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NON SYMMETRIC CAUCHY KERNEL, CRYSTALS AND LAST PASSAGE
PERCOLATION

OLGA AZENHAS, THOMAS GOBET, CEDRIC LECOUVEY

ABSTRACT. We use non-symmetric Cauchy kernel identities to get the law of last passage perco-
lation models in terms of Demazure characters. The construction is based on some restrictions
of the RSK correspondence that we rephrase in a unified way which is compatible with crystal
basis theory.
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1. INTRODUCTION

The Cauchy kernel identity is a classical corner stone in the theory of symmetric functions
and characters of the linear groups over the complex field. Given two sets of indeterminates
X =A{x1,...,zpn} and Y = {y1,...,y,} it asserts that

m n 1
111 o= > sa(X)sa(Y)
i=1j=1 iYi AEPmin(m,n)

where Pyin(m,n) 18 the set of partitions with at most min(m,n) parts and, for each such partition

A, sx(X) and s)(Y) are the Schur polynomials in the indeterminates X and Y, respectively. In
1
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fact the Schur functions s)(X) and s,(Y') can be interpreted as the characters of the irreducible
finite-dimensional representations of highest weight A for the linear Lie algebras gl,,(C) and
gl,,(C). The aforementioned Cauchy identity can then be regarded as the character of the
gl,, x gl,, bi-module S(C™ x C™) where S(C™ x C") is the symmetric tensor space associated
to C™ x C™. This can be proved in a very elegant way (see [16, 39]) by using the Robinson-
Schensted-Knuth correspondence. Recall this is a one-to-one map 1) between the set M,, , of
matrices M with m rows, n columns and entries in Z>q, and the pairs (P, Q) of semistandard
tableaux both with the same shape A where P and @ have entries in {1,...,m} and {1,...,n},
respectively. The RSK correspondence has many interesting properties. In particular, for each
matrix M in M,, ., the greatest integer which can be obtained by summing up the entries in all
the possible paths starting at position (1,n) and ending at position (m,1) with steps «+— or |
coincided]] with the longest row in the tableaux P, @ such that (M) = (P, Q). It is then natural
to study percolation models based on the RSK correspondence where random matrices whose
entries follow independent geometric laws are considered (see [7] for a recent exposition). This
type of model has been deeply studied by Johansson in [20], who proved that the fluctuations
of the previous last passage percolation, once correctly normalized, are controlled by the Tracy-
Widom distribution (defined from the study of the largest eigenvalues of random Hermitian
matrices). The RSK correspondence admits various generalizations which can also be used to
get interesting last passage percolation models. These models involve symmetric polynomials
or generalizations of symmetric polynomials, in particular characters of representations of Lie
algebras other than gl, (which are also symmetric with respect to the associated Weyl group).
We refer the reader to [10] for a recent survey and numerous new interesting results in this
direction. In a connected area, the various Cauchy identities also yield rich random structures
as those studied for instance in the recent papers [5, [35] 36].

In this paper, we shall follow a different approach and consider percolation models based
on the non-symmetric Cauchy kernel as initially studied by Lascoux in [26]. It was also later
considered in [I8] just as computations on polynomials. This means that the ordinary Cauchy
identity will be replaced by its non-symmetric analogue

1) I — = 3 #(X)su()

L1 -2y
1<j<i<n I pezy,

where 7*(X) and k,(Y’) are this time Demazure atoms and Demazure characters (see § 234
below for complete definitions) in the indeterminates X and Y (with m = n). It is important to
emphasize here that these polynomials are not symmetric in X and Y. They only correspond to
characters of representations for subalgebras of the enveloping algebra U(gl,,). It was proved in
[26] that the identity () can be obtained by restricting the RSK correspondence 1 to the set of
lower triangular matriced. Since then, different other proofs have been proposed, in particular in
[3] (using the combinatorics of semi-skyline augmented fillings) and [11] (using the combinatorics
of crystal bases). We note that recently in [2] an explicit tableau crystal on Mason’s semi-
skyline augmented fillings [32] has been developed using the combinatorially equivalent objects,
semi-standard key tableaux, introduced by the first author [I]. The seminal paper [26] also
established generalizations of the formula (Il) where positions with nonzero entries are authorized
in the matrices outside their lower part. These so-called extended staircase formulas (see §
and § B3]) were then obtained just by computations on polynomials and thus not related

1We here consider the paths which are compatible with the version of RSK that will be used in the paper.
2In fact, the convention of our paper differs from that in |[26] which considers matrices with nonzero entries in
positions (¢, 7) with 1 <74 j < n + 1 rather than lower-triangular matrices.



NON-SYMMETRIC CAUCHY KERNEL AND LPP 3

to the RSK correspondence. This connection was partially done in [4] where other truncated
staircases formulas are also proved to be compatible with the RSK correspondence using the
combinatorics of semi-skyline augmented fillings [31] 32] and Fomin’s growth diagrams [15] [39].
This corresponds to the case where nonzero entries are authorized only in positions (i, j) with
n—p<i<j<gq, for pand ¢ two nonnegative integers such that n > g > p > 1.

The goal of our paper is two-fold. First, we establish all the existing variants of the non-
symmetric Cauchy Kernel identities in the setting of crystal basis theory and make it compatible
with the RSK construction based on bi-crystals. Recall here that crystals are oriented graphs
which can be interpreted as the combinatorial skeletons of irreducible finite-dimensional repre-
sentations of gl,. We refer the reader to [9] and the references therein for a recent exposition.
Crystal bases were introduced by Lusztig (for any finite root system) [30] and Kashiwara (for
classical root systems) [21] in 1990. The graph structure arises from the action of the so-called
Kashiwara operators, which are certain renormalizations of the Chevalley operators. It was later
proved that crystals coincide with Littelmann’s graphs defined by using his path model [28].
Crystal theory allows one to get an illuminating interpretation of the RSK-correspondence and
thus, in particular, of the Cauchy identity. A similar interpretation was discovered by Choi and
Kwon in [II] for the non-symmetric case (dl). Here we complete the picture with the truncated
and augmented staircase formulas. Our second objective is to use the previous compatibility of
the aforementioned map ¥ with the generalized Cauchy identities to give the law of some last
passage percolation models where constraints are imposed on the locations of nonzero positions
in the random matrices considered. These laws will be expressed in terms of Demazure char-
acters and Demazure atoms and thus will have less symmetries than the existing ones which
rather use symmetric polynomials. There is nevertheless an interesting intersection in the case
x; = y; for any i = 1,...,n. Then, the identity (Il becomes symmetric and can be expanded
in terms of Schur functions by using an identity due to Littlewood (see [11]). This case yields
a last passage percolation model already studied (see [10]). We emphasize that z; # y; in our
case, which explains why we need to consider Demazure characters, which are non-symmetric
in general.

The paper is organized as follows. In Section 2, we recall the background on representation
theory of gl,,, the corresponding character theory (its usual and Demazure versions) and its links
with the Coxeter monoid and crystal basis theory. Some key results for the purposes of this
article are established here for which we did not find references in the literature. We also relate
the RSK correspondence with bi-crystal structures and interpret the Cauchy and non-symmetric
Cauchy identities in this context. The non-symmetric Cauchy identity is in particular obtained
as the restriction of the usual RSK to lower triangular matrices. The goal of Section 3 is to
prove that one can also get the truncated staircase Cauchy identity by restriction of RSK to a
relevant subset of matrices. To this end, we consider parabolic restrictions of Demazure crystals
and show that they admit a simple combinatorial structure. In particular, § 3.3l is devoted to
the extended staircase Cauchy identity which is yet obtained by restriction of RSK. The idea
here is to use suitable adaptations of Demazure operators (defined on polynomials) acting on
crystals. It is also explained in § B4l how the extended staircase result allows one to rederive the
truncated staircase identity by making more explicit its formulation and connecting it to the
approach proposed in [3,4]. Finally in Section [, we use the previous combinatorial constructions
to get the law of various percolation models in terms of Demazure characters. In the Appendix
Bl for the reader convenience, Coxeter monoids and Coxeter-theoretic techniques are given.

MSC classification: 05E05, 05E10, 60K 35.
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2. BACKGROUND ON REPRESENTATIONS AND CHARACTERS OF gl,

In this section, we review some classical results about representation theory of the linear
Lie algebra gl, = gl,,(C) over the field of complex numbers [I7]. Firstly, recall the triangular
decomposition gl,, = gl @ b @ gl of gl, into its upper, diagonal and lower parts.

2.1. Representations and characters. Let P,, be the set of partitions A = (A\y > --- >\, >
0) with at most n parts. A partition will be identified with its Young diagram written in French
convention (see Example [2.0). The finite-dimensional irreducible polynomial representations
of gl, are parametrized by the partitions in P,. To any A\ € P,, we denote by V(\) the
corresponding finite-dimensional representation (or gl,,-module). By considering only the action
of the (commutative) Cartan subalgebra h on V(\), one gets the weight space decomposition

V) = @V,
neP

where the weight space P =Z%, = @©]_;Z>¢e; is regarded as a subset of h* and for any u € P
V(N ={ve V()| h(v) =pu(h)v for any h € h}.

The symmetric group &,, (which is the Weyl group of gl,,) acts on P by permuting the coordinates
of the weights and one then has dim V/(\), = dim V/(\),(, for any o € &, and any p € P. The
weight space decomposition leads to the notion of character of V() which is the polynomial in
the indeterminates x1, ..., x, defined by

s\ = Z dim V/(\) .zt
neP

where for any p = (p1,...,4n) € Z%, we use the notation z# = z/* .-

-xh™. By the previous
considerations, the polynomial s, belongs in fact to the ring Symyz1,...,z,] of symmetric
polynomials in the indeterminates x1, ..., x, with coefficients in Z. This is the celebrated Schur
polynomial which can also be obtained as the quotient of two skew-symmetric polynomials using

the formula
Y oes, £(0)z70F)
ZO’EGn 6(0)$U(p)

S\ —

where p=(n—1,n—2,...,1,0).

Remark 2.1. Instead of considering the representation theory of gl,,, we can proceed similarly
with the representation theory of its enveloping algebra U(gl,,). Simple finite-dimensional U (gl,,)-
modules are still parametrized by the elements of P,, and we will use the same notation for both
representation theories.
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2.2. Bruhat order and Coxeter monoid. Recall that &,, is generated by S = {s1,...,8,-1}
where for any i = 1,...,n — 1, s; is the simple transposition (or simple reflection) flipping i
and i + 1; this yields a realization of &,, as a Coxeter group. We denote by ¢(o) the length of a
permutation o € &,,, defined as the smallest integer £ > 0 such that o = s;, - - - s;,, where the
si;’s are simple reflections. A word of the form s;, s;, - - - s;, representing o € &,, and such that
all the s;;’s are simple reflections and /(o) = k is called a reduced decomposition of o. We refer
the reader to [6] for basic statements on the symmetric group viewed as a Coxeter group.

The (strong) Bruhat order < on &,, can be defined by ¢/ < ¢ in &,, if and only if there is a
reduced decomposition of o admitting a subword (not necessarily made of consecutive letters)
which is a reduced decomposition of ¢’, if and only if every reduced decomposition of o admits
a subword which is a reduced decomposition of ¢’ (see [6, Corollary 2.2.3]). The longest element
of &,, is denoted by 0. Given any partition A in P,, we denote by &, its stabilizer under the
action of &,,. Each coset in &,,/&), contains a unique element of minimal length and the set of
elements of minimal length is denoted by &?. Then each o € &,, admits a unique decomposition
of the form o = uv with v € &), u € &) and £(0) = £(u) + £(v). One then has a one-to-one
correspondence between the elements of 62 and the &,-orbit of A which we denote by &, .

The elementary bubble sort operator 7;, 1 < i < n, on the weak composition o = (a, axa,

ap) € Z%,, sorts the entries in positions i and ¢ + 1 by swapping «o; and a1 if o > @y,
and fixing o otherwise, namely,

' ] st o > o
(2) Wz(a) o { o if (673 S Oy 1-

Thus elementary bubble sort operators m;, 1 < i < n, satisfy the relations
B) mf=m(i=1,...,n), mmpm =mamma ((=1,...,n—1), mm; =mm, (li—j]>1).

It follows from Matsumoto’s Lemma [33] 0] that for every w € &,,, we may write 7, to mean
iy iy * * * T, Whenever s;, s;, -+ s;, is a reduced word of w in &,,. Later we will see that the
above set of relations define the so-called Coxeter monoid 2, [38] (see Section [3.1]).

Lemma 2.2. Let A € P, w € S, and let p = wA.

(1) Lett= (z J) be a transposition in &, with i < j. If p; < pj, then E(tw) < l(w).
(2) If siySiy - - - 83, 15 any reduced decomposition of w, then wA = m; Wi, - - - T, (A) = Ty (A).

Proof. Recall that, given an element w € &,,, the set N(w) ={t € T | {(tw) < £(w)} is the set
of (left) inversions of w; it satisfies |N(w)| = ¢(w) and for all u,v € &, we have the equality
(see for instance [0, Chapter 1, Exercise 12])

(4) N(uv) = N(u)AuN (v)u™?,

where A denotes the symmetric difference (note that, in particular, the product uv does not
need to be reduced).

The proof of the first point is by induction on ¢(w). If ¢/(w) = 0, then w = 1 and the set of
transpositions ¢ such that £(tw) < ¢(w) is empty. We have = X and A; > A; for all j > 7 in this
case. Hence assume that ¢(w) > 0. Let s = s be a simple transposition such that w = syu and
l(w) = L(u)+1. If s = t,theni =k, j = k+1, and {(tw) < ¢(w), hence we are done. We can thus
assume that ¢t # s. Using (@) above we have N(w) = N(su) = N(s)AsN(u)s = {s}AsN(u)s
and using the fact that s # ¢, we deduce the equivalence

L(tw) < L(w) & L(stsu) < L(u),

denoting sts = (i’ j'), by induction it suffices to show that vy < v, where v = uX. We
can assume that sts # t, otherwise the supports of s and t are disjoint, hence i = i, 7/ = j,
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and v; = p;, v; = pj. We can thus assume that s € {s;_1,s4,5;-1,5;}. We treat the case
where s = s;, the other cases are similar. We have sts = (i j + 1), and we have v; = pjq,
Vj+1 = . On the other hand, since 7 is not in the support of (j j + 1), we have v; = ;. Hence
Vi = pi < [t = Vj41, which by induction yields £(stsu) < £(u).

Let us prove the second point. We argue by induction on k. If £ = 0 then there is nothing
to prove. Assume that £ > 1. By induction we have that s;,---s;, A = m, - m;, (A). Now
writing p = s;, - - - 8;, A and ¢ = i1, by the first point we have that p1; > p;11, otherwise we would
have £(s;, si, - S;,) = k — 1, contradicting the fact that s;, s;, - - - s;, is reduced. It follows that
si b = 7, (@), hence that wA = m; m;, - - - m;, (), as required. O

Lemma 2.3. Consider the set &, A, which is in bijection with G?L through w\ — w, where w

is the representative of minimal length of wS)y. Then the transitive closure of the relations
po<tu, if pi > pg, 1 < j, tis the transposition (i j) € Sy and = (p1,. .., tn) € SpA

yields a partial order on &, A, which coincides through the aforementioned bijection with the
restriction of the strong Bruhat order on &, to &).

Proof. Assume that u < tu, and let w € &,, such that p = wA. Denoting u' = tw\ = tu, we
have i} < . By point 1 of Lemma 22, we have {(w) = £(ttw) < £(tw), which shows that

w < tw in the strong Bruhat order. Tt follows that w* < (tw)?.

Conversely, let u,v € &) such that u < v. By definition of the strong Bruhat order, there
is a sequence t1,to, ..., of transpositions such that u < t1u < totqu < -+ < tptp_1---tatiu.
Note that the elements in this sequence are in &,, but, apart from u and v, not necessarily in
&)). To conclude the proof it therefore suffices to show that, if u < tu with u € &,,, t € T, then
uX < tul. Letting po = u, if p1; < p;, then by the first point of Lemma 2.2l we have £(tu) < ¢(u),
contradicting u < tu. Hence p; > p;. If p; > pj then we have p < tp. If p; = pj, we have
uA = tuX. This concludes the proof. O

Lemma 2.4. Let A € P, and let 0 € &)\. Let u = o\ and s; a simple reflection of &,. We
have the equivalences

i > piv1 iff £(si0) = (o) + 1 and sio € &),
i = piv1 iff si0 ¢ & (in which case we must have £(s;o) = (o) + 1),
i < piv1 iff £(sio) = £(o) — 1 (in which case we must have s;oc € &)).

Proof. Assume that w = s;o ¢ &). Then f(w) = £(0) + 1. Since w ¢ &), there is a simple
reflection s; € &) such that ¢(ws;) < ¢(w). Take any reduced decomposition sy, - - sy, of .
We have that s;Sy, - - sp, is a reduced decomposition of w and since ¢(ws;) < ¢(w), by the
exchange lemma there is a reduced decomposition of ws; obtained from s;s,, - --s,, obtained
by just removing a letter. If this letter is not s;, we get that £(os;) = £(0) — 1, in contradiction
with o € 6?‘“ since s; € &,. We thus have that ws; = s,, ---s,, = 0 = s;w. It follows that
o 1ls;o0 = sj € 6. This yields o~ lsjo\ = ), hence syt = p, hence p; = p;yr1. Conversely,
assume that p; = g4 1. We thus have s;o\ = oA = p. Since 0 € &), by uniqueness of the
element of the element w € &) such that x4 = w, we cannot have s;oc € &). Hence the two
statements in the middle line are equivalent.

Assume that p; > pir1. Then, since the middle equivalence is already shown, we know that
s;0 € &). By Lemma (1), we must have £(s;s;0) < {(s;0), forcing ¢(s;0) = £(o) + 1. Also
by Lemma 2.2] (1), if p; < pir1, then £(s;0) < £(0), yielding ¢(s;0) = £(o) — 1.
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We thus have shown that, in each line, the left condition implies the right one (we have even
shown that we have equivalence in the middle line). Since the three conditions on the right are
disjoint, we must have equivalence in each line. O

Lemma 2.5. Let 0 € &,, and o = g\. We can obtain the minimal representative 6 € 6;\L of o
from any 7, = wj i, w5, € My, such that wj - TN = « with sj,85, - S5, a (not neces-
sarily reduced) word of an element of &, as follows: forr =1,...,1, delete m;, in 7j ), -7},
whenever pj, < frj, 41 1 (1, ... fn) = T, - T5(X). The resulting decomposition obtained in
this way is a reduced decomposition w4 in M, and gives & € &\.

Proof. The fact that the resulting decomposition m;, m;, - - - m;, satisfies m;, m;, - - - m, (X) = 75 (N)
is clear since a letter 7;, is removed whenever its action on 7, , - - -7, () is trivial. We show by
decreasing induction on k that Si;Sijiq """ Siy (N = T Mgy * " T, (M) for all j, and that Sij " Siy
is reduced and lies in Gi;. If & = 0 then the result is trivially true. Hence let j < k and
assume that p = s, -5, (\) = 7,4 - 7, (A), and that s;,, ---s;, is reduced and lies in
6?;. We must have p; 5> i, otherwise the letter m; : would have been removed. Hence by
definition of the action of the bubble sort operator 7, we have m;, (1) = s;; (1), which yields
8i;Sijy  Sipg(N) = Ty, T (A). Setting w = s, - s we obtain using Lemma 2.4] (1)
that £(s;,w) = £(w) + 1 and s;,w € &), hence 8i;8i;4q *** Si, 15 still reduced, and defines an
element of &)).

It only remains to show that 7 := s; s;, - - - 55, is equal to 6. But we have 7-(\) = m5(\)

2l

75()\), which by Lemma 22 (2) yields 7(A\) = 6(\). Since both 7,6 lie in &), this forces 7 = &,
which concludes the proof. O

Example 2.6. Let n =4. We have
Tomamma(3,2,2,1) = mamam1(3,2,2,1) = mema(2,3,2,1) = m2(2,2,3,1) = (2,2,3,1).

Applying the algorithm described in Lemma to the word momomimy and the weight A =
(3,2,2,1) yields Tomom Ty = Wom = Ts,s,, Where the hat over the bubble sort operator denotes
omission. We indeed have momomme = T, with 0 = $38182 and & = sas1 (here &\ = {1,s2}).

2.3. Crystals.

2.3.1. Abstract crystals. To each partition A\ € P, corresponds a crystal graph B(A) which can
be regarded as the combinatorial skeleton of the simple module V' (\). In particular, its vertices
label a distinguished basis of V(). Its general structure can be defined using the canonical bases
introduced by Lusztig [30] and subsequently studied by Kashiwara under the name of global bases
(see [22] and [23]). It also admits various combinatorial realizations (i.e., vertex labelings) in
terms semistandard tableaux, Littelmann’s paths (see [28]) or semi-skyline (see [32], [3]). We will
recall the tableau realization below. The (abstract) crystal B(\) is a graph whose set of vertices
is endowed with a weight function wt : B(A) — P and with the structure of a colored and
oriented graph given by the action of the crystal operators fz and é; withi e I ={1,...,n—1}.
More precisely, we have an oriented arrow b — b between two vertices b and b’ in B()) if and
only if ¥ = f;(b) or equivalently b = &(b'). We have f;(b) = 0 (resp. &(b) = 0) when no arrow
i starts from b (resp. ends at b). Here the symbol 0 should be understood as a sink vertex not
lying in B()). For any ¢ € I, the crystal B(\) can be decomposed into its i-chains which are
obtained just by keeping the i-arrows. For such a chain C, we denote by s(C') and e(C) its source
and target vertices, respectively. There is a unique vertex by in B(\) such that é;(by) = 0 for
any ¢ € I (that is, by is the source vertex of each i-chain containing b)) called the highest weight
vertex of B(\) and we have wt(by) = . For any b € B(\), there is a path b= f;, - -- f;, (by) from
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by to b. Let us denote by S = {aq,...,a,_1} the set of simple roots of gl,, where a; = e; — €;41
for 1 <7 < n. The weight function wt satisfies

wt(b) = X — Zaik.
k=1

For any ¢ € I, the crystal B (A\) decomposes into i-chains. Thus, for any vertex b € B(\), we can
define ;(b) = max{k | fF(b) # 0} and &;(b) = max{k | €¥(b) # 0}. We then have

S\ = Z 2VE0),

beB(N)

The Weyl group W also acts on the vertices of B(A): the action of the simple reflection s; on
B(\) sends each vertex b on the unique vertex b’ in the i-chain of b such that ;(b') = ¢;(b) and
g;(b") = p;(b). This simply means that b and b correspond by the reflection with respect to the
center of the i-chain containing b. We shall write

O\) ={o-bx=boxr | 0 € &)}
for the orbit of the highest weight vertex by of B(\). Observe that b,) is then the unique vertex
in B(\) of weight oA. The elements of O()\), called the keys of B(\), are those vertices of B(\)
which are completely characterized by their weight. Thereby, one has a direct correspondence
between the keys and the elements of Gf‘l. For convenience, we often abuse notation and identify
the key b,y with o € 62.

In fact, one can associate a crystal to any finite-dimensional gl,-module by considering its
decomposition into irreducible components. This gl,-crystal is a disjoint union of connected
components, each being isomorphic to a highest weight crystal B(A),\ € P,. Given two par-
titions A and p in P, the crystal associated to the representation V(\) ® V' (u) is the crystal
B()\) ® B(n) whose set of vertices is the direct product of the sets of vertices of B(\) and B(u)
and whose crystal structure is given by wt(a ® b) =wt(a)+wt(b) and by the following rules

- ] u®eéi(v) if gi(v) > ¢i(u) z | filw) @ if pi(u) > ei(v)
) &) = { €i(u) @ v if g;(v) < i(u) and fi{u®v) = { u® fi(v) if ¢i(u) < &i(v)
We adopt the convention that © ® 0 = 0® v = 0. A key result in crystal theory shows that for
any partition v € Py, the tensor multiplicity cf , of V() in V(A)®V (n) (which is a Littlewood-
Richardson coefficient) is equal to the number of connected components in B(\) ® B(u) with
highest weight vertex of weight v.

2.3.2. Keys and dilatation of crystals. Consider k a positive integer and A\ a partition. There
exists a unique embedding of crystals 1 : B(A) < B(kA) such that for any vertex b € B(A)
and any path b= f;, -+ f;(bx) in B(\), we have

Pr(b) = fE - FE(bra).
Since the vertex b%k is of highest weight kX in B(\)®*, one gets a particular realization B (b%k )
of B(kA) in B(\)®* with highest weight vertex b?k. This thus gives a canonical embedding

Rk Rk
(6) 0, : B(by) < B(by") C B(by)
b— b ®--- @by

with important properties given in the following theorem and illustrated in Example

Theorem 2.7. (see [23])
(1) Let o € &)\. We have 0x(byy) = b?)lf.
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(2) Let b € B(\). When k has sufficiently many factors, there exist elements o1,...,0% in
&) such that 0,(b) = by \ @ --- ® boyr- Moreover, in this case
(a) the elements by, \ and by, x in O(b) do not then depend on k,
(b) up to repetition, the sequence (o1A,...,o\) in 0;(b) does not depend on the real-
ization of the crystal B(\) and we have o1 > 09 > -+ > 0}.

From Assertion 2 of the above theorem, we can define the keys of an element in B ()\)E
Definition 2.8. Let b € B()), then the keys K4 (b) and K~ (b) of b are defined as follows:
K4 (b) =bs,x and K~ (b) = by, 2.

In particular, Ky (byy) = K~ (bor) = byx for any o € &). The orbit O(N) is simultaneously the
set of left and right keys of B(X).

2.3.3. Tuableau realization. Recall that each partition A in P, can be identified with its Young
diagram. A semistandard tableau T' of shape A\ is then a filling of A by letters in the ordered
alphabet A,, = {1 < --- < n} whose rows weakly increase from left to right and columns strictly
increase from bottom to top. The row reading of 7" is the word w(7') of A} obtained by reading
each row from right to left starting with the bottom row and ending with the top row. The
weight of T" is the vector wt(T") € Z%, whose i-th entry records the number of ¢’s in the filling
of T, fori=1,...,n. -

Example 2.9. For n =4 the tableau

314
T=|22|4
1 2

~ | =

is a semistandard tableau of shape \ = (3,3,2,0) with row reading w(T) = 21142243 and weight

wt(T) = (2,3,1,2).

One can realize B(\) using the semistandard tableaux of shape A just by describing the action
of the crystals operators f; and &;,i =1,...,n — 1 on each such tableau. Assume that ¢ is fixed
in {1,...,n—1} and T is a semistandard tableau of shape A. Let w;(T") be the subword of w(T")
obtained by keeping only the letters ¢ and i + 1 in w(7T'). Now delete recursively all the factors
i(i+1) in w;(T). This eventually yields a subword @;(T) of w(T) of the form w;(T) = (i+1)(i)’.
When b > 0 (resp. a > 0), f;(T) (resp. &(T)) is obtained by replacing in T the letter of w(T)
corresponding to the leftmost letter ¢ (resp. to the rightmost ¢ 4+ 1) surviving in @;(7") by ¢ + 1
(resp. by 7). When b = 0 (resp. a = 0), we set f;(T) = 0 (resp. &(T) = 0) where 0 is understood
as a sink vertex as before. This just means that in this case, there is no arrow ¢ starting at T
(resp. no arrow ¢ ending at T'). Observe that with the notation of the previous paragraph one
gets

gi(T) = a and ¢;(T) = b.

Also, it is easy to compute the action of s; = (i,i + 1) € &,, on T : the tableau s;.T" is obtained
by replacing in 7" the a — b rightmost letters i 4+ 1 (resp. the b — a leftmost letters i) of w;(T") by
i (resp. by i +1) when a > b (resp. a < b).

3We dot use the terminology ”left” and ”right” keys as in the original definition [25] based on the tableaux
model since it does not fit with the positions of b,, and by, » in O (b) with the convention of this paper.
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Example 2.10. By resuming Example (2.9, one gets

374
FT) =0 and & (T)=[2 2[4
111
i 314 3[4
fo(T)=]2]2]4] and é&(T) =0 with so.T =2 |3 | 4
1]1]3 1]1]3
i 414 373
f3(T)=[2]2]4]| andés(T)=]2]2]4
1]1]2 1]1]2

With the above definition of the crystal operators, it is easy to check that the set of semistan-
dard tableaux of shape A admits the structure of an oriented and connected graph isomorphic
to the abstract crystal B()) (see [22]). In particular its unique highest weight vertex is the
Yamanouchi tableau T whose i-th row only contains letters ¢ for any ¢ = 1,...,n. In fact the
orbit O(A) is also easy to describe in this model: it exactly contains the so-called key tableaux of
shape A which are the semistandard tableaux in which each column is contained in the column
located immediately at its left. Their weights correspond to the orbit of A € Z™ under the action
of 6,

Example 2.11. For n = 3, the siz key tableaux (or simply keys) of shape A = (2,1,0) are

1] 1] > 2]

<[]

2] 0 [2]3] 7 [2]3]

Example 2.12. Forn =3, A = (2,1,0) and k = 2, the crystal B()\) and its dilatation B(\)®?
are as follows:

(2]
1]1]
1
— e \”‘T
1]2] 1]1]
i i
3
1]3] 1]2]
i i
3 3
1]3] 2]2]
1 2
N '
3
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2 2
112] “[1]2]
2]

3] 2]
1[3] ®[1]2]
2]

3] 3]
113] ®[1]3]

2 3 _
K+<1 3|>: IEI (

2 2
1]1] “[1]1]

12

v

12

N _
31 3
2]3] 2[3]

22
N _
3 3
(1] “[1]1]
12
3] 3]
212] ©[1]1]
12
3] 3]
212 “2]2]
22
s

Remark 2.13.

(1) In the previous example, the dilatation of the crystal with k = 2 suffices to obtain the left
and right keys. In general, we need to compute the dilatation with k given by the least
common multiple of the mazimal lengths of the i-chains with i € {1,...,n—1} in B(X).

(2) The left and right keys associated to a semistandard tableau can be computed in a more
efficient way than the one obtained from Definition by using the Jeu de Taquin
procedure [25,[16]. This was in fact the initial definition from [25]. One can also use the
semi-skyline model [19, B2] to realize the crystal B(X\) in a way which makes the keys
very easy to read off (but the crystal structure becomes then more complicated to describe
132, 3, 4]). The advantage of Definition [2.8 is that it is independent of the realization of
the crystal B(X) and strongly connected to general properties of S, viewed as a Coxeter

group.

(3) In the notation of §[21, we have O(\) = {u.Ty\ | u € &)}. This gives a direct corre-

spondence between the keys and the elements of Gi;. If we denote by K, the key u.T)
it then becomes easy to read the Bruhat order. Indeed, we have
u < v if and only if for each box of the Young diagram A, the letter obtained in K, is

associated to u € Gi;,

2 2 3
1 3|>: 1 2|’K+ 1

i () -

) -

1f

less than or equal to the one obtained in K, .

(4) The character sy associated to the partition X is the Schur function and the tableau

realization of crystals allows one to recover its expression

(7)

2.3.4. Crystals of Demazure modules. Let A be a partition and ¢ € &,,. Up to scalar multiplica-
tion, there exists a unique vector v,y in V() of weight o(\). The Demazure module associated

5y = Z LT

TeB(N\)

to v,y is the U(gl})-module defined by

Vo(N) :=U(gly) - Uox-
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Demazure [I3] introduced the character k. of V() and showed that it can be computed by

applying to 2 a sequence of divided difference operators given by any reduced decomposition
of o. More precisely, for any i € {1,...,n — 1}, define the linear operator D; on Z[z1,...,x,] by
i P —xip1(s; - P
DZ(P): 7 z—l—l( 7 )
Ti — Ti41

Demazure proved that such operators satisfy the relations
D,'QZDz’ forany i =1,...,n—1,
D;Dix1D; = Dix1D;Djyq for any i =1,...,n — 2,
D;D; = D;D; for any i,j = 1,...,n — 1 such that |i —j| > 1.
Thus, given any reduced decomposition o = s;, - - - s;, of o, by Mastumoto’s Lemma the operator

D, = D;, ---D;, only depends on o and not on the chosen reduced decomposition. He also
showed that

Ro X = DO’(':L'A) S Z[JL'l, e ,l’n]

is the (Demazure) character of V,(\). In particular, we have k4 = 2 and Kooy = Sx and

(®) Difras) = {

Later Kashiwara [22] and Littelmann [28] defined a relevant notion of crystals for the Demazure
modules. To this end, for any ¢ € &,,, consider the Demazure atom

By(A) ={b € B(A) | K4(b) = bar}-

In particular, B;g(\) = {by}.

By definition we have B,(\) = B,/(\) whenever ¢ and ¢’ belong to the same left coset
of &,/6,. Writing 0 = wv with u € &) and v € &, we get B,(\) = By(A) from the
characterization of the strong Bruhat order. Thus we can assume that o belongs to &). We
then get B(\) = || By (A). There also exists a notion of opposite Demazure module: for any

gEG)
o € G, it is defined by V7(A) := Uy(gl,,) - v, for which it is relevant to define the opposite
Demazure atom

Ko if £(s;0) = L(0) + 1,
Kg\ Otherwise.

B”(A\) = {b € B(A) | K~ (b) = by}
In particular we have B”*(\) = {bsyx}.
Given ¢ and ¢’ in 63‘1, we shall write b,y < b,y when o < o’ (recall that < denotes the strong
Bruhat order on &,,).

Definition 2.14. The Demazure crystal B,(\) and opposite Demazure crystal B (\) are defined

by
(9) BN = U BN = {b€ BOY | Ko(0) < b}
B" A = [ B () ={beBO|K (b)>bn}
o'€G,0<0’

In particular we have Big(\) = {bx}, B(\) = {bsyr} and By, (A) = B(\) = B()\).

To compute the Demazure crystal B, (), it therefore suffices to

e compute the key map K1 on B(\).
e compute the strong Bruhat order on &), or alternatively on the vertices of O()).
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Example 2.15. Let us resume Example [2.12 with the tableaur model. For n = 3 and A\ =
(2,1,0), consider o = s1s2. We get

3
K+(T3132) = 2 2|

and By (X) contains exactly the tableaur T such that K (T) < K (Ts,s,) (recall that this means
that each entry in T is less than or equal to its corresponding entry in Ty,s,). These are all the
tableauz in B(\) except

T1: 5 T2: andng

1]3] 1]3] 2[3]

for which we have
K+(T1) = T27K+(T2) = T2 and K+(T3) = T3_

The following theorem gathers results established by Kashiwara and Littelmann (Nsee Assertion
2 of Proposition 9.1.3 and Theorem 9.2.4 in [23]). For convenience, we extend f; and &;, i €
{1,...,n— 1}, to B(A) U {0} by setting them to map 0 to 0.

Theorem 2.16. Let A\ € P,.
(1) We have ko) =3 pep, (v Vo),

(2) For any reduced decomposition s;, --- 8;, of o, we have

Bo(A) = {f" -+ flE(00) | (ky,- - ko) € Z50}\ {0},

(3) For any i-chain C in B(\) and any o € &, only the three following situations can
appear

CNB,(\) =0, CNB,(\)=C orCNB,(\) = s(C),

where we recall that S(C') denotes the source vertex of the chain C.

Remark 2.17. By the previous theorem, for any o € &, and i € {1,...,n — 1} such that
U(s;o) = L(0)+1 and s;o\ # o, we have B5(A) C B, (N). Moreover, for any i-string C C B()),
either Bs,o(A)NC =B,(A)NC =0, Bs,o(A\)NC =B, A\)NC =C, or s(C) =B,(A\)NC in
which case C' C Bg.5(A).

2.3.5. Additional remarks.

(1) The computation of the key map on B(\) from the definition by dilatation of crystals
becomes quickly untractable when A is far enough in the interior of the Weyl chamber.
But as explained in § 2.3.3] it becomes much easier if we use the tableaux realization of
crystals.

(2) One can also define the Demazure atom polynomials &,y = ZbeEJ(A) 2V*®) In fact, they
can also be obtained without using the crystal theory directly from the linear operators
D! =D;—1id,i =1,...,n— 1. These operators still satisfy the braid relations, but here

(D!)? = — D! (see [26]). Then for any reduced decomposition o = oy, - - - 7;,, we have
o = Dl DN = 3D a0
b€Bs(N)

(3) Rather than labeling the Demazure crystals and the Demazure characters of B(\) by
elements of &7, it is often convenient to label them directly by the elements of the orbit
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S, Given pu € G, \ such that u = o)\ with o € &), we will write B,, B* instead of
B,()), B7(A) and k,, R, instead of k. » and Ry, ,\E Note that Kyox = Sa.
(4) Demazure characters {r, : 4 € N"} and Demazure atoms {&, : © € N"} both form linear

Z-bases for Z[x1,...,xy]. The operators D; act on Demazure characters «, via elemen-
tary bubble sort operators 7; on the entries of the weak composition p = (p1, ..., tiy) as
follows
Ko 1 pi > pi
10 Di(k,) = & Di(Ky) = K. ()
(10) i(Fp) {Hu i i < priva i(Fp) i (1)

(5) We will adopt the usual convention of [26], identifying each p € Z™ such that p,41 =
- = pp = 0 with (p1,. .., tm) € Z™. This notation is compatible with the definition of

the Demazure characters since for any p € Z™, we have s,(x1,...,2m) = su(T1,...,Zn).
It is also compatible with the tableaux realization of the crystals because for any such
p € Z™, the Demazure crystal B, () only contains tableaux with letters in {1,...,m}.

(6) The Demazure and opposite Demazure crystals and atoms can be connected using the
Lusztig-Schiitzenberger involution on the crystal B()) defined as follows. Let oy be the
longest element of &,, (defined by o¢(i) = n+ 1 —4d for any ¢ = 1,...,n). For any
b= fiy - fi.(by), set t(b) = En_i, - - En_i, (boyr) Where wt(tb) = ogwt(b). One can prove
that the map ¢ is an involution on B(\) reversing the arrows and flipping the labels i
and n — ¢, and reversing the weight. We then have K~ (b) = 0¢.K;(¢(b)). This implies
that, for any reduced decomposition ooo = s;, -+ 55, € 6)‘ we get

(11) B7(A) = t(Bogs (V) = &5, - nt s, (boga) | (Rrs ., ke) € ZEo} \ {0} and
(12) B (M) = u(Bos (V).
(7) There is also a notion of opposite Demazure character x§ for the opposite Demazure

module V7(A). It satisfies k5 =3 pepo(y 2"*®) and using the involution ¢+ and (II)), we

have in fact
KX, ) = KM (21, .o Tn) = Koop(Tn, .., 21)

1
where 1 = o\ Since B”(\) = ¢(Byyo(N)) we similarly have
-3 Tn)

n :anu(iﬂn,...,ﬂ;‘l): Z xwt(b)

beB’ ()

) =1
RA(X1y .oy my) = RH (21, ..

2.4. Bicrystals and RSK correspondence. Let m and n be two positive integers. Denote
by M, the set of matrices with m rows and n columns with entries in Z>q. The set M, ,, is
endowed with the structure of a (gl,,, gl,,)- blcrystal This means that we can define on an

two commutlngE families of crystal operators é;, f;,i =1,...,m—1 and é éj, fj, j=1,...,n—1s0
that M,, , is a crystal for both gl,,, and g[,,. In fact ./\/lm,n is the crystal of the (gl,,, g[ )—module
of the symmetric space S(C™ x C") (see [11I, 12, 27]).

One can define the crystal operators directly on M, ,, or from the RSK correspondence. This
is a bijection

M — Ll Bm(A) x Bp(N)
¢ : AEPnmin(m,n)
A— (P(A),Q(4))

4This notation should not be confused with the subset consisting of those vertices in B(A) with weight

sometimes also denoted B()), in the literature.

5i.e., two operators chosen in each family commute with each other.
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where we use the tableaux realizationd of crystals so that P(A) and Q(A) are semistandard
tableaux with the same shape on the alphabets {1,...,m} and {1,...,n}, respectively. We
refer to [16] for a complete description of the combinatorial procedure (illustrated in the example
below) based on the Schensted column insertion procedureﬁ.

Example 2.18. Assume m = 4 and n = 3 and consider the matriz

2 2 0
1 01
A=14911
01 1

It can first be encoded as a tensor product of n = 3 row tableauz on the alphabet {1,2,3,4} where
m;,; gives the number of letters i in the j-th component of the tensor product:

La=[1]1]2]3]3] ®[1]1]3]4] ®[2]3]4] .

One then applies the column insertion procedure from left to right. This means that we begin by
reading the second column (this gives 4311 with the convention of §[2.3.3) and then compute the
column insertions

1+1—-3—>4—|1[1]2]3]3] .

We thus get the tableau

314
1[1[1]1]2]3]3]

in which we successively insert the letters corresponding to the reading 432 of the third row. This
gives the tableau

(4]
21334

1[1]1]1]2]3]3]

The so-called "recording tableau” Q(A) is obtained by filling with letters i the new boxes appearing

during the insertion of row i (the first row being considered as inserted in the empty tableau at
the beginning of the procedure). We thus get

P(A) =

(3]
Q(A)=[2]2]3]3 :
T[1[1[1][1][2]2]

Finally
Observe that we also have

where A is the transpose of the matriz A.

In any matrix A in M,, ,,, one can consider all the paths 7 starting at position (4, j) = (1,n)
(northeast corner of A) and ending at position (i,7) = (m,1) (southwest corner of A) where
the authorized steps have the form (i,j) — (i + 1,7) or (4,5) — (i,7 — 1). To any path =, we

6Here we have written B,,(\) and B, ()) to make apparent the fact that we have a gl,, x gl -crystal.
"The convention that we use agrees with that of [24] to which we refer for another description of the RSK
procedure and the connection with biwords.
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associate its time ¢(7), given by the sum of the entries along the path. Here, one can imagine
that the path stops for a duration a;; at position (i, 7). We set

p(A) - T pg‘}}?}i(n At(ﬂ-).

The following theorem gathers a few results about the RSK correspondence that we shall use
later.

Theorem 2.19.

(1) The map v is bijective.

(2) For any matriz A in My, ,, we have P(*A) = Q(A) and Q(*A) = P(A).

(3) My,n has the structure of a bicrystal: given A € My, p, the action of the operators
o=¢,fini=1,....m—1 andazéj,fj,j =1,...,n —1 satisfies

o(A) = ¥~ (GP(A), Q(A)) and 5(A) =~ (P(A),5Q(4)).

(4) For any matriz A, the integer p(A) is equal to the length of the longest row of the tableau
P(A) (or Q(A)). It also equals the length of a longest decreasing sequence of the word
read off from L 4.

Example 2.20. Resuming Example[2.18, one checks that p(A) = 7. A longest decreasing word
of the word w(L4) = 332114311432 read off from L4 is given by 3321111, which has length 7.
This subword corresponds in the matriz A to the path

a1,320—>a1,2:2—>a171:2—>a271:1—>a371:2—>a4,1:0.

The weight of the matrix A is the monomial in the set of variables X = {z1,...,2,} and
Y ={y1,...,ym} defined by

@t= I ()™

1<i<m,1<j<n

; 1 _ +o0o PR .
On the one hand, using that oy = ai,jzo(fnzyy) ij, we can write
1 A
II = > @
1<i<m,1<j<n Wi AeMmn

On the other hand, observing that, from RSK, we have (my)A = gWtHP(A)ywt(Q(4))  we obtain a
Cauchy-like identity using the bijection ¢ and ({T):

11 b 3o PR — N g ) sa(yi - Yn)-

1—zy;
1<i<m,1<j<n Wi AEMunn AEPrmin(mm)

Remark 2.21. Recall the rule given in (B) for the action of &, fi on a tensor product of crystals.
The action of any operator fi, éi,i=1,....,m—1 on a matriz A can be computed from P(A) but
also from the product of row tableauz L, appearing in Example 218 just by concatenating their
reading words. In particular when f; (resp. €;) acts on the j-th component of L4, the matrix
fi(A) (resp. &;(A)) is obtained from A just by changing a; j into a;;—1 and a1 into ai41,5+1
(resp. a;j; into a; j+1 and a;41; into a;415—1). Similarly, when fj (resp. €j) acts on A, there
is an integer i € {1,...,m} such that fj(A) (resp. €j(A)) is obtained from A by changing a;
into a; j — 1 and a; j11 into a; j41 + 1 (resp. a;j into a;; + 1 and a; j41 into a; 41— 1).
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2.5. Restriction of the RSK correspondence. Let D be any subset of {1,...,m}x{1,...,n}
and write M%n for the subset of M,,, containing the matrices A such that a;; # 0 only if
(1,7) € D. In general, the set 1/1(./\/(7%“) is not stable by the gl,, x gl,,-crystals operators. Nev-
ertheless, when D corresponds to the Young diagram of a fixed partition A, it follows from
Remark 22T that D = D, is stable under the action of the operators f;,i = 1,...,m — 1 and
€j,7=1,...,n—1. The case where m =n and ¢ = (n,n — 1,...,1) is particularly interesting.
In matrix coordinates, we indeed get that
Dy ={(i,j) [1<j<i<n}

The following theorem, initially established in [26] using the combinatorics of tableaux, has been
reproved in [24] using Littelmann paths and in [3] using semi-skyline diagrams combinatorics.
In these different versions, the convention for the crystals is not the same and we here follow
the one from [24] which is compatible with Kashiwara and Littelmann convention for the tensor

products of crystals, which is the most usual one. Later Fu and Lascoux [I8] reproved this
theorem using properties of divided differences.

Theorem 2.22. The restriction of the RSK correspondence 1 to Mﬁ% gives a one-to-one
correspondence
D J—
v Mush— L L BT\ x Bo(\).
AEPRoeB)
Then by considering the weights of the elements in both sides, we get the Cauchy-like identity

(13) | D M I C )

1<j<i<n AEP 0€6)
Remark 2.23. Observe that, using Remark[2.3.3, namely (I2) and (@), we have
1) [ UBWxBsN)= LI U t(Boe(N) xBs(A) = L t (Boou) % By

AEPnoeS) AEPnoeS) 1= (1 yenespin ) EZT

where {\} = S, u NPy, in each product set of the disjoint union. This gives

T — = 3 #@r) = X Foultn o)y, ).

\<jSi<n LT il n n
<j<i<n HELL, pELL,

Note that in [26] the rows of the Young diagram o are counted from bottom to top, from 1 to n,
whereas here they are counted from n to 1 according to the matriz notation. Replacing x; with
Tp—it1 n (I3), one recovers Lascouz’s non-symmetric Cauchy identity from [26]

H #: Z R (Tn, .. x)ku(y) = Z Foop (@15 Zn)Ku (Y1, -+ s Yn)-

11—y
i+j<ntl Wi e, Hezs,

3. OPERATIONS ON DEMAZURE CRYSTALS AND REFINED RSK

3.1. Parabolic restriction in Demazure crystals and truncated staircases. Let p,n be
two integers with 1 < p < n. The subset I, = {1,...,p —1} C {1,...,n — 1} with I := I,
defines a Levi subalgebra gy, of gl,, isomorphic to gl, obtained by considering the matrices with
zero entries in positions (7,j) with i > p or j > p. We set g7, := gl,,. The algebra g, has
Weyl group &, = (s; | i € I,) and root system R;, = RNspan(a; | i € Ip), where R denotes
the root system of the Weyl group &,, of gl,,. Its cone of dominant weights can be identified
with P,. Given A € P, = @!_, Ze;, let us denote by B,(A) the subcrystal of the gl,-crystal
B, (X) := B(A\) = B(A,0"P) obtained by keeping only the vertices connected to its highest
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weight vertex by by i-arrows with ¢ € I,. It follows from the general theory of crystals that
By () is a realization of the gl,-crystal associated to A. In terms of characters, this corresponds
to the specialization zp4; = --- = z, = 0 in the character sy(z) of B(X). For the tableaux
realization of crystals, we recover with B,(A) the crystal realization of gl -crystals by tableaux
of shape A with entries in the alphabet [p] as a subcrystal of the crystal B(\) of tableaux of
shape A in the alphabet [n]. Given u € &), we will denote by By, (X), BE(A), By 4(A) and EZ()\)
the Demazure, opposite Demazure and atoms associated to u in the gl,-crystal B,(\).

The Coxeter monoid associated to the symmetric group G,, is the monoid 9, with generators
si,t=1,...,n — 1 and relations

8;8; = 8;8; for any i,j =1,...,n — 1 such that |[i —j| > 1
8iSi+18; = 8ij+18;8;+1 forany i =1,...,n — 2,
2 .
s;i=s;foranyi=1,...,n—1.

Observe that this is exactly the same relations as those satisfied by the Demazure operators and
the map s; — D; yields a faithful representation of the monoid 9,, on Z[z1,...,x,]. There is
a canonical bijection between &,, and 91, sending any reduced decomposition of o € &,, to the
same (still reduced) decomposition o € M,,. Given any o € S,, and a reduced decomposition
o = S 8, we write o' for the element of S, obtained by the following procedure (see
also [8 Section 2]).

Algorithm 3.1.

(1) Remove all the s;, in o such that i, ¢ I,. This yields a word in the generators of M,
which may not be reduced.

(2) Calculate the element of M, represented by the word obtained in (1), and denote it
olr e M,.

(3) The element of] is the element of 6, associated to o' through the canonical bijection
W =6, — M,.

Lemma 3.2. The element o'» obtained by Algorithm 31l does not depend on the initial reduced
decomposition chosen for o.

Proof. See the appendix (Lemma [5.1]) for a general proof in arbitrary Coxeter groups. O

We give an example of this algorithm in Example below.

For o # 1, o'» = 1 if and only if o € S|p,n)- Note that Jé” is the longest element of &,,; indeed,
[p

writing O'O] for the longest element of &, viewed inside &,,, we have {(og) = E(J([)p ]) + E(a([]p } 00),
since o has every element of &,, appearing as a prefix. Chosing a reduced decomposition of oy

beginning by a reduced decomposition of aép I and applying Algorithm [B.1] to this decomposition
yields an element in 9, which is of the form a([)p I for some = € S,. Using the fact that
l(wv) > l(w) for all w,v € M, we see that we must have U([,p]w = a([)p].

Example 3.3. Consider the reduced decomposition 0 = 5152838182 in &4 and choose p = 3,
hence Is = {1,2}. We then get in My

O'Ip = 8182538182 — 81828182 = 828189289 = 8928189 = 8182871.
Therefore, o3 = 595159 = 515951 € G3.

8Note that 0’7 is not the minimal length element in 0, in general.
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Proposition 3.4. Consider o in &,. The set 657 = {v € &, | v < o} admits o'» has unique
mazimal element for <, that is

GEJ:{UGGP|U§JIT’}.

Proof. This is the same as [§8, Theorem 2.2] when the parabolic subgroup is &, and a particular
case of [34] Lemma 3] (see also [37, Theorem 2.1]). For the convenience of the reader we also
give a proof in the appendix (see Lemma [5.2)) in the framework of general Coxeter groups. O

Now, set BP(X) = «(Bp())) where ¢ is the involution in B(A) defined in Remark Since
Bp(/\) = {fzkll fz]j\],\r(b)\) | 1,...,IN € [p_ 1]7N > 17(ki17"'7kiN) € ZJZVO} \ {0}7

we get

k; K . .
Bp()\) = {eill e eiNN (on()\,O"*p)) | U1,...,IN € [’I’L—p—|—1, ’I’L—l], N>1, (kilv ce kZN) € Z]ZVO}\{O}
One can observe that BP()) also has the structure of a gl,-crystal but this time for the root
system with set of simple roots {an—pt1,...an—1}. The corresponding character is obtained
from the specialization z; = --- = x,—, = 0 in the character sy(z) of B(A).

Corollary 3.5. For any o € &, we have the following equalities of sets

— ' S,,
1:B,(\) NB,(A) =B, 1,(\), BT\ NBy(N) = { %ﬁ{ ;’) i DA

. RO _ ®2f0-¢67 §5) _ (Z)Zf0'¢67
2:B7(N) 0 By(A) = { BJ (M) othgrwise, Bo (M) N By(A) = { By.o(N) otZerwise.
. _ ®2f0¢67 n’ _ @if0'¢0'67
3:Bo (M) NBHA) = { L(BP,UOU()\)IJ) otherwise, B (A NB(A) = { L(Epma()\o)) I())therwz'se.
— if o & 006G
BN A B0 =B, ) Boner = { RS

Proof. For the equalities in the first point, we have
Bs(A) N By(A) ={b € By(A) | Ky (b) <bgr} ={b € By(A) | Ky (0) <by15} =B, 51, (A)
where the second equality follows from Proposition [3.4] since K, (b) belongs to &, for any
b€ By(A).
For the second equality of the first point, we also obtain
B7(\)NBy(A) = {b € By(\) | K~ (b) = 0}.

But K~ (b) belongs to &,, for any b € By,(A). Therefore, by definition of the strong Bruhat order,
o < K~ (b) is only possible when o € &,,, whence the result. Similarly, for the set equalities of
the second point we have

B7(A) N By(A) ={b € Bp(A) | K~ (b) = o}
We have that K~ (b) belongs to &, and thus if ¢ < K7 (b), then o also belongs to &, by
definition of the Bruhat order. Therefore
- [ 0ifo ¢S,
B7(A) 0 By(A) = { Bg () otherwise

as claimed. Finally we can write

Bo(A) N By(A) = {b € Bp(A) | Ky (b) = o}
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and we get the result by using that K (b) € &, for any b in B,(A). The third and fourth set
equalities are easily deduced from the two previous ones by applying the involution ¢ and using
the relation ([ITI). O

Remark 3.6. In the setting of Proposition writing
63 ={veG,|v<ol={ve6,:v<alv<al={veS,|v<al}
this result is restated geometrically, in the more general case of a finite Weyl group, in [8, Section

5] as follows. Let o € &,,. Then
S NSy = SUIP,

90
where Sy = Uy<sOy; here O, is the orbit BuB/B of the Borel subgroup B of the reductive group
G with Weyl group W acting on the flag variety G/B, and S, is the Schubert variety, also
obtained as the orbit closure of O, (we refer to [8 Section 10.2] for definitions). Note that in
this case, the identity S, = Uy<sO, can be taken to be the definition of the Bruhat order.

We note the parallel between this Schubert variety formulation of Proposition and the
corresponding Demazure crystal formulation given by Corollary[33, (1). Recall that a Demazure
crystal is disjoint union of Demazure atoms crystals, By(\) = LI By (N). (Similarly, this

o€ o'<o

can be taken to be the definition of the Bruhat order on 65‘1) Then
BO’()\) m Bp()‘) = BO’()\) m BU([)P] ()\) = Bp7o'IP ()\)

A I_I EO”()\) N I_I B, ()‘) = |_| B, ()‘)

O'IEG,,A”O'ISO' UIGG%L,U’SO'([JP] U’EG%,U’SU,U,SU([)I)]
= L Ea’()‘) = Bp7a'IP (A)-
o'€B o' <olp,
3.2. Truncated staircase. In the following, we fix p and ¢ two nonnegative integers such that
n > q>p>1. We consider the Young diagram
Dypq={0j)In—p+1<i<n1<j<q}ND,

defined by using the matrix coordinates (i, j). It is the intersection of D, with a quarter of plane
defined by the lines ¢ = p and j = ¢ (in Cartesian coordinates). When n —p+1 < ¢, we get
the Young diagram (see Figure [I])

Dy 4= DA(p,q) with A(p,q) = (q"_q+1, g—1,...,n—p+1).

We have in particular Dy, n, = Dp(n ) = Dyo. Observe that if n —p +1 > g, there are also other
Young sub-diagrams appearing but they all reduce to a rectangle and thus do not yield anything
new.

Definition 3.7. For any p = (p1,...,1p) € Zgo, let X\ € Py and 7 € 62‘ such that = TA. By
applying o9 € &, to u, one gets oopu = og7(A, 0" P). We set
fi = (o07)"7(A, 0977, 0"79).

Note that ji has its last n — ¢ entries equal to zero because (oo7)% € &,. We will see in § 3.4l
that it also has its first ¢ — p entries equal to zero.

Example 3.8. Consider p = (1,3,2) and let ¢ = 4 and n = 5. Then letting A = (3,2,1), we
have

oo = (0,0,2,3,1) = s9815352845351(3,2,1,0,0).
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Il

FIGURE 1. The truncated Ferrers shape A(p,q), in green, fitting the p by ¢
rectangle so that the staircase D, of size n is the smallest one containing A(p, q).
If p<gq, (p,p—1,...,1) is the biggest staircase inside A(p, q).

We have
I
(32313332343331)4 = 525153528351
which gives i = s25183525351(\) = (0,1,2,3,0).

. . . D
Theorem 3.9. With the above notation, the restriction of the RSK correspondence v to Mn,fl(”’Q)
gives a one-to-one correspondence

D —
¥ Mup™? = | U(Bpu) X By -
uezgo

In particular, we have

1 —
H — = Z R (papyorpin) (Trs oo Trepr )RR (YL, -+ -5 Yg)-

. 1 — @y,
(6:5)EDA(p,q) / (K1 ,e1p)EZE

. - D
Proof. By Theorem 2:22] together with (I4]), the restriction of the map % from ./\/17?7 5 to My,

gives
PMar®) = I U BTN BP(N) x B,(\) N By(A) = L] B" N BP(A) x B 1 By(N)
AEProEG) HEZY,,
By Corollary B3], we have B (A\)NBP(\) = () unless o € 0061),‘, A € P, and then B” (\)NBP(\) =
B (M\). We thus get

A(p,q)
n

(Bp,oor(A)). We also obtain in this case that B,(A) N By(A) =B, 1,
D _
PYMun™) = | L L(Bp,gea(A)) X B, ;14 (A).
AEPprE6ANG06,

As usual, one can replace the two disjoint unions on P, x G\ n 006;,‘ by a simple disjoint union
on Zgo by setting p = ggoA with o € 6;,‘. To determine o’¢(\) from p, we can compute \
by reordering its coordinates; one then gets fi = oou, and o € &)\ N 006, is determined by
the equality 7 = oX. Finally, one computes o/¢ by applying Algorithm Bl to o. In particular
o has its first n — p coordinates equal to zero and can be written @ = (0"7P, pp, ..., 1) with
(11,0""P) = 0. = (1, - - - , fp, 077P). Therefore, o%()\) = [i as introduced in Definition 3.7} By
considering all the partitions A in Pp, we thus obtain
D —
P(Mna®?) = 1 «(Bpu) X By
MEZQO
with 7z = of2)\ in each set of the disjoint union. Finally, we get the Cauchy-like identity by
considering the characters of both sides of the set equality. O
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Remark 3.10. When p = q =n, i = oopu and we recover Theorem
L

i
D n,n D) D) ED)
(R Mn,ﬁ( " Ll ¢«(Bu) X By = |l t(Bou) xBu= [ B" x B,
pELL, HEZY, HELL,
A= Y(A) = (P(A),Q(A)) : K+ (Q(A)) < K~ (P(A)).
3.3. Demazure operators on crystals and augmented staircases. Consider a partition A
in P, and any subset Q of B()\). We define the character of Q by setting
char(Q2) = char(Q)(x1,...,z,) = Za:“’t(b).
beQ)
Observe that
(15) char(¢c(Q2)) = Z:L"”O‘"t(b) = char(Q)(xpn, ..., x1).
beq2
For any ¢ = 1,...,n — 1, denote by A;(f2) the subset of B(\) obtained from by applying
operators ff, k > 0 to the vertices in (2, that is
Ai(Q) ={be B\ | 3k € Zxo,eF(b) € Q).
By Remark 217 for any 0 € &, and any i = 1,...,n — 1, we have
' _ | Bge(N) if £(sj0) = £(0) + 1 and s;0\ # o),
(16) AZ(BO'()\)) - Bm(o‘)\) - { Bo()\) if E(SZ’O') —_ E(O’) —1or SZ'O')\ — O')\,
that is,
AZ(BH) = Bﬂi(ﬂ) with n = O')\,
where 7; is as defined in (@)). In particular, we have A?(B,(\)) = A;(B,(A)). This thus gives

(17) Z ‘TWt(b) =D; Z th(b) = Di("icr,)\) = Rri(oN)
beA;(Bs(N)) bEBs(N)

and by using (8]) one can interpret A; as an operator on Demazure crystals analogous to the
operator D; on Demazure characters. For the atoms, we get the following lemma.

Lemma 3.11. For any o in S,, and any s; such that {(s;o) = {(0)+1 and s;o\ # o\, we have
Ai(EU()‘)) = EG(A)UE&J(}‘)

and

(18) Fs;o\ + Fox = Z 2O = p, Z 2O | = Dy(Ry )
beA;(Bo(N)) beBs (M)

Proof. For any b in B(\) and i = 1,...,n — 1, we have by definition of the key K

K (fi(b)) € {K4(b), iK1 (b)}-
This gives
Ai(Bs(A)) € Bo(A)[UBs;o(A).

Conversely, it is clear that B5(\) C A;(B,()\)) by definition of A;. Now, if ¥’ belongs to
Bs,0(A), we have K (V) = sjo with ;(b, 4y)) > 0 because £(s;0) = £(c) + 1. By the tensor
product rules in crystals (B), there exists an integer k such that K+(éfb’ ) = o, that is such that
¥y’ € B,()\). This shows the inclusion By,, (\) C A;(B,()\)). The equality of characters follows
from the equality of sets. U
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Remark 3.12.

(1) Here again, we can reformulate (I6) and Lemma [311 by setting u = oX. Using
Lemma [2.7), this gives

. _J By i i > pisa,
Ai(By) = { B, otherwise,

and
Ai(Eu) = Equsm if pi > iyt
(2) Observe that Lemma 311l does not remain true when p; < piv1. In this case, we indeed
have A;(B,) = B, whereas D;(R,) = 0, as can be seen from ([I8). Thus, to mimic the
action of the operator D; on Ky , at the level of its associated Demazure atoms, we need
to replace the action of A; on B,(\) by

Ai(Eu) = Euugsm iof i > it

(19) Ai(By) =4 AiBy) =By if i = pisa,
0 if pi < priva-

We then always have

char(A;(B,)) = D;(,).
We may linearize the action described in (I9) above by defining an action of the monoid
of Demagzure operators D; on a free Z-module of rank |6;\L| generated by the formal symbols
{Gyx : 0 € G}, written DB, cer Zeoy, by setting

Cox + Cs;on if 1 = o satisfies p; > piqq
(20) D;i(Csn) = & Con if p = o\ satisfies p; = piy1,
0 if p = oA satisfies p; < phjy1-

These operators satisfy the braid relations together with the relations Di2 = D;, hence for every
w € &,, we can write D,, to mean D;, D;, --- D;, , where s;, s;, - - - 54, is a reduced decomposition
of w in &,. Note that the conditions on the weight p can be entirely reformulated in terms of
the Weyl group &,, (Lemma [2.4)).

The following lemma establishes crucial properties of the action of the operators D,, on the
basis {Gs : 0 € &)}, which will be used in the proof of Theorem B.17 below.

Lemma 3.13. We have
(1) Let AC &) and w € &,,. Then there exists B C & such that

b (L) - T
oc€EA c€EB
(2) Let 7,7' € &) with T # 7/,w € &,,. Then there are Ay, Ay C &) with Ay N Ay = 0 such
that Dy (Cry) = ZaeAl Cox and Dy(¢ry) = ZO'EAZ Co) -
Proof. Let us first prove the first point. By induction on the length ¢(w) of w, it suffices

to prove the result for w = s;, where i € {1,2,...,n — 1}. Let A = A;|]|As||A3, where
Ay ={o € A | p = o) satisfies pu; > pir1}, Ao = {o € A | p = o\ satisfies p; < piy1}, and



24 OLGA AZENHAS, THOMAS GOBET, CEDRIC LECOUVEY

Az ={o € A | p= o) satisfies pu; = pi+1}. By (20) we have

D:-(Zm)z& Sl | +Di | D Cn | +Di[ D | =

ogEA oEA; ocEA2 ocEA3

= Z (EO')\ + Esia)\) +0+ Z Co)

oEA; o€A3
= Gt > ot Y Cor
cEA; o€s; Ay o€A3

To conclude the proof, it suffices to notice that s;4; C {o € &) | p = o\ satisfies p; < pir1},
hence the union Aj |Js; A1 |J A3 is still disjoint. Therefore setting B := A | |s;A1| | As we get
the result.

We now prove the second point. By the first point, there is B C &) such that Dy, (¢,x4ry) =
> ocp Cox- But, still by the first point, there are also A;, Ay C &) such that Dy (¢r\) =
> vea, Cox and Dyy(Cra) = D c 4, Con- We thus have

D Cor = Du(Crr + E3) = Du(@ra) + Du(@na) = D Cor+ Y o,
o€EB og€EA; oE€As

which forces B to be the disjoint union of A; and As. O

In [26] Lascoux gave other non-symmetric Cauchy type identities for any partition A € P,,.
The idea is to consider the largest staircase pp = (m,m — 1,...,1) contained in the Young
diagram of A. Then one can choose a box b at position (ig, jp), in Cartesian coordinates, in the
augmented staircase (m + 1,m,...,1) which is not in A. The diagonal L;; : j —i = jo — 4o,
in Cartesian coordinates, cuts A in a northwest part and a southeast part corresponding to the
boxes above and below L; j, respectively. Now fill the boxes (i, j), in the n xn matrix convention,
of the NW part of A by n—1 (i.e., by the n xn matrix reverse row index (equivalently counting
rows from bottom to top) minus one), and the boxes (i, j) of the SE part by j — 1 (i.e., by the
index of the column minus one). Let (A, NW) = s;, ---s;, be the element of &,, where the
word 1 - - - i, is obtained from right to left column reading of the NW part of A, each column
being read from top to bottom. Similarly, let (A, SE) = s;, - - - s;, be the element of &,, where
the word jj - - - jp is obtained from top to bottom row reading of the SFE part of A, each row
being read from right to left.

Example 3.14. Let n = 8 and A = (7,4,2,2,2). Take (ig,j0) = (3,3). We have m = 4 and
PA = (47 37 27 1);

474
m[3

A=H|H|a :
JLILIB
H/EE E[4]5]0]

and we have o(A, NW) = s48354, and o(A, SE) = s35¢554.

The following theorem was established in [26] and reproved for near stair shapes in [4].
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Theorem 3.15. With the previously introduced notation, we have

1 p—
H [ Z Do (A NW)YF (o) (s -+ s T 1) Do (A, SEYS (o) Y15 -+ + 5 Y )
(i,j)GA v (ﬂl,---,ﬂm)ezm
where Dya nwy = Diy -+ Di, and Dy sgy = Dy, -+ D;
Remark 3.16.
(1) By setting (p1,- .., pm) = oA with 0 € Sy, and X € Py, we get by (1)
E(um,...,m)(iﬂm <oy Tp—my1) = char (L (E(um,~~~,u1))) = char <E(“1""’“m)> .

and sj, ---sj, of o(A, NW) and o(A, SE) are

b

(2) Observe that both decompositions s;, - - S;
reduced.

a

By using the operators A; on Demazure crystals, one can now deduce from this identity of
characters an analogue of Theorem 2.22] for the augmented staircases.

Theorem 3.17. With the previously introduced notation, the restriction of the RSK correspon-
dence ¢ to Mﬁg gives a one-to-one correspondence

(21) P MPy — L L (AJ(A,NW) (E(um,...,m))) X Ay(a,58) (B(ur,.pim))
(1150 im ) EZT,

where AJ(A,SE) = Aj1 s Ajb and AJ(A,NW) = Ah s AZGE

Proof. First we need to prove that the right hand side Z of (21]) is indeed a disjoint union. To
this end, first observe that for any v € ZT,, we have

Ayanvwy(By) =0 < Dy(p,vw)(F) = 0.
When AJ(AJVW) (B,) # 0, by point (1) of Lemma [B.13] we get the existence of a set 4, C &, \
such that . _ _
Dy, nw)(Ry) = Z Fs and hence A,x nw)(By) = || Bs.
€A, oedy
Now by point (2) of Lemma [3.I3] we must have A, N A, = for any v/ € Z™ distinct from v.
Observe also that A, sk (B(va---yﬂm)) is a Demazure crystal by LemmaB.I1l We also get that

|_| AU(A,NI/V) (E(um,...,/u))
(115051t ) EZT

is a disjoint union of atoms. This permits to conclude that the set
(22) Zc [ BA)xBQ)=1vMnn)
AEPy

is indeed a disjoint union composed of Cartesian products sets of an opposite atom and a
Demazure crystal which all lie in (M, ). Indeed, the Cartesian products sets so obtained
from distint sequences (i1, ..., i) cannot intersect.

Now, by Theorem [2.22] and its alternative formulation (I4]), the RSK correspondence on M,, ,,
restricts to a bijection

D —
w : Mn,l;lA — ( I_I )eZ L (B(va---ylll)) X B(l/«ly---yﬂm)’
H1seesbm m

91t follows from the definition of A that product sets of the form @) x U can appear in the right hand side of
1) and then @ x U = § as usual.
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Then, the pre-image 1~*(Z) C M, ,, (which is well-defined by (22))) is obtained as the image

D 5 5 - .
of M, under compositions of crystal operators of the form fjkl1 e fjk ® and eﬁ e eé‘; (because
the involution ¢ changes each f,_; into &;). By Remark 22T}, this shows that 1/~ (Z) is contained

in Mﬁ . To get the equality v~1(Z) = Mﬁ w0, it suffices to consider the characters of both
sets which coincide thanks to Theorem B.I5] Equalities (I7)) and Remark O

Example 3.18. Let n =8, and A = (7,4,2,2,2). We have m =4, o = (4,3,2,1) and

-
I
EEEN~
w

HE N~

A
|
]

W|41[5]6]

with o(A, NW) = sy4s354, 0(A, SE) = $3555554.
Then v is the RSK applied to M£é7’4'2’2'2) the set of 8 x 8 non negative integer matrices whose
positive entries fit the shape A = (7,4,2,2,2),

D . . . R
¢ : M87é7,4,2,2,2) N Ll L (A4A3A4(B(M4,---7M1))) X A3A6A5A4 (B(ul,,,,7u4))
(M17---7M4)EZ‘§0

A= p(A) = (P,Q)

D
Let A € M8’é7’4’2’2’2) be as follows

00000000
00000000
00000000
A= 3;888888 encoded by 57T ® 450 70 T® 8 © 88 @ 0,
00000000
20110000
00001020

It is useful to write K(v) := b, with v € S,\. For u,v € &, \, the entry-wise comparison
K(u) < K(v) is equivalent to u < v in S, A. Then

g[8 g[8

P=[7|718 K= (P)=[T7|7]8 = K(0%,5,0%,2,3)
415]5]7][7] 4[4]4]4]4]
517 717

Q=347 K (Q) =447 = K(0,5,0,2,07,3,0).
1[1]1]2]2] 2]2]2]2]2]

We show that there exists pu = (u1, pi2, 143, fha) € Zéo such that

1/J(A) = (P, Q) S L(A4A3A4E(00M704)) X A3A6A5A4B(M704),
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where oy € &4 and v is the Schitzenberger involution on tableaux on the alphabet {1,2,...,8}.
One has

L(A4A3A4E(“4’__.7H1704)) ==

LE(M#S,M%O,O‘L) L LE(M4,MS,07M2,04) L LE(M4,AL3702,M2703)’ if p2 > =0

LE(M47HS,070,04)’ f = p2 =0

B s sz gor,04) L B s s 2, 0,01,08) LL EB s s 0,02, 09)5 4 11 = pi2 >0

O, if pp > p2>0

B (e 0%) L UB (14 15 11 112,01) L UB (14 p13,112,0,111,09) L UB (14 13,0, 12,1,09) L UB (114 ,113,0,111,112,09) L
HLE(H4,MS7H170,M2703)’ if p2 > p1 > 0.

and
ABAGAE)A4B(M,O4) = Bryromsma(1,0t) = B, p2,0,113,0,0,04,0)-

Then

K~ (P) = K(0%,5,0%,2,3) & PcB
= u=(0,5,2,3).

Indeed K. (Q) = K(0,5,0,2,0%,3,0) < K (0, ug, 0, u3,0,0, ug,0) = K(0,5,0,2,0%,3,0) and

0%,5,0%,2,3 =
( = B o02509) = p2e=5>pu1 =0, u3 =2, g =3

Q € B(0,5,0,202,30)-

Therefore,
_(0375’0272’3) . . -
(P,Q)eB X B(0,5,0,2,02,30) = (P, Q) € t(AsA3A4B(3250,01)) X A3AcA5A4B(52,3,01)-
Given
617
R=[24|7
1]1]2]2]2]
with K1 (R) = K(0,5,0,2,02,3,0) by reverse column Schensted insertion we get the matriz
0000 O0OO0OTO0TD O
0000 O0OO0OTU 0D
0O 00 00 0 O0O0
_ 17 0 0 0 0 0 0 O D
VIPR)=17 g 9 0 0 0 of M
0 00 0 0 0 O0O0
0 31 1 0 0 00
0 0 0 01 0 2 0

3.4. The southeast approach for . We now resume the notation of § and in particular
consider integers p and ¢ such that 1 < p < ¢ <nand n—g+1 < p to perform an augmentation in
the SE part of the staircase p = (p,p—1,...,1) as an alternative way to describe the truncated
staircase from § B2l As illustrated by the figure below, the element o(A(p,q),SE) € &, is
obtained from top to bottom row reading of the SE part of the augmented staircase, each row
being read from right to left. We thus get the following reduced decomposition in &,:

p—(n—q)—1 n—q

(23) o(Ap,q),SE) = [ (sitn-p-1---5) [[(Sq-1- Sp—n_g)+i)-

i=1 =0
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1 2 |- ) n-p
P el a-1
p q-1
q
FIGURE 2. The labels in A(p,q)/p, A(p,q) = (¢" 9T q—1,...,,n —p+ 1),
p = (p,...,1) the maximal staircase contained in A, indicate the column index of

A minus one. The reading word, from right to left and from the top to bottom,
defines the reduced word o(A(p,q), SE).

Resuming the notation of Definition B.7, let p = (p1,...,1p) € Z*;O and A € P, such that
,u:T)\,TGGI),‘,Withlgpgqgnandp—(n—q)21©q2n—p+1. LetEo\TGGI),‘such
that o7\ = O'([)p ) @ with O'([)p ! the longest element of &, (also recall that oy is the longest element
of &,). We build on [3| Proposition 3] to show the following proposition.

Proposition 3.19. The element [i introduced in Definition [3.7 satisfies

i = (007) 1 (A, 0"7P) = Ty (a (g, 55) o5 (M 0" P) = To(agma),sm) (08 11, 07 )
where o(A(p, q), SE) € &, is defined as in [23]). Equivalently, T (o07)
the same action on (\,0""P) and therefore by Lemma |22 (2), and Lemma[2.3 they correspond
)

L. . . )\707L7p
to the same minimal representative in 6% .

1a and To(A(p,g),5B) Togr have

Proof. On the one hand we have
(24) UOT(/\7 On—p) = JO(M) On—p) = (On—p, Hps ooy 12, :ul)

We will show that the product H?:l(ﬂ-i-HL—P—l e m)ﬂgo\T of bubble sort operators has the
same action on (A, 0""P). We have

p
H(ﬂ'i-i-n—p—l ce Wi)ﬂci_)?'()ﬁ Oq—p7 On—q) =
=1
p
(25) =1 Fitnp - m) o, 007,077
=1
p—(n—q)—1
(26) = (7Ti+n—p—1 ce 7Ti)’
=1
n—q
(27) ’ H(ﬂ'q—lﬂ' T Wp—(n—q)-l—i)(/‘p’ sy Hn—g+1y -5 1, Oq_p7 On—q)
=0

The bubble sort operators in (25]) act on the weak composition (aép } 1, 0" P) = (pp, ..., p1,0"7P),

[p]

shifting n — p times to the right each of the p entries of aop . This is done by shifting n — p
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times in O'([)p ] w, first in (27)), the last n — g + 1 entries and then, in (26]), the remaining first

p—(n—q)—12>0 entries. That is,

p—(n—q)—1 n—q
(m)7 m = H (Tri'f‘n—P_l e ’7'('7;) : H(ﬂ-q—l-i-i Tt ﬂ-p—(n—q)-i-i)(ulh o 7,un—q+17 Y R 0!1—;07 On_q)
=1 =0
p—(n—q)—1
= H (7Ti+n—p—1 : "7Tz‘)'
i=1
(28)
: (7rq—1 tee 7Tp—(n—q)) te (7Tn—2 tee 7rp—1)(7rn—1 T Wp)(upv <oy n—g+1s -5 U1, Oq_p7 On—Q)
p—(n—q)—1
- H (7Ti+n—p—l e ﬂ-i)(,u'pu o 7Nn—q+27 On_pa Nn—q-i—ly o 7,“1)
=1
= (ﬂ-”—p T 7T1) e (7rq—2 U 7T;l)—(n—q)—l)(/J;l)v <oy HPn—g+2, On—p7 Hn—q+15 - - - 7“1)

= (On—p7 Hps - -y Bn—q+2) Bn—q+15 - - - s 11)-
The product

p—(n—q)—1 n—q
(29) H (Tipn—p—1-+-mi) - | | (Mg=14 ** Tp—(n—q)+i)To57
i1 i—0

is a reduced decomposition in 9, of an element from 65{\’07171)) which acts on (A,0"7P) in the

same way as ogT.

)

Therefore the minimal representative of o¢7 in 69’07“’ is the minimal representative of the

element u with reduced decomposition in &,

p—(n—q)—1 n—q
H (Sitn—p-1---5i) (Sq-14i" sp—(n—q)+i)50\7
i=1 i=0
and hence
p—(n—q)—1 n—q K
ult = H (Sitn—p—1---5i) H(Sq—lH T Sp—(n—q)+i)507 ?
i=1 =0

which can be calculated using Algorithm 3.1l Note that u’e and (o7)%e may not be equal in 90,,,
but they have the same action on (A, 0" P): indeed, if ug is the common minimal representative
in &y gn-»), the elements o7 and u can be written in the form uguy and ugzy with uy, ) € &y
and £(og1) = L(ug) + €(uy), (u) = £(ug) + £(z)) respectively. By definition of Algorithm B
we then have (O'QT)Iq = ugliupr’e and ule = uglexy’e (where the product is in 9,; see also
Remark from the Appendix). It follows that (oo7)% and u’s are (now in &,,) of the form
u(l)qv and uéqz for some v, z € S 0n-r) Tespectively, and the second factors v and z thus have
trivial action on (A, 0"7P).
Passing to 91,, we have a reduced decomposition

p—(n—q)—1 n—q

u = IT @inpam) [[Forvi mpmtngysi) ez | »
-1 i=0
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hence the first step of Algorithm [B.1] yields the word

p—(n—gq)—1 n—q Iq
[I Ginprm) (H (mgerei - wp_m_q)m) T,
i=1 1=0
hence
p—(n—gq)—1 n—gq
(30) ult = H (Titn—p—1--- i) - H(Wq—l " T (n—q)+i)Tao7 = To(A(p.a).SE) a7
=1 1=0

Note that we omitted in (29) the operators with indices > ¢, to obtain To(A(p,q),SE) With
o(A(p, q), SE) the reduced decomposition in &, given in 23). Hence (007)" and (A (p,q),55) 557
have the same action on (A, 0"?) and the reduced decomposition of the latter explicitly provides
(oo7)a in &M This gives the desired result. O

We now give a simple algorithm for computing i = (oq7)2(),0"~P). Recall that n—q+1 < p.

Theorem 3.20. With the previous notation, we have

= Wo(A(p,q),SE)(O-([)p}NyOn_p) = (07 aq,...,0,0"79)
where a = (aq,...,0p) € Zgo is computed by the following algorithm: for i running from p to 1

o forj=1i+1,...,p, successively ignore in J([)p]u = (fp, ..., 1) the rightmost entry equal

to aj,
e set k; = min{i,n — g+ 1},
e then «; is the mazimum element among the remaining rightmost k; entries of (pip, . .., ft1).

Example 3.21. Letn=6,p=4,q=5,n—q+1=2,

(@) If p = (2,1,2,3) and oy = (3,2,1,2) = 73(3,2,2,1) then o = (1,3,2,2) is obtained
as follows: ay = 2 is the maximum among the rightmost min{4,2} = 2 entries of (3,2,1,2),
ag = 2 is the maximum among the rightmost min{3,2} = 2 entries of (3,2,1), ay = 3 is the
mazimum among the rightmost min{2,2} = 2 entries of (3,1), aq = 1 is the mazimum among
the rightmost min{1,2} = 1 entries of (1).

b) If p = (1,2,3,2) and oi’p = (2,3,2,1) = m1(3,2,2,1) then o = (1,2,3,2) is given by
ay = 2 is the maximum among the rightmost min{4,2} = 2 entries of (2,3,2,1), ag = 3 is the
mazimum among the rightmost min{3,2} = 2 entries of (2,3,1), ag = 2 is the mazimum among
the rightmost min{2,2} = 2 entries of (2,1), a; = 1 is the mazimum among the rightmost
min{1,2} =1 entries of (1).

Proof. The bubble sort operators in

p—(n—q)—1 n—q
TopaSE) = 11 Titn—p1-m) - [[ (o1 mpengy+i)
1=1 =0
(31) = (ﬂ-n—P e 771) T (7Tq_1 e 7T-10—(71—q)—2)(7"-q—2 e 7T}u—(n—q)—l)'
(32) : (7Tq—1 T 7Tp—(n—q)) Tt (7Tq—1 T 7T1)—1)(7Tt1—1 Tt 7Tp)

act on the weak composition (pp,...,pu1,097P,0"79), first in ([B2), shifting ¢ — p times to the
right the last n — ¢ + 1 entries, pp—g+1,.-., 1, of (fpy .., fn—g+1,- .-, 1), and one checks that
it sorts them in ascending order (jn—g+1,...,¢1)s, to get

(33) (Mpa ooy Hn—g+2, Oq_p7 (Nn—q-l—la s 7“1)T7 On_q)'
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Let oy, be the entry g of (33]). Next, the operators in (1)) act similarly on the resulting vector
(33, reordering in ascending order pi,—g+2 and (tn—q4+1,---,41) \ {ap}, that is, ignoring the
entry ¢, in (ftn—g41,---,41)4, B3), to get the vector

(34) (:upv -y Bn—g+3, Oq—p’ (Nn—q+2a (,un—q—i-la s Hu’l) \ {ap})T7 Qp, On—q)‘

Let o1 be the entry ¢ — 1 of ([34). Then reordering pi,—q+3 with the just new previous vector

(B34), ignoring the entries ¢ — 1 and ¢, and so on. Observe that after some point, the number of

[p]
0

remaining entries in o ' 14 is less than n—g+1 and just the ¢ remaining entries are considered. [J

Let us give two examples illustrating the notation and the results of Proposition B.19 and
Theorem [3.20

Example 3.22. Letn=6,p=4,q=5 and A = (5%,4,3) wheren —p+1=6—-4+1=3<gq
andn—q+1=2,

2
2
O

A= O'(A(4, 5), SE) = 59851 8352 5453 S4,

oooo

1
(]
(] 4
o o 4

N O w w

(a) Let p = (2,1,2,3) = 7\ €
Then on the one hand we have

007(3,2,2,1,0,0) = 00(2,1,2,3,0,0) = ao(p,0%) = (0,0,3,2,1,2).

On the other hand, mimicking the proof of Proposition[3.19, we have Tz5 = 73 and the product of
the bubble sort operators Hle(murn_p_l ) Tagr 1S given in this case by T T3MamAT3TET4TS
and we have

7727T17T37T27T47T37T57T47T3(37 27 27 17 07 0) = (07 07 37 27 17 2) = 0-07—(37 27 27 17 07 0)

o0 and A = (3,2,2,1), 507X = s3A = (3,2,1,2) = o} p.

The decomposition $951S83525453S55483 1S reduced and lies in Gé‘. We calculate

(Mo M3 MMM T5TaT3) > = oM T3 MomuM3MEMATS = ToMI T3 MM 4T3 T4TS
= MM M3MoMAT4TTIMY = WM M3MM4TZT4.
Note that (712771713712774713775774713)15 = To(A(4,5),SE) N this case. Now we have
WU(A(4,5),SE)7T3(37 27 27 17 07 0) = 7-‘-1:7'(1\(4,5),,5'E') (37 27 17 27 07 0) = 7T27T17T37T27T47T37T4(37 27 17 27 07 0)
= mommymamaT3(3,2,1,0,2,0) = mommymamy(3,2,0,1,2,0)
= mommsma(3,2,0,1,2,0) = memm3(3,0,2,1,2,0) = mamy1(3,0,1,2,2,0)
= 75(0,3,1,2,2,0) = (0,1,3,2,2,0) = (0,,0).
Note that a was also computed in part (a) of Example [3.2]].
(b) Let u = (1,2,3,2) = 7A € Z40, and A = (3,2,2,1), Go7A = s1A = (2,3,2,1) = o .
Then on the one hand we have
007(3,2,2,1,0,0) = 0¢(1,2,3,2,0,0) = op(p, 02) =(0,0,2,3,2,1).

On the other hand, mimicking the proof of Proposition[3.19, we have 55 = w1 and the product of
the bubble sort operators Hle(ﬂi+n_p_1 e 7Ti)7TC7(‘)7. 18 given in this case by wom M3MoT4T3TE T4
and we have

7T27T17T37T27T47T37T57T47T1(3, 2, 2, 1, 0,0) = (0, 0, 2, 3, 2, 1) = 007'(3, 2, 2, 1,0, 0).
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The decomposition S95153525453558481 18 reduced and lies in Gé‘. We calculate
(mam 3T mymaTE T4y ) P = Momy Ty MMMy = To(A(4,5),SE)T1-
Now we have
To(A(4,5),5E)T1(3,2,2,1,0,0) = mommamemamsmym(3,2,2,1,0,0) = (0,1,2,3,2,0) = (0,,0).
Note that o was also computed in part (b) of Example [3.2]].

4. LAST PASSAGE PERCOLATION IN A YOUNG DIAGRAM

4.1. LPP on rectangle Young diagrams. We resume the notation of § 24l Let uy, ..., un

and v1,...,vn be two sets of real numbers in the interval [0,1[ and consider a family w; ; of
independent random variables, with values in Z>q, and such that
(35) P(w;j = k) = (1 — u;v;)(u;v;)* for any k € Zso.

In other words, each wj; ; follows a geometric distribution of parameter w;v;. We then obtain
a random matrix W with values in M,,, whose entry at position (i, ;) is defined as w; ; for
1 <7< mand 1< j < m. Since the random variables w; ; are independent, for any A € M,, ,,
we get

POW = A) = T —wwy) | (w)?

1<i<m,1<j<n

where (uv)? = [Ti<icm<j<n (wivs) ™.

Now consider the paths in the matrices in M,, ,, starting at entry (1,n) and ending at entry
(m, 1) with possible steps «— or |. The length of such a path is defined as the sum of all
the entries that it contains. Let us define de map perc which associates to each matrix A in
My n the maximum of the length path of all possible aforementioned paths in the matrix A. By
Assertion 4 of Theorem [2.19] the integer perc(A) coincides with the longest row of the tableaux
P(A) and Q(A). This is the last passage percolation associated to A. We then define the random
variable G = perc o WW. Thanks to the above observation and Theorem 2.19] it becomes easy
to give the law of the random variable G. Set A n = [[1<;<m1<j<n(1 — wiv;). The following
theorem was established in [20].

Theorem 4.1. For any nonnegative integer k, we have

P(G = k) = A > sx(u)sx(v).

Aepmin(m,n) |>‘1 =k

In fact the results in [20] also give a law of large numbers of the variable G and also a
Tracy-Widom renormalization theorem, both of which are outside the scope of this note.

4.2. LPP on staircases and non-symmetric Cauchy Kernel. Thanks to Theorem 2.22]
the non-symmetric Cauchy kernel identity also yields an interesting last percolation model. This
time, we assume m = n and only consider independent random variables w; j when1 < j <i<n
with geometric distributions as in (35]). This defines a lower random square matrix £ with
nonnegative integer entries and we get

PL=A)= [ (—uv)pa)’.
1<j<i<n

One can interpret this model as follows. Consider paths from position (1,7) to position (n,1)
where only the entries in the lower part of A contribute to the length of the paths. We can then
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define the random variable L = perco £ and try to determine its law. Since Theorem gives
a bijective correspondence obtained as the restriction to lower triangular matrices of the RSK
map defined on M,, ,,, the value of L still corresponds to the length of the largest part of the
partitions appearing in the right hand side of (I3]). By Remark 2:23] this yields the following
theorem.

Theorem 4.2. For any nonnegative integer k we have

P(L=k)=2S5, Z R (u)ky(v) = Sy Z Foo () (Uns - - U)K (V15 -+ o5 Un),

MGZgo\max(u)zk HEZ™ |max(p)=k

where

Sn = H (1 — ’LLZ"Uj).

1<j<i<n

4.3. LPP and parabolic restrictions in non-symmetric Cauchy Kernel. Given p and
q as in § 2.l one can similarly use Theorem to study the percolation model on random
matrices 7, , with nonnegative random integer coefficients having zero entries in each position
(i,7) such that i <n —p and j > ¢. Each random variable w; ; with i >n —p+1and j < ¢
follows a geometric distribution of parameter u;v;. Using the same arguments as in § B, we
can obtain the law of the random variable T}, , = perco 7, 4.

Theorem 4.3. For any nonnegative integer k, we have

]P)(Tpvq = k) = prq Z E(/Jp,...,,u,l)(un7 cee 7un—p+l)"i/j(vl7 e 7Uq)a
(,ul,...,,up)Engmax(u):k

where
Tp7q = H (1 - uivj).
(Lj)EDA(p,q)
4.4. LPP and augmented staircases. We now resume the notation of § B3l For a fixed
partition A in P, we consider random matrices A with nonnegative random integer coefficients
having zero entries in each position (i, 7) such that (i,5) ¢ A. Here again each random variable

w; j for (,75) € A follows a geometric distribution of parameter u;v;. Let us define the random
variable Ay = perco A,. Then, by Theorems [3.15] and B.17), we get the law of Ay.

Theorem 4.4. For any nonnegative integer k, we have
P(Ay =k) =

TA Z DU(A,NW)E(va-"vﬂl)(una . ’un—m"’l)DU(A,SE)’{(ul,...,um)(Ulv . 7'Um),
(va---yum)EZm\max(u):k

where

TA = H (1 — uivj).

(ZJ)GDA
5. APPENDIX

Let (W, S) be a Coxeter system. Let 9ty be the attached Coxeter monoid, that is, the monoid
with generators a copy S of S, the same braid relations as (W, S), and relations s> = s for all
s € S replacing the relations s> = 1 for all s € S. Here by braid relations we mean the defining
relations st---ts---, where t # s and both sides are strictly alternating products of s and ¢
with m,; = my s factors, where my; is the entry of the Coxeter matrix. These relations first
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appeared in work of Demazure [14], Section 5.6], and the Coxeter monoid was first investigated by
Richardson and Springer [38] Section 3.10]. It is well-known (and a consequence of Matsumoto’s
Lemma) that there is a canonical set-theoretic bijection between W and 9y : it just sends any
reduced decomposition of an element of W or 9y to the same decomposition.

Let I C S, w € W and s189--- 5, a reduced decomposition of w. Consider the subword
SiySig + -+ Si, Of 5182 -+ s consisting of those letters in sysg - - - s; lying in I. Set

M((317827 .. '7814:)7[) ‘= 8§18iy "+ " 84, € E)JI‘/V

L

Lemma 5.1. The element M((s1,S2,...,5k),I) is independent of the choice s183--- S of re-
duced decomposition for w, and we simply denote it by M (w,I).

Proof. By Matsumoto’s Lemma, we know that any two reduced decompositions of w are related
by applying a sequence of braid relations. It therefore suffices to show that applying a braid
relation to a reduced word for w does not change the element of My, obtained by keeping only
those letters in the words which lie in I.

Let s152 - - - 53, be the first reduced decomposition of w, and s} s5 - - - 5} be the one obtained after
application of a single braid relation. A braid relation involves only two letters s,t € S (s # t).
Then s1s2--- s (as a word) is of the form xsts---y while s|s),--- s} is of the form atst---y. If
s,t ¢ I, then it is clear that the two subwords of siso---s; and s|sh - s consisting of those
letters which are not in I coincide, hence that M((s1,S2,...,sx),1) = M((s},55,...,s)),1). If
s,t € I, then the two subwords differ by a single braid relation, which holds in 9%y, hence define
the same element of My Finally, if only one letter among s and ¢, say s, is in I, then since
t ¢ I, it follows that the substring sts--- contributes k consecutive copies of s to the subword
of s189--- s obtained by deleting the letter not in .S, while tst--- contributes k or k — 1 copies
of s to the subword of s} --- s}, depending on whether m; is odd or even. Moreover, since
s appears in both sides of the braid relation sts--- = tst---, then at least one copy of s is
contributed in each word. Thanks to the relation s?> = s, these consecutive copies of s get
reduced to s in My, again yielding M ((s1, s2,..., k), 1) = M((s}, s, ..., %), I). O

We denote by < the strong Bruhat order on W (or 9My). We recall that, for u,v € W, the
following three conditions are equivalent (see [0, Corollary 2.2.3])
(1) u<w,
(2) There is a reduced decomposition of v having a reduced decomposition of u as a subword,
(3) Every reduced decomposition of v has a reduced decomposition of u as a subword.

Lemma 5.2. (1) Let sysa---sk be a word in the generators of My and 1 < i3 < i <
- < ip < k such that s;, 54, - -+ 55, 15 a reduced decomposition of an element w of W. Let
sish - -sh, be a word obtained from sisa---sk by applying a single defining relation of
My . Then there is a sequence 1 < j1 < jo < -+ < jo < m such that s s --- s} isa
reduced decomposition of w.

(2) Letsysg---sk andsysh---sh, be two (not necessarily reduced) words for the same element
w of My . Let Qy (resp. Qo) be the set of elements of W having a reduced decomposition
which is a subword of s1Sa - - sk (resp. sysh s, ). Then Q1 = Qo. In particular, this
set Q(w) depends only on w, and we have

Qw)={zeW |z <w}.

Proof. The second point is an immediate corollary of the first one; the last statement is used by
taking as word s18s - - - sk any reduced decomposition of w.

Let us show the first point. The result is clear if the relation which is applied to the word
S1S2---Sk is s — s% or s — s, since in the case where we have to consecutive copies of s in
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the first or the last word, then at most one can contribute to a reduced decomposition as ss is
not reduced in W. Hence s;,s;, - -+ S;, also appears as a reduced word of s/s5 - - - s, in this case.
Hence assume that the relation which is applied is a braid relation w; =st--- — ts--- = wa.
That is, we have k = m and (as words) siS2 - - - Sk = S1S2 - - - S§{W1S;jSj4+1 - - - Sk while s{s5 - - - s =
S182 - - SiW28jSj41 * - - Sk-

Denote by p the number ¢(wq) of factors in either side of the braid relation. The subword u of
w1 which contributes to the reduced word s;, s;, - - - 55, is necessarily and alternating product of
s and t, otherwise it is not reduced. Moreover, it contributes a subword u of s;,s;, - - - s;, which
is made of consecutive letters, the letters before that subword (resp. after that subword) coming
from sysg---s; (resp. sjSj11---sk). If £(u) < p, then u has a unique reduced decomposition,
and wy also has u as a subword. Hence the claim holds true in this case. If ¢(u) = p, then the
whole left side wq of the braid relation is contributed as a consecutive subword of s;, s;, - - - 5, .
Replacing that subword by the right side ¢s- - - of the braid relation yields the required subword
of ssh - --s}.. It stays reduced as it is just obtained from a reduced decomposition by applying
a braid relation. O

Proposition 5.3. Let w € W. The set fwlS ={x e W |z e Wrand z < w} is equal to

{r e W | o < M(w,I)}. In particular, it has a unique mazimal element for <, given by
M(w,I).

Proof. Let s1s9--- s be a reduced decomposition of w.

Let z € wIS. Since x < w, there is a subword sj,5j,---55,,, 1 < j1 < jo < -+ < gy < Kk
which is a reduced decomposition of z. Since x € Wi, all the letters of s;, 55, -5, liein I. In
particular, the reduced decomposition sj, s;, - - - s;,, is a subword of the subword s;, s;, - - - s;, of
5182 - - - s consisting of those letters which lie in I. Putting Lemmas [5.1] and (2) together we
get that z < M(w, I).

To conclude the proof, it therefore suffices to see that M (w,I) < w. By Lemma (2), we
know that any (not necessarily reduced) word for M (w,I) in My has a subword which is a
reduced word for M (w, ), as this property is independent of the chosen word, and it holds if
we take any reduced decomposition of M (w,I) in M. But by definition of M (w, I), there is
a subword if s1s9 - - s, which is a (not necessarily reduced) decomposition of M (w, I) in My .
Hence s1s9 - - - s, must have a reduced decomposition of M (w, I) appearing as a subword. [

Example 5.4. Let W be of type As and let w = s182838182. The list of reduced words for w is
given by

5182535152,

5182515352,

5281525352,

5281535253,

® S59535159S3.

Extracting the subword with letters in I from every such decomposition yields
® 51525182,

® 51525182,

® 52515282,

® 525152,

® S5951S592.

In My we get
® S1S2S51S2 = S1518281 = S15281,
® S1S2S51S2 = S1518281 = S18281,
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® 52518282 = S28182 = S1S281,
® S28182 = S1S5281,
® S2S1S9 = S1S92S7.
Note that the obtained is element is distinct from wy, the element from the canonical decom-
position w = wlwr, which is given here by s153.

Remark 5.5. It is a consequence of the definition of M (w,I) and Lemma[21 that if u,v € W
with ((uv) = (u) 4+ £(v), then M(uv,I) = M(u,I)M(v,I) (where the product is taken in My ).
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