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Advanced properties of spectral functions in frequency and time domains

for diffraction by a wedge-shaped region

J.M.L. BERNARD

1) Introduction

The scattering by objects with singular geometries is a particularly delicate problem ([1]-

[19],[22]-[29]), and the Sommerfeld-Maliuzhinets representation of field, when it is

associated to Maliuzhinets inversion [3]-[4] and single face representation [7]-[8]

methods, is a powerful tool to investigate the acoustic and electromagnetic waves

diffraction by a complex wedge-shaped region, in particular based on remarkable

properties of spectral functions in this representation. In first step of this chapter, we

review some general expressions and properties in scalar case for these problems :

general properties in complex plane, spectral representation of Green function, single face

representation of spectral function and consequences, are analysed for scatterers with

imperfectly reflecting surfaces that can extend to infinity. In a second step, we consider

the general solution for a wedge with face impedances of arbitrary signs (passive or active

case), then the solution for the diffraction of a skew incident plane wave by a passive

anisotropic impedance wedge of any angle in vectorial case [9] (2D 1/2 electromagnetism

problems), and detail efficient expansions of special functions used for them and their

properties. In a third step, an explicitely causal representation of field in time domain is

developed within a large domain of validity, including the case of a dispersive wedge

with multimode boundary conditions.

2) Basic properties of spectral function in Sommerfeld-Maliuzhinets representation

2.1) Sommerfeld Maliuzhinets representation for scattering by a wedge-shaped sector

Let us consider the case of diffraction in free space of a scalar incident plane wave,

                   cos  1

by a scatterer (finite or infinite) enclosed in a wedge-shaped region, in cylindricaldefined 

coordinates  as the domain outside the free space angular sector          

with origin ,  The angle of while  axis is defined as along the edge of the sector.

illumination  is considered with      
   , and the plane wave field verifies

the Helmholtz equation .              in whole space An implicit harmonic

dependence on time  is understood and henceforth suppressed with , and      arg  


    
  denotes the wave number of the exterior medium with . Generally, arg 


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    arg arg 
  is most often associated to some losses in free space,  iswhile 

considered as a limit case.

figure 1 : Geometry for a wedge-shaped region

The term           is considered as an analytical function, regular for Im  and 

with  as Re . The scattered field can be then assumed with the same         

behaviour, as analytical for Im  and  with  as Re .              The

characteristics of the scatterer are supposed to be independent of  coordinate and the

total field in the free space region, , satisfies the Helmholtz equation [1][2],    


            2

in the free space,  (note :  is considered in the sense of theas      arg arg 
 

limit). It is analytic with respect to ,  and , except possibly at the origin, and it exists  

a constant  such that  The problem can be considered in       
    

acoustic, but also in electromagnetism when we consider  as the -component of the 

electric or the magnetic field parallel to the edge of the wedge.

figure 2 : Complex path of integration

We can then search the total field  for  as a Sommerfeld-Maliuzhinets     

integral [3],[8],



                                                                                                                                    -3-

          


 
     





  
 cos 3

which satisfies  is an analytic functionthe Helmholtz equation. In this representation, 

and the path  consists of two branches: one, named , going from 

               arg  to arg  with , as  
 
  

Im , above all the singularities of the integrand, and the other, named ,     

obtained by inversion of with respect to .   

We can develop the expression, considering a deformation of  to the steepest descent

path  for large , composed of two paths  centered on the stationary phase   

points . Assuming that, between  and ,          
 cos  is

meromorphic and vanishes at infinity, we can write for ,   

         

        


 

 


  

,

 e  4


  
  



 

  

  




 




cos

where

- the terms  and , for incident, reflected and transmitted (if any) Geometrical   
 
 

Optics plane waves, correspond to real poles of  captured during deformation of   

    to . i.e. the respective real poles , in the band Re , verifying in particular,   

for  : i.e.

for  : i.e. 5

      

                

  


     

     

        

for . The first term gives the incident field in the illuminated zone, while    

the second term expresses the reflection by the semi-infinite plane parts at  (if  

any) of the scatterer enclosed by face .

- the terms  correspond to complex poles of , if any, captured during   
  

deformation of  to , for terms of complex plane guided waves excited by the edge 

(note: these terms are different from creeping waves guided  by faces if they are curved).

- the last term, named , is principally radiated cylindrically when the observation point

             at  is far, i.e. . Approximating  on  in     

vicinity of , we obtain  

       
 

 


  

  
  6

where

                       7

is the diffraction (or far field) coefficient attached to the wedge-shaped region relatively

to the origin.
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Remark : Let us notice that we can add a constant or any -periodic function to  

without changing  (and       ). Some conditions at infinity on  and on its

singularities are generally added to enforce its unique determination.

Remark : Considering the Green's surface integral expression of the scattered field [1]-[2]

and the behaviour of incident field at infinity as , we note that, for  arg 


     
               , and conditions the ,  satisfied   

simultaneously for convergence of integrals, we have,

  

  

 






 




 












  

     



     
  

  







        

          

 

  8

where  encloses both faces of the physical surface of the scatterer  within the  



 

wedge-shaped region ,         refers to the direction of observation of angle , and 

is the outward normal to the face , on each smooth segment composing each face.


2.2) Basic properties on total field  and spectral function  

Some elementary properties can be assumed to hold :

- (a') the only incoming plane wave, from the free space sector , is the    

incident field;

- (b') as , the limit of the field  is finite and does not depend on  with   

             
  , while the derivatives  , where   and  are  ln

      ,  and  can be chosen as three constants independent of the pulsation  (note :

    and  are then locally summable with respect to  in the vicinity of the origin).

This property applies for an origin taken at any point out of or upon the scatterer;

- (c') the field, except possibly its geometrical optics part when Im , does not grow  

at infinity. In addition, for large , some bounds on the far field are assumed, and as  or 

 vary, with , the field is in general when the      arg    


    cos   

scattering object satisfies passive boundary conditions, and more particularly, is

      cos   for a scatterer with passive impedance surface [3],[7]-[8].

These properties lead us to assume some elementary conditions on   [3]-[4],[8]-[9] :

- (a)  is regular at points with         
 Re  belonging to the free 

space angular sector with origin , Re  , which ensures (a').      

- (b) there exists some constants , some analytic function , and some Maliuzhinets 

contour  such that  on and inside the loop                    

formed by the upper branch  of , when , the function  being       

summable on , regular on and within it. Since  is odd, we can add a constant to   

without changing , which implies that we can choose, from now, to define  with 
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   
. We then note that we can write, for ,   

                
  



             
  



   

 
      

ln ln

ln ln

ln

   
  



   
 



  

 
with     ln l n    ln  9

as , with , , and that we have, for  belonging to the semi-          
 

infinite domain bounded by the loop ,

lim lim
Im Im  

             



    10

i.e., from definition of , for arg Re arg . This ensures (b').        
   

- (c)  has no singularity, except possibly those associated to incident, reflected,   

transmitted plane waves not vanishing at infinity, or bounded guided waves, in the zone

with Re cos  as |Re | , , . This ensures (c').                 arg 

Remark : Letting , we note from 9 - 10  that, we have, as        

arg Re arg     
      ,

             



   


  with , as Im  11

Remark : Using ,  has no singularity in the region with (c') when      arg 
  

Re cos  as |Re |  when Re .                     cos    
, i.e.  



2.3) Higher order expressions with Sommerfeld-Maliuzhinets integrals

2.3.1) Basic equalities for the differentiation of integral representation of 

Considering previous properties, in particular convergence at infinity of      for

large imaginary argument, we can obtain different reduced expressions for a differential

operator applied to , in particular, from the use of integration by parts. So, for positive or

null integers , , , , , and  or , we have the basic equality,       
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  
 



 

   
     

    


  



            
 

     

    

   
        

 
  



    

   









 
 cos

sin sin
cos

co


s sin

sin sin
cos

cos sin

sin
cos

  

    


    


  


    

    

   
       

        


      
   

 



  

 


 









  














sin

cos sin



     




            




  


   
  

cos 12

where ....   times. By using 12 , we note in               
   

   
       sin sin sin sin

particular that we have,

          
   

 

  

 

  
 

 

  
  

  

  
          

  

 
    

  


  
       

   
 


 sin

sin cos

sin

 




     

sin
     

 cos 13

in accordance with the Helmholtz equation verified by , which implies the equality,

    
  

    
        

In complement, considering cartesian coordinates     attached to each faces, with

   axes respectively directed as the outward normal to the faces  , we note that,

    

  
        




  




 

 
 














    

         
 

 

     
 

 

 


    




, 

 





  for  

 

 







 



sin

cos

cos

          
 cos 14

Therefore, we can exploit these reductions for derivatives of fields, in conjonction with

the Maliuzhinets inversion theorem, to determine functional equations on  from

differential boundary equations.
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Remark : Considering we note that,                sin cos and , 

  

 
         

  

 
         





cos sin

sin cos

   


   


 

 




 15

2.3.2) Basic example of determination of functional equations on 

For example of use of 12 , we can consider a wedge with general high order boundary 

conditions on plane faces  (taking that are combinations of        )  

higher order derivatives of fields [16]-[18], following








    

 
   

    
            



    
   




 | 16

where  The coefficients        , , ,  and  are positive or null integers with .  


are generally obtain from asymptotic considerations on losses, permittivities and

permeabilites of materials, and geometry near the edge. Using an approach similar

(slightly modified) to the one used by Maliuzhinets in [3] for its inversion theorem, we

can exploit 12  and then derive functional equations on  in the complex plane.   

For that, considering each sum in 16  as  in vicinity of the origin, with    

         and integer we multiply 16  by , and using 12 , apply a Laplace   , 


transform on . Considering the behaviour of integrand in the loop , we can close the 

loop  at infinity, and derive, from the residue theorem, the functional equations on , 

  
 


               

 
   

sin
  



 







  

 
 17

where ,      , , ,   and  are positive or null integers with  

    

   

  
            







   


 

    
      



sin sin
cos sin

which implies, after integration,













 




 



         

     

 
 





   

 



sin cos 18

Considering  finite at the origin, we can use 11  in 18 , and comparing each side for    

Im , we obtain                max
 


.
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This type of (difference) functional equations, encountered for wedges with plane faces in

[4],[16]-[18], can also be derived asymptotically from conditions on curved faces. By

analytical continuation, these equations permit a determination everywhere from the one

in the band Re . Furthermore, the constants  for  are attached             


to additional conditions on  at the edge, that we can relate to conditions at infinity on  

satisfying , and, in complement, to reciprocity principle (if it applies) on  [18]. 18 

Remark :  if we use that  for Im  on and inside the                 

loops  of , we notice that  if . 

         

3) Spectral function attached to radiation of a single face and properties

3.1) Basic integral expression of radiation of one face

We now apply Green's theorems [1],[2], when applied to Helmholtz equation, to derive

important properties on representation of spectral functions attached to the diffraction of a

2D polygonal scatterer. To simplify the notation without losing generality, we take from

now . From the properties (b'), (c') on , the scattered field in free space     

    
 for | |  can be written as the sum  of the radiations of     

equivalent surface currents carried by the faces  and , following,    

           
    

  

 

 


         

 


   

  




     

  

    
 

    













 

 



   19

with , . . ,  the                             cos

outward normal to the face , , and where  is the 



        , arg 

Hankel function of second kind [20].

We will show that it is possible, after expressing the spectral function corresponding to

   with , to express  for the total field from the radiation of a single face in far field.

This expression will then have the remarkable property, from Green's theorem, to have a 

path of integration that can be deformed without changing the result. For this, we begin

by using Sommerfeld-Maliuzhinets representation of  a . 



Remark : The possibility to deform integration paths without change of result is well-

known in Cauchy theorem for complex plane, and in Green's theorem for 2D/3D spaces.

3.2) Spectral function associated to  


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As shown in  spectral function associated to [7],[8],[13] the Sommerfeld-Maliuzhinets

representation of ,  

 is given by,

                
  

 





    





    20      


 cos  tan

where  is the path from arg  to arg  with Im , as         sin

              
             cos , , .  The terms , normally

unnecessary because  is odd, can be chosen as  in order to ameliorate        tan 

the convergence of the integral. The expression 20  determination for ,  is a   



regular as  (i.e. the domain in complex plane limited by  and            

        ), and verifying (after capture of poles of  as  varies),tan 




               
 

 
 



          cos  21

which is a functional equation that can be considered, by argument of analiticity, in

complement of 20  for a determination of  everywhere as  varies.  







The path  can be also deformed continuously, as long as the integrand remains bounded

in 20 , without changing , and this expression can be then continued for | |   
 


 

from shift of  and summation of residues due to poles of  captured by .   tan   




3.3) Expression of spectral function associated to and properties 

Therefore, we can write  corresponding to  for arbitrary . Letting  










    , with or , and , a real positive constant, we can write      the spectral

function , associated to  with     
 













               cos 22

following,

              
  

 
   







    





         


 cos tan  23

where , with  a constant satisfying                
 
  . This gives us a

regular value of  and  bounded at infinity        




 



       between   

in this domain if  verifying everywhere from 21 ,    

                

 
 
 

         cos   24

which allows an explicit Sommerfeld Maliuzhinets integral representation for   

 

as    .
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Using the expression 23  for  and  in 19 , we then obtain a         
 
  

Sommerfeld-Maliuzhinets representation of  with  [7],[8]: 

            


 
 

    





 cos 25

where

      


 

          
   

  



 

    


   
  

   

















         




  
   

tan   




  



sin

cos cos
26

for  between  and , provided ,  with                     
   

 


   or .

Since  is an analytic function,  can be analytically continued in the whole complex 

plane. We note in particular, that, taking account of the poles of  whichtan   


 

can be captured by  as  varies,  satisfies  

                        27

Concerning the dependence on  (or ), the expression  has been determined for   26
 

 
    , but we can consider  by analytical    outside this domain

continuation on  (or ), which corresponds to take account of the contribution of any 

singularity that would go through  as  (or ) goes into these regions.   

Remark :   As  exponentially vanishes for large  on (see


             
 

property (b) considered on  and 11 ),  is            we note that     

bounded for large  on , even if  is not when . This property is           

in accordance with the expression  given by     19 , which is finite as , while its

normal derivative is not when  is non null at the origin.

4) Far field radiation of one face and single face expression of spectral function 

4.1) The spectral function  derived from fields on a semi straight line and properties

The steepest descent path method [1]-[2] can be applied to 25  to find the far field 

radiation of the face , also denoted . From the regularity of , we can      

deform  to stationary phase points  and , when        
 

     and
 
 

    , and thus, out of the reflected and shadowed regions
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                    and . In this case, the equation 25  then gives us,

                    
 

 
  

 
      

 





28

which, from 27 , can be written, 

                
 

 


 
    

 





. 29

At this step, let us notice that this result is a generalization of Michaeli's result [19]

obtained for Dirichlet boundary conditions. In other respects, we can consider the far field

derived from 19 , using formulas [20],  

        

              




 

 



 











 30

for large , with  ,                
          sin

               cos . Taking into account that

         
   

     
   

  

   


 


cos

sin

cos
31

when , and considering the properties (b')-(c') on , we then           cos

obtain the expression for the far field from 19 which, compared with 29 , gives us :    

           




        




     

  







     





sin

  cos 32

as  , i.e. as  and       
    

               and  with    arg
cos

      


  
cos  vanish at infinity.  We can also consider the field along the line  

with , letting . In this case, we can write, when            
 

   
   




          and  ,

               
 

 

               
 

 

       

     
 

      
  








     

 













sin

sin

 

 

cos

cos 33

which is also valid, by analytic continuation, as Re  cos cos 
     ,

  Re . This expression implies  that,

        


   

  


 

  
   



 
 



        
  



          
  







 



ln
 

  

ln

ln



  
 34
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as  and , which is in accordance with the property (b) of the spectral        ln

function  attached to the field . 

Thus, the definition of the field and its normal derivatives on one single face (a semi-line)

leads us to a (explicit) definition of a unique analytic function  attached to the total

radiated field (uniqueness and existence), with  vanishing          
 

at infinity as , , in accordance with condition (b). 
 

 
 

       

Remark : From 33 , valid as , in the band Re ,          Re cos cos 
   

for , Re Re ,   we can write in this band, as ,          
 cos  

              
 

 
       

 








sin  cos  35

Remark : It is possible to recover by another way, as already noticed in [7]. For this,33  

we can use the inversion theorem of Maliuzhinets [3] (taking care about time convention)

on  and  to obtain,          

                

                




       

      
 



















sin  

 

cos

cos 36

for Re Re  as  Elementary combinations and analyticity then       cos   Re 

permit us to recover . This way is not used in this section because it does not allow to 33

simply relate  to Green's theorem, which is a key point to derive the remarkable 33

property of deformation of the integration path given in next section.

4.2) The spectral function  derived from fields on a piecewise smooth semi line

4.2.1) Single face expressions of  along with the use of tangent angles 
0,  

Using the properties of Green's theorem [1], it is worth noticing [7]-[8] that the contour of

integration along  in 19  can be deformed into any path  without changing     
0,

the field , provided that  is a piecewise smooth semi line, and that, during the  

0,

deformation, the integral remains definite,  is not captured by the path during its

deformation, and no source passes through the path. Afterwards, we can write 32  in a 

more general form, with integration along the new general path , a piecewise smooth
0,

semi line from the origin to infinity, following,

          




         




     

   




  


        




 

0,

sin

  cos 37
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where  is the element of length,  is the outward normal derivative, and  is      
   

the tangent angle on each smooth segment composing .
0,

If we divide the piecewise smooth semi line  (deriving from a deformation of the
 ,

faces  enclosing the scatterer, described above) into  (i.e. )          


and  (i.e. , we have     
 

          




               




     

     




  


        



 

 








sin

  cos 38

where ,  is the spectral function related to the          
     

 


 



     cos

Sommerfeld-Maliuzhinets representation of the field in coordinates with origin at points

          with . We can then write, by analytic continuation, 

          




             




    

    




  


        



 

 








sin

  cos 39

4.2.2) Single face expressions of  along with the use of gradient 
0,  

Using the expression of normal derivative with gradient, we derive another form of the

expression of the spectral function associated to total field, in presence of a scatterer

enclosed by a surface with piecewise smooth faces  ended by 
 , semi-infinite planes

with tangent angles  (note : in the case of a closed scatterer, we can take ).    

Therefore, the spectral function  satisfies the single-face expressions, as
   
   

 


          and  [8], following,

        




      

  



 


  






 40

where            cos sin  refers to the direction of observation of angle , and

         on each smooth segment composing . This expression is
0,

in agreement with 37  and the expression 8  of .                     

As for 39 , we then derive, 

      




       

 





 









 


  







    41
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where  refers to the complex angle , with  verifying .                   cos sin

(note :  we use , with scalar product of complex vectors defined by         

analytic continuation (no hermitian product and no conjugate)).

Remark : When  has a succession of singularities at points , we can consider 
 0,

 
 0,  as the addition of curved line segments without , i.e. the integral as the addition

of improper (or limit) integrals on open paths, in the sense that the ends of paths are not

strictly considered at  but as .    

5) Expression of  from the far field function  and its consequences 

5.1) Integral expression of  relatively to  

Considering 25 , we can write for the spectral function  attached to the total field,

                        42

where    


 
Res |

 


 cot     , the  verify  and 27   26 , while,

  








lim
Im

        

so that the condition (b).      as specified in The constant  doe not

change the field since  is odd, and is only here to define uniquely    with

     .

When both conditions  
 

     are satisfied permitted with  ,     

we then obtain, from    26 ,  and 27 for ,         

  


 




   




            




 
        


 








   



   


 

tan

cot
Res

43
| 

with

     

         



  



 
  

      




  
 



       
 

 



44

where the far field function also known as the diffraction coefficient at the edge in 7 )(  

vanishes at infinity on , and  is verified.    

As first consequence, we conclude to the existence of  from  as , defined    

from 43  and its analytical continuation with 44 , which implies the definition of   

representation 3  for the field .  
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The expression 43  can be also generalized by analytical continuation on  and . For   

that, we begin to write 43  in the form, 

      
 

 




    




         


 

 
        


 




 
   



 

 


 

cot cot

cot

 



Res

45
| 

We can assume that the nearest singularities of on real axis are the incident pole     

at  and the geometrical optics reflection poles at                

(if infinite faces are present), where the constant     refers to the angle of semi-

infinite plane composing each physical face, while the singularities apart of real axis,

which are independent of , are with Im . We         can then use Cauchy theorem,

and deform  to a new path , with capture of poles on real axis [13]. This leads us to 


write for ,      

       
 




 

   









         
 

 

             




 




 



   



 
 




 

  



  


 

cot cot

tan

  

  


46

as . For , let us note that we can consider that                  
  arg

  
      sign , and that 46  remains valid by continuation for complex arg  in

the domain  defined by  with Im   
       Re .      

Remark : Both conditions  
 

    , considered to apply 43 are satisfied only 

if . With these conditions, all poles of are outside       
Res |

 


cot   

the band , in particular the  with           GO reflection poles at   
 

  
  

 , since the conditions  implies                and thus

    
 .

5.2) Equations on  from equations on  and consequences 

The form has important consequence to deduce new analytical properties of  46    

on incident variable . In particular, let  satisfy      analytical functional equations

relatively to variable ,

      
              as 47 



where  is an analytical operator, linear relatively to , we
   directly deduce from 46 , 


         48

for  , then   
  as everywhere by analytical continuation.          

 
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It is worth noticing that when reciprocity principle applies, we have

            ,  derive from those, and functional equations for  on variable 

on ,    . Thus, 48  is a remarkable way, while , to exploit reciprocity         

and obtain equations on second variable of .

The property 48  was first noted and illustrated in   [13] in the particular case where

  
        are difference functional equations derived from boundary conditions

on faces of a wedge, when reciprocity applies and . In this type of         

problems, we can generally write, from boundary conditions on the field for each face of

a wedge , functional difference equations on  [4],[16]-[18], following,   

            
 





                 sin cos



49

with , and thus deduce,    

        
                 50

which gives us, from  when reciprocity applies,        

        
                 51

This equation permits, from the application of 48 , to obtain functional equations

relatively to the second variable on , following,

        
                 52

valid, by analytical continuation, for any  and . 

5.3) Expression of  from  with shifted origin 

Considering the expression of  in 6 , we can express, relatively to new coordinates  

                 when the origin is shifted at the point , the far field function , as

follows,

 53

           

        

      

   


 




  

   


  

  















lim

lim



 



 

  









  





cos

since  and  as  [1]. Thus, we can use for             
  
 
 


46  

the spectral function , attached to Sommerfeld Maliuzhinets representation for

coordinates  and origin , with its far field function , and we can write,        
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   


 
  

 

   


 

              




          




  






 


  
   


     

   

 

tan  

with 54cos

as , , where we note that we can let,                   
     , 

               cos cos         
   with 55

This expression of  can be analytically continued for  by shift of , as long     

  

as the integrand continues to vanish at infinity, taking account of singularities captured

during it.

Remark : We note that,

     

              

    

           

  

       

 


   
 

cos

cos cos



   



 



  56

but the reader will notice that we have generally,

          
        

   
cos 57

Indeed, in the Sommerfeld Maliuzhinets integral representation, the spectral function has

to be  at infinity on and inside the loops  of , where  and  are two           


 
cos

constants, and we then generally need 54  to express  from .   

Remark : The expression 1  of the incident field ,   for a shift of origin can be used with

                                cos cos 58

6) The spectral function      for the diffraction by a wedge, with passive or active

impedance faces, and an illumination normal to the edge

6.1) Definition of      in general case, with passive or active faces

The boundary conditions, for the 2D diffraction by a constant impedance wedge with

straight faces    , are in general,

 
  

  
            sin sin     

 
 

 | i.e. |   

where sin      are the relative impedances of the faces , with Re     

These conditions are a particular case of  spectral function  attached to the 16 , and the 

total field  then satisfies,

                

                  

sin sin sin sin

sin sin sin sin

       

       

 

 

 

 
 

  59
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with . In whole generaly, we consider sign Re sin ,             
 

with Re sin , that can be positive (passive impedance face) or negative (active   

impedance face). Letting  and  the angle of illumination, we have,     

            

               

         

 

   

  
   

 

    

            

     

 

sin sin sin sin

sin

sin

cos sin sin

                      sin sin sin 60

where  is a polynomial of order , and . The function           

      sin    , that has the pole of incidence verifies,     as Re , 

          sin sin                         61

while ,     , without any zero or pole as Re , is the solution of

                

                  

sin sin sin sin

sin sin sin sin

         

         

 

  62

so that        verifies 59  The polynomial  will be defined so that  satisfies the

conditions (a)-(b)-(c) on the spectral function for a scatterer in a wedge-shaped sector

illuminated by a unit plane wave.

6.2) General exact derivation of             

6.2.1) An efficient expression of  with  function             

The function can be derived from the development of 200 - 201  of        appendix C.

From 62 , we have  ,

    
     

      

         

     
   

   

 



ln ln
sin sin

sin sin

ln
sin sin

sin sin

    

    

 

 
   

 

 





 


 

 

  

   







 63

where sign Re , Re . We can then consider                   sin ln      in

appendix C as the solution of,

         

 

      

    
   

       

   

 

   

 

   

  

   








sin cos

sin sin sin sin

cos cos

sin sin sin sin



   

 

   
64
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Using residue theorem, we have,

          
  

  

           
      

     




     



 

      



 

 








       

    



    



   

   




65

where Re , and we derive from 200 - 201 ,          

       



 
    

        

       
  

     

  
  

   

   

      

 










      



sin sin

sin
sin



    



    



   

   
sinh

sinh

cosh sinh

cosh sinh

   

 


      
         

   

  




     

 




  

 66

as Re , where we have noted to simplify,   

             sin 67

After integration, we then obtain,

 

  

 


 



     


   

  

   

     

 
 

exp

cosh

sinh

 

 

 





  


     



  

68

as Re , where             is a free constant, that we could take equal to unity

without changing the expression of .  Considering that we have [20],

          
   

  

             
      

     

       
   

 

   



  






 

 











sinh

sinh
ln ln

ln

    
 

 
     

 
 

       
   

 

      

     

 

  

 




     

      

 
   


   

 

cosh

sinh
ln 69
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as Re Re , leads us to expand 68 , as Re , following,                   

      


          
 

     


  






 

 

            
 

 

               
   

   

          
 

 

 

 





 

  

exp       
        

     
  

 





 

    




    


  

  
cosh

sinh

  

 
 70

where  is an arbitrary positive integer, sign Re , Re . The            sin sin  


are constants depending of , while  does not depends of it.        


Since e  rapidly decreases for large  or , this expression has the advantage to    

give an efficient calculation for  and all analytic properties from those of     

function when we consider . It is then particularly simple to note that  is a     

meromorphic function of the complex plane.

6.2.2) An efficient expression of the Maliuzhinets function  with  

We note, from , that we 68  and the use of           cos cos cos cos

have,

 

   

    

    

 

 

      
  

        


        

   


 





  
 



 
 

 exp
cosh

sinh cosh

cosh

sinh cosh











  
 

 













 
    71

for |Re | . We can then write , for |Re |  as                 
  

      and ,

 


    




    


    

   

   


 

        

  


 

         


      



 



  
  

 
   



 

 



 



 

 






















exp
cosh 







 

 

 


 

        


            




 





 


    

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sinh cosh


 


 
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where  is a constant, and  is given, for |Re |  by,                


 

 
   

 


 




 

 








  




  



  

      
 

   

      

         
   

    





 
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

exp
cosh

sinh



As for the expansion of  with  function,  is independent of .     
       

Comparing this expression with the one given for the Maliuzhinets function  given in

[29], we remark that

                74

and,

              75

which represents a new efficient expansion of  with  function.   

Remark : We also note that,

 
   

  
     

    

    


 

 

sin

sin
76

R 68 ,emark :  For Im , the principal contribution, in the integral expressions      

comes from the vicinity of  note that,  . We then









  

 
 

 

  
  



sinh

sinh cos
ln

ln ln cos

 

   
     

              
  



 

 



 77

and thus,

 
        cos    






    with  a constant 78

A complete asymptotics for  will be given in a further section.

6.2.3) Additional expressions for  and  


Other expressions of  can be derived from, this time, the use of 202  of appendix C.  

Considering ,                    ln   sin ln    
    

 
 

sin sin
sin sin

 

   and 
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with Re , from 202 , as Re  with Re ,        sign , we have      sin sin  

  

    
 

        
 





  







  


           
       

 


         


   


   

 





 

ln tan ln tan

sin

   

   



cos cos

ln  tan

tan 79

    


        
 

 




   

 


   

 







 

    



  


 


cos    

where, by definition, Re After integration, we can choose to add a        . 

constant integral, and write as Re ,    

ln sin ln
ln

cos

ln cos
co

    


 




   







   

 







       




 

   
  

 


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



  




 

 



 





cos

cos













 

   

s
ln

cos cos cos
ln

cos

    



    

  

  

  




  






  

     
  

    

   



  

 


 










 



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




 
 
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where we notice that . In a similar manner, but, this times, when         sin

         Re  for  and  , we can write, after integration and        



addition of another constant integral,
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where we have used a shift of the integration path, permitted from Re        .

Considering that,

 
 

 
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cos cos          


    82
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we obtain, from 80 , as Re ,      
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
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
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
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


    83

while, from 81 , when Re  as  and ,                   
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 






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84

The terms  and  are free constants that we can take arbitrary without changing the  

spectral function, while we can let  for  in 83  and 84  withouttanh tanh         
   

changing the expressions, so that .                   sin sin

Considering the definition of  with function  (as used in 72 - 74 ) following, 
    

       
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
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 


   with 0 , 85

we compare it with 84 , and obtain, in a original manner, another expression of the 

Maliuzhinets function  for Re ,       
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This expression, previously quoted in [12], is useful to give the asymptotics of , in

particular its first order, as Im .   

Remark : Let us note that, for Im  with Re we can write,         , 
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and thus, we have, from 83 , 

                sin  as Im 88
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6.3) Complete asymptotic expressions of  and 




 

6.3.1) Asymptotic expressions

For a complete asymptotic expansions of Im , we can transform




  and  for large  

   66  and  expressions, using residue theorem. Considering , for Im  with 68 




 

          sign Im  and Re , we develop 66 , following,
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We can then shift the integration path to Re , while considering residues (first   

and second order ones) due to the capture of poles between  and the real positive

constant , and we obtain,
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where we take care that   

 

 and  are not integers. After integration of 90 , or using 

directly 68  by a similar analysis, we obtain ,    for Im  with sign Im  and      
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

   

   


   

      




     




 




 

  




   



 
cos

cos sin
 91

where we note that , while,         sin

  
       

    

      
 

      

 



  

 

 





  

 





 









cos

cos sin

cos

cos

  

  




   





sin

92

The last integral terms in 90  and 91  being , and considering that    

         
     

    

              

exp
max

exp exp exp

 


    






    93

we have obtained, thanks to 90  and 91 , the complete asymptotic expansions for the   

functions 


            and  as Im .

Remark : Second order residue in  case . It   90  and 91  concerns the     




implies that we have , , and ,
 

 
               



with  , when  and  are mutually prime.           

6.3.2) Some complements on the determination of 
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For the calculus of , we can also write,

    
   

     

  


 

  

     
 



  
 

 

cos
cos
  

 

 



1

sin sin  
  94

We can then use [20], the method of integration by parts, and shifts of integration path, to

reduce the first and second integrals. We note first that we have,


cos cos

cos cos

cos

cos

          

     
   

 
     

    






   

    


   






  

  















 

 

 





 

 


  sin ln tan     


 

  

       

 
 

 



for 95Re Re  

while we remark that,

   

     
  

    
  

          

 


    

 

 



 

 

 

 









 

 

   
 

   
 

 

sin sin

cos cos

cosh 
      ln 96

We can then write,

      
   

        

 

 
 

  
 

 

      






 

   








 

   


ln






   




 



   

 



 













ln tan

sin

sin

ln tan   


 

  
 

        

  

 

 
 

    




tan

ln cos

cos


 



 




  
 








97

With this reduction of , it is worth noticing that the first order of this asymptotics is in

perfect agreement with the one given by  83 .

6.4) Links between  for passive and active impedances, and positions of poles

6.4.1) The link between  for passive and active impedances
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For arbitrary sign of Re , Re  (passive) or Re  (active), we         sin sin sin    

note that the functions          in the expression of   verify,      

                

           

sin sin sin sin         

     

   

  98

i.e., when Re ,   sin

   

   
   

 

 
   

   

  

  

 

           
  

  

           

ln
sin sin

sin sin

99

Since we have,

    
     

     
 ln ln

sin sin sin sin

sin sin sin sin

   

   

 

 
 100

and the function  has to remain without any zero or pole in the band Re      , we

can, letting sin  for impedance sin , derive  with an active               

impedance face directly from  with passive impedance face, following,

        
           sin sin  as 101Re   sin

with  we can yet notice from general expression 70 . a constant, as  

6.4.2) Positions of poles and zeros of   

Letting sign Re sin  and using we directly derive zeros and poles of         70 , 

from poles of the function . The poles and zeros of             sin ,

respectively in passive and active cases, are linked, and we that, when  (resp. note    

        ), sin     has zeros (resp. poles) at

   

    

         

            













 

and 102

and poles (resp. zeros) at

    

    

          

            













 

and 103

for , .     

6.5) Determination of  in general for passive or active faces    sin 

The polynomial  permits to complete the satisfaction of conditions (a)-(b)-(c) on .  

Considering a unit incident plane wave, we have  in vicinity of         



                                                                                                                                    -28-

incidence pole . This implies , and thus,                   sin

        sin  . 104

From unique definition of  at , we have to satisfy  as Im ,             

and considering 91  (see also 83  or 78 ), we can write,     

      
 

     




         

 















 







cos   






 


sin

which implies 

i.e.  the number of active faces 105

For ,  Re  and passive impedance wedge with Re the poles of     sin  

              in the expression of   are outside the strip Re , but it is no

more the case for active impedance faces.

In this latter case,  have to suppressthe  zeros of for each active face with      sin 

             
, the pole  of sin  as Re  that can give non physical       

poles of  within the region Re  with Re  as Re ,                    cos

which leads to cancel non physical contribution  that can diverge at infinity as     cos 


   Re  (note : for real , notice that the non physical pole  is the one with  


      sign Im , among arg   
          

            and ).

We then have,

    
  

   

        












  

sin
sin sin

sin sin


 

 

 


 




 







sign Re sin Re sin 106

which completes the definition of   for arbitrary impedances (passive or active).

7) Analysis for a wedge at skew incidence (2D1/2) and associated special functions

We study in this section the special functions used for the eletromagnetic diffraction of a

skew incident plane wave by a passive anisotropic wedge of any angle, their expansions

and their properties. The problem is then no more scalar, as in strict 2D problem, but

more generally vectorial.

We present here our solution [9],[22] for balanced hybrid conditions (when the product of

diagonal terms of impedance matrix is equal to unity), and study its relation with Fisanov

function used in the solution of Lyalinov and Zhu in [23], and with Maliuzhinets

function. On this occasion, we insist on the common links with the  special function

[20], as in 91  for , which reveals remarkable analytic properties and permits efficient  

calculus.
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Figure 3 : Geometry at skew incidence

7.1) Our solution given in [9]

The plane wave incident on the wedge is vectorial. It is characterized by the -

components of the electric and magnetic fields along the edge, respectively  and ,  
 

given by

   
     

     
    





 






     

 
. 107    sin cos cos

In this expression,    (Im ) and  denote respectively the exterior medium wave    

number and impedance, and  is the angle of the incident direction with the edge of the

wedge.

The -components of the field, in cylindrical coordinates , , are searched in the    

form of Sommerfeld-Maliuzhinets integrals [9], following

   
        

         
     



 
 

  


   

   
             108

cos
sin cos





   

which satisfy the Helmholtz equation  on each component. The contour       

is odd and composed of two symmetric loops as for 2D problems. Conditions at the edge

and at infinity are assumed, and we consider an anisotropic constant impedance boundary

condition =  on each face , where  is the unit                

vector along the outward-pointing normal to the face, and /  a relative constant  


impedance tensor. This implies coupled functional equations

     
         
          

   

  
     

   
   

sin 109

with
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    


  
 




 

cos cos sin sin

sin sin cos cos

    

    
110

when /  is characterized by a class of diagonal relative impedance matrices with  


elements , . 
 



Considering the oddness of , we note that we can choose to add some constants to

spectral functions  without changing the field, and the constants  have no influence  

on it (see details in [9])  In these circumstances, we note that the previous sections on

general properties of spectral functions, in Sommerfeld Maliuzhinets representation of 2D

fields, can apply providing that we let,

          
      


 


 cos 111

in frequency domain, with  or , , and  in                 
         sin cos

place of  in integral representation of .  cos

By employing an original factorization technique for coupled equations [9], we found a

closed-form solution when the products of these elements are equal to unity, i.e.

 
 

  . This case of anisotropy is important. It corresponds to a geometrical optics

reflection coefficient which is independent of the polarization of the incident field.

We let  with Re , , and obtain [9],      
   

            sin ln tan

[22],

    
       
        

 

 
    

 






    
    

 

 
  = 112

cos sin
sin cos

where , ,                             
   cos sin sin

     , and the functions  and  verify, 

  

  

     













  

   

    
   

            
 

  

det

det

arctan








113

with

det sin sin sin

sin sin

det det

cos sin cos sin

         

      

           

          



 

  





    


      


   

  

 

      

        cos sin 114

and  The explicit closed-formsin sin cos                   
 

 
 

expressions of the two special functions  and  is derived [9],[22], for       
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|Re | , following,      

 

      


      


       







 






 


 


 

  

            
 

 

            
 

 

           
 

 

   
 

 

 





 

 










          

     
  

     

    
     

 

      

  

 



  






          



 






 
 

  

 

 
  1

exp

cosh

sinh


        



  15

and

 

      


      


       




  





 


 


 

   

              
 

 

          
 

 

           
 

 





     ,

   



 ln












 
 

       




  

 


               
 

 


  

     

    
       

 


 



           



 

 

  

 
 1



        



 



cosh

sinh
16

for arbitrary , where we have used  as in [24]-[25]        
 





 
   



(note:  and ). Since e  rapidly decreases for large  or , these 
 

 
      

   

  

expressions have the advantage to give an efficient calculation for  and all   

analytic properties from those of  function when we consider .   

Besides, it is worth noticing that it is then particularly simple to realize that

 
       is a meromorphic function of the complex plane, for which we can

identify all complex zeros and poles. For the particular case of normal incidence (i.e. for

   when we have no more coupling between TM and TE waves), or for isotropic unit

impedance ( ), we recover the expressions given in [4],[12] and [24]-[25]. 
  
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Remark : Among all analytical properties of , we can quote the remarkable identities,

      

  

                   

         




sin , 1

 117
 
  







7.2) The relation with the solution given by Lyalinov and Zhu [23]

We now exhibit the relations of the special functions  and  of our solution with the  

Fisanov function , used by Lyalinov and Zhu in [23]. For that, we let  in      

   115  and 116 , and note that,

 

 

    

 

     

 







 









 





 

 



      

    

  
        

 



 



 







exp
cosh

cosh

cosh cosh

sinh

exp

  

  
 

  
sinh sinh

sinh

cosh cosh

sinh

            

  

    
        

 

        



     

 


 
 



 

 
  118

and

   


    



     

 


 


  











      

      

  

  
          

 

 

 



 

  

  

 
 

  

         ,

  



sinh

sinh

cosh cosh

sinh

       , 




 
 




        



     

 



sinh sinh

sinh

cosh cosh

sinh

            

  

    
          

 
 119
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and then compare with the integral expression of  given in [26],  

  
   

 
         

   

     
exp

sinh sinh

sinh





120

Since, we have,

            

             

          

          

sinh cosh sinh cosh

sinh sinh

sinh sinh

sinh sinh

    

   

 

     

               sinh sinh   121

we can express  as a combination of functions of the type 
 






 
 

            
         

   

   

           
           


   

   

 
  , and in a similar manner, since

            

             

          

            

sinh cosh sinh cosh

sinh sinh

sinh sinh

sinh sinh

    

   

 

    

               sinh sinh   122

we can express combinations ofcos sin       
              and  as 

functions , which implies that            
         

   

   

         
             

 
     

 
 

 

       
   

 

 
 

     
   

cos sin   
            and  are meromorphic functions in  which

express as combinations of   and  terms.         
         

   

   

           
           

 
   

   

   

This result permits to recover the expressions obtained by Zhu and Lyalinov [23].

7.3)  in terms of  functions and expressions of     

7.3.1)  from the expansion of  with  function    

From 115 , the expression of  is given by,   
 






 
 

 

 

      

 

      








 







  
 



 
 

 

 
 

 
          

    


          



 

  
 

 

 

 











exp
cosh

sinh cosh

cosh

s



inh cosh   
   






123

for |Re | . Considering that [20], 
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






 




     

      


 

           
         

    

    
   

 

      

 





   



sinh

sinh
ln

cosh

sinh
ln

    
 

  

   
   


 

       

       
        

   

 
 

 

 
 124

we can write, for |Re |  as  and ,                       
 



 


      




      



 

 



  
   

 
    





     

   


 

          

   


 

           


 

     





 

 

 











exp
cosh

sinh cosh

        

        
 

               


      

 


      


 
 




 

 

 




 

 



 

   125  





where  is a constant, and  is given, for |Re | , by,               


 

 
   

 


 




 

 








  




  



   

       
 

   

      

         
   

    




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

exp
cosh

sinh



for , and , which in perfect agreement with 73 . Comparing this        




expression with the one given for  in [29], we conclude, as in 74 , that we have,  

                     with 127

where  is the Maliuzhinets function, first defined in [4] for the diffraction by an

impedance wedge, and verifying .  
  





  
    

    cot 

The expression 127  is an efficient expansion to calculate the function , when      

is finite. It also permits to recover all analytical properties if we let tend  to infinity, in

particular from well known remarkable identies satisfied by  in the complex plane.

Besides, it is worth noticing that the constants   and , have no influence on   

the solution, and thus, that we can take , and  or  indifferently, without     

changing the field.
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7.3.2) Complete asymptotic expression of     for large Im

For an asymptotic expression of Im , we can transform the expression given  for large 

by 127  as , using residue theorem. Letting sign Im , we can then write,         

as Im  and Re ,         


  


  

 

  






 

   
    

    

           

    


   




exp
cos

cos sin

exp
cos sin

exp

 

 









  





  



   


 
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
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 
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
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 
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

























cos sin

cos sin

exp



 




  

 

  

 

  













   
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

     

   


 
   

   

  


  


 















cos sin

cos sin

exp
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





 

 
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

  

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   


 
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  





sin

cos sin

exp
cos sin
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
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
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
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
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
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 
















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 

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
 

  




  128

In the last exponential term, we can then shift the path to Re , taking care that   
  

 

 and  are not integers, while adding residues terms (first and second order), due to

the capture of poles, between  and the constant , during the shifting. We then derive, 

as |Re |  and Im ,      


 











 

 





    

 


  

 

  

    


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  



 
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
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




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
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
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
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



















exp
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
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
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

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
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


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
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














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  



  
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
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









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cos sin
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where,

     
     

   
  

  

  
   





cos sin   
 




 cos sin
130

The last integral term in 129  being , we have obtained a complete asymptotic  

expansion for the function         as Im .

7.3.3) Some complement on the determination of 

For the calculus of , we can also write,

    
     

    
  

 
 
  

  
 cos 

sin sin   
 





131

We then use 95 - 96  and the method of integration by parts to simplify the first and   

second integrals. From 95 - 96 ,we note first that,   



 

  
     

       

    
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 

  
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


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    
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


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





 


sin
ln 132

and we can then write,

       
     

  

     
  

   



 
 

   

  

ln 





 

 
 

  

  
 

 




 





 

 












ln tan
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sin

ln tan tan
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cos






   

 

  

  

 







ln cosh

cosh


  133

With this reduction of , it is worth noticing that the first order of this asymptotic is in

perfect agreement with the one given by  86 .

7.4) Expressions for the Fisanov function 

7.4.1) An efficient expansion of the Fisanov function  with  function 

The Fisanov function , used in [23] and [26], can be developed in an original manner

from the special function . We write the second order derivative of 120 , for  

     Re , following,  
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   

     
     
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
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


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  
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 

 

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sinh sinh

sinh

sinh sinh

sinh



 
 



  134

Considering then that we have [20],











        
       

    

    
   

 

             
        

    




   

  
 


 



  
 

   

sinh

sinh
ln

ln

ln ln 135

we can write, for Re ,            

ln

ln

sinh sinh

        

 
      

      

    


    

  

  

  

  

 










  


 



  
 
 
 



    





 

136
sinh

Thus, since , we obtain  

    
       




, 137

with,

 
  

  

 

  







 





  
 
 
 




 

  
      

      

     
   

    

 

 exp
sinh

sinh sinh
138

for Re , , . Considering the derivative of                   




the integral term in the expression of , null at the constant  is given by,    

             
  

    

  




 
  





  


sinh

  
  

sinh
ln 139

but also, from  [26], following,    

  



  
 

 




  
ln 


 




,

The expressions 137  and 138  are efficient tools to calculate the functions  and    
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,  when  is finite, permitting to recover all the analytical properties from remarkable

identities of  when we let tend  to infinity. 

It is important to notice that, considering the wedge problem with anisotropic impedance

condition, the constant  has no influence on the solution, and thus, that we can choose

    in place of , at  arbitrarily fixed, without changing the final expression of the

field.

Remark :   and  are meromorphic functions functions with the same poles and  

zeros, and  we have .      
 

 
 

            cos

7.4.2) About an asymptotic expansion of the function 

Let  in 138 . Using a manner similar to the one use for , we can develop the      

complete asymptotics for  and . For that, we let sign Im , use residueln         

theorem and write,

ln
sin

sin sin

sin sin

  
  

  

   

   













 









   
    

     

  
      

      


















 

 

 
 









   

    


        
  

     



  


 

   
  

sin sin

sin sin






140

where,

       
   

       

       
   

     




 

  



  

 









 

 

    
 

   

 


sin sin sin sin
ln

sin sin sin



 
   



       
         

      

        
  

       

 

   

  


    
 



sin

sin sin sinh sinh







  




 

  

 




 141

Shifting the path of integration to Re  in the last integral term of 140 , and     

using residue theorem (first and second order) for poles captured during it, we obtain the

complete asymptotic expansion of  and thus of .ln        
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Remark : We note that, using 96 , we can also simplify  following,  


    
  

     

  

     
 

   

  




 

 
  






  



 




 


 

sin

sin

    
 

  


sin sin

sin

ln





142

8) Explicitly causal expression in time domain for a dispersive wedge-shaped region

8.1) Basic elements on causality and integral expressions

Let us consider the total field  in presence of a 2D scatterer, enclosed in the      

region outside the free space sector , when it is illuminated by a plane wave,   

                  



     cos  with


143

We assume that, in the domain | ,  are holomorphic functionsarg          and 

of , and | . The function      arg               is  as Re , , while

             satisfies the conditions (a'), (b') and (c'). The time domain response 

(or ) is then given by,

               


 
    


lim
 


 






 144

Closing the contour of integration at infinity, we note that

 
  


 


             


     for 145

  cos

where and we can write,    
 
lim


, 

             

  



   
  

 146

The time domain field  is real. It is here assumed to be bounded, and, in    

presence of the wedge-shaped region illuminated by , it is causal with respect to    

the front of the incident wave, so that we have,

                 as 147

Noticing that             , we can add that we have,

                          
 as   148

We , then have
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        







  149

which implies,

         

         

   

 

 , 

  for Re , 

and thus no singularity of   as Re . Therefore, we can write,       





         


 

                  




           



  


       


   



 








 

 
   




 





 



 

    

Re   150

Rather to express causality from analyticity of  for complex , we now        

aim to reduce  an integral to a explicitly causal expression depending on position, i.e. 

on a 'finite continuous' path  whose ends depends on  and .     

For that, we will transform the expressions in 150 , from   the integral representation of 

with spectral function               . After analysing the properties of , in

particular those concerning the positions of their singularities in  for real , we will 

define and use some transform of it, that presents some intricate causality properties.

Dispersive multilayered wedges with higher order boundary conditions can be then

considered. To simplify, we assume in what follows that, in the free space,

    



 is a real positive constant independent of 151

Remark : the problem when  depends on , i.e. when the free space is a  
 

homogeneous dispersive medium, is studied in [13]-[14] for the diffraction by a passive

impedance wedge, and we note in general that, from 148 , 





  




              as 

 

 

 
   152

8.2) Spectral function and elementary properties        

We consider that the spectral function , in Sommerfeld-Maliuzhinets      

representation of field , has  3  poles of Geometrical Optics on real axis whose positions

are independent of , in particular those related to  incident and reflected angles, while its

complex singularities, whose positions depend analytically on , generally derive from

singularities of reflections coefficients  for both faces.      
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For now, we assume that each face is composed of passive materials (and metamaterials),

characterized by complex relative permitivitty  and permeability  with  

         arg arg     and , which cover non penetrable surfaces verifying

passive impedance boundary conditions. As  and  tend to zero for         

from causality principle [21],  the contribution of materials vanishes at high frequencies

while the one of impedance surface can continue to be present.

The function               is meromorphic in the domain Re , with real angle

poles (independent of ), and possible complex angle poles (depending analytically on

       ), while, at fixed ,  is bounded at infinity in this domain. Concerning the

trajectories  for complex poles, we consider the following properties :  
  

Each trajectory described by complex poles of ,  

, numbered , when  varies  

can cross

   

     

 

   




  from  to , 

 the d

   

omain with 

 

Re , with ,  

but these trajectories have no end points in any closed subdomain of it 

(with  as 

      

 

    




 


 



);

;

 in other words, we suppose that  

the end points are outside the band Re , or at infinity

Moreover, we take precau

       


tion that we have no cusp ( )  153          

Besides, using the single face expression 33  of , we note that,  

                     154

and thus, we can add that , verifies

    
         . 155

The general assumption given in for a wedge with passive (dispersive) 153  has no use 

impedance boundaries, since, in this case, we have no pole depending on  in the band

    Re  [13]-[14], but must be considered when the faces are composed of a  

multilayer (see appendix A) and  has possible active poles depending on  in the     

band Re      .

8.3) Elementary transform of   
   and its analytical continuation 

8.3 ) Definitions of domains transforms for real      
 and of , 

The spectral function verifies the property (b), and thus we have,        

             

   

        

  

  is bounded and regular in 

 is of the strip Re  ,where  the region with Re

i.e. the reg

    cos

ion where the function  diverges as 156      cos 



                                                                                                                                    -42-

For real , the domain is composed of the subdomains       is denoted . It  


and . Each  is bounded by the loops  defined following,    
   

 



 






  

  

                    

                    

       

        

   

    157

where we notice that  In this domain       
       , and thus,  is the conjugate of .

of regularity,  is from 33  as Re  for any finite Im , with .            ,   

We then define, as for any  real,  , 

      


      



 






 





           




           


















  158

with  a positive real constant. This expression also permits to consider,

             cos , with  belonging to the frontier        , where

cos  is real, and , to write

      


      



 






 





           




           




 

 


 


 

 

   









 

 



 159

We note that, so defined, the functions verify,
 

         

           

     

     


  





  




 

    
    160

8.3.2) Definition of analytical continuation  of  in the domain with poles of   
  

We can then consider the analytical continuation  (resp.  
      

          
                ) of  (resp. ) in the domain with poles of 

    , complementary to  in the band Re , which corresponds to the part of the  

domain Re  where   which           as . The frontiers, from  

      
             (resp. ) can be continued, are the lines

                
sign ,  and the real axis, where  (resp.  

  
     ) is known.

Because of  continuation can be done without any singularity and cut in it, and 153 , this

on its boundary, as , even when . The function                 
   

(resp. ) will be then regular in the domain  of , where     
      

           
 

 
 , bounded by , in complement of the loop     

on which  (resp. ) was initially definite.      
           
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Remark : As mentioned earlier, for the particular case of the diffraction by a passive

impedance wedge,                  is regular as Re  except at real

Geometrical Optics poles, and thus in , and we can directly consider the integral

expression of  for  in it, but it is no more the case for  
   a multilayered wedge.

8.3.3) An example of continuation for an integral with a continuous line of poles

Let us consider the basic example of the exponential integral  defined with,

        


  

         
  








 











 as 

161

arg

ln





The trajectory of poles in the integral is a straight semi-line from  to , which gives 

us the cut of , the same than for . An analytical continuation of  through     ln

this cut changes its determination.

By definition, we continue an analytical function by successive use of taylor expansions,

whose domains of convergence are limited by the radius of convergence (determined by

circle with first singularity encountered), which amounts to say that we increase

continuously the domain of holomorphy, and thus deform in our case the cut, to avoid 

to cross it. The new cut is a curved semi-line , with same ends points  and ,  

from which the continuation can be named .  , 

Now, an remarkable result, due to the use of Cauchy theorem, is that this continuation can

directly be done from the integral representation 161  by 'continuous' deformation of the 

integration path, and thus, by a change of the initial path to , which gives us,

       


  

          
  



 






  















 as ,

 with 162 ln ln ln

This kind of results will be used to take account of complex poles of  depending of , 

for the derivation of the continuation  of  , provided   
   153  is satisfied.

8.3.4) Expression of  in vicinity of real poles of  independent of  
 

On  of the strip Re , we have  the path real Geometrical             

Optics singularities of at , that have the particularity to be         ;  

independent of  , as . To take account of  (for incident and reflected GO waves)   
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them for the continuation on , we can write,

     




   
  


 












         
 



    
   

  

 

 


 

 

 

 

      



 







 

 







163

where

        


     

   

 
 

 








  

 

 

  



     


 

 

 
  

164

with Re . This expression can also be considered for .             
 

8.3.4) Analytical continuation  of  for complex poles of  depending of    
  

In the case of a multilayered wedge, we have to consider the presence of poles    of

             crossing Re  and verifying  the domain 153 . By definition, 

        
                is  in , bounded bythe regular continuation of 

     , where  , with no branch point and cut in  and on      as   

as  (note :  as . For that, we write,         
   )

     




    
  


 





 






         
 



   
   

    

 

 


 

 

 

 

      



 



 

 







165

where we have,

                  

    


     

   
  

   

  

   
   















     


  

  


   





 



     

 


 



 

  










 

       
  

  

 
      



  



  


  




 





   











 

 

     
 



  
    





 


166

with , ,  and         
  


                  

                  . From  (no cusp), and the endpoints value 153 , 

and  can be considered outside the band Re .           
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In this hypothesis, from  on the imaginary   can be analytically continued as in 162 , 

axis to  in , by continuously deforming  as  approaches the trajectory of     
 

, in order to avoid to cross it.

Thereafter, taking account of the continuation with    163  and 165 , we have in general,

     

 

   
    

   

 

   





 

        

 is  and   regular in on 

for cos  with arbitrary real 167

These results can also be considered for , as  is real.   
    

Remark : Considering 160  and the definition of we note that,  
 , 

              
  


    

     . 168

8.4) Fourier transform of  and properties related to causality

After noting the regularity of               on imaginary axis for Im , we define

on it,

      



  





            



 





, 169

for any  real. Considering  the single face expression 33 , which is valid for 

Re ,    cos cos    
         , and thus, the expression 35  for

           as Re Re , we can, cos , for Re  as ,        

interchange the order of the integration (permitted even for ) and write,  

     


 
   


 

 

 

 

         


        





4

170

 




sin



as cos , .         where  satisfies 149  and the conditions (a'), (b') and (c')  

Since  is causal with respect to the front of the incident plane wave, the contour of

integration in  can be closed at infinity for Im  when , and we can          

write,

              for Re ,   at any fixed 171         ,

We then consider the analytical continuation of                 , for any 

real Re , , with no cut and no singularities as except the poles of          

Geometrical Optics on real axis. For that, we exploit that, in our construction of 


with 163  and 165 ,        remains an independent function that we are free to take as a

constant, and note the regularity of          



          and  in .



                                                                                                                                    -46-

Therefore, we can write,

          

          


   
 


   
 

               

                 

  

  

 in 

 in 172

with  in  and on their frontiers . The              
            

regularity of  in  allows us to a vanishing  extend 171 , and we can now assume  

property for , as follows,

                       at any fixed  as Re 173

The factor  on , we deduce that, for ,   being real          

        
 
                           , and thus 174

verifies the causality property,

       
                       for  as  , 175

Remark :  Considering the problem when  depends on , we note in general from  
 

 152  that,





   





 

                     as  when Re 176  cos 

and thus, that 171  and 173  apply in whole generality, when the free space is an   

homogeneous dispersive medium.

8.5) Explicitely causal expression of the field in time domain with 

From the expression 3  of , and the domain of regularity of , the      
    

field in time domain is given by,

 

         

                 




       


 


       


   

 
 

 
   


 

    

177

 

lim  
  

        
 

with cos , where the double loops            are oriented, as  in 3  when we 

take ,  and          
.

Considering the analyticity of      



               and , we can

deform in 177  both paths  and  (oriented) to the common path         
 

independent of , with the loops  (oriented as loops  when we take   

            
 arg arg    , , and  in 3 ) verifying,
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   



                     

              

  

 

  

 178

and we can write, from 174 , 

          


 
 



     179

with     real on .

We then use the causality property 175  on    and obtain an expression for ,

explicitely causal, on account of a finite path depending of time and position, following,

          


 
 

  
    180

where  is the finite subset of  with cos , and                    

is given by 174  on   . Therefore, letting,

       
   

      

arccos

ln

  

   

181

the finite path  (oriented as ) can be described,  

as  :  

 : 

182

                 

                 

           

    

    

 

 

  



as 

 









above all the real singularities of the integrand as Re  (due to Geometrical Optics    

part of the field), while  is its inverse below the real axis.

Remark : Considering 168  for 180 , we note that,   

           



Re 183


 

  


   

Appendix A : Analysis of the reflection coefficient attached to a multilayered face of a

wedge

Let us consider the reflection coefficient attached to each face , semi-planes  

composed of a passive surface with relative impedance  covered by a passivesin

material of total depth  with relative permittivity     and permittivity  varying in depth
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and frequency, following,

   








 cos

cos






sin

sin










 184

where the angle and the complex constants is with the outward normal at each face, 

sin arg     
  have real parts of arbitrary signs [16]-[18] with Re , .         

Let us consider to simplify the case with , i.e.  and  real.        arg arg  

When the permittivity and the permeability of materials have positive real part, which is

always the case at very large frequency, we can generally assume that the  withsin

Re  (active modes) verify Im  while the  with        sin arg sin sin    
  

Re  (passive modes) have Im  of arbitrary sign. In this case, the first     sin sin  
 

poles of              ;  from imaginary axis are, for each mode, at .


Besides, on limited domains of frequencies, permittivity and permeability can have

negative real part (if metamaterials are present), and the term arg sin sin  Im  for   
 

with Re  (active modes) can have arbitrary sign. In this case, the first poles ofsin  

               from imaginary axis are then, for each mode,  whenat 


Re  (passive modes), while they are    sin at  (if       


arg sin arg sin         Im ) Im )   
 or at  (if when        



Re  (active modes).   sin

Remark : to analyse the expression of poles of  given here, the reader can refer to

appendix B, where we give the solution for a wedge with arbitrary passive or active

impedance faces, and we describe the suppression of non physical poles for  when

active impedances .are present

Remark : We can generally assume that, as  tends to infinity,

      and thus     


  



   cos

cos

cos

sin

sin











 185

with Re , while we have, for the modes that are active with Re ,         
 

Re 0 as Re

Im  as 186

       

        

 

 






Remark : let us note that, in free space, we can write  ) for the wave         

number, while for modelisation of passive metamaterials, we have to write      

( ) to ensure passivity and Re        

Appendix B : Some miscellaneous properties of spectral functions for an impedance

wedge with passive impedance faces
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B.1) The spectral function  passive faces     for a wedge with straight

B.1) The definition of      in passive impedance case

Let us consider the spectral function  associated to the diffraction of an unit plane   

wave of incidence angle  by a wedge with straight faces of relative impedances sin 


with positive real part (passive impedances) [4]. It is given by,

         

           
 

 

      

     cos sin sin 187

where the function      , without any zero or pole as Re , is the solution of

                

                  

sin sin sin sin

sin sin sin sin

         

         

 

  188

i.e., when Re ,   sin

    
     

      

         

    
  

  

 



ln ln
sin sin

sin sin

ln
sin sin

sin sin

    

    

 

 
   

 

 





 





  

   







 189

(note: the case Re  can be considered by taking Re ).        sin sin    The

expression of  can expressed  from 113 - 115 , considering  in place of  with     

         . In passive case with Re , we can then write, assin 

      Re ,  

      


          
 

     


            
 

 

               
   

   

         
 

 

    


 

 



 

 






 





exp 
   


  

        

     


    


   

 
cosh

sinh

  

 
  190

where 
  is an arbitrary constant. This expression is suitable for numerical calculus

(with  or ) or to derive the analytical properties of  (with ) from         

those of  .  We note that the function  in passive case, i.e. when  

     Re , has zeros at,sin 

   

   

         

            





 

and 
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and has poles at,

   

    

           

          





 

and 

for , , and that we have [ ],      

  



           


cos      Im 191

for large Im , with constants , , and .      

B.2) Some integrals as  and Remiscellaneous results concerning        sin 

We note that, for , we have,  

      

      


     
 

      

      

      
    

sin sin sin sin

sin sin

sin sin sin sin

   

   

 
   

   

   

 

 

 

 
 

 

 

 

  192

Using that , and                        
 cos sin cos cos  sin  as

   , we can let  and derive, from ,  
   

 


cos sin 
   202  of appendix C

  

 

  





  

cos sin

sin sin

sin sin

 

 

  



 



 



 

 




        
  

 

    

  
 

  







  












   

 










tan

cos sin

tan       



  




  193

for Re , where 
  

               sin sin sin         and

  
   

             
     

       

   
   
   

 sin sin sin sin
194

From oddness of ,  can be replaced by , and we        tan  


 
      

sin
cos cos






note that, after deformation of integration path, we have,









   




 
   



  

 
 






     
     



  
   

     


 

 

   
  

cos

cos sin sin sin

cos cos

cos sin
sin

sin sin

sin sin

 
 

 
 



 





  


 



 



   
 



sin sin 


 195
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as Re . Similar expressions with from    


 sin sin  in place of  can be obtained 

            when  (or .  by continuation with capture of pole)

Appendix C : General analysis of the solution of                 

We study here the solution  of  the functional equations for ,

                   196

when  is regular as |Re | , with  being  or . We consider the case where the       

functions  are analytic on the imaginary axis and exp Im , , as           

|Im | , and thus . The solution , regular as |Re |             

(even at infinity), can be written following,

           
         

 
   sign Im 197

where  is absolutely integrable on any line Re  as . This type of         

equation has been solved in particular in the works of Maliuzhinets, Tuzhilin, Bernard for

the analytical determination of the solutions of wedge diffraction problems.

We consider the case with , i.e. with arbitrary            

when , or with  when . By use of Fourier transform  of              

    , we then obtain a system of two equations :

               e  e 198   

Multiplying them by exp  and making the difference, the function  satisfies,    

                   sin    e e 199 

We notice that the analytic function obtained by dividing the right member of the

previous equality with  does verify 198 , and then, that the inverse Fourier    sin 

transform (integral taken in the sense of principal value) of this expression satisfies 196 

for |Re |  . So, we have the developed form of , for |Re | ,     

   
    



    
      

      


       

 





 

 




 

   




 v.p.   

 




 

 


 




       

 


     

sin sin

sin

sinh

 
 

    
       

  






 




 

  200



 




           
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with

        
 

 

        
 

 

           





   





   

 

  


  


  

 

 









201

where the quantity  is arbitrary when  and equal to zero when      

    . The term v.p. means that we take the principal value of the integral

For the case where the function  is  and ln , we have  and         

     , while  can be evaluated explicitely by the method of residues. So, we

obtain a simple integral expression of  and , corresponding to .     115  and 116

In other respects, we notice that, since the functions  are absolutely integrable, it is

possible to change the order of integration, so that we obtain, for |Re | , 

            
      

  

          


     
 



   








   

  

tan

tan 202

Considering Im  and , and developing the  terms, we           exp tan 

have,

               
 


   






      Im 203

as Im  , with  being some constants independent of . Then, letting     

                 
 , we derive , while, letting ln , we obtain Im

        
           exp |Im |  with ,  and  being someIm

constants. This behaviour, deduced from an expression valid for |Re | , remains valid 

in any band |Re | constant, from the use of functional equations or the deformation of 

the integration path.

Remark : We notice, as Maliuzhinets, that

v.p.    204   
  

  

    


  

 

Remark : The expression 202  can be continued analytically for |Re |  by   

considering the residue due to the poles crossing the path of integration, so that we verify

easily that the continuation of this expression satisfies the initial functional equations.

This latter expression continues to satisfy the functional equation when the analytic

function , regular on the imaginary axis, is only assumed to be absolutely integrable.
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