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Advanced properties of spectral functions in frequency and time domains

for diffraction by a wedge-shaped region

J.M.L. BERNARD

1) Introduction

The scattering by objects with singular geometries is a particularly delicate problem ([1]-

[19],[22]-[29]), and the Sommerfeld-Maliuzhinets representation of field, when it is

associated to Maliuzhinets inversion [3]-[4] and single face representation [7]-[8]

methods, is a powerful tool to investigate the acoustic and electromagnetic waves

diffraction by a complex wedge-shaped region, in particular based on remarkable

properties of spectral functions in this representation. In first step of this chapter, we

review some general expressions and properties in scalar case for these problems :

general properties in complex plane, spectral representation of Green function, single face

representation of spectral function and consequences, are analysed for scatterers with

imperfectly reflecting surfaces that can extend to infinity. In a second step, we consider

the general solution for a wedge with face impedances of arbitrary signs (passive or active

case), then the solution for the diffraction of a skew incident plane wave by a passive

anisotropic impedance wedge of any angle in vectorial case [9] (2D 1/2 electromagnetism

problems), and detail efficient expansions of special functions used for them and their

properties. In a third step, an explicitely causal representation of field in time domain is

developed within a large domain of validity, including the case of a dispersive wedge

with multimode boundary conditions.

2) Basic properties of spectral function in Sommerfeld-Maliuzhinets representation

2.1) Sommerfeld Maliuzhinets representation for scattering by a wedge-shaped sector

Let us consider the case of diffraction in free space of a scalar incident plane wave,

                   cos  1

by a scatterer (finite or infinite) enclosed in a wedge-shaped region, in cylindricaldefined 

coordinates  as the domain outside the free space angular sector          

with origin ,  The angle of while  axis is defined as along the edge of the sector.

illumination  is considered with      
   , and the plane wave field verifies

the Helmholtz equation .              in whole space An implicit harmonic

dependence on time  is understood and henceforth suppressed with , and      arg  


    
  denotes the wave number of the exterior medium with . Generally, arg 
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    arg arg 
  is most often associated to some losses in free space,  iswhile 

considered as a limit case.

figure 1 : Geometry for a wedge-shaped region

The term           is considered as an analytical function, regular for Im  and 

with  as Re . The scattered field can be then assumed with the same         

behaviour, as analytical for Im  and  with  as Re .              The

characteristics of the scatterer are supposed to be independent of  coordinate and the

total field in the free space region, , satisfies the Helmholtz equation [1][2],    


            2

in the free space,  (note :  is considered in the sense of theas      arg arg 
 

limit). It is analytic with respect to ,  and , except possibly at the origin, and it exists  

a constant  such that  The problem can be considered in       
    

acoustic, but also in electromagnetism when we consider  as the -component of the 

electric or the magnetic field parallel to the edge of the wedge.

figure 2 : Complex path of integration

We can then search the total field  for  as a Sommerfeld-Maliuzhinets     

integral [3],[8],
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 cos 3

which satisfies  is an analytic functionthe Helmholtz equation. In this representation, 

and the path  consists of two branches: one, named , going from 

               arg  to arg  with , as  
 
  

Im , above all the singularities of the integrand, and the other, named ,     

obtained by inversion of with respect to .   

We can develop the expression, considering a deformation of  to the steepest descent

path  for large , composed of two paths  centered on the stationary phase   

points . Assuming that, between  and ,          
 cos  is

meromorphic and vanishes at infinity, we can write for ,   
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 e  4


  
  



 

  

  




 




cos

where

- the terms  and , for incident, reflected and transmitted (if any) Geometrical   
 
 

Optics plane waves, correspond to real poles of  captured during deformation of   

    to . i.e. the respective real poles , in the band Re , verifying in particular,   

for  : i.e.

for  : i.e. 5

      

                

  


     

     

        

for . The first term gives the incident field in the illuminated zone, while    

the second term expresses the reflection by the semi-infinite plane parts at  (if  

any) of the scatterer enclosed by face .

- the terms  correspond to complex poles of , if any, captured during   
  

deformation of  to , for terms of complex plane guided waves excited by the edge 

(note: these terms are different from creeping waves guided  by faces if they are curved).

- the last term, named , is principally radiated cylindrically when the observation point

             at  is far, i.e. . Approximating  on  in     

vicinity of , we obtain  

       
 

 


  

  
  6

where

                       7

is the diffraction (or far field) coefficient attached to the wedge-shaped region relatively

to the origin.
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Remark : Let us notice that we can add a constant or any -periodic function to  

without changing  (and       ). Some conditions at infinity on  and on its

singularities are generally added to enforce its unique determination.

Remark : Considering the Green's surface integral expression of the scattered field [1]-[2]

and the behaviour of incident field at infinity as , we note that, for  arg 


     
               , and conditions the ,  satisfied   

simultaneously for convergence of integrals, we have,

  

  

 






 




 












  

     



     
  

  







        

          

 

  8

where  encloses both faces of the physical surface of the scatterer  within the  



 

wedge-shaped region ,         refers to the direction of observation of angle , and 

is the outward normal to the face , on each smooth segment composing each face.


2.2) Basic properties on total field  and spectral function  

Some elementary properties can be assumed to hold :

- (a') the only incoming plane wave, from the free space sector , is the    

incident field;

- (b') as , the limit of the field  is finite and does not depend on  with   

             
  , while the derivatives  , where   and  are  ln

      ,  and  can be chosen as three constants independent of the pulsation  (note :

    and  are then locally summable with respect to  in the vicinity of the origin).

This property applies for an origin taken at any point out of or upon the scatterer;

- (c') the field, except possibly its geometrical optics part when Im , does not grow  

at infinity. In addition, for large , some bounds on the far field are assumed, and as  or 

 vary, with , the field is in general when the      arg    


    cos   

scattering object satisfies passive boundary conditions, and more particularly, is

      cos   for a scatterer with passive impedance surface [3],[7]-[8].

These properties lead us to assume some elementary conditions on   [3]-[4],[8]-[9] :

- (a)  is regular at points with         
 Re  belonging to the free 

space angular sector with origin , Re  , which ensures (a').      

- (b) there exists some constants , some analytic function , and some Maliuzhinets 

contour  such that  on and inside the loop                    

formed by the upper branch  of , when , the function  being       

summable on , regular on and within it. Since  is odd, we can add a constant to   

without changing , which implies that we can choose, from now, to define  with 
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. We then note that we can write, for ,   

                
  



             
  



   

 
      

ln ln

ln ln

ln

   
  



   
 



  

 
with     ln l n    ln  9

as , with , , and that we have, for  belonging to the semi-          
 

infinite domain bounded by the loop ,

lim lim
Im Im  

             



    10

i.e., from definition of , for arg Re arg . This ensures (b').        
   

- (c)  has no singularity, except possibly those associated to incident, reflected,   

transmitted plane waves not vanishing at infinity, or bounded guided waves, in the zone

with Re cos  as |Re | , , . This ensures (c').                 arg 

Remark : Letting , we note from 9 - 10  that, we have, as        

arg Re arg     
      ,

             



   


  with , as Im  11

Remark : Using ,  has no singularity in the region with (c') when      arg 
  

Re cos  as |Re |  when Re .                     cos    
, i.e.  



2.3) Higher order expressions with Sommerfeld-Maliuzhinets integrals

2.3.1) Basic equalities for the differentiation of integral representation of 

Considering previous properties, in particular convergence at infinity of      for

large imaginary argument, we can obtain different reduced expressions for a differential

operator applied to , in particular, from the use of integration by parts. So, for positive or

null integers , , , , , and  or , we have the basic equality,       
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where ....   times. By using 12 , we note in               
   

   
       sin sin sin sin

particular that we have,
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sin cos

sin

 




     

sin
     

 cos 13

in accordance with the Helmholtz equation verified by , which implies the equality,

    
  

    
        

In complement, considering cartesian coordinates     attached to each faces, with

   axes respectively directed as the outward normal to the faces  , we note that,
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  for  

 

 







 



sin

cos

cos

          
 cos 14

Therefore, we can exploit these reductions for derivatives of fields, in conjonction with

the Maliuzhinets inversion theorem, to determine functional equations on  from

differential boundary equations.
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Remark : Considering we note that,                sin cos and , 

  

 
         

  

 
         





cos sin

sin cos
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2.3.2) Basic example of determination of functional equations on 

For example of use of 12 , we can consider a wedge with general high order boundary 

conditions on plane faces  (taking that are combinations of        )  

higher order derivatives of fields [16]-[18], following








    

 
   

    
            



    
   




 | 16

where  The coefficients        , , ,  and  are positive or null integers with .  


are generally obtain from asymptotic considerations on losses, permittivities and

permeabilites of materials, and geometry near the edge. Using an approach similar

(slightly modified) to the one used by Maliuzhinets in [3] for its inversion theorem, we

can exploit 12  and then derive functional equations on  in the complex plane.   

For that, considering each sum in 16  as  in vicinity of the origin, with    

         and integer we multiply 16  by , and using 12 , apply a Laplace   , 


transform on . Considering the behaviour of integrand in the loop , we can close the 

loop  at infinity, and derive, from the residue theorem, the functional equations on , 

  
 


               

 
   

sin
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where ,      , , ,   and  are positive or null integers with  

    

   

  
            







   


 

    
      



sin sin
cos sin

which implies, after integration,













 




 



         

     

 
 





   

 



sin cos 18

Considering  finite at the origin, we can use 11  in 18 , and comparing each side for    

Im , we obtain                max
 


.
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This type of (difference) functional equations, encountered for wedges with plane faces in

[4],[16]-[18], can also be derived asymptotically from conditions on curved faces. By

analytical continuation, these equations permit a determination everywhere from the one

in the band Re . Furthermore, the constants  for  are attached             


to additional conditions on  at the edge, that we can relate to conditions at infinity on  

satisfying , and, in complement, to reciprocity principle (if it applies) on  [18]. 18 

Remark :  if we use that  for Im  on and inside the                 

loops  of , we notice that  if . 

         

3) Spectral function attached to radiation of a single face and properties

3.1) Basic integral expression of radiation of one face

We now apply Green's theorems [1],[2], when applied to Helmholtz equation, to derive

important properties on representation of spectral functions attached to the diffraction of a

2D polygonal scatterer. To simplify the notation without losing generality, we take from

now . From the properties (b'), (c') on , the scattered field in free space     

    
 for | |  can be written as the sum  of the radiations of     

equivalent surface currents carried by the faces  and , following,    

           
    

  

 

 


         

 


   

  




     

  

    
 

    













 

 



   19

with , . . ,  the                             cos

outward normal to the face , , and where  is the 



        , arg 

Hankel function of second kind [20].

We will show that it is possible, after expressing the spectral function corresponding to

   with , to express  for the total field from the radiation of a single face in far field.

This expression will then have the remarkable property, from Green's theorem, to have a 

path of integration that can be deformed without changing the result. For this, we begin

by using Sommerfeld-Maliuzhinets representation of  a . 



Remark : The possibility to deform integration paths without change of result is well-

known in Cauchy theorem for complex plane, and in Green's theorem for 2D/3D spaces.

3.2) Spectral function associated to  
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As shown in  spectral function associated to [7],[8],[13] the Sommerfeld-Maliuzhinets

representation of ,  

 is given by,

                
  

 





    





    20      


 cos  tan

where  is the path from arg  to arg  with Im , as         sin

              
             cos , , .  The terms , normally

unnecessary because  is odd, can be chosen as  in order to ameliorate        tan 

the convergence of the integral. The expression 20  determination for ,  is a   



regular as  (i.e. the domain in complex plane limited by  and            

        ), and verifying (after capture of poles of  as  varies),tan 




               
 

 
 



          cos  21

which is a functional equation that can be considered, by argument of analiticity, in

complement of 20  for a determination of  everywhere as  varies.  







The path  can be also deformed continuously, as long as the integrand remains bounded

in 20 , without changing , and this expression can be then continued for | |   
 


 

from shift of  and summation of residues due to poles of  captured by .   tan   




3.3) Expression of spectral function associated to and properties 

Therefore, we can write  corresponding to  for arbitrary . Letting  










    , with or , and , a real positive constant, we can write      the spectral

function , associated to  with     
 













               cos 22

following,

              
  

 
   







    





         


 cos tan  23

where , with  a constant satisfying                
 
  . This gives us a

regular value of  and  bounded at infinity        




 



       between   

in this domain if  verifying everywhere from 21 ,    

                

 
 
 

         cos   24

which allows an explicit Sommerfeld Maliuzhinets integral representation for   

 

as    .
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Using the expression 23  for  and  in 19 , we then obtain a         
 
  

Sommerfeld-Maliuzhinets representation of  with  [7],[8]: 

            


 
 

    





 cos 25

where

      


 

          
   

  



 

    


   
  

   

















         




  
   

tan   




  



sin

cos cos
26

for  between  and , provided ,  with                     
   

 


   or .

Since  is an analytic function,  can be analytically continued in the whole complex 

plane. We note in particular, that, taking account of the poles of  whichtan   


 

can be captured by  as  varies,  satisfies  

                        27

Concerning the dependence on  (or ), the expression  has been determined for   26
 

 
    , but we can consider  by analytical    outside this domain

continuation on  (or ), which corresponds to take account of the contribution of any 

singularity that would go through  as  (or ) goes into these regions.   

Remark :   As  exponentially vanishes for large  on (see


             
 

property (b) considered on  and 11 ),  is            we note that     

bounded for large  on , even if  is not when . This property is           

in accordance with the expression  given by     19 , which is finite as , while its

normal derivative is not when  is non null at the origin.

4) Far field radiation of one face and single face expression of spectral function 

4.1) The spectral function  derived from fields on a semi straight line and properties

The steepest descent path method [1]-[2] can be applied to 25  to find the far field 

radiation of the face , also denoted . From the regularity of , we can      

deform  to stationary phase points  and , when        
 

     and
 
 

    , and thus, out of the reflected and shadowed regions
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                    and . In this case, the equation 25  then gives us,

                    
 

 
  

 
      

 





28

which, from 27 , can be written, 

                
 

 


 
    

 





. 29

At this step, let us notice that this result is a generalization of Michaeli's result [19]

obtained for Dirichlet boundary conditions. In other respects, we can consider the far field

derived from 19 , using formulas [20],  

        

              




 

 



 











 30

for large , with  ,                
          sin

               cos . Taking into account that

         
   

     
   

  

   


 


cos

sin

cos
31

when , and considering the properties (b')-(c') on , we then           cos

obtain the expression for the far field from 19 which, compared with 29 , gives us :    

           




        




     

  







     





sin

  cos 32

as  , i.e. as  and       
    

               and  with    arg
cos

      


  
cos  vanish at infinity.  We can also consider the field along the line  

with , letting . In this case, we can write, when            
 

   
   




          and  ,
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cos 33

which is also valid, by analytic continuation, as Re  cos cos 
     ,

  Re . This expression implies  that,

        


   

  


 

  
   



 
 



        
  



          
  







 



ln
 

  

ln

ln



  
 34



                                                                                                                                    -12-

as  and , which is in accordance with the property (b) of the spectral        ln

function  attached to the field . 

Thus, the definition of the field and its normal derivatives on one single face (a semi-line)

leads us to a (explicit) definition of a unique analytic function  attached to the total

radiated field (uniqueness and existence), with  vanishing          
 

at infinity as , , in accordance with condition (b). 
 

 
 

       

Remark : From 33 , valid as , in the band Re ,          Re cos cos 
   

for , Re Re ,   we can write in this band, as ,          
 cos  

              
 

 
       

 








sin  cos  35

Remark : It is possible to recover by another way, as already noticed in [7]. For this,33  

we can use the inversion theorem of Maliuzhinets [3] (taking care about time convention)

on  and  to obtain,          

                

                




       

      
 



















sin  

 

cos

cos 36

for Re Re  as  Elementary combinations and analyticity then       cos   Re 

permit us to recover . This way is not used in this section because it does not allow to 33

simply relate  to Green's theorem, which is a key point to derive the remarkable 33

property of deformation of the integration path given in next section.

4.2) The spectral function  derived from fields on a piecewise smooth semi line

4.2.1) Single face expressions of  along with the use of tangent angles 
0,  

Using the properties of Green's theorem [1], it is worth noticing [7]-[8] that the contour of

integration along  in 19  can be deformed into any path  without changing     
0,

the field , provided that  is a piecewise smooth semi line, and that, during the  

0,

deformation, the integral remains definite,  is not captured by the path during its

deformation, and no source passes through the path. Afterwards, we can write 32  in a 

more general form, with integration along the new general path , a piecewise smooth
0,

semi line from the origin to infinity, following,

          




         




     

   




  


        




 

0,

sin

  cos 37
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where  is the element of length,  is the outward normal derivative, and  is      
   

the tangent angle on each smooth segment composing .
0,

If we divide the piecewise smooth semi line  (deriving from a deformation of the
 ,

faces  enclosing the scatterer, described above) into  (i.e. )          


and  (i.e. , we have     
 

          




               




     

     




  


        



 

 








sin

  cos 38

where ,  is the spectral function related to the          
     

 


 



     cos

Sommerfeld-Maliuzhinets representation of the field in coordinates with origin at points

          with . We can then write, by analytic continuation, 

          




             




    

    




  


        



 

 








sin

  cos 39

4.2.2) Single face expressions of  along with the use of gradient 
0,  

Using the expression of normal derivative with gradient, we derive another form of the

expression of the spectral function associated to total field, in presence of a scatterer

enclosed by a surface with piecewise smooth faces  ended by 
 , semi-infinite planes

with tangent angles  (note : in the case of a closed scatterer, we can take ).    

Therefore, the spectral function  satisfies the single-face expressions, as
   
   

 


          and  [8], following,

        




      

  



 


  






 40

where            cos sin  refers to the direction of observation of angle , and

         on each smooth segment composing . This expression is
0,

in agreement with 37  and the expression 8  of .                     

As for 39 , we then derive, 
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where  refers to the complex angle , with  verifying .                   cos sin

(note :  we use , with scalar product of complex vectors defined by         

analytic continuation (no hermitian product and no conjugate)).

Remark : When  has a succession of singularities at points , we can consider 
 0,

 
 0,  as the addition of curved line segments without , i.e. the integral as the addition

of improper (or limit) integrals on open paths, in the sense that the ends of paths are not

strictly considered at  but as .    

5) Expression of  from the far field function  and its consequences 

5.1) Integral expression of  relatively to  

Considering 25 , we can write for the spectral function  attached to the total field,

                        42

where    


 
Res |

 


 cot     , the  verify  and 27   26 , while,

  








lim
Im

        

so that the condition (b).      as specified in The constant  doe not

change the field since  is odd, and is only here to define uniquely    with

     .

When both conditions  
 

     are satisfied permitted with  ,     

we then obtain, from    26 ,  and 27 for ,         

  


 




   




            




 
        


 








   



   


 

tan

cot
Res

43
| 

with

     

         



  



 
  

      




  
 



       
 

 



44

where the far field function also known as the diffraction coefficient at the edge in 7 )(  

vanishes at infinity on , and  is verified.    

As first consequence, we conclude to the existence of  from  as , defined    

from 43  and its analytical continuation with 44 , which implies the definition of   

representation 3  for the field .  
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The expression 43  can be also generalized by analytical continuation on  and . For   

that, we begin to write 43  in the form, 

      
 

 




    




         


 

 
        


 




 
   



 

 


 

cot cot

cot

 



Res

45
| 

We can assume that the nearest singularities of on real axis are the incident pole     

at  and the geometrical optics reflection poles at                

(if infinite faces are present), where the constant     refers to the angle of semi-

infinite plane composing each physical face, while the singularities apart of real axis,

which are independent of , are with Im . We         can then use Cauchy theorem,

and deform  to a new path , with capture of poles on real axis [13]. This leads us to 


write for ,      

       
 




 

   









         
 

 

             




 




 



   



 
 




 

  



  


 

cot cot

tan

  

  


46

as . For , let us note that we can consider that                  
  arg

  
      sign , and that 46  remains valid by continuation for complex arg  in

the domain  defined by  with Im   
       Re .      

Remark : Both conditions  
 

    , considered to apply 43 are satisfied only 

if . With these conditions, all poles of are outside       
Res |

 


cot   

the band , in particular the  with           GO reflection poles at   
 

  
  

 , since the conditions  implies                and thus

    
 .

5.2) Equations on  from equations on  and consequences 

The form has important consequence to deduce new analytical properties of  46    

on incident variable . In particular, let  satisfy      analytical functional equations

relatively to variable ,

      
              as 47 



where  is an analytical operator, linear relatively to , we
   directly deduce from 46 , 


         48

for  , then   
  as everywhere by analytical continuation.          
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It is worth noticing that when reciprocity principle applies, we have

            ,  derive from those, and functional equations for  on variable 

on ,    . Thus, 48  is a remarkable way, while , to exploit reciprocity         

and obtain equations on second variable of .

The property 48  was first noted and illustrated in   [13] in the particular case where

  
        are difference functional equations derived from boundary conditions

on faces of a wedge, when reciprocity applies and . In this type of         

problems, we can generally write, from boundary conditions on the field for each face of

a wedge , functional difference equations on  [4],[16]-[18], following,   

            
 





                 sin cos



49

with , and thus deduce,    

        
                 50

which gives us, from  when reciprocity applies,        

        
                 51

This equation permits, from the application of 48 , to obtain functional equations

relatively to the second variable on , following,

        
                 52

valid, by analytical continuation, for any  and . 

5.3) Expression of  from  with shifted origin 

Considering the expression of  in 6 , we can express, relatively to new coordinates  

                 when the origin is shifted at the point , the far field function , as

follows,

 53

           

        

      

   


 




  

   


  

  















lim

lim



 



 

  









  





cos

since  and  as  [1]. Thus, we can use for             
  
 
 


46  

the spectral function , attached to Sommerfeld Maliuzhinets representation for

coordinates  and origin , with its far field function , and we can write,        
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tan  

with 54cos

as , , where we note that we can let,                   
     , 

               cos cos         
   with 55

This expression of  can be analytically continued for  by shift of , as long     

  

as the integrand continues to vanish at infinity, taking account of singularities captured

during it.

Remark : We note that,

     

              

    

           

  

       

 


   
 

cos

cos cos



   



 



  56

but the reader will notice that we have generally,

          
        

   
cos 57

Indeed, in the Sommerfeld Maliuzhinets integral representation, the spectral function has

to be  at infinity on and inside the loops  of , where  and  are two           


 
cos

constants, and we then generally need 54  to express  from .   

Remark : The expression 1  of the incident field ,   for a shift of origin can be used with

                                cos cos 58

6) The spectral function      for the diffraction by a wedge, with passive or active

impedance faces, and an illumination normal to the edge

6.1) Definition of      in general case, with passive or active faces

The boundary conditions, for the 2D diffraction by a constant impedance wedge with

straight faces    , are in general,

 
  

  
            sin sin     

 
 

 | i.e. |   

where sin      are the relative impedances of the faces , with Re     

These conditions are a particular case of  spectral function  attached to the 16 , and the 

total field  then satisfies,

                

                  

sin sin sin sin

sin sin sin sin
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with . In whole generaly, we consider sign Re sin ,             
 

with Re sin , that can be positive (passive impedance face) or negative (active   

impedance face). Letting  and  the angle of illumination, we have,     

            

               

         

 

   

  
   

 

    

            

     

 

sin sin sin sin

sin

sin

cos sin sin

                      sin sin sin 60

where  is a polynomial of order , and . The function           

      sin    , that has the pole of incidence verifies,     as Re , 

          sin sin                         61

while ,     , without any zero or pole as Re , is the solution of

                

                  

sin sin sin sin

sin sin sin sin

         

         

 

  62

so that        verifies 59  The polynomial  will be defined so that  satisfies the

conditions (a)-(b)-(c) on the spectral function for a scatterer in a wedge-shaped sector

illuminated by a unit plane wave.

6.2) General exact derivation of             

6.2.1) An efficient expression of  with  function             

The function can be derived from the development of 200 - 201  of        appendix C.

From 62 , we have  ,
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where sign Re , Re . We can then consider                   sin ln      in

appendix C as the solution of,
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Using residue theorem, we have,
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where Re , and we derive from 200 - 201 ,          
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as Re , where we have noted to simplify,   

             sin 67

After integration, we then obtain,
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as Re , where             is a free constant, that we could take equal to unity

without changing the expression of .  Considering that we have [20],
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as Re Re , leads us to expand 68 , as Re , following,                   

      


          
 

     


  






 

 

            
 

 

               
   

   

          
 

 

 

 





 

  

exp       
        

     
  

 





 

    




    


  

  
cosh

sinh

  

 
 70

where  is an arbitrary positive integer, sign Re , Re . The            sin sin  


are constants depending of , while  does not depends of it.        


Since e  rapidly decreases for large  or , this expression has the advantage to    

give an efficient calculation for  and all analytic properties from those of     

function when we consider . It is then particularly simple to note that  is a     

meromorphic function of the complex plane.

6.2.2) An efficient expression of the Maliuzhinets function  with  

We note, from , that we 68  and the use of           cos cos cos cos

have,
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for |Re | . We can then write , for |Re |  as                 
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where  is a constant, and  is given, for |Re |  by,                
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As for the expansion of  with  function,  is independent of .     
       

Comparing this expression with the one given for the Maliuzhinets function  given in

[29], we remark that

                74

and,

              75

which represents a new efficient expansion of  with  function.   

Remark : We also note that,
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R 68 ,emark :  For Im , the principal contribution, in the integral expressions      

comes from the vicinity of  note that,  . We then
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and thus,

 
        cos    






    with  a constant 78

A complete asymptotics for  will be given in a further section.

6.2.3) Additional expressions for  and  


Other expressions of  can be derived from, this time, the use of 202  of appendix C.  

Considering ,                    ln   sin ln    
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with Re , from 202 , as Re  with Re ,        sign , we have      sin sin  
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where, by definition, Re After integration, we can choose to add a        . 

constant integral, and write as Re ,    
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where we notice that . In a similar manner, but, this times, when         sin

         Re  for  and  , we can write, after integration and        



addition of another constant integral,
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where we have used a shift of the integration path, permitted from Re        .

Considering that,
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we obtain, from 80 , as Re ,      
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while, from 81 , when Re  as  and ,                   
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The terms  and  are free constants that we can take arbitrary without changing the  

spectral function, while we can let  for  in 83  and 84  withouttanh tanh         
   

changing the expressions, so that .                   sin sin

Considering the definition of  with function  (as used in 72 - 74 ) following, 
    

       
   


                 






 


   with 0 , 85

we compare it with 84 , and obtain, in a original manner, another expression of the 

Maliuzhinets function  for Re ,       
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This expression, previously quoted in [12], is useful to give the asymptotics of , in

particular its first order, as Im .   

Remark : Let us note that, for Im  with Re we can write,         , 
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and thus, we have, from 83 , 

                sin  as Im 88
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6.3) Complete asymptotic expressions of  and 




 

6.3.1) Asymptotic expressions

For a complete asymptotic expansions of Im , we can transform




  and  for large  

   66  and  expressions, using residue theorem. Considering , for Im  with 68 




 

          sign Im  and Re , we develop 66 , following,
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We can then shift the integration path to Re , while considering residues (first   

and second order ones) due to the capture of poles between  and the real positive

constant , and we obtain,
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where we take care that   

 

 and  are not integers. After integration of 90 , or using 

directly 68  by a similar analysis, we obtain ,    for Im  with sign Im  and      
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  Re , 
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where we note that , while,         sin
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The last integral terms in 90  and 91  being , and considering that    

         
     

    

              

exp
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exp exp exp
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we have obtained, thanks to 90  and 91 , the complete asymptotic expansions for the   

functions 


            and  as Im .

Remark : Second order residue in  case . It   90  and 91  concerns the     




implies that we have , , and ,
 

 
               



with  , when  and  are mutually prime.           

6.3.2) Some complements on the determination of 
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For the calculus of , we can also write,
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We can then use [20], the method of integration by parts, and shifts of integration path, to

reduce the first and second integrals. We note first that we have,
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We can then write,
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With this reduction of , it is worth noticing that the first order of this asymptotics is in

perfect agreement with the one given by  83 .

6.4) Links between  for passive and active impedances, and positions of poles

6.4.1) The link between  for passive and active impedances
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For arbitrary sign of Re , Re  (passive) or Re  (active), we         sin sin sin    

note that the functions          in the expression of   verify,      

                

           

sin sin sin sin         
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i.e., when Re ,   sin

   

   
   

 

 
   

   

  

  

 

           
  

  

           

ln
sin sin

sin sin
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Since we have,

    
     

     
 ln ln

sin sin sin sin

sin sin sin sin

   

   

 

 
 100

and the function  has to remain without any zero or pole in the band Re      , we

can, letting sin  for impedance sin , derive  with an active               

impedance face directly from  with passive impedance face, following,

        
           sin sin  as 101Re   sin

with  we can yet notice from general expression 70 . a constant, as  

6.4.2) Positions of poles and zeros of   

Letting sign Re sin  and using we directly derive zeros and poles of         70 , 

from poles of the function . The poles and zeros of             sin ,

respectively in passive and active cases, are linked, and we that, when  (resp. note    

        ), sin     has zeros (resp. poles) at

   

    

         

            













 

and 102

and poles (resp. zeros) at

    

    

          

            













 

and 103

for , .     

6.5) Determination of  in general for passive or active faces    sin 

The polynomial  permits to complete the satisfaction of conditions (a)-(b)-(c) on .  

Considering a unit incident plane wave, we have  in vicinity of         
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incidence pole . This implies , and thus,                   sin

        sin  . 104

From unique definition of  at , we have to satisfy  as Im ,             

and considering 91  (see also 83  or 78 ), we can write,     
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sin

which implies 

i.e.  the number of active faces 105

For ,  Re  and passive impedance wedge with Re the poles of     sin  

              in the expression of   are outside the strip Re , but it is no

more the case for active impedance faces.

In this latter case,  have to suppressthe  zeros of for each active face with      sin 

             
, the pole  of sin  as Re  that can give non physical       

poles of  within the region Re  with Re  as Re ,                    cos

which leads to cancel non physical contribution  that can diverge at infinity as     cos 


   Re  (note : for real , notice that the non physical pole  is the one with  


      sign Im , among arg   
          

            and ).

We then have,
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sign Re sin Re sin 106

which completes the definition of   for arbitrary impedances (passive or active).

7) Analysis for a wedge at skew incidence (2D1/2) and associated special functions

We study in this section the special functions used for the eletromagnetic diffraction of a

skew incident plane wave by a passive anisotropic wedge of any angle, their expansions

and their properties. The problem is then no more scalar, as in strict 2D problem, but

more generally vectorial.

We present here our solution [9],[22] for balanced hybrid conditions (when the product of

diagonal terms of impedance matrix is equal to unity), and study its relation with Fisanov

function used in the solution of Lyalinov and Zhu in [23], and with Maliuzhinets

function. On this occasion, we insist on the common links with the  special function

[20], as in 91  for , which reveals remarkable analytic properties and permits efficient  

calculus.
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Figure 3 : Geometry at skew incidence

7.1) Our solution given in [9]

The plane wave incident on the wedge is vectorial. It is characterized by the -

components of the electric and magnetic fields along the edge, respectively  and ,  
 

given by

   
     

     
    





 






     

 
. 107    sin cos cos

In this expression,    (Im ) and  denote respectively the exterior medium wave    

number and impedance, and  is the angle of the incident direction with the edge of the

wedge.

The -components of the field, in cylindrical coordinates , , are searched in the    

form of Sommerfeld-Maliuzhinets integrals [9], following
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cos
sin cos





   

which satisfy the Helmholtz equation  on each component. The contour       

is odd and composed of two symmetric loops as for 2D problems. Conditions at the edge

and at infinity are assumed, and we consider an anisotropic constant impedance boundary

condition =  on each face , where  is the unit                

vector along the outward-pointing normal to the face, and /  a relative constant  


impedance tensor. This implies coupled functional equations
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with
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cos cos sin sin
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110

when /  is characterized by a class of diagonal relative impedance matrices with  


elements , . 
 



Considering the oddness of , we note that we can choose to add some constants to

spectral functions  without changing the field, and the constants  have no influence  

on it (see details in [9])  In these circumstances, we note that the previous sections on

general properties of spectral functions, in Sommerfeld Maliuzhinets representation of 2D

fields, can apply providing that we let,

          
      


 


 cos 111

in frequency domain, with  or , , and  in                 
         sin cos

place of  in integral representation of .  cos

By employing an original factorization technique for coupled equations [9], we found a

closed-form solution when the products of these elements are equal to unity, i.e.

 
 

  . This case of anisotropy is important. It corresponds to a geometrical optics

reflection coefficient which is independent of the polarization of the incident field.

We let  with Re , , and obtain [9],      
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[22],
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where , ,                             
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     , and the functions  and  verify, 
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with

det sin sin sin
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det det

cos sin cos sin
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and  The explicit closed-formsin sin cos                   
 

 
 

expressions of the two special functions  and  is derived [9],[22], for       
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|Re | , following,      
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for arbitrary , where we have used  as in [24]-[25]        
 





 
   



(note:  and ). Since e  rapidly decreases for large  or , these 
 

 
      

   

  

expressions have the advantage to give an efficient calculation for  and all   

analytic properties from those of  function when we consider .   

Besides, it is worth noticing that it is then particularly simple to realize that

 
       is a meromorphic function of the complex plane, for which we can

identify all complex zeros and poles. For the particular case of normal incidence (i.e. for

   when we have no more coupling between TM and TE waves), or for isotropic unit

impedance ( ), we recover the expressions given in [4],[12] and [24]-[25]. 
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Remark : Among all analytical properties of , we can quote the remarkable identities,

      

  

                   

         




sin , 1
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7.2) The relation with the solution given by Lyalinov and Zhu [23]

We now exhibit the relations of the special functions  and  of our solution with the  

Fisanov function , used by Lyalinov and Zhu in [23]. For that, we let  in      

   115  and 116 , and note that,
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and
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and then compare with the integral expression of  given in [26],  
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Since, we have,
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we can express  as a combination of functions of the type 
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we can express combinations ofcos sin       
              and  as 

functions , which implies that            
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            and  are meromorphic functions in  which

express as combinations of   and  terms.         
         

   

   

           
           

 
   

   

   

This result permits to recover the expressions obtained by Zhu and Lyalinov [23].

7.3)  in terms of  functions and expressions of     

7.3.1)  from the expansion of  with  function    

From 115 , the expression of  is given by,   
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for |Re | . Considering that [20], 
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we can write, for |Re |  as  and ,                       
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where  is a constant, and  is given, for |Re | , by,               
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for , and , which in perfect agreement with 73 . Comparing this        




expression with the one given for  in [29], we conclude, as in 74 , that we have,  

                     with 127

where  is the Maliuzhinets function, first defined in [4] for the diffraction by an

impedance wedge, and verifying .  
  





  
    

    cot 

The expression 127  is an efficient expansion to calculate the function , when      

is finite. It also permits to recover all analytical properties if we let tend  to infinity, in

particular from well known remarkable identies satisfied by  in the complex plane.

Besides, it is worth noticing that the constants   and , have no influence on   

the solution, and thus, that we can take , and  or  indifferently, without     

changing the field.
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7.3.2) Complete asymptotic expression of     for large Im

For an asymptotic expression of Im , we can transform the expression given  for large 

by 127  as , using residue theorem. Letting sign Im , we can then write,         

as Im  and Re ,         
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In the last exponential term, we can then shift the path to Re , taking care that   
  

 

 and  are not integers, while adding residues terms (first and second order), due to

the capture of poles, between  and the constant , during the shifting. We then derive, 

as |Re |  and Im ,      
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where,
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The last integral term in 129  being , we have obtained a complete asymptotic  

expansion for the function         as Im .

7.3.3) Some complement on the determination of 

For the calculus of , we can also write,
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We then use 95 - 96  and the method of integration by parts to simplify the first and   

second integrals. From 95 - 96 ,we note first that,   
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and we can then write,
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With this reduction of , it is worth noticing that the first order of this asymptotic is in

perfect agreement with the one given by  86 .

7.4) Expressions for the Fisanov function 

7.4.1) An efficient expansion of the Fisanov function  with  function 

The Fisanov function , used in [23] and [26], can be developed in an original manner

from the special function . We write the second order derivative of 120 , for  

     Re , following,  
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Considering then that we have [20],
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we can write, for Re ,            
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Thus, since , we obtain  
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for Re , , . Considering the derivative of                   




the integral term in the expression of , null at the constant  is given by,    

             
  

    

  




 
  





  


sinh

  
  

sinh
ln 139

but also, from  [26], following,    

  



  
 

 




  
ln 


 




,

The expressions 137  and 138  are efficient tools to calculate the functions  and    
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,  when  is finite, permitting to recover all the analytical properties from remarkable

identities of  when we let tend  to infinity. 

It is important to notice that, considering the wedge problem with anisotropic impedance

condition, the constant  has no influence on the solution, and thus, that we can choose

    in place of , at  arbitrarily fixed, without changing the final expression of the

field.

Remark :   and  are meromorphic functions functions with the same poles and  

zeros, and  we have .      
 

 
 

            cos

7.4.2) About an asymptotic expansion of the function 

Let  in 138 . Using a manner similar to the one use for , we can develop the      

complete asymptotics for  and . For that, we let sign Im , use residueln         

theorem and write,

ln
sin

sin sin

sin sin
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where,
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Shifting the path of integration to Re  in the last integral term of 140 , and     

using residue theorem (first and second order) for poles captured during it, we obtain the

complete asymptotic expansion of  and thus of .ln        
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Remark : We note that, using 96 , we can also simplify  following,  
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8) Explicitly causal expression in time domain for a dispersive wedge-shaped region

8.1) Basic elements on causality and integral expressions

Let us consider the total field  in presence of a 2D scatterer, enclosed in the      

region outside the free space sector , when it is illuminated by a plane wave,   

                  



     cos  with


143

We assume that, in the domain | ,  are holomorphic functionsarg          and 

of , and | . The function      arg               is  as Re , , while

             satisfies the conditions (a'), (b') and (c'). The time domain response 

(or ) is then given by,

               


 
    


lim
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Closing the contour of integration at infinity, we note that

 
  


 


             


     for 145

  cos

where and we can write,    
 
lim


, 

             

  



   
  

 146

The time domain field  is real. It is here assumed to be bounded, and, in    

presence of the wedge-shaped region illuminated by , it is causal with respect to    

the front of the incident wave, so that we have,

                 as 147

Noticing that             , we can add that we have,

                          
 as   148

We , then have
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  149

which implies,

         

         

   

 

 , 

  for Re , 

and thus no singularity of   as Re . Therefore, we can write,       





         


 

                  




           



  


       


   



 








 

 
   




 





 



 

    

Re   150

Rather to express causality from analyticity of  for complex , we now        

aim to reduce  an integral to a explicitly causal expression depending on position, i.e. 

on a 'finite continuous' path  whose ends depends on  and .     

For that, we will transform the expressions in 150 , from   the integral representation of 

with spectral function               . After analysing the properties of , in

particular those concerning the positions of their singularities in  for real , we will 

define and use some transform of it, that presents some intricate causality properties.

Dispersive multilayered wedges with higher order boundary conditions can be then

considered. To simplify, we assume in what follows that, in the free space,

    



 is a real positive constant independent of 151

Remark : the problem when  depends on , i.e. when the free space is a  
 

homogeneous dispersive medium, is studied in [13]-[14] for the diffraction by a passive

impedance wedge, and we note in general that, from 148 , 





  




              as 

 

 

 
   152

8.2) Spectral function and elementary properties        

We consider that the spectral function , in Sommerfeld-Maliuzhinets      

representation of field , has  3  poles of Geometrical Optics on real axis whose positions

are independent of , in particular those related to  incident and reflected angles, while its

complex singularities, whose positions depend analytically on , generally derive from

singularities of reflections coefficients  for both faces.      
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For now, we assume that each face is composed of passive materials (and metamaterials),

characterized by complex relative permitivitty  and permeability  with  

         arg arg     and , which cover non penetrable surfaces verifying

passive impedance boundary conditions. As  and  tend to zero for         

from causality principle [21],  the contribution of materials vanishes at high frequencies

while the one of impedance surface can continue to be present.

The function               is meromorphic in the domain Re , with real angle

poles (independent of ), and possible complex angle poles (depending analytically on

       ), while, at fixed ,  is bounded at infinity in this domain. Concerning the

trajectories  for complex poles, we consider the following properties :  
  

Each trajectory described by complex poles of ,  

, numbered , when  varies  

can cross

   

     

 

   




  from  to , 

 the d

   

omain with 

 

Re , with ,  

but these trajectories have no end points in any closed subdomain of it 

(with  as 

      

 

    




 


 



);

;

 in other words, we suppose that  

the end points are outside the band Re , or at infinity

Moreover, we take precau

       


tion that we have no cusp ( )  153          

Besides, using the single face expression 33  of , we note that,  

                     154

and thus, we can add that , verifies

    
         . 155

The general assumption given in for a wedge with passive (dispersive) 153  has no use 

impedance boundaries, since, in this case, we have no pole depending on  in the band

    Re  [13]-[14], but must be considered when the faces are composed of a  

multilayer (see appendix A) and  has possible active poles depending on  in the     

band Re      .

8.3) Elementary transform of   
   and its analytical continuation 

8.3 ) Definitions of domains transforms for real      
 and of , 

The spectral function verifies the property (b), and thus we have,        

             

   

        

  

  is bounded and regular in 

 is of the strip Re  ,where  the region with Re

i.e. the reg

    cos

ion where the function  diverges as 156      cos 
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For real , the domain is composed of the subdomains       is denoted . It  


and . Each  is bounded by the loops  defined following,    
   

 



 






  

  

                    

                    

       

        

   

    157

where we notice that  In this domain       
       , and thus,  is the conjugate of .

of regularity,  is from 33  as Re  for any finite Im , with .            ,   

We then define, as for any  real,  , 

      


      



 






 





           




           


















  158

with  a positive real constant. This expression also permits to consider,

             cos , with  belonging to the frontier        , where

cos  is real, and , to write

      


      



 






 





           




           




 

 


 


 

 

   









 

 



 159

We note that, so defined, the functions verify,
 

         

           

     

     


  





  




 

    
    160

8.3.2) Definition of analytical continuation  of  in the domain with poles of   
  

We can then consider the analytical continuation  (resp.  
      

          
                ) of  (resp. ) in the domain with poles of 

    , complementary to  in the band Re , which corresponds to the part of the  

domain Re  where   which           as . The frontiers, from  

      
             (resp. ) can be continued, are the lines

                
sign ,  and the real axis, where  (resp.  

  
     ) is known.

Because of  continuation can be done without any singularity and cut in it, and 153 , this

on its boundary, as , even when . The function                 
   

(resp. ) will be then regular in the domain  of , where     
      

           
 

 
 , bounded by , in complement of the loop     

on which  (resp. ) was initially definite.      
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Remark : As mentioned earlier, for the particular case of the diffraction by a passive

impedance wedge,                  is regular as Re  except at real

Geometrical Optics poles, and thus in , and we can directly consider the integral

expression of  for  in it, but it is no more the case for  
   a multilayered wedge.

8.3.3) An example of continuation for an integral with a continuous line of poles

Let us consider the basic example of the exponential integral  defined with,

        


  

         
  








 











 as 

161

arg

ln





The trajectory of poles in the integral is a straight semi-line from  to , which gives 

us the cut of , the same than for . An analytical continuation of  through     ln

this cut changes its determination.

By definition, we continue an analytical function by successive use of taylor expansions,

whose domains of convergence are limited by the radius of convergence (determined by

circle with first singularity encountered), which amounts to say that we increase

continuously the domain of holomorphy, and thus deform in our case the cut, to avoid 

to cross it. The new cut is a curved semi-line , with same ends points  and ,  

from which the continuation can be named .  , 

Now, an remarkable result, due to the use of Cauchy theorem, is that this continuation can

directly be done from the integral representation 161  by 'continuous' deformation of the 

integration path, and thus, by a change of the initial path to , which gives us,

       


  

          
  



 






  















 as ,

 with 162 ln ln ln

This kind of results will be used to take account of complex poles of  depending of , 

for the derivation of the continuation  of  , provided   
   153  is satisfied.

8.3.4) Expression of  in vicinity of real poles of  independent of  
 

On  of the strip Re , we have  the path real Geometrical             

Optics singularities of at , that have the particularity to be         ;  

independent of  , as . To take account of  (for incident and reflected GO waves)   
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them for the continuation on , we can write,

     




   
  


 












         
 



    
   

  

 

 


 

 

 

 

      



 







 

 







163

where

        


     

   

 
 

 








  

 

 

  



     


 

 

 
  

164

with Re . This expression can also be considered for .             
 

8.3.4) Analytical continuation  of  for complex poles of  depending of    
  

In the case of a multilayered wedge, we have to consider the presence of poles    of

             crossing Re  and verifying  the domain 153 . By definition, 

        
                is  in , bounded bythe regular continuation of 

     , where  , with no branch point and cut in  and on      as   

as  (note :  as . For that, we write,         
   )
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where we have,
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with , ,  and         
  


                  

                  . From  (no cusp), and the endpoints value 153 , 

and  can be considered outside the band Re .           
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In this hypothesis, from  on the imaginary   can be analytically continued as in 162 , 

axis to  in , by continuously deforming  as  approaches the trajectory of     
 

, in order to avoid to cross it.

Thereafter, taking account of the continuation with    163  and 165 , we have in general,

     

 

   
    

   

 

   





 

        

 is  and   regular in on 

for cos  with arbitrary real 167

These results can also be considered for , as  is real.   
    

Remark : Considering 160  and the definition of we note that,  
 , 

              
  


    

     . 168

8.4) Fourier transform of  and properties related to causality

After noting the regularity of               on imaginary axis for Im , we define

on it,

      



  





            



 





, 169

for any  real. Considering  the single face expression 33 , which is valid for 

Re ,    cos cos    
         , and thus, the expression 35  for

           as Re Re , we can, cos , for Re  as ,        

interchange the order of the integration (permitted even for ) and write,  

     


 
   


 

 

 

 

         


        





4

170

 




sin



as cos , .         where  satisfies 149  and the conditions (a'), (b') and (c')  

Since  is causal with respect to the front of the incident plane wave, the contour of

integration in  can be closed at infinity for Im  when , and we can          

write,

              for Re ,   at any fixed 171         ,

We then consider the analytical continuation of                 , for any 

real Re , , with no cut and no singularities as except the poles of          

Geometrical Optics on real axis. For that, we exploit that, in our construction of 


with 163  and 165 ,        remains an independent function that we are free to take as a

constant, and note the regularity of          



          and  in .
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Therefore, we can write,

          

          


   
 


   
 

               

                 

  

  

 in 

 in 172

with  in  and on their frontiers . The              
            

regularity of  in  allows us to a vanishing  extend 171 , and we can now assume  

property for , as follows,

                       at any fixed  as Re 173

The factor  on , we deduce that, for ,   being real          

        
 
                           , and thus 174

verifies the causality property,

       
                       for  as  , 175

Remark :  Considering the problem when  depends on , we note in general from  
 

 152  that,





   





 

                     as  when Re 176  cos 

and thus, that 171  and 173  apply in whole generality, when the free space is an   

homogeneous dispersive medium.

8.5) Explicitely causal expression of the field in time domain with 

From the expression 3  of , and the domain of regularity of , the      
    

field in time domain is given by,

 

         

                 




       


 


       


   

 
 

 
   


 

    

177

 

lim  
  

        
 

with cos , where the double loops            are oriented, as  in 3  when we 

take ,  and          
.

Considering the analyticity of      



               and , we can

deform in 177  both paths  and  (oriented) to the common path         
 

independent of , with the loops  (oriented as loops  when we take   

            
 arg arg    , , and  in 3 ) verifying,
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 178

and we can write, from 174 , 

          


 
 



     179

with     real on .

We then use the causality property 175  on    and obtain an expression for ,

explicitely causal, on account of a finite path depending of time and position, following,

          


 
 

  
    180

where  is the finite subset of  with cos , and                    

is given by 174  on   . Therefore, letting,

       
   

      

arccos

ln

  

   

181

the finite path  (oriented as ) can be described,  

as  :  

 : 

182

                 

                 

           

    

    

 

 

  



as 

 









above all the real singularities of the integrand as Re  (due to Geometrical Optics    

part of the field), while  is its inverse below the real axis.

Remark : Considering 168  for 180 , we note that,   

           



Re 183


 

  


   

Appendix A : Analysis of the reflection coefficient attached to a multilayered face of a

wedge

Let us consider the reflection coefficient attached to each face , semi-planes  

composed of a passive surface with relative impedance  covered by a passivesin

material of total depth  with relative permittivity     and permittivity  varying in depth
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and frequency, following,

   








 cos

cos






sin

sin
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where the angle and the complex constants is with the outward normal at each face, 

sin arg     
  have real parts of arbitrary signs [16]-[18] with Re , .         

Let us consider to simplify the case with , i.e.  and  real.        arg arg  

When the permittivity and the permeability of materials have positive real part, which is

always the case at very large frequency, we can generally assume that the  withsin

Re  (active modes) verify Im  while the  with        sin arg sin sin    
  

Re  (passive modes) have Im  of arbitrary sign. In this case, the first     sin sin  
 

poles of              ;  from imaginary axis are, for each mode, at .


Besides, on limited domains of frequencies, permittivity and permeability can have

negative real part (if metamaterials are present), and the term arg sin sin  Im  for   
 

with Re  (active modes) can have arbitrary sign. In this case, the first poles ofsin  

               from imaginary axis are then, for each mode,  whenat 


Re  (passive modes), while they are    sin at  (if       


arg sin arg sin         Im ) Im )   
 or at  (if when        



Re  (active modes).   sin

Remark : to analyse the expression of poles of  given here, the reader can refer to

appendix B, where we give the solution for a wedge with arbitrary passive or active

impedance faces, and we describe the suppression of non physical poles for  when

active impedances .are present

Remark : We can generally assume that, as  tends to infinity,

      and thus     


  



   cos

cos

cos

sin

sin
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with Re , while we have, for the modes that are active with Re ,         
 

Re 0 as Re

Im  as 186

       

        

 

 






Remark : let us note that, in free space, we can write  ) for the wave         

number, while for modelisation of passive metamaterials, we have to write      

( ) to ensure passivity and Re        

Appendix B : Some miscellaneous properties of spectral functions for an impedance

wedge with passive impedance faces
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B.1) The spectral function  passive faces     for a wedge with straight

B.1) The definition of      in passive impedance case

Let us consider the spectral function  associated to the diffraction of an unit plane   

wave of incidence angle  by a wedge with straight faces of relative impedances sin 


with positive real part (passive impedances) [4]. It is given by,

         

           
 

 

      

     cos sin sin 187

where the function      , without any zero or pole as Re , is the solution of

                

                  

sin sin sin sin

sin sin sin sin
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i.e., when Re ,   sin

    
     

      

         

    
  

  

 



ln ln
sin sin

sin sin

ln
sin sin

sin sin

    

    

 

 
   

 

 





 





  

   







 189

(note: the case Re  can be considered by taking Re ).        sin sin    The

expression of  can expressed  from 113 - 115 , considering  in place of  with     

         . In passive case with Re , we can then write, assin 

      Re ,  

      


          
 

     


            
 

 

               
   

   

         
 

 

    


 

 



 

 






 





exp 
   


  

        

     


    


   

 
cosh

sinh
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where 
  is an arbitrary constant. This expression is suitable for numerical calculus

(with  or ) or to derive the analytical properties of  (with ) from         

those of  .  We note that the function  in passive case, i.e. when  

     Re , has zeros at,sin 

   

   

         

            





 

and 
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and has poles at,

   

    

           

          





 

and 

for , , and that we have [ ],      

  



           


cos      Im 191

for large Im , with constants , , and .      

B.2) Some integrals as  and Remiscellaneous results concerning        sin 

We note that, for , we have,  

      

      


     
 

      

      

      
    

sin sin sin sin

sin sin

sin sin sin sin
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Using that , and                        
 cos sin cos cos  sin  as

   , we can let  and derive, from ,  
   

 


cos sin 
   202  of appendix C

  

 

  





  

cos sin

sin sin

sin sin

 

 

  



 



 



 

 




        
  

 

    

  
 

  







  












   

 










tan

cos sin

tan       



  




  193

for Re , where 
  

               sin sin sin         and

  
   

             
     

       

   
   
   

 sin sin sin sin
194

From oddness of ,  can be replaced by , and we        tan  


 
      

sin
cos cos






note that, after deformation of integration path, we have,
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as Re . Similar expressions with from    


 sin sin  in place of  can be obtained 

            when  (or .  by continuation with capture of pole)

Appendix C : General analysis of the solution of                 

We study here the solution  of  the functional equations for ,

                   196

when  is regular as |Re | , with  being  or . We consider the case where the       

functions  are analytic on the imaginary axis and exp Im , , as           

|Im | , and thus . The solution , regular as |Re |             

(even at infinity), can be written following,

           
         

 
   sign Im 197

where  is absolutely integrable on any line Re  as . This type of         

equation has been solved in particular in the works of Maliuzhinets, Tuzhilin, Bernard for

the analytical determination of the solutions of wedge diffraction problems.

We consider the case with , i.e. with arbitrary            

when , or with  when . By use of Fourier transform  of              

    , we then obtain a system of two equations :

               e  e 198   

Multiplying them by exp  and making the difference, the function  satisfies,    

                   sin    e e 199 

We notice that the analytic function obtained by dividing the right member of the

previous equality with  does verify 198 , and then, that the inverse Fourier    sin 

transform (integral taken in the sense of principal value) of this expression satisfies 196 

for |Re |  . So, we have the developed form of , for |Re | ,     
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with
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where the quantity  is arbitrary when  and equal to zero when      

    . The term v.p. means that we take the principal value of the integral

For the case where the function  is  and ln , we have  and         

     , while  can be evaluated explicitely by the method of residues. So, we

obtain a simple integral expression of  and , corresponding to .     115  and 116

In other respects, we notice that, since the functions  are absolutely integrable, it is

possible to change the order of integration, so that we obtain, for |Re | , 

            
      

  

          


     
 



   








   

  

tan

tan 202

Considering Im  and , and developing the  terms, we           exp tan 

have,

               
 


   






      Im 203

as Im  , with  being some constants independent of . Then, letting     

                 
 , we derive , while, letting ln , we obtain Im

        
           exp |Im |  with ,  and  being someIm

constants. This behaviour, deduced from an expression valid for |Re | , remains valid 

in any band |Re | constant, from the use of functional equations or the deformation of 

the integration path.

Remark : We notice, as Maliuzhinets, that

v.p.    204   
  

  

    


  

 

Remark : The expression 202  can be continued analytically for |Re |  by   

considering the residue due to the poles crossing the path of integration, so that we verify

easily that the continuation of this expression satisfies the initial functional equations.

This latter expression continues to satisfy the functional equation when the analytic

function , regular on the imaginary axis, is only assumed to be absolutely integrable.
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