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Abstract: This paper considers a class of systems admitting several flat representations and
proposes a trajectory tracking controller design which accounts for disturbance rejection. Set
invariance is used for characterizing the tracking and estimation error dynamics. Furthermore,
some insights on the disturbance propagation in case of different flat representations for a fixed-
wing Unmanned Aerial Vehicle (UAV) system are highlighted via simulations and comparisons.
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1. INTRODUCTION

Introduced in the 1990s, the definition of differentially
flat systems (Fliess et al., 1993) has drawn a significant
amount of attention thanks to the guaranteed explicit rep-
resentation of nonlinear systems simply via the evolution
of an m−tuple of functions (where m is the number of
control inputs), called flat output, i.e, the evolution in time
of all state and control variables can be recovered from
that of the flat output and a finite number of its time-
derivatives. This property benefits not only the trajectory
generation problem, but also the control design procedure.
More specifically, thanks to this representation, the sys-
tem’s planning problem is reduced to the planning of the
flat output and so are the ancillary requirements such as
input saturation (Nguyen et al., 2020), obstacle avoidance
(Stoican et al., 2015b) or minimization of energy spent
(Zafeiratou et al., 2020). Furthermore, after achieving a
feasible reference trajectory which directly takes into ac-
count the system’s dynamics and constraints, one can also
exploit flatness to simplify the feedback control design
process. A linearization law can be proposed to cancel out
the nonlinearities via dynamic, invertible and endogenous
feedback transformations that convert the system into a
linear equivalent controllable dynamics. The remaining
problem is to control the linear dynamics properly. Several
methods have been exploited since this type of transforma-
tion was introduced, including state feedback, sliding mode
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control or backstepping-based control (Sira-Ramı́rez, 2015;
Martin, 1994).

When addressing the flatness-based control design and
analysis, seldom are the proposed solutions combined
with the set theoretic framework in order to evaluate the
robustness and efficiency of the system’s performance.
Furthermore, although the flat output is a function of
the state, input and its derivatives, it is well known that
the representation is not unique (Kaminski et al., 2018).
Hence, an interesting question arises: among a set of flat
outputs, which is better suited for control synthesis from
the viewpoint of disturbance rejection performance?

The main goal of this paper is to provide a reliable tracking
controller design based on flatness and its properties while
evaluating the influence of the disturbance propagation
when considering different flat output representations. Our
contributions can be briefly summarized as follows:

• we provide a systematic procedure for controller and
observer design for a class of systems which admit a
flat output representation affected by disturbances;

• we analyse the effect of changing the flat output
selection on the controller construction and the per-
formance from a set-theoretic viewpoint;

• we provide numerical simulation and discussions for
a particular flat system i.e., a fixed-wing UAV model.

The remainder of the paper is organized as follow: Section
2 summarizes the entire procedure including the transfor-
mation of the nonlinear system into a linear equivalent
one, controller and observer design, and set descriptions
for performance assessment. Section 3 applies the proposed
framework for a 3 degree of freedom (3-DOF) UAV model
under disturbances. Numerical simulations and discussions
are provided in Section 4. Finally, Section 5 draws the con-
clusions and indicates some future directions of research.



2. PREREQUISITES

In this section, the notion of flatness will be recalled
to construct a foundation for the subsequence feedback
linearization design process. The linearized dynamics will
be then taken into account together with bounded distur-
bances via the construction of an extended state observer
(ESO). Finally, as an approach to evaluate the efficiency of
the method, robust positive invariant sets of the linearized
tracking and estimation error dynamics will be computed
and analysed. Let us first introduce the notations and
mathematical tools exploited throughout the paper.

Notation: Denote by upper-case letters the matrices with
appropriate dimension. Let also In represent the identity
matrix of dimension (n× n) while 0(a×b) denotes the null
matrix of size (a × b) and 1 is the matrix of ones with
suitable size. Vectors will be denoted in bold (e.g. ξ, u).

2.1 Model inversion through flatness

We consider the following nonlinear control system under
the presence of disturbances as in (1):

ξ̇ = f(ξ,u) + dξ, (1)
where ξ,dξ ∈ Rn and u ∈ Rm are respectively the
system’s state, disturbance and input vector. We suppose
that the nominal model ξ̇ = f (ξ,u) is flat, that is, there
exists a m-dimensional smooth vector valued function
ϕ
(
ξ,u, u̇, ...,u(p)

)
for some integer p ≥ 0, such that both

the state and the input can be expressed in terms of
z = ϕ(ξ,u, u̇, ü, ...,u(p)), that is called flat output, and
a finite number of its time-derivatives:

ξ = Φξ(z, ż, z̈, ...,z
(q−1)), (2a)

u = Φu(z, ż, z̈, ...,z(q)). (2b)
As mentioned in (Levine, 2009), all flat systems can be

linearized in closed-loop with an invertible endogenous
dynamic feedback law. More precisely, system (1) may be
linearized via a dynamic feedback defined as:

η̇ = α(ξ,η,v), and u = β(ξ,η,v), (3)
with η ∈ Rh, v = [v1, ..., vm]> ∈ Rm and β(·) is invertible
with respect to v. The word “endogenous” reflects the fact
that the feedback variables η and v are generated by the
original ones (ξ, u̇, ü, ...) , Martin (1994), and often the
linearizing dynamic feedback corresponds to dynamical
extensions of suitably chosen controls (that is, to use
control no longer as the original inputs, which become
state of the extended system, but their derivatives). From
this, it follows that whenever system (1) admits a flat
output z, then we can transform it, for some ri, by a
feedback of form (3) and coordinate change into the linear
controllable dynamics (Levine, 2009):

z
(ri)
i = vi, 1 ≤ i ≤ m. (4)

This system then can be controlled by applying suitable
controllers on each row of (4). For trajectory following,
the convergence of zi to its reference will result in the
tracking of the state ξ in the light of the mapping (2a).
However, this affirmation can only be satisfied with the
nominal model, i.e, when no disturbances (including model
uncertainties, external perturbations, etc.) are taken into
account. Hence, the next subsection will handle the dis-
turbance rejection by constructing an ESO, which provides
estimation for both state and disturbances. Then based on
that estimation, a state feedback controller is introduced
to counteract the effect of disturbances. Generally, the
control scheme (illustrated in Fig. 1) is epitomized as:

• Firstly, the trajectory of the flat output vector zref =
[z1 ref , z2 ref , ..., zmref ]> will be generated such that
certain constraints will be respected (dynamics, way-
point passing, obstacle avoidance constraints, etc).

• The tracking is then tackled by the controller in the
flat output space where the dynamics is linearized in
closed-loop. Both tasks are carried out owing to the
feedback from an ESO (Yang and Huang, 2009).

• The real input u is then recovered from the virtual
input vi via the flatness-based inversion in (3).

• The flat output zi then is measured and given as the
input for the observer (9) which, in turn, estimates

its derivatives and the disturbance di affecting z
(ri)
i

and propagated from the state disturbance dξ.

Flatness-based
model inversion 

(4)

Controller 
(12)

Flatness-based
trajectory generation  Linearized system

Extended state observer 
(10)

Nonlinear
model 
(1)

Fig. 1. Flatness-based trajectory tracking control scheme.

Remark 1. Note that the trajectory generation task is
an important stage for the entire control scheme as it
facilitates the control effort by taking into account before-
hand complex problems such as constraint satisfaction or
optimal trajectory generation . The trajectory generation
using flatness, denoted here and in the figure by zi ref , can
be found in our previous work (Stoican et al., 2015b).

2.2 Tracking controller design with disturbance rejection

Consider the disturbances dξ in (1). By applying the same
flatness-based linearization law as in (3), the dynamics (1)
is transformed into a system of differential equations:

z
(ri)
i = vi + di, (5)

where di is the propagated disturbances through the
linearizing procedure. The objective is to ensure that the
output zi tracks its a priori given reference signal zi ref .

Further, we proceed by rewriting each equation of (5) in
a classical state-space representation as follows:

σ̇i = Aiσi +Bivi + Eiτi (1 ≤ i ≤ m), (6)
σi =

[
σi,1 σi,2 ... σi,ri σi,(ri+1)

]>
,
[
zi żi ... z

(ri−1)
i di

]>
,

τi = ḋi,

(7)

Ai =

[
0ri×1 Iri

0 01×ri

]
, Bi =

[
0(ri−1)×1

1
0

]
, Ei =

[
0ri×1

1

]
.

(8)

Considering yi = Ciσi , [1 01×ri ]σi as the output of (6)
and that the pair of matrices (Ai, Ci) is observable, we
construct for the linear model (6) an observer as follow:

˙̂σi = Aiσ̂i +Bivi + Li(yi − ŷi), (9)

where σ̂i , [σ̂i,1 ... σ̂i,(ri+1)]
> is the estimated value of

σi and ŷi is that of yi. The estimation error between the
current and the estimated value êi = σi − σ̂i yields:

˙̂ei = σ̇i − ˙̂σi = (Ai − LiCi)êi + Eiτi. (10)



With this formulation, providing that di or τi is bounded,
the error limt→∞ êi(t) will also be bounded with a suitable
choice of Li stabilizing dynamics (10), see (Yang and
Huang, 2009; Abadi et al., 2020). From the estimation
achieved in (9), let us define the virtual input vi as follow:

vi = σ̇i,ri ref +Ki

[
σi,1 ref − σ̂i,1

...
σi,ri ref − σ̂i,ri

]
− σ̂i,(ri+1) , (11)

where Ki = [ki,1 ki,2 ... ki,ri ] is the control matrix of

tuning parameters and σi,s ref , z
(s−1)
i ref (1 ≤ s ≤ ri).

Proposition 2. With the virtual input proposed in (11),
and a suitable choice of Li and Ki, the tracking and
estimation error can be stabilized in closed-loop.

Proof. First, we rewrite (11) as:
vi = σ̇i,ri ref +Kiei + K̃iêi − σi,(ri+1) , (12)

where K̃i = [Ki 1], ei,s = σi,s ref − σi,s, (1 ≤ s ≤ ri) and
ei = [ei,1 ... ei,ri ]

>. For further use, consider the notations:

A∗i =

[
0(ri−1)×1 I(ri−1)

0 01×(ri−1)

]
, B∗i =

[
0>(ri−1)×1 1

]>
. (13)

Hence, on one hand, we may rewrite the tracking error as:

ėi =
d

dt

[
σi,1 ref − σi,1

. . .
σi,ri ref − σi,ri

]
= A∗i ei +B∗i σ̇i,ri ref −B∗i σ̇i,ri .

(14)
On the other hand, applying the virtual input (12) to the
dynamics in (1) and then replacing the value of σ̇i,ri =

z
(ri)
i into equation (14), we obtain the closed loop for the

tracking error dynamics as:
ėi = A∗i ei +B∗i σ̇i,ri ref −B∗i (σ̇i,ri ref +Kiei + K̃iêi)

= (A∗i −B∗iKi) ei −B∗i K̃iêi. (15)
Rearranging (10) and (15), we have:
d

dt

[
ei
êi

]
=

[
(A∗i −B∗iKi) −B∗i K̃i

0(ri+1)×ri (Ai − LiCi)

] [
ei
êi

]
+

[
0ri×1
Ei

]
τi.

(16)
From here we clearly ensure the stability of the closed-loop
with a right choice of the controller’s and observer’s poles
(respectively in (15) and (10)) knowing that the observ-
ability for (6) and controllability for (13) are satisfied.

The evaluation of the system’s performance is now also
facilitated via the linearization. In the next subsection,
we recall the construction of an approximation of the
minimal robust positive invariant (mRPI) set, Stoican
et al. (2015a). This is useful for confining the system’s
trajectory and quantifying its performance based on the
chosen poles for the linear controllers.

2.3 Tight approximation for the mRPI set
While there exist various methods to construct RPI sets,
the issue is still open (Blanchini and Miani, 2008). The
computation time, the complexity of the result and even
the fact that often the procedures are designed for the
discrete-time case are significant hurdles. In this section
we propose an extension of the result for the discrete-case
from Stoican et al. (2015a) which in turn is based on the
null-controllable set construction from Hu et al. (2002).
We consider the autonomous LTI system:

ξ̇(t) = Aξ(t) + dδ(t), (17)
with ξ(t) ∈ Rn the state vector, δ(t) ∈ [−1; 1] a scalar
disturbance, A ∈ Rn×n a stable state-matrix and d ∈ Rn.
The key factors are: i) the stability of A (a reasonable as-
sumption as long as (17) denotes a closed-loop dynamics);

and, ii) the disturbance affecting the dynamics is given
by a scalar (again reasonable, as this is the case in many
applications where the disturbance is bounded element-
wise). Without detailing the apparatus, we note that the
construction is based on three interlocking elements:

i) a monotonously increasing sequence of n−1 moments
t = {t1 ≤ t2 ≤ · · · ≤ tn−1}; (18)

ii) a vector ct ∈ Rd which verifies
c>t e

Atid = 0, ∀1 ≤ i ≤ n− 1; (19)
iii) a sequence of extremal points

ξ?t =

(
2

n−1∑
i=1

(−1)ieAti + (−1)nIn

)
A−1d. (20)

Let Ω∞ be the mRPI associated with (17). As detailed
elsewhere (Stoican et al. (2015a)), extremal points (20)
sit on the boundary of Ω∞ and hyperplanes {ξ ∈ Rd :
c>t ξ = ±c>t ξ

?
t} are support hyperplanes to Ω∞, tangent to

it at ξ?t . Thus any finite sequence of points (20) provides
an inner approximation (in generator form) while the
corresponding sequence of normal vectors (19) provides
an outer approximation (in half-space form) of Ω∞:

ΩT =
{
ξ ∈ Rn : ξ =

∑
t∈T

α±t (±ξ?t) ,∀α±t ≥ 0,
∑
t∈T

α±t = 1
}

⊂ Ω∞ ⊂ ΩT =
{
ξ ∈ Rn : |c>t ξ| ≤ |c>t ξ

?
t |, ∀t ∈ T

}
, (21)

where T denotes a list of sequences as in (18).

Having both inner and outer approximations as in (21)
allows to bracket Ω∞ arbitrarily tight (without any it-
erative procedure!) and, equally important, to have an
upper bound of the approximation error (e.g., the Haus-
dorff distance between ΩT and ΩT). It is simpler, from
an implementation viewpoint, to start with a collection of
time-sequences T = {t} from which to construct both ct
as in (19) and ξ?t as in (20). Two details are worthwhile of
mentioning. First, note that (19) provides n− 1 equalities
for an Rn vector. To uniquely identify it, we add an n-
th regularization equality, c>t 1 = 1. Second, among the
time sequences t we consider {0, . . . , 0} and {∞, . . . ,∞}
as those correspond to the fix points of the dynamic for
δ(t) = ±1, i.e., the steady state values ξ?± = ∓A−1b.
The above mRPI construction, (21) will be instrumental
in the next sections for evaluating the controllers’ and
observers’ performance.

3. CONTROL DESIGN FOR A FIXED-WING UAV

In this section, we implement the two design procedures
for a 3-DOF UAV model. We will first use the optimal
trajectory generation solution proposed in (Do et al., 2021)
to set up the reference for the system. Then we provide two
flat outputs which will be further used for analyzing the
performance of the tracking controller design. Simulations,
comparisons and discussions are addressed in Section 4.

3.1 3-DOF fixed-wing UAV model

Consider the fixed-wing model (Stoican et al., 2015b):
ẋ = Va cosψ + dx,

ẏ = Va sinψ + dy,

ψ̇ =
g tanφ

Va
+ dψ,

(22)

where x, y, ψ are the three states of the system denoting
the positions and the heading angle of the UAV, respec-
tively; u = [Va, φ]> denotes the two inputs of the system
corresponding to the relative velocity and the bank angle.



Finally, dx, dy and dψ represent the bounded disturbances
acting on the three states, their values will be considered
zero when the nominal model is taken into account. The
equations in (22) are rewritten in a form of (1) as:

ξ̇ = f(ξ,u) + dξ, (23)
where ξ = [x, y, ψ]> and dξ = [dx, dy, dψ]>.

3.2 Flat characterization of the UAV model
For the nominal model, there exist several flat outputs
as shown in (Do et al., 2021), with the help of which,
one may choose to compute the linearization law. In this
application, we consider the following two flat output
vectors for which we analyse the differences in performance
with respect to disturbance rejection (see Sections 2.2 and
2.1). The first flat output we study is:

z1 =
[
z11 z

1
2

]>
, [x y]

>
, (24)

while the second is:

z2 =
[
z21 , z

2
2

]>
,
[√

x2 + y2, arctan (y/x)
]>

. (25)

where the superscript denotes the currently considered flat
output, its corresponding representation and parameters.

First flat representation: With the flat output given in
(24), we express the inputs in the form of (2b) as follows:

Va =
√

(ż11)2 + (ż12)2,

tanφ =
z̈12 ż

1
1 − z̈11 ż12

g
√

(ż11)2 + (ż12)2
.

(26)

To linearize the model, evidently, Va requires a dynamical
extension so that the relation between high order deriva-
tives of the flat output and the extension is invertible.
Specifically, introduce the augmented state η = Va and
uη = η̇ into the nominal model of (22):

ẋ = η cosψ, ψ̇ =
g tanφ

η
,

ẏ = η sinψ, η̇ = uη,
(27)

then the inputs [uη, tanφ] of the new system yields:

uη =
z̈11 ,ż

1
1 ,+z̈

1
2 ,ż

1
2 ,√

(ż11)2 + (ż12)2

tanφ =
z̈12 ż

1
1 − z̈11 ż12

g
√

(ż11)2 + (ż12)2
.

(28)

Subsequently, the dynamics are linearized by replacing
z̈11 , z̈

1
2 respectively by the virtual input v11 , v

1
2 into (28)

which , when introduced in (22), leads to:
z̈1i = v1i + d1i , (i ∈ {1, 2}) (29)

where d11 and d12 are the propagated disturbances affecting
the flat output which are assumed to be bounded and,
through linearization (28), are shown to be:

d11 = ḋx − Vadψ sinψ,

d12 = ḋy + Vadψ cosψ,
(30)

where all states and control u have to be expressed in
terms of the flat output like in (2), see (Do et al., 2021).

Second flat representation: The similar design procedure
is applied for the second flat output, given in (25). With
the same extension η = Va, replacing z̈11 , z̈

1
2 respectively

by the virtual input v21 , v
2
2 into the representation of the

input [uη, tanφ] we define the linearizing control law as:

uη =
v22 ż

2
2(z21)2 + v21 ż

2
1 + (ż22)2ż21z

2
1√

(ż21)2 + (z21 ż
2
2)2

,

tanφ =
v22 ż

2
1z

2
1 − v21 ż22z21 + 2(ż21)2ż22 + (ż22)3(z21)2

g
√

(ż21)2 + (z21 ż
2
2)2

.

(31)

Equation (31) then turns dynamics (22) into:
z̈2i = v2i + d2i , (i ∈ {1, 2}) (32)

where the propagation of the disturbance is expressed as:

d21 =
x(ḋx − Vadψ sinψ) + y(ḋy + Vadψ cosψ)√

x2 + y2

+
2Va(dx cosψ + dy sinψ) + d2x + d2y√

x2 + y2

+
(xdx + ydy)(xdx + ydy + 2Va(x cosψ + y sinψ))

(
√
x2 + y2)3/2

d22 =
x(ḋy − Vadψ cosψ) + y(−ḋx + Vadψ sinψ)

x2 + y2
. (33)

3.3 Tracking control design
In this subsection, the application of the procedure intro-
duced in Section 2.2 is implemented for the UAV using the
two linearized dynamics from (29) and (32). Since both of
them share a common double-integrator form:

z̈ji = vji + dji (with i, j ∈ {1, 2}), (34)
following Section 2.2, (34) is rewritten as:

σ̇ji = Aji σ
j
i +Bji v

j
i + Eji τ

j
i , (35)

where the matrices are defined as:
σji = [σji,1 σji,2 σji,3]> , [zji żji dji ]

>, (36)

Aji =

[
0 1 0
0 0 1
0 0 0

]
;Bji =

[
0
1
0

]
;Eji =

[
0
0
1

]
; τ ji = ḋji . (37)

Next, the observer is formulated similarly to (9) as:
˙̂σji = Aji σ̂

j
i +Bji v

j
i + Lji (y

j
i − ŷ

j
i ) (38)

where Lji ∈ R3×1 is the tuning parameter for the estimator

and yji = σji,1 is the measured output. Equivalently, yji
may be rewritten as: yji = Cji σ

j
i with Cji = [1 0 0]. The

estimation error yields:
˙̂eji = σ̇ji − ˙̂σji = (Aji − L

j
i C

j
i ) êji + Eji τ

j
i . (39)

Using form (11), the virtual inputs vji are constructed as:

vji = σ̇ji,2 ref +Kj
i e

j
i − σ̂

j
i,3 (40)

where eji = [eji,1 e
j
i,2]> ,

[
σji,1 ref − σ̂

j
i,1, σ

j
i,2 ref − σ̂

j
i,2

]>
and Kj

i , [kji,1 kji,2] ∈ R2 denote the tracking error
and the controller’s gain respectively; the subscript “ref”
implies the corresponding reference signal that the system
needs to track i.e, σji,1 ref = zji ref and σji2 ref = żji ref .
Finally, in accordance with Proposition 2, the closed-loop
dynamics are written as:
d

dt

[
eji
êji

]
=

[
Aj∗i −B

j∗
i K

j
i −B

j∗
i K̃j

i

03×2 Aji − L
j
iC

j
i

] [
eji
êji

]
+

[
02×1
Eji

]
τ ji ,

(41)

with Aj∗i =

[
0 1
0 0

]
; Bj∗i =

[
0
1

]
; K̃j

i = [Kj
i 1]. Then by

a suitable choice of poles for dynamics (41), with the help

of Kj
i and Lji , we can ensure its stability under the effect

of the disturbance τ ji . Finally, since system (41) is under
form (17), we can compute the approximation of the mRPI
set given in (21), for each pair of (i, j) ∈ {1, 2}2, denoted

respectively by Ωji .

4. SIMULATION RESULTS
4.1 Numerical simulation
For illustration purposes, numerical simulation will be
carried out in this section. For all i, j ∈ {1, 2} the



poles of the closed-loop system, given by (41) will be
placed identically. Furthermore, it is also assumed that
the bounds of τ ji are numerically computed via their
representations in (30), (33) and simulations. Simulation
specifications are given in Table 1.

Table 1. Simulation specifications

Variables Values

[x(0), y(0), ψ(0)]> [54 160 1.8726]>

wx 0.5 sin(0.2t)

wy −0.2 cos(0.5t)

wψ −0.05 sin(0.5t)

Va 10 ≤ Va ≤ 30

tanφ −0.6 ≤ tanφ ≤ 0.6

Kj
i [12 7]

Lji [15.5 59.5 45]>

For defining the reference signal, let us briefly recall the
optimal trajectory framework in (Stoican et al., 2015b)
with the way-point passing constraints described by:

W = 102 ×
{[

0.5
1.6

]
,

[
0.7
2.5

]
,

[
1.9
2.7

]
,

[
2.8
1.6

]
,

[
3.6
0.6

]
,

[
5

1.75

]}
[m]

TW = {0, 8, 16, 24, 32, 40} [s], (42)
where W is the set of way-points that the system needs to
pass through at the associated time stamps in TW . The
trajectory here is parametrized as a weighted sum of 7 B-
spline functions or order 5 (which ensures passing through
the way-points of (42) and guarantees curve smoothness
for up to its 4th order derivative).

With the reference represented by the dashed red curve,
Fig. 2 depicts the tracking performances of the two con-
trollers deduced from the two flat outputs (respectively
denoted by Ctrl. 1 and Ctrl. 2). Simultaneously, by calcu-
lating the outer approximation of the mRPI set, given in
(21), of (41) for each pair of i, j ∈ {1, 2}, we obtain two
pairs of polytopic sets corresponding to the two flat rep-
resentations. The projections of each pair into Cartesian
coordinates are also depicted in Fig. 2 with the notation
of Ωj which corresponds to the controller Ctrl. j.

We provide also different scenarios in Table 2 for which
the poles of the closed loop are chosen differently. Let
pc and po denote the poles for the controllers and ob-
servers respectively. RMS(elj), with l ∈ {x, y} and j ∈
{1, 2}, represents the root mean square (RMS) of the
tracking error on the l axis implemented with the Ctrl.
j. Finally, let us consider the perturbation in the form
of [dx, dy, dψ]> = [0.5 sinωt,−0.2 cosωt,−0.05 sinωt]> to
analyse the system response under different frequencies
ω of the perturbation. Illustrations of the RMS of the
tracking error are provided in Fig. 3.

4.2 Discussions
In the following we address some remarks on the approach
implemented over the UAV model and the analysis of
different effects on the system’s performance led by the
change in the flat outputs.

Control design: As a powerful combination, flatness
and ESO provide a framework for not only estimating
the states’ value but also rejecting the disturbances in
nonlinear control design. However, although the system’s
error may be proven to be bounded, this confirmation can
only be drawn after the choice of the poles in the observer

and the controller designs. This yields the question if there
exist more efficient choices for the gains Kj

i and Lji in the
sense that there will be less energy spent on the input while
the tolerance for the error is still satisfied. Besides, from
the frequency domain standpoint, in order to filter out the
perturbation, the poles must be chosen differently due to
the variation (in amplitude, in frequency) of the original
disturbance via the linearization procedure. Likewise, it is
noted in Fig. 3 that for the same choice of poles, the errors’
RMS behave differently in the frequency domain. Hence,
this issue needs to be studied at the parameters’ tuning
stage. Moreover, (30) and (33) have different dependence
on the derivative degree of the original disturbance, posing
the need to consider the smoothness of disturbances while
choosing among the representations.

Analysis for different flat outputs: As aforementioned,
the bounded or stable tracking error of flat outputs pro-
vides insights on the system’s tracking errors. Particularly,
as seen in the simulations for the UAV model, the two
trajectories resulting from the two different controllers
lie within the tubes computed from two different flat
representations (Fig. 2). However, it is notable that the
geometrical size and orientation of the tubes’ cross-section
vary along its trajectory. This comes from the fact that
these two flat outputs do not have the same physical
interpretation. Specifically, from a geometrical viewpoint,
the first flat output represents the Cartesian position of the
UAV while the second one corresponds to the UAV’s dis-
tance from the origin and the angular coordinate in cylin-
drical coordinates. Therefore, when plotted in Cartesian
coordinates, the tube from the second flat representation
changes its volume depending on the UAV’s position.

Moreover, as discussed previously, the choice of flat output
directly affects the propagated disturbances acting on the
virtual input, which may suggest that, the storage and
processing requirements of a particular flat representation
should not be neglected. Moreover, as stated in Table
2, the first control law performs better compared to the
second one in all scenarios, implying that in this context,
the best choice with respect to tracking performance may
be the first controller. However, analytical proofs are still
definitely required to certify this observation.

Furthermore, it should be also noted that these two
flat representations allow us to represent the sets in the
original coordinates, facilitating the comparison between
their performance. However, with more complicated flat
outputs, e.g., as the ones mentioned in (Do et al., 2021),
the comparison is no longer evident (or applicable at all).

Finally, the specific choice of the flat output influences the
disturbance and thus, the shape and size of the invariant
sets associated to the tracking and estimation errors.
This becomes especially relevant in the case of complex
dynamics and/or strongly nonlinear flat representations.

5. CONCLUSION

This paper presented the procedure of disturbance rejec-
tion via extended observers in the context of trajectory
generation and tracking of nonlinear differentially flat sys-
tems. Furthermore, an insightful analysis was carried out
related to the difference in the tracking performance while
using various flat representations. Simulations results and
comparisons for a fixed-wing aerial vehicle suggested not
only certain future directions for further improvement, but



Table 2. Tracking performance with different controller and observer poles

pc po RMS(ex1) RMS(ey1) RMS(ex2) RMS(ey2)

[−2;−1.5] [−10;−4.5;−1] 0.67 0.41 3.98 4.11

[−4;−3] [−10;−4.5;−1] 0.47 0.14 1.10 1.03

[−4;−3] [−10;−6;−3] 0.49 0.16 1.11 1.04

Fig. 2. Ultimate bounds tube projected in the Cartesian space.
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Fig. 3. RMS of tracking errors under disturbances with
different frequencies.

also what kind of phenomena and difficulties one may face
when considering more complex systems.
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