possible.
WOT name Pairs of source states and target states # WOTs
WI1 WI2 WIτ {(s, s)|s∈States of WOA}∪{(202, 000)} 21
WI3(n) {(202,100),(000,100)} 2
WI3a(n) {(202,210),(000,210)} 2
WI3b(n) {(202,220),(000,220)} 2
WI3c(n) {(202,201),(000,201)} 2
WI4(n) WI4P (n) WI4Q(n) {(100,210)} 3
WI4a(n) WI4aP (n) WI4aQ(n) {(100,220)} 3
WI456∗(n) WI456∗P (n) WI456∗Q(n) {(100,100)} 3
WI5(n) WI5P (n) WI5Q(n) {(210,220)} 3
WI5a(n) WI5aP (n) WI5aQ(n) {(210,100)} 3
WI564∗(n) WI564∗P (n) WI564∗Q(n) {(210,210)} 3
WI6(n) WI6P (n) WI6Q(n) {(220,100)} 3
WI6a(n) WI6aP (n) WI6aQ(n) {(220,210)} 3
WI645∗(n) WI645∗P (n) WI645∗Q(n) {(220,220)} 3
WI7(n) WI7P (n) WI7Q(n) {(210,201)} 3
WI7a(n) WI7aP (n) WI7aQ(n) {(220,201)} 3
WI7b(n) WI7bP (n)P WI7bQ(n) {(100,201)} 3
WI8(n) {(201,202),(201,000)} 2
WI8a(n) {(210,202),(210,000)} 2
WI8b(n) {(220,202),(220,000)} 2
WI8c(n) {(100,202),(100,000)} 2

That makes a total of 73 WOTs in the open automaton for
SimpleProtocolImpl.
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Appendix C.1. Details of the FH-bisimulation checking
We recall here the relation R that is the candidate for our weak FH-

bisimulation relation:

SimpleProtocolSpec
states

SimpleProtocolImpl
states Predicate

b0 000 True
b0 202 True
b1 100 b_msg = s_msg ∧ b_ec = s_ec
b1 210 b_msg = m_msg ∧ b_ec = m_ec
b1 220 b_msg = s_msg ∧ b_ec = s_ec
b1 201 b_msg = r_msg ∧ b_ec = r_ec

Consider the first triple <b0, 000, True>, we have to prove the following 6
properties, in which OT << WOT means that the (strong) open transition OT
is covered, in the sense of Definition 14, by the weak transition WOT (it could
be a set, but this will not be used here):

SS1 << WI1
SS2 << WI2
SS3 << WI3

SI1 << WS1
SI2 << WS2
SI3 << WS3

Note that if we were using the alternative weak FH-bisimulation relation
from Appendix B.1, Lemma 4, that is checking strong FH-bisimulation between
the corresponding weak automaton, we would have a more transitions coverage
to examine, as we have 4 weak transitions for b0 in the SimpleProtocolSpec
weak automaton, and 7 WOTs (including 4 parameterised WOTs) from 000 in
the SimpleProtocolImpl automaton.

Preliminary remarks:

• Both pNets trivially verify the “non-observability” condition: the only
vectors having τ as an action of a sub-net are of the form “< −, τ,− >→
τ”.

• We must take care of variable name conflicts: in our example, the variables
of the 2 systems already have different names, but the action parameters
occurring in the transitions (m, msg, ec) are the same, that is not correct.
Recall that we disambiguate the reference to the variable m into m1 for
SimpleProtocolSpec and m2 for SimpleProtocolImpl.

In our running example in page 34, we have shown the proof for one of the
transitions of (b0, 202, T rue), namely that SS3 is covered by WI3(0). We give
here another example with SS1 << WI1, from the first triple (b0, 000, T rue).
It includes less trivial predicates in the OTs:

SS1 = ···············································································
{P 7→p-a1}, [∀m1.p-a1 6= p-send(m1)], ()

b0 p-a1−−−→ b0
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WI1 = ···············································································
{P 7→p-a2}, [∀m2.p-a2 6= p-send(m2)], ()

000 p-a2==⇒ 000
Let us check formally the conditions:

• Their sets of active (non-silent) holes is the same: J ′ = Jx = {P}.

• Triple (b0, 000, T rue) is in R.

• The verification condition

∀fvOT .{Pred ∧ PredOT =⇒∨
x∈X

[
∃fvOTx .

(
∀j ∈ Jx.(βj)∇=γjx∧PredOTx∧α=αx∧

Preds′,tx{{PostOT ]PostOTx}}
)]
}

Gives us:
∀p-a1.{True ∧ ∀m1.p-a1 6= p-send(m1)
=⇒ ∃p-a2.(p-a1 = p-a2∧∀m2.p-a2 6= p-send(m2)∧p-a1 = p-a2∧True}

That is trivially true, choosing p-a2=p-a1 for each given p-a1.

All others pairs from this set are just as easily proven true.
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