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Abstract—Motion planning problems benefit greatly from the
properties of differential flatness, which are widely employed for
trajectory generation and controller design. This paper aims to
highlight the fact that various flat representations of a system
can have different implications in the trajectory generation
and tracking objectives. In particular, we consider a fixed-
wing UAV (Unmanned Aerial Vehicle) and analyze various flat
representations. We reformulate the trajectory generation and
tracking problem in terms of different flat outputs and analyze
the optimal cost, constraints satisfaction, tracking error and
computational complexity. Insights on the future work complete
the analysis. The research shows promising directions, especially
in the area of disturbance rejection and robust control.

Index Terms—Differential flatness, B-spline, Fixed-wing UAV
(Unmanned Aerial Vehicle), Trajectory generation and tracking.

I. INTRODUCTION

Flatness theory [1] has proven useful in several stages of
designing a control architecture for motion planning problems,
i.e., in computing a reference trajectory [2], [3], [4] or in
providing a feedback linearizable controller [5], [6]. Having
a flat representation of a dynamical system is equivalent with
carrying a model inversion (the nonlinear input is mapped in
terms of the flat output and linearizes the nonlinear dynamics),
which in turn, provides the foundation for both the planning
and controlling stages. While there are many formal results for
flat output representations [7], [8], to our knowledge, there is
no generic algorithm capable to obtain a flat representation
for arbitrary dynamics which admit one. An attempt in this
direction is provided in [9], however the results is not generic.
Furthermore, even when a flat representation is obtained, it
may quickly become difficult to handle. Usually the inputs
have convoluted expressions in terms of the system’s flat
output, leading to difficulties when handling constraints and
cost formulations.

In [2] and [6] a flat representation and subsequent B-
spline parameterization [10] are exploited to construct an opti-
mization problem which, simultaneously, minimizes trajectory
length and satisfies various constraints.

However, none of the works aforementioned have addressed
the problem of changing the flat output and analyzing the im-
plications of this change for trajectory generation and tracking.
Hence, our main contribution is the analysis of alternative flat
representations within the same framework of planning and

controlling a fixed-wing UAV (Unmanned Aerial Vehicle) and
to point out the differences in the performance of the control
scheme. More specifically, we reformulate the trajectory gen-
eration and tracking problem in terms of different flat outputs
and analyze the optimal cost, the constraint satisfaction, track-
ing error and computational complexity. Note that when the
flat output is changed, the construction of constraints and cost
function in the trajectory generation process is also altered.
Similarly, the feedback linearization control law derived from
the model inversion induced by the flat representation will also
transform remarkably.

Through this work we want to bring to the community’s at-
tention that choosing a certain flat output cascades throughout
the rest of the control design procedure (for better or worse).
Not in the least, we believe that the research carried here shows
promising directions, especially in the area of disturbance
rejection and robust control.

The paper is organized as follows. In Section II, we present
the main issue of the trajectory generation and the subse-
quent tracking controller design. This problem will then be
implemented with different flat outputs and then discussed in
Section III. Section IV provides the numerical simulations.
Finally, the conclusions are drawn in Section V.

II. PROBLEM FORMULATION

We first briefly introduce the 2D UAV model used here-
inafter and recall the standard problem formulation of trajec-
tory generation and of control design.

A. Fixed-wing UAV model

The UAV kinematic model can be described by the differ-
ential equations [2]:

ẋ = Va cosψ +Wx,

ẏ = Va sinψ +Wy,

ψ̇ =
g tanφ

Va
,

(1)

where (x, y) and ψ are the position and the heading (yaw)
angle. Wx and Wy are the wind velocity components on the x
and y axis. Finally, the input signal are the airspeed velocity
Va and the bank (roll) angle φ, respectively.

The equations (1) are rewritten in a more compact form as:
ξ̇ = f (ξ, u) , (2)



where ξ = [x y ψ]> ∈ R3, u = [Va φ]> ∈ R2 and f(·, ·) :
R3 × R2 → R3 is the state vector field.

Indeed, the nonlinear system (2) is differentially flat when
we consider the fact that there exists a flat output vector,
z = Φ(ξ, u, u̇, ü, ...) ∈ R2, such that the states and inputs can
be algebraically expressed in terms of z and a finite number
of its derivatives [1].

B. Trajectory generation problem

Further, we recall the B-spline framework used in [2] where
the flat output is parameterized in a time interval [t0, tN ] by
a set of basis functions Bd(t) = [B0,d(t), ..., Bn,d]> through
the control points P ∈ R2×n = [P0, ..., Pn] such that:

z(t) = PBd(t), ∀t ∈ [t0, tN ], (3)
where z(t) ∈ R2 is the parameterized flat output, n is the
number of control points and (d− 1) the polynomial order of
the B-spline functions, respectively.

Assuming the parameterization in (3) we can now formulate
the trajectory generation problem in terms of splines and their
associated control points. First, we consider a collection o
way-points and their associated time stamps:

W = {wk} and TW = {tk}, (4)
through which the trajectory has to pass, i.e.,

z(tk) = ωk =⇒ PBd(tk) = ωk. (5)
The final objective of this process is to generate profiles,

equivalently stated, to find the control points which meet the
constraints (5) and minimize the cost function as in [10]:

P = arg min
P

∫ tN

t0

Ξ̃i(Bd(t),P)dt, (6)

where Ξ̃i(Bd(t),P) is the energy function at the time instant
t defined with the control points as decision variable, known
basis function Bd(t) and the flat output i which will be
introduced in Section III.

C. Feedback linearization control design

As proposed in [3], many flat systems can be linearized in
closed-loop. In here, using the flat representation we arrive at
a controller which, for the nominal dynamics, cancels out the
nonlinearities of the dynamics and arrives at a desired linear
dynamic [11] in closed-loop.

More specifically, the investigated system is in companion
[11] form represented as:

ξ̇ = f(ξ, u) (7)
and an input transformation must be found:{

z = z(ξ, ξ̇, ...),

u = u(v, ξ, ξ̇, ...),
(8)

so that the nonlinear system dynamics is converted to an
equivalent linear time-invariant dynamics:{

z(n) = v,

v = z
(n)
ref +Kn−1e

(n−1) + ...+K0e,
(9)

where v is the virtual control input induced from the flat
representation, e = zref − z is the difference between the
reference zref and the feedback value z, and the coefficients

Ki with i ∈ {0, 1, ..., n−1} will be chosen such that the poles
of the characteristic equation will ensure the stability of the
model in closed-loop. Therefore, equation (9) becomes:

e(n) +Kn−1e
(n−1) + ...+K0e = 0. (10)

III. ANALYSIS OF ALTERNATIVE FLAT OUTPUTS

As stated earlier, most results from the literature skip
relatively quickly over the choice of a flat output and proceed
to the control design steps. In here, we plan to investigate
several flat representations and observe how they affect (for
better or worse) the procedures of trajectory generation and
feedback control design. In Subsection III-A we introduce the
four available flat outputs together with the flat representations
associated with them. In Subsections B and C, the problem
formulation for the trajectory generation and the control design
is given when considering the variation in the flat outputs.

A. Various flat representations

In this section we propose different flat representations com-
puted from the chosen flat outputs with no wind perturbation
(Wx = Wy = 0) and with perfect state measurement.

1) Flat output 1: Consider the following flat output in terms
of the system’s position:

z =

[
z1
z2

]
=

[
x
y

]
. (11)

Next, the remaining states and inputs are expressed as in
the equation (12) which is detailed in Table I:[

ξ
u

]
= Φ1 (z, ż, z̈) . (12)

2) Flat output 2: The same process is applied for the sec-
ond flat representation. In this selection, cylindrical coordinate
is used to describe the system:

z =

[
z1
z2

]
=

[√
x2 + y2

arctan
y

x

]
. (13)

The states and inputs then are expressed as in the equation
(14) which is detailed in the third column of Table I:[

ξ
u

]
= Φ2 (z, ż, z̈) . (14)

where

f1(z, ż, z̈) =
z̈2ż1z1 − z̈1ż2z1
g
√
ż21 + z21 ż

2
2

,

f2(z, ż) =
2ż21 ż2 + ż32z

2
1

g
√
ż21 + z21 ż

2
2

.

3) Flat output 3: In here, we take into account the fact
that when [z1 z2]> is a flat output, [z1 z2 + ż1]> is also a flat
output. Hence, we have that:

z =

[
z1
z2

]
=

[
x

y + ẋ

]
. (15)

The remaining states and inputs are expressed as in equation
(16) which is detailed in the forth column of Table I:[

ξ
u

]
= Φ3 (z, ż, z̈,

...
z ) . (16)



TABLE I
FLAT REPRESENTATIONS CORRESPONDING TO DIFFERENT FLAT OUTPUTS.

States and inputs rep. 1 rep. 2 rep. 3 rep. 4
with flat representation Φ1(·) Φ2(·) Φ3(·) Φ4(·)

x z1 z1 cos z2 z1 z2 − ż1
y z2 z1 sin z2 z2 − ż1 z1 + z̈1 − ż2

tanψ
ż2

ż1

ż1 sin z2 + ż2z1 cos z2

ż1 cos z2 − ż2z1 sin z2

ż2 − z̈1

ż1

...
z 1 + ż1 − z̈2

ż2 − z̈1

Va

√
ż21 + ż22

√
ż21 + z21 ż

2
2

√
ż21 + (ż2 − z̈1)2

√
(
...
z 1 + ż1 − z̈2)2 + (ż2 − z̈1)2

tanφ
1

g

z̈2ż1 − z̈1ż2√
ż21 + ż22

f1(z, ż, z̈) + f2(z, ż)
(ż2 − z̈1)z̈1 − (z̈2 − ...

z 1)ż1

g
√
ż21 + ż22

g1(z, ż, z̈,
...
z , z(4)) + g2(z, ż, z̈,

...
z )

4) Flat output 4: The following flat representation is a mix
among the system’s position, velocity and the acceleration:

z =

[
z1
z2

]
=

[
ẋ+ y

x+ ẍ+ ẏ

]
. (17)

The remaining states and inputs are expressed as in equation
(18) which is detailed in the last column of Table I:[

ξ
u

]
= Φ4

(
z, ż, z̈,

...
z , z(4)

)
. (18)

where

g1(z, ż, z̈,
...
z , z(4)) =

(ż2 − z̈1)(z
(4)
1 + z̈1 −

...
z 2)

g
√

(ż2 − z̈1)2 + (
...
z 1 + ż1 − z̈2)2

,

g2(z, ż, z̈,
...
z ) =

(z̈2 −
...
z 1)(

...
z 1 + ż1 − z̈2)

g
√

(ż2 − z̈1)2 + (
...
z 1 + ż1 − z̈2)2

.

Remark 1: These flat outputs are inspired from various
sources: the flat output 1 in (11) is the one most employed
in the literature while the second flat output in (13) exploits a
change of coordinates and the two last flat outputs are derive
from the fact that if [z1 z2]> is a flat output, then [z1 z2+ ż1]T

is also a flat output.
Remark 2: All the flat representations above are found

knowing the complete description of the system (inputs, out-
puts, actuators and the like). There is, however, some works
related to ”flat input” representation [12]. In this study, proper
actuators or inputs are chosen such that a priorly given output
becomes a flat output.

B. Trajectory generation using flatness

In equations (4) and (5) we provided a generic motion
planning problem and in Section III-A we provided several
flat representations. In what follows, we show how the con-
struction of both constraints and costs change depending on
the particular flat representation employed.

More specifically, we propose the constraints wk concerning
the position of the UAV which associate with the same amount
of time-stamps tk:

W = {w1, w2, ..., wN} , TW = {t0, t1, ..., tN}. (19)

In other words, at the time instant tk ∈ TW , the vector
[x(tk) y(tk)]> must satisfy:[

x(tk)
y(tk)

]
= wk ∈W. (20)

Furthermore, the general optimization mentioned in (6) will
be replaced by the integral:

P = arg min
P

∫ tN

t0

(
ẋ2 + ẏ2

)
dt (21)

Initially, the constraints (20) and the cost (21) have been
given in the position components (x, y) and now, for each flat
representation, we rewrite them in terms of the flat output.

1) Cost function with flat output 1: With the representation
of flat output 1, we can rewrite the problem (6) with the energy
function as:

Ξ̃1(Bd(t),P) = ż21 + ż22 = ż>ż. (22)
Similarly, the constraints in (20) are rewritten as:[

x(tk)
y(tk)

]
=

[
z1(tk)
z2(tk)

]
= wk. (23)

2) Cost function with flat output 2: Similarly, the cost
function (21) can be written with the second flat output as:

Ξ̃2(Bd(t),P) = ż21 + z21 ż
2
2 . (24)

The corresponding form of (20) with the flat output (13) is
characterized by:[

x(tk)
y(tk)

]
=

[
z1(tk) cos z2(tk)
z1(tk) sin z2(tk)

]
= wk. (25)

However, it is trivial to show that equation (25) does not
give unique solution for [z1(tk) z2(tk)]> due to the periodicity
of the trigonometric functions. Hence, another way to specify
the desired value for the flat output is introduced as:

[
x(tk)

y(tk)

]
= wk,

z1(tk) =
√
x(tk)2 + y(tk)2,

z2(tk) = arctan
y(tk)

x(tk)
+ 2kπ.

(26)

where k can be chosen so that the continuity of z2(t) will not
break the desired direction of the trajectory.

3) Cost function with flat output 3: With the representation
of the flat output 3 in (15), we rewrite the problem (21) as:

Ξ̃3(Bd(t),P) = ż21 + (ż2 − z̈1)2. (27)
Similarly, the constraints in (20) are indicated as:[

x(tk)
y(tk)

]
=

[
z1(tk)

z2(tk)− ż1(tk)

]
= wk. (28)

4) Cost function with flat output 4: Equivalently, with flat
output 4, we can rewrite the problem (21) as:

Ξ̃4(Bd(t),P) = (
...
z 1 + ż1 − z̈2)2 + (ż2 − z̈1)2. (29)



Similarly, the constraints in (20) are indicated as:[
x(tk)
y(tk)

]
=

[
z2(tk)− ż1(tk)

z1(tk) + z̈1(tk)− ż2(tk)

]
= wk. (30)

C. Tracking control with feedback linearization

Let us recall the process mentioned in Section II-C, we
consider the new input of the system as:

u =

[
u1
u2

]
=

[
V̇a

tanφ

]
= u(z, ż, z̈). (31)

Then, the virtual input is chosen as:
v = z̈. (32)

With such transformation, virtual input (32) will be com-
puted with respect to the linear error dynamics:

v = z̈ref +K1ėz +K2

∫
ezdt+K3ez, (33)

with ez = zref (t)− z(t) where zref (t) is the reference signal
and z(t) is the feedback flat output.

However, with the flat representations from (16) and (18),
there will exist the derivative of the flat output with the order
greater than 2 in the representation of V̇a and tanφ. Hence,
those two flat output do not meet the condition in (31).

Therefore, using only the representation in (12) and (14),
we have the new input:

- for flat output 1 given in (12) :

V̇a =
z̈1ż1 + z̈2ż2√

ż21 + ż22
,

tanφ =
z̈2ż1 − z̈1ż2
g
√
ż21 + ż22

.
(34)

- for flat output 2 given in (14):

V̇a =
z̈2ż2z

2
1 + z̈1ż1 + ż22 ż1z1√
ż21 + z21 ż

2
2

,

tanφ =
z̈2ż1z1 − z̈1ż2z1 + 2ż21 ż2 + ż32z

2
1

g
√
ż21 + z21 ż

2
2

.

(35)

Hence, the virtual input v can be formulated as in (36) and
computed with the linear dynamics proposed in (33).

v =

[
v1
v2

]
= z̈ =

[
z̈1
z̈2,

]
(36)

Ultimately, with the flat output (11) and (13), we obtain the
two different control laws (37) and (38), respectively:

V̇a =
v1ż1 + v2ż2√

ż21 + ż22
,

tanφ =
v2ż1 − v1ż2
g
√
ż21 + ż22

,
(37)


V̇a =

v2ż2z
2
1 + v1ż1 + ż22 ż1z1√
ż21 + z21 ż

2
2

,

tanφ =
v2ż1z1 − v1ż2z1 + 2ż21 ż2 + ż32z

2
1

g
√
ż21 + z21 ż

2
2

,
(38)

where v1 and v2 are computed from feedback as in (33).

IV. SIMULATION RESULT

A. Trajectory generation

For illustration, we use the list of 6 way-points and associ-
ated time-stamps taken equidistantly between t0 and tN = 45s

for the trajectory generation problem:

W = 102 ×
{[
−1.5
0.1

]
,

[
−1.3

1

]
,

[
−0.1
1.2

]
,[

0.8
0.1

]
,

[
1.6
−0.9

]
,

[
0.2
−1.2

]}
TW = {0, 9, 18, 27, 36, 45}. (39)

Next, we require that all generated states and inputs are
continuous. Since the flat output is a weighted sum of spline
functions, this means in fact that we have to choose the splines
to be of sufficient degree, as detailed in Table II.

Note that each further increase in continuity (e.g., velocity
or acceleration are continuous themselves) translates into an
incrementation of the B-spline functions’ degree.
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TABLE II
DATA SPECIFICATION AND COMPUTATION RESULTS

rep. 1 rep. 2 rep. 3 rep. 4

Number of control points 6 6 6 6
Polynomial order of B-spline 3 3 4 5
Cost’s value (×104m2/s) 1.1332 1.3540 1.1772 1.2580

Curve’s length (m) 670.75 709.09 675.46 689.46

Fig. 1 depicts the profiles of the state ξ(t) which are
generated with 4 proposed flat representations (12), (14),
(16) and (18) respectively. Hereinafter, for simplicity, the
4 aforementioned representations with their corresponding
trajectories will be labeled representation as r (rep. r) with
r ∈ {1, 2, 3, 4}. Similarly, the reference for the inputs is shown
in Fig. 2 and the corresponding position is in Fig. 3.

All the reference signals are computed such that they satisfy
the optimization problem (21), the constraints in (39) and the
continuity constraints, as given in Table II.
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B. Feedback linearization control

On the other hand, in the control simulation process, we
reuse the model (1) and verify it with wind perturbation.

The reference signal is the profile generated with flat output
1 (the curve denoted as rep. 1 in Fig. 3) and simulation data
specification is detailed in Table III where the parameters K1,
K2 and K3 are chosen from the characteristic equation and
its poles p1, p2 and p3 such that:

(s− p1)(s− p2)(s− p3) = s3 −K3s
2 +K1s+K2. (40)

For the sake of illustration, the poles are chosen identically
as p1 = p2 = p3 = −2.

TABLE III
SIMULATION SPECIFICATIONS

K1 = 12
Control parameters K2 = 8

K3 = 6
Wind [m/s] W = [Wx,Wy ] = [5, 5]

Simulation time [s] 45s
Sample time [s] 0.01s

In this simulation, the tracking errors will be labeled corre-
spondingly with the control laws proposed in the transforma-
tion (34) and (35) as control law 1 (ctrl. law 1) and control
law 2 (ctrl. law 2). Details for the errors are given in Fig. 5
for the position x, y and the heading angle ψ.

Besides, in this simulation, we provide 4 different scenarios
of wind perturbation vector (W ) to experiment on the de-
pendence of the tracking error on the wind direction. Details
are provided in Table IV where RMS(eij) is the root mean
square value of the tracking error in the i axis (i ∈ {x, y})
implemented with the control law j (j ∈ {1, 2}).

TABLE IV
TRACKING ERROR WITH DIFFERENT WIND SCENARIOS

XXXXXXXXW[m/s]
RMS(·)[m]

ex1 ex2 ey1 ey2

[+5;+5] 0.0869 0.1317 0.0588 0.0744
[–5;+5] 0.0675 0.1301 0.1079 0.1146
[+5;–5] 2 × 1021 1 × 1020 8 × 1020 3 × 1020

[–5;–5] 5 × 1018 0.3008 3 × 1018 0.1947

C. Discussions

Let us provide some discussions and insights related to
the UAV trajectory generation and tracking when considering
various flat representations.

Trajectory generation.
• As expected, from Table II, all the representations can

be used to satisfy the way-points constraints. It is also
notable that the number of control points needed is not
affected by the variation of flat outputs, confirming the
unique dependence of the control points on the number
of way-points.

• From the parameterization point of view, it can also be
seen in the table that the polynomial order of the trajecto-
ries are dissimilar, which can be explained with the degree
of derivatives existing within each flat output. More
specifically, in representation 1 in (12) and 2 in (14), the
highest derivative order is 2 while that of representation
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3 (16) and 4 (18) are 3 and 4, respectively, resulting in
different requirement on the B-spline functions’ degree
to satisfy the continuity constraints.

• Moreover, when the number of control points is consid-
ered, the variation of flat representations brings about the
differences in not only the curves’ length but also the
value of the cost function (Fig. 4). Nonetheless, these
differences fades when this number gets larger. This can
be explained by the convergence of the trajectory to the
control polygon, suggesting that after a certain number of
control points, there is no use in increasing the number.

• Finally, of interest is also that the cost and path length do
not greatly depend on which flat representation is chosen.
Still, the complexity of the representation plays a role,
by making the problem less (or more so) complex. More
precisely, if we look at the representation 1, 3 and 4, the
two values increase along with the number of derivative
involving in the representations. On the other hand, the
second flat output proves more complex, since it contains
trigonometric functions, whose periodicity affects the
optimization procedure.

• In conclusion, since the curves are constrained in space
and time, it comes as no surprise that all the trajectories
are relatively similar. Yet, depending on the mathematical
expressions inside each representation, each trajectory
will have a particular representation.

Trajectory tracking: While the trajectories are distinguish-
able, the tracking problems seem to have similar behaviors:
• As depicted in Fig. 5, there are differences between the

error dynamics of the two control system. These dissim-
ilarities come from the variable where the error dynamic

is applied. In detail, the first control law implement the
linear dynamic in the first states which are x(t) and y(t).
Meanwhile, with the second law, the linearity is applied
in the flat output which is a combination of the two first
states. However, this property may not have a strong
enough impact on the tracking error, thus, the results
present little meaningful information.

• However, the results given in Table IV suggest the
reliance of the system’s performance on both the direction
of the wind and the control laws. More particularly, the
tracking of the UAV shows better results for the first two
scenarios (W = [+5; +5] and W = [−5; +5]m/s). On
the contrary, when W = [−5;−5], only the control law
2 can stabilize the system and when W = [+5;−5] both
of the controllers cannot handle the perturbation.

V. CONCLUSIONS

This paper presented the trajectory generation and tracking
problem for a fixed-wing UAV. We have shown how multiple
flat representations affect various elements of the control
architecture. Within the former problem, it is notable that
changing the flat output leads to significant changes of the
cost function and constraint definitions. The control action is
also changed in the latter issue, with implications in what
regards closed-loop robustness and performance. As future
work, it remains to further analyze complexity of the trajectory
generation procedure on one hand and disturbance rejection for
the tracking mechanism on the other hand.
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