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The behaviour of a structure beyond its elastic limit involves a non-linear analysis, commonly conducted in engineering design with the benefit of Finite Element Analysis. Many structures are an assembly of one-dimensional components (beams) to form a frame. There are two main FE approaches to studying axial plastic propagation and the distribution within the crosssection of a beam: solid elements or beam elements with cross-section sampling (fiber section). The first requires a considerable number of d.o.f.'s to obtain reliable results; therefore, it is not generally used for extensive size modelling; the second, although requiring less computational efforts, necessitates an extensive sampling of cross-sections to evaluate the plastic distribution at every fiber. Furthermore, a high number of elements are needed to assess the plastic propagation. This paper provides a new approach that allows to considerably reduce the numerical heaviness by providing two ideas: i) elastic-plastic State Diagrams that allow the pre-integration of the cross-section response (that overcame the sampling within the section) ii) section-slices subdivision, that enable to build-up the tangent stiffness matrix of an entire partially plasticized beam (whatever is the plastic distribution and the section shape), with the minimum number of d.o.f.'s. The pre-integrated approach here developed assume planar bending and an elastic-perfectly plastic flow. The proposed element is validated by three test cases, comparing with the solutions obtained through FEA using solid elements and fiber-section beams. A significant enhancement in the overall efforts emerges, obtaining very similar results among the three approaches but with a considerable reduction of the computational time when using the proposed element.

Introduction

The usual design of structural elements and machine parts is intended, for default, within the elastic regime.

However, many scenarios occur that require to account for an inelastic material response. The material strength limits this last; accordingly, each structural component presents a limited load-bearing capacity.

The inelastic behaviour involves several engineering applications to evaluate the capability to support exceptional loads, e.g. crushing (impact) or progressive crushing in mechanical structures, earthquakes and storms in civil engineering. Considering manufacturing engineering, it is crucial to account for the whole behaviour of materials during metal forming operations. The inelastic response deeply affects the artefact's final shape after the loading and releasing process [START_REF] Slater | Engineering and Plasticity: Theory and Application to Metal Forming Processes[END_REF][START_REF] Altan | Sheet Metal Forming Processes and Applications[END_REF][START_REF] Hosford | Metal Forming: Mechanics and Metallurgy[END_REF]. Metal forming technique, recurrent in stretchbending [START_REF] Zhao | A study on springback of profile plane stretch-bending in the loading method of pretension and moment[END_REF][START_REF] Miller | On bend-stretch forming of aluminium extruded tubes-I: experiments[END_REF][START_REF] Miller | On bend-stretch forming of aluminium extruded tubes -II: analysis[END_REF][START_REF] El-Domiaty | Stretch-bending analysis of U-section beams[END_REF], press-brake bending [START_REF] Yu | Plastic Bending: Theory and Applications[END_REF][START_REF] Bonfanti | Response and residual curvature of bent-stretched circular rods with applications to metal forming: Closed-form solutions for elastic-perfectly plastic and hyperbolic hardening materials[END_REF] and cold rolling [START_REF] Barrett | Modeling material behavior during continuous bending under tension for inferring the post-necking strain hardening response of ductile sheet metals: Application to DP 780 steel[END_REF][START_REF] Yi | Evolution of Residual Stress Based on Curvature Coupling in Multi-Roll Levelling[END_REF] processes, is widely applied in ground vehicles and aerospace engineering. As a matter of fact, one of the most difficult challenges is the reliable prediction of spring-back. An accurate evaluation of it is the focal point of many theoretical and applied research [START_REF] El-Domiaty | Stretch-bending analysis of U-section beams[END_REF][START_REF] Bonfanti | Response and residual curvature of bent-stretched circular rods with applications to metal forming: Closed-form solutions for elastic-perfectly plastic and hyperbolic hardening materials[END_REF][START_REF] Yi | Evolution of Residual Stress Based on Curvature Coupling in Multi-Roll Levelling[END_REF][START_REF] Yu | Influence of axial force on the elastic-plastic bending and spring-back of a beam[END_REF][START_REF] Antonelli | Identification of Elasto-Plastic Characteristics by means of Air-Bending Test[END_REF]; these brought out that several factors govern the results, such as geometrical constraints, material response and loading history.

Many important structures reduce to an assembly of one-dimensional components (beams) to form a frame that may involve both elastic and elastic-plastic responses. Some numerical approaches have been developed to afford this scenario in engineering design. Fig. 1 shows an overview of the most common [START_REF] Astroza | Material Parameter Identification in Distributed Plasticity FE Models of Frame-Type Structures Using Nonlinear Stochastic Filtering[END_REF][START_REF] Tran | Distributed plasticity approach for the nonlinear structural assessment of offshore wind turbine[END_REF][START_REF] Tran | Distributed plasticity approach for nonlinear analysis of nuclear power plant equipment: Experimental and numerical studies[END_REF], also addressing the model discussed in the present paper.

The most straightforward approach is the plastic-hinge method [START_REF] Liew | Improved nonlinear plastic hinge analysis of space frame structures[END_REF][START_REF] Kim | Generalized finite element formulation for efficient firstorder plastic hinge analysis[END_REF][START_REF] Hoang | An overview of the plastic-hinge analysis of 3D steel frames[END_REF], which detects if plastic hinges occur at a given load level; if this happens, the kinematic evolution of the frame is analysed to check possible subsidence mechanisms consequent to instability. Some FE formulations encompass lumped plastic-hinge elements (Fig. 1a), where the main advantage is that the collapse localisation requires a limited computational cost. For this reason, this simplified analysis is commonly used for the Limit Analysis (collapse) of frame structures, seeking the sudden formation of plastic hinges. Another lumped approach introduces non-linear plastic hinges [START_REF] Gong | Adaptive gradual plastic hinge model for nonlinear analysis of steel frameworks[END_REF][START_REF] Heng | A simplified model for nonlinear dynamic analysis of steel column subjected to impact[END_REF][START_REF] Heng | Co-rotating rigid beam with generalized plastic hinges for the nonlinear dynamic analysis of planar framed structures subjected to impact loading[END_REF] (Fig. 1b); it considers the plastic hinge, after its appearance, as a non-linear link, tout court.

It is well known that the relationship between stress and strain fields is unique for an elastic material. On the contrary, when the inelastic response is involved and non-monotonic loading occurs, the actual strains cannot determine the internal stresses. The whole strain history should be considered; in other words, an inelastic material responds as if it had a memory. For this reason, the FE software requires incremental analyses to face distributed-plasticity modelling. The several proposed models based on distributed plasticity allow the development of different plastic models adapted to the specific behaviour of the material.

A one-shot step does not reach the solution, but an incremental procedure is necessary; at each step, the tangent material matrix is updated [START_REF] Zienkiewicz | The Finite Element Method[END_REF].

The easiest way to model the distributed plasticity from the point of view of computational effort is the finite plasticity length approach (Fig. 1c). This allows overcoming lamped plastic hinges considering a limited extension of plasticity [START_REF] Scott | Plastic Hinge Integration Methods for Force-Based Beam-Column Elements[END_REF][START_REF] Saritas | Distributed inelasticity planar frame element with localized semirigid connections for nonlinear analysis of steel structures[END_REF], where only an on-off response towards an elastic-plastic state is possible, either elastic or fully plastic.

All previously mentioned approaches do not provide information regarding the progressive formation of plasticity within cross-sections. They only evaluate if the section loads lie inside or outside the actual structural yield surface [START_REF] Heng | A simplified model for nonlinear dynamic analysis of steel column subjected to impact[END_REF][START_REF] Heng | Co-rotating rigid beam with generalized plastic hinges for the nonlinear dynamic analysis of planar framed structures subjected to impact loading[END_REF][START_REF] Chen | Advanced Analysis of Steel Frames: Theory, Software, and Applications[END_REF].

Fiber-Section is an improved distributed plasticity approach [START_REF] Spacone | Fibre beam-column model for non-linear analysis of r/c frames: Part I[END_REF][START_REF] Spacone | Fibre beam-column model for non-linear analysis of r/c frames: Part II[END_REF][START_REF] Kostic | Section Discretization of Fiber Beam-Column Elements for Cyclic Inelastic Response[END_REF][START_REF] Owen | Finite Elements in Plasticity: Theory and Practice[END_REF][START_REF] Bitar | A comparison of displacement-based Timoshenko multi-fiber beams finite element formulations and elasto-plastic applications[END_REF] that allows the formulation of a onedimensional structural element (Fig. 1d). It enables following the plasticity distribution inside the crosssection through internal sampling. Most of the computational cost is ascribed to cross-section sampling when using this element since each integration point runs across its elastic-plastic history. This implies that the cross-section is subdivided into a number of cells (fibers) whose refinement is an index of the result reliability.

Solid elements (3D) within the classical Finite Element approach is the most usual way to account for structures [START_REF] Zienkiewicz | The Finite Element Method[END_REF][START_REF] Bathe | Finite Element Procedures[END_REF][START_REF] Bathe | Inelastic Analysis of Solids and Structures[END_REF] (Fig. 1e). Therefore, they can also model plasticity in almost frame structures. The main problem affecting them is that, if the geometric dimensions of the structural components are highly different (plates, beams), the solid modelling becomes inefficient, requiring a considerable number of d.o.f.'s (degrees of freedom) to get reliable results, as structural designers know well. This last approach moves away from the one-dimensional description of the beam; therefore, in the analysis of frame structures (an assemblage of several beam-like components), they do not represent the most favourable approach when plasticity occurs in large size modelling.

The present paper introduces a different method to deal partially-plasticized beams. The plastic behaviour is assumed perfectly-plastic and with the same yield stress under both traction and compression. Furthermore, it is assumed that loads monotonically increase. In such a case, it is possible to build a sort of State Diagram for the section response, which provides a one-to-one correspondence between applied section loads and the elastic-plastic state of the section. It is assumed that the shear stress only affects the cross-section region staying in the elastic field so that it does not modify the extension of the plasticized region (this assumption is also recurrent for the Fiber-Section method). The discussion about this latter hypothesis is detailed in many papers, e.g. [START_REF] Yu | Plastic Bending: Theory and Applications[END_REF][START_REF] Hodge | Plastic Analysis of Structures[END_REF][START_REF] Drucker | The effect of shear on the plastic bending of beams[END_REF][START_REF] Horne | The Plastic Theory of Bending of Mild Steel Beams with particular reference to the Effect of Shear Forces[END_REF][START_REF] Neal | The Effect of Shear and Normal Forces on the Fully Plastic Moment of a Beam of Rectangular Cross Section[END_REF].

It is worth pointing out that the use of state diagrams, dependent only on the actual loads acting on the section, is not affected by the beam's overall linear or non-linear geometric deformation (i.e. their use sounds for large displacements problems too or non-straight beams). This work aims to reach a FE beam implementation that avoids sample points within the cross-sections. In other words, the element is pre-integrated in the section. One of the main advantages of the proposed model is the analytical identification of the plasticization fronts whose extension drives the tangent stiffness behaviour at every section. This involves bypassing the sampling through the section required by the usual Fiber-Section approach, which can become burdensome, especially for slender beams.

The model presented in this paper works when the beams are symmetric along the 𝑦-axis; this guarantees that the bending is planar (i.e. the 𝑦-axis is a principal inertia axis) also in partial plasticity of the beams. This is a significant extension because only rectangular sections have been investigated in the literature due to the difficulties encountered in the analytical deduction [START_REF] Yu | Plastic Bending: Theory and Applications[END_REF][START_REF] Yu | Influence of axial force on the elastic-plastic bending and spring-back of a beam[END_REF][START_REF] Halilovic | Analytical solutions in Elasto-Plastic bending of beams with rectangular cross-section[END_REF]. The shape of the cross-section covers an essential role in the structural response for the determination of the plastic fronts. For this reason, some state diagrams, referring to typical sections used in engineering applications, are presented in the paper. This means that every section requires its state diagram, computed once for all, whose axes are the plasticization fronts as functions of normal force and bending moment. Downstream of previous assumptions, three different elastic-plastic cases are possible in a section: totally elastic, one-sided plasticization (unilateral, upper or lower), and two-sided plasticization (bilateral). These elastic-plastic states (regimes), referring only to rectangular sections, have been already investigated in some papers (in Russian) by Bezukhov. His main results are summarised in [START_REF] Bezukhov | Приложение методов теории упругости и пластичности к решению инженерных задач[END_REF]. Some years later, the same problem (rectangular beam) was faced by Yu and Johnson [START_REF] Yu | Influence of axial force on the elastic-plastic bending and spring-back of a beam[END_REF]. They obtained the same conclusions as Bezukhov but extended the problem to the kinematics, particularly spring-back. In more recent years, the spring-back is addressed analytically [START_REF] Halilovic | Analytical solutions in Elasto-Plastic bending of beams with rectangular cross-section[END_REF] for the case of rectangular beams subjected to bending only and numerically in [START_REF] Bonfanti | Response and residual curvature of bent-stretched circular rods with applications to metal forming: Closed-form solutions for elastic-perfectly plastic and hyperbolic hardening materials[END_REF] for a circular cross-section.

A further advantage of the proposed model is that the State Diagram allows to build up the tangent stiffness matrix of the beam, computed with a subdivision into section-slices where compliance is evaluated [START_REF] Iandiorio | On the Formulation of an Elastic-Plastic Beam Model: the Pre-Integration Idea[END_REF].

The proposed beam element provides degrees of freedom only at its ends, whatever the complexity of its internal plasticity (in the section and along the axis).

Following the method exposed in this paper it would be possible to build-up the State Diagrams also for more complex elastic-plastic behaviours. In a general sense, plasticity induces a directional (anisotropic) behaviour that evolves according to the full loading history [START_REF] Lu | A covariant formulation of anisotropic finite plasticity: theoretical developments[END_REF][START_REF] Zyczkowski | Combined Loadings in the Theory of Plasticity[END_REF].

The Elastic-perfectly Plastic beam model

In this section, the elastic-plastic beam model is deduced when the loads increase monotonically. The beam, straight in the undeformed configuration, is loaded only along the y -principal axis of inertia (Fig. 2), i.e. the bending is planar (2D). Small strains are assumed. This implies that the strain-displacement relations can be represented only by the linear part of the Green tensor. The cross-section is assumed transversely inextensible (non-deformable in the cross-section plane); therefore, the cross-section keeps the same in the undeformed-deformed configuration. Within the assumption of small displacements and rotations, the displacements field is:

𝑈(𝑥, 𝑦) = 𝑢(𝑥) -𝑦 𝜓(𝑥) (2.1) 𝑉(𝑥, 𝑦) = 𝑣(𝑥) (2.2)
Fig. 2 Notations referred to the y-symmetrical cross-section

The only non-null strain components are 𝜀 𝑥 , 𝛾 𝑥𝑦 are:

𝜀 𝑥 (𝑥, 𝑦) = 𝑢 ′ -𝑦 𝜓 ′ (2.3) 𝛾 𝑥𝑦 (𝑥, 𝑦) = 𝑣 ′ -𝜓 (2.4)
The apex indicates the derivatives with respect to the Cartesian abscissa:

( • ) ′ = 𝑑 𝑑𝑥 ( • ).
If the material is homogeneous and isotropic, the elastic regime implies: 𝜎 𝑥 = 𝐸𝜀 𝑥 , 𝜏 𝑥𝑦 = 𝐺 𝛾 𝑥𝑦 .

For the elastic-plastic states, it is assumed that the shear load causes tangential stress only in the elastic region of the cross-section. Consequently, only axial stress components affect the plasticized part of the cross-section. The plastic flow stress (same value under traction or compression) is independent of strain, as assumed for the elastic-perfectly plastic behaviour.

By virtue of small displacements, the differential forces and moment equilibrium are:

𝑁 ′ = -𝑞 𝑥 (2.5) 𝑇 ′ = -𝑞 𝑦 (2.6) 𝑀 ′ = -𝑇 (2.7)
Where:

𝑁(𝑥) = ∫ 𝜎 𝑥 𝑑𝐴 𝐴 (2.8) 𝑇(𝑥) = ∫ 𝜏 𝑥𝑦 𝑑𝐴 𝐴 𝑠 (2.9) 𝑀(𝑥) = -∫ 𝑦 𝜎 𝑥 𝑑𝐴 𝐴 (2.10)
𝐴 𝑠 is the effective shear area, whose value varies according to the elastic-plastic state of the section, as will be explained hereinafter.

Given the elastic-perfectly plastic stress-strain behaviour, every section may present three elastic-plastic regimes: totally elastic, one-side (upper or lower) plasticization, and two-sides plasticization. Each of them is characterised by different equations that drive the kinematic response. These equations are deduced in the next sub-paragraphs.

In what follows the elastic-perfectly plastic material response is assumed as symmetric for simplicity;

however, it will be straightforward but lengthy to extend what is exposed hereinafter when the yield stress differs in traction or compression.

Kinematic and stress-trend of the Totally Elastic state

The governing equations for the totally elastic case are well-known [START_REF] Timoshenko | Strength of Materials[END_REF] and are reported for completeness in what follows. The relationships between forces and moment and the derivatives of displacement and rotation components are:

𝑢 ′ = 𝑁 𝐸𝐴 (2.11) 𝜓 ′ = 𝑀 𝐸𝐼 (2.12) 𝑣 ′ = 𝜓 + 𝜒𝑇 𝐺𝐴 (2.13)
Where the geometric constants 𝐴, 𝐼 for a generic section can be computed using the knowledge of the width function 𝑏(𝑦) and the fixed quantities ℎ + , ℎ -(Fig. 2): 

𝐴 = ∫ 𝑏(𝑦)

Kinematic and stress-trend of the Upper one-sided Elastic-Plastic state

The section is partially plasticized at its upper side (Fig. 3). The ordinate 𝑦 𝑝 + locates the beginning of the plastic front. This regime does not occur for every combination of pairs (𝑁, 𝑀). Based on the positive directions of (𝑁, 𝑀) (Fig. 2), it is straightforward to show that the combinations that trigger this elasticplastic regime are (𝑁 ≥ 0, 𝑀 ≤ 0) and (𝑁 ≤ 0, 𝑀 ≥ 0); the first involves tensile plasticity, the second compression plasticity.

Fig. 3 Upper one-sided elastic-plastic state As often assumed in the literature, e.g. [START_REF] Yu | Plastic Bending: Theory and Applications[END_REF][START_REF] Hodge | Plastic Analysis of Structures[END_REF][START_REF] Drucker | The effect of shear on the plastic bending of beams[END_REF][START_REF] Horne | The Plastic Theory of Bending of Mild Steel Beams with particular reference to the Effect of Shear Forces[END_REF][START_REF] Neal | The Effect of Shear and Normal Forces on the Fully Plastic Moment of a Beam of Rectangular Cross Section[END_REF], the shear load induces tangential stresses only in the elastic region of the cross-section. Therefore, the stress field is: Where 𝜎 ̅ 𝑦 is assumed positive, while the 𝑠𝑖𝑔𝑛 + function is defined as:

𝜎 𝑥 (𝑥, 𝑦) = { 𝑠𝑖𝑔𝑛 + •
𝑠𝑖𝑔𝑛 + = { +1 , (𝑁 ≥ 0, 𝑀 ≤ 0) -1 , (𝑁 ≤ 0, 𝑀 ≥ 0) (2.19)
Applying the eq.s(2.18) in (2.8 -2.10), considering the following additive decomposition of the total area 𝐴 = 𝐴 𝑒 + ∪ 𝐴 𝑝 + , the result is a system of three equations that involves the resultant forces acting on the section 𝑁, 𝑇, 𝑀 and the components of the kinematic motion of the cross-section 𝑢 ′ , 𝑣 ′ , 𝜓 ′ [START_REF] Iandiorio | On the Formulation of an Elastic-Plastic Beam Model: the Pre-Integration Idea[END_REF]. Making explicit the latter kinematics components results: For the elastic perfect-plastic material the relation between strain and stress is straightforward and the stress state is given by eq.(2.18).

𝑢 ′ = [1 + (𝑆 𝑒 + ) 2
Fig. 4 Lower one-sided elastic-plastic state

Kinematic and stress-trend of the Lower one-sided Elastic-Plastic state

In this case, the section is partially plasticized at the lower side (Fig. 4), and the ordinate 𝑦 𝑝 -locates the start of the plastic front. The combinations of normal force and moment that may trigger this elastic-plastic regime are (𝑁 ≥ 0, 𝑀 ≥ 0),(𝑁 ≤ 0, 𝑀 ≤ 0), and the stress field is:

𝜎 𝑥 (𝑥, 𝑦) = { 𝐸𝜀 𝑥 , 𝑦 ≥ 𝑦 𝑝 - 𝑠𝑖𝑔𝑛 -• 𝜎 ̅ 𝑦 , 𝑦 ≤ 𝑦 𝑝 - ; 𝜏 𝑥𝑦 (𝑥, 𝑦) = { 𝐺 𝛾 𝑥𝑦 , 𝑦 ≥ 𝑦 𝑝 - 0 , 𝑦 ≤ 𝑦 𝑝 - (2.

29)

Where:

𝑠𝑖𝑔𝑛 -= { +1 , (𝑁 ≥ 0, 𝑀 ≥ 0) -1 , (𝑁 ≤ 0, 𝑀 ≤ 0) (2.30)
Following the same reasoning performed for the upper one-sided regime §2.2, the governing equations are very similar to those previously deduced, they are reported below for completeness:

𝑢 ′ = [1 + (𝑆 𝑒 -) 2 𝐼 𝑒 -𝐴 𝑒 --(𝑆 𝑒 -) 2 ] 𝑁 𝐸𝐴 𝑒 -+ [ 𝑆 𝑒 - 𝐼 𝑒 -𝐴 𝑒 --(𝑆 𝑒 -) 2 ] 𝑀 𝐸 - 𝑠𝑖𝑔𝑛 -𝜎 ̅ 𝑦 A 𝐸𝐴 𝑒 - [1 - 𝐴 𝑒 - 𝐴 + (𝑆 𝑒 -) 2 𝐼 𝑒 -𝐴 𝑒 --(𝑆 𝑒 -) 2 ] (2.31) 𝜓 ′ = [ 𝑆 𝑒 - 𝐼 𝑒 -𝐴 𝑒 --(𝑆 𝑒 -) 2 ] 𝑁 𝐸 + [ 𝐴 𝑒 - 𝐼 𝑒 -𝐴 𝑒 --(𝑆 𝑒 -) 2 ] 𝑀 𝐸 - 𝑠𝑖𝑔𝑛 -𝜎 ̅ 𝑦 A 𝐸 [ 𝑆 𝑒 - 𝐼 𝑒 -𝐴 𝑒 --(𝑆 𝑒 -) 2 ]
(2.32)

𝑣 ′ = 𝜓 + 𝜒 𝑒 -𝑇 𝐺𝐴 (2.33) 𝜀 𝑥 (𝑥, 𝑦) [1 + 𝑆 𝑒 -( 𝑆 𝑒 --𝑦 𝐴 𝑒 - 𝐼 𝑒 -𝐴 𝑒 --(𝑆 𝑒 -) 2 )] 𝑁 𝐸𝐴 𝑒 -+ ( 𝑆 𝑒 --𝑦 𝐴 𝑒 - 𝐼 𝑒 -𝐴 𝑒 --(𝑆 𝑒 -) 2 ) 𝑀 𝐸 + 𝑠𝑖𝑔𝑛 -𝜎 ̅ 𝑦 𝐸 [1 - 𝐴 (𝐼 𝑒 --𝑦 𝑆 𝑒 -) 𝐼 𝑒 -𝐴 𝑒 --(𝑆 𝑒 -) 2 ] (2.34) 𝛾 𝑥𝑦 (𝑥) = 𝜒 𝑒 -𝑇 𝐺𝐴 (2.

35)

Where:

𝐴 𝑒 -(𝑥) = ∫ 𝑏(𝑦) ℎ + 𝑦 𝑝 -(𝑥) 𝑑𝑦 (2.36) 𝑆 𝑒 -(𝑥) = ∫ 𝑦 𝑏(𝑦) ℎ + 𝑦 𝑝 -(𝑥) 𝑑𝑦 (2.37) 𝐼 𝑒 -(𝑥) = ∫ 𝑦 2 𝑏(𝑦) ℎ + 𝑦 𝑝 -(𝑥) 𝑑𝑦 (2.38) 𝜒 𝑒 -(𝑥) = 𝐴 (𝐼 𝑒 -) 2 ∫ ( 𝑆(𝑦) 𝑏(𝑦) ) 2 𝐴 𝑒 - 𝑑𝐴 = 𝐴 (𝐼 𝑒 -) 2 ∫ 1 𝑏(𝑦) ( ∫ 𝑦 ỹ 𝑦 𝑝 -(𝑥) 𝑏(𝑦 ̃) 𝑑𝑦 ̃)2 ℎ + 𝑦 𝑝 -(𝑥) 𝑑𝑦 (2.39)

Kinematic and stress-trend of the Two-sided Elastic-Plastic state

In this case, the plastic regions are split into upper and lower sides (Fig. 5); therefore, two ordinates 𝑦 𝑝 + , 𝑦 𝑝 occur. The upper side may be tensile plasticized if (𝑁 ≥ 0, 𝑀 ≤ 0) or (𝑁 ≤ 0, 𝑀 ≤ 0), while the lower side is plasticized with the opposite sign (compression). The dual case (plasticized upper side in compressive and the lower side in tensile plasticization) requires (𝑁 ≥ 0, 𝑀 ≥ 0) or (𝑁 ≤ 0, 𝑀 ≥ 0).

Consequently:

𝜎 𝑥 (𝑥, 𝑦) = { 𝑠𝑖𝑔𝑛 ± • 𝜎 ̅ 𝑦 , 𝑦 ≥ 𝑦 𝑝 + 𝐸𝜀 𝑥 , 𝑦 𝑝 -≤ 𝑦 ≤ 𝑦 𝑝 + -𝑠𝑖𝑔𝑛 ± • 𝜎 ̅̅̅ 𝑦 , 𝑦 ≤ 𝑦 𝑝 - ; 𝜏 𝑥𝑦 (𝑥, 𝑦) = { 0 , 𝑦 ≥ 𝑦 𝑝 + 𝐺 𝛾 𝑥𝑦 , 𝑦 𝑝 -≤ 𝑦 ≤ 𝑦 𝑝 + 0 , 𝑦 ≤ 𝑦 𝑝 - (2.

40)

Where:

𝑠𝑖𝑔𝑛 ± = { +1 , (𝑁 ≥ 0, 𝑀 ≤ 0) 𝑜𝑟 (𝑁 ≤ 0, 𝑀 ≤ 0) -1 , (𝑁 ≥ 0, 𝑀 ≥ 0) 𝑜𝑟 (𝑁 ≤ 0, 𝑀 ≥ 0) (2.41)
Using the eq.s(2.40) in (2.8 -2.10) it turns out:

𝑢 ′ = [1 + (𝑆 𝑒 ± ) 2 𝐼 𝑒 ± 𝐴 𝑒 ± -(𝑆 𝑒 ± ) 2 ] 𝑁 𝐸𝐴 𝑒 ± + [ 𝑆 𝑒 ± 𝐼 𝑒 ± 𝐴 𝑒 ± -(𝑆 𝑒 ± ) 2 ] 𝑀 𝐸 + - 𝑠𝑖𝑔𝑛 ± 𝜎 ̅ 𝑦 𝐸𝐴 𝑒 ± [(2𝐴 𝑝 + ± + 𝐴 𝑒 ± -𝐴) + (2𝐴 𝑝 + ± + 𝐴 𝑒 ± -𝐴) (𝑆 𝑒 ± ) 2 -𝐴 𝑒 ± 𝑆 𝑒 ± (2𝑆 𝑝 + ± + 𝑆 𝑒 ± ) 𝐼 𝑒 ± 𝐴 𝑒 ± -(𝑆 𝑒 ± ) 2 ] (2.42) 𝜓 ′ = [ 𝑆 𝑒 ± 𝐼 𝑒 ± 𝐴 𝑒 ± -(𝑆 𝑒 ± ) 2 ] 𝑁 𝐸 + [ 𝐴 𝑒 ± 𝐼 𝑒 ± 𝐴 𝑒 ± -(𝑆 𝑒 ± ) 2 ] 𝑀 𝐸 + - 𝑠𝑖𝑔𝑛 ± 𝜎 ̅ 𝑦 𝐸 [ (2𝐴 𝑝 + ± + 𝐴 𝑒 ± -𝐴) 𝑆 𝑒 ± -𝐴 𝑒 ± (2𝑆 𝑝 + ± + 𝑆 𝑒 ± ) 𝐼 𝑒 ± 𝐴 𝑒 ± -(𝑆 𝑒 ± ) 2 ]
(2.43)

𝑣 ′ = 𝜓 + 𝜒 𝑒 ± 𝑇 𝐺𝐴 (2.44)
Where the following geometric identities have been used:

𝐴 𝑝 - ± = 𝐴 -𝐴 𝑒 ± -𝐴 𝑝 + ± , 𝑆 𝑝 - ± = -𝑆 𝑝 + ± -𝑆 𝑒 ±
For this case, the geometric quantities appear as:

𝐴 𝑒 ± (𝑥) = ∫ 𝑏(𝑦) 𝑦 𝑝 + (𝑥) 𝑦 𝑝 -(𝑥) 𝑑𝑦 ; 𝐴 𝑝 + ± (𝑥) = ∫ 𝑏(𝑦) ℎ + 𝑦 𝑝 + (𝑥) 𝑑𝑦 (2.45) 𝑆 𝑒 ± (𝑥) = ∫ 𝑦 𝑏(𝑦) 𝑦 𝑝 + (𝑥) 𝑦 𝑝 -(𝑥) 𝑑𝑦 ; 𝑆 𝑝 + ± (𝑥) = ∫ 𝑦 𝑏(𝑦) ℎ + 𝑦 𝑝 + (𝑥) 𝑑𝑦 (2.46) 𝐼 𝑒 ± (𝑥) = ∫ 𝑦 2 𝑏(𝑦) 𝑦 𝑝 + (𝑥) 𝑦 𝑝 -(𝑥)
𝑑𝑦 (2.47) Fig. 5 Two-sided elastic-plastic state

𝜒 𝑒 ± (𝑥) = 𝐴 (𝐼 𝑒 ± ) 2 ∫ ( 𝑆(𝑦) 𝑏(𝑦) ) 2 𝐴 𝑒 ± 𝑑𝐴 = 𝐴 (𝐼 𝑒 ± ) 2 ∫ 1 𝑏(𝑦) ( ∫ 𝑦 ỹ 𝑦 𝑝 -(𝑥) 𝑏(𝑦 ̃) 𝑑𝑦 ̃)2 𝑦 𝑝 + (𝑥) 𝑦 𝑝 -(𝑥) 𝑑𝑦 (2.48)
Using eq.s(2.42 -2.44) combined with eq.s(2.3, 2.4), the strains trend turns out:

𝜀 𝑥 (𝑥, 𝑦) = [1 + 𝑆 𝑒 ± ( 𝑆 𝑒 ± -𝑦 𝐴 𝑒 ± 𝐼 𝑒 ± 𝐴 𝑒 ± -(𝑆 𝑒 ± ) 2 )] 𝑁 𝐸𝐴 𝑒 ± + ( 𝑆 𝑒 ± -𝑦 𝐴 𝑒 ± 𝐼 𝑒 ± 𝐴 𝑒 ± -(𝑆 𝑒 ± ) 2 ) 𝑀 𝐸 + - 𝑠𝑖𝑔𝑛 ± 𝜎 ̅ 𝑦 𝐸 [1 + (2𝐴 𝑝 + ± -𝐴) (𝐼 𝑒 ± + 𝑦 𝑆 𝑒 ± ) -2𝑆 𝑝 + ± (𝑆 𝑒 ± -𝑦 𝐴 𝑒 ± ) 𝐼 𝑒 ± 𝐴 𝑒 ± -(𝑆 𝑒 ± ) 2 ] (2.49) γ xy (x) = χ e ± T GA (2.50)

The Elastic-Plastic Section State Diagram

The relationship between the internal forces and the kinematics has been deduced in the previous paragraph for all elastic-plastic regimes. These equations state that known the trend of the plastic fronts, it is possible to obtain the kinematic response of any cross-section and deduce the effect on the entire beam. For this reason, the goal of this section is to achieve a relationship between the axial force 𝑁 and bending moment 𝑀 acting on the cross-section and the plasticization fronts 𝑦 𝑝+ , 𝑦 𝑝-. It is worth pointing out again that the shear stress 𝜏 𝑥𝑦 does not affect the stress distribution on the plastic region; therefore, only the internal force and moment 𝑁, 𝑀 are responsible for the eventual positioning of the plasticization fronts.

The purpose is to deduce the equations of 𝑁, 𝑀 only on the base of the plasticization fronts 𝑦 𝑝+ , 𝑦 𝑝-.These relations are found in the following subparagraph for each elastic-plastic regime.

Upper one-sided Elastic-Plastic state

Being the response of the material elastic-perfectly plastic, the stress field can be defined by the following relations (Fig. 3), which involves the variables 𝑦 𝑝 + and 𝜎 𝐵 that is the normal stress acting at the bottom side of the cross-section:

𝜎 𝑥 (𝑥, 𝑦) = { 𝑠𝑖𝑔𝑛 + • 𝜎 ̅ 𝑦 , 𝑦 ≥ 𝑦 𝑝 + 𝑠𝑖𝑔𝑛 + [( 𝜎 ̅ 𝑦 + 𝜎 𝐵 ) ( 𝑦 -ℎ - 𝑦 𝑝 + -ℎ -) -𝜎 𝐵 ] , 𝑦 ≤ 𝑦 𝑝 + (3.1)
Applying this latter into eq.s(2.8, 2.10), the relationship between the section resultants (𝑁, 𝑀) and the variables (𝑦 𝑝 + , 𝜎 𝐵 ) turns out:

𝑁(𝑦 𝑝 + , 𝜎 𝐵 ) = 𝑠𝑖𝑔𝑛 + [ 𝜎 ̅ 𝑦 (𝐴 -𝐴 𝑒 + ) -𝜎 𝐵 𝐴 𝑒 + + ( 𝜎 ̅ 𝑦 + 𝜎 𝐵 ) ( 𝑆 𝑒 + -𝐴 𝑒 + ℎ - 𝑦 𝑝 + -ℎ -)] (3.2) 𝑀(𝑦 𝑝 + , 𝜎 𝐵 ) = 𝑠𝑖𝑔𝑛 + ( 𝜎 ̅ 𝑦 + 𝜎 𝐵 ) [𝑆 𝑒 + -( 𝐼 𝑒 + -𝑆 𝑒 + ℎ - 𝑦 𝑝 + -ℎ -)] (3.3)
where the variables belong to the range

𝑦 𝑝 + ∈ [ℎ -, ℎ + ] , 𝜎 𝐵 ∈ [-𝜎 ̅ 𝑦 , 𝜎 ̅ 𝑦 ].
These equations are fundamental for the state diagram deduction carried out in §3.5; they allow to obtain all the pairs (𝑁, 𝑀) which implies the upper-sided plasticization. The geometric quantities 𝐴 𝑒 + , 𝑆 𝑒 + , 𝐼 𝑒 + are the same defined through eq.s(2.23 -2.25) so that they are non-linear functions of 𝑦 𝑝 + ; therefore, the eq.s(3.2, 3.3) are strongly non-linear in 𝑦 𝑝+ . However, the same equation is an explicit solution of (𝑁, 𝑀) if the 𝑦 𝑝+ and 𝜎 𝐵 are given; this is a key point used in the following to build look-up tables.

Lower one-sided Elastic-Plastic state

Similarly to eq.(3.1), the stress trend for the lower one-sided plasticization (Fig. 4) is expressed as a function of 𝑦 𝑝 -and 𝜎 𝑇 , that is the normal stress acting at the top side of the cross-section:

𝜎 𝑥 (𝑥, 𝑦) = { -𝑠𝑖𝑔𝑛 -[(𝜎 ̅ 𝑦 + 𝜎 𝑇 ) ( 𝑦 -𝑦 𝑝- ℎ + -𝑦 𝑝 -) -𝜎 ̅ 𝑦 ] , 𝑦 ≥ 𝑦 𝑝 - -𝑠𝑖𝑔𝑛 -• 𝜎 ̅ 𝑦 , 𝑦 ≤ 𝑦 𝑝 - (3.4)
From which, using the eq.s(2.8, 2.10):

𝑁(𝑦 𝑝 -, 𝜎 𝑇 ) = 𝑠𝑖𝑔𝑛 -[(𝜎 ̅ 𝑦 + 𝜎 𝑇 ) ( 𝑆 𝑒 --𝐴 𝑒 -𝑦 𝑝 - ℎ + -𝑦 𝑝 -) -𝜎 ̅ 𝑦 𝐴] (3.5) 𝑀(𝑦 𝑝 -, 𝜎 𝑇 ) = -𝑠𝑖𝑔𝑛 -(𝜎 ̅ 𝑦 + 𝜎 𝑇 ) ( 𝐼 𝑒 --𝑆 𝑒 -𝑦 𝑝 - ℎ + -𝑦 𝑝 -) (3.6)
Where the parameter variables belong in the range 𝑦 𝑝 -∈ [ℎ -, ℎ + ] , 𝜎 𝑇 ∈ [-𝜎 ̅ 𝑦 , 𝜎 ̅ 𝑦 ], while 𝐴 𝑒 -, 𝑆 𝑒 -, 𝐼 𝑒 -are functions of 𝑦 𝑝 -and are referred, in this case, to eq.s(2.36 -2.38).

Two-sided Elastic-Plastic state

The two-sided plasticization (Fig. 5) involves two unknown variables 𝑦 𝑝 + and 𝑦 𝑝 -. The stress trend can be expressed as a function of only these variables:

𝜎 𝑥 (𝑥, 𝑦) = { 𝑠𝑖𝑔𝑛 ± • 𝜎 ̅ 𝑦 , 𝑦 ≥ 𝑦 𝑝 + -𝑠𝑖𝑔𝑛 ± 𝜎 ̅ 𝑦 [1 - 2(𝑦 -𝑦 𝑝-) (𝑦 𝑝+ -𝑦 𝑝-) ] , 𝑦 𝑝 -≤ 𝑦 ≤ 𝑦 𝑝 + -𝑠𝑖𝑔𝑛 ± • 𝜎 ̅ 𝑦 , 𝑦 ≤ 𝑦 𝑝 - (3.7)
Applying the previous in the eq.s(2.8, 2.10):

𝑁(𝑦 𝑝 + , 𝑦 𝑝 -) = sign ± 𝜎 ̅ 𝑦 [2𝐴 𝑝 + ± -𝐴 + 2(𝑆 𝑒 ± -𝐴 𝑒 ± 𝑦 𝑝 -) (𝑦 𝑝 + -𝑦 𝑝 -) ] (3.8) 𝑀(𝑦 𝑝 + , 𝑦 𝑝 -) = -2sign ± 𝜎 ̅ 𝑦 [𝑆 𝑝 + ± + ( 𝐼 𝑒 ± -𝑆 𝑒 ± 𝑦 𝑝 - 𝑦 𝑝 + -𝑦 𝑝 -)] (3.9)
Where the variables belong in the range 

𝑦 𝑝 + ∈ [ℎ -, ℎ + ] , 𝑦 𝑝 -∈ [ℎ -, ℎ + ] ,

Full Plastic state

The full plastic state (Fig. 6) is a particular two-sided plasticization case where the elastic region vanishes.

Therefore, it is straightforward to obtain the section equilibrium equations by placing nulls, in the eq.(3.8, 3.9), all the terms related to the elastic part:

𝑁(𝑥) = 𝑠𝑖𝑔𝑛 ± 𝜎 ̅ 𝑦 (2𝐴 𝑝 + ± -𝐴) (3.10) 𝑀(𝑥) = -2 𝑠𝑖𝑔𝑛 ± 𝜎 ̅ 𝑦 𝑆 𝑝 + ± (3.11)
The two geometric quantities 𝐴 𝑝 + ± , 𝑆 𝑝 + ± , are referred to eq.( 2.45 -2.46), where, in this circumstance, the plasticization fronts coincide 𝑦 𝑝 + = 𝑦 𝑝 -= y p (Fig. 6) and belong in the range 𝑦 𝑝 ∈ [ℎ -, ℎ + ].

Fig. 6 Full plastic state

State Diagram build-up

The main objective is, given the values of 𝑁 𝑀, to obtain the associated values of the plasticization fronts and the compliance of a section slice.

First, we explain the determination of the limit curves that separate the elastic-plastic domains.

All the values of 𝑁, 𝑀 that entail the incipient upper one-sided plasticization (from elastic regime) are found imposing 𝑦 𝑝 + = ℎ + in the eq.(3.2, 3.3) and varying the bottom stress in the interval 𝜎 𝐵 ∈ [-𝜎 ̅ 𝑦 , 𝜎 ̅ 𝑦 ]. The limit curves result to be formed by two finite straight lines, computed with 𝑠𝑖𝑔𝑛 + = {+1, -1}. To obtain the incipient lower one-sided plasticization, a similar procedure is performed through eq.s(3.5, 3.6), imposing 𝑦 𝑝 -= ℎ -, varying the top stress in the interval 𝜎 𝑇 ∈ [-𝜎 ̅ 𝑦 , 𝜎 ̅ 𝑦 ] and assuming 𝑠𝑖𝑔𝑛 -= {+1, -1}.

These four curves define the boundaries that distinguish the domain (𝑁, 𝑀) for which the cross-section is in a fully elastic regime, and the domain (𝑁, 𝑀) for which the cross-section is partially plasticized at the top or bottom side.

The (𝑁, 𝑀) pairs that define the transition between one-sided plasticization to the two-sided one are found as follows. Taken 𝑦 𝑝 + = ℎ + in the eq.(3.8, 3.9) and moving along the interval 𝑦 𝑝 -∈ [ℎ -, ℎ + ], two curves are obtained, once with 𝑠𝑖𝑔𝑛 ± equal to +1 and the other with -1. Similarly, taken 𝑦 𝑝 -= ℎ -, varying along with the interval 𝑦 𝑝 + ∈ [ℎ -, ℎ + ], another two boundary curves are obtained for 𝑠𝑖𝑔𝑛 ± {+1, -1}. The latter four curves delimit the boundary curves that separate the domain (𝑁, 𝑀) for which the cross-section is partially plasticized on one or two sides.

The last boundaries to determine regard the fully plastic state. They can be easily obtained from the eq.(3.10, 3.11) computing 𝑦 𝑝 ∈ [ℎ -, ℎ + ], for 𝑠𝑖𝑔𝑛 ± equal to +1 and -1. Above these last boundaries, the section collapses.

All these curves can be determined for generic symmetric sections numerically computing the integrals which involve the geometric quantities.

It is helpful to normalise the values of the applied loads to those that cause tensile collapse -𝑁 𝑝 by eq.(3.10)

and bending collapse -𝑀 𝑝 by eq. (3.11).

Each section type requires its state diagram. However, the same is valid for any section that can be obtained through a uniform scaling on the two principal axes. In some interesting special cases the scaling may be different in the two principal directions; e.g. for all rectangular cross-sections, whatever are the values of the sides, all elliptical cross-sections (circular included) for every value of the two semi-axes. This is quite important since for every section type forming a frame, the state diagrams can be a-priori performed once for all and referred to during the (elastic-plastic) computation of the structure under exam. This feature can extensively reduce the required time to solve a partially plasticized frame.

Some examples of state diagrams are reported hereinafter. The region borders for a rectangular section are shown in Fig. 7; this shape is particularly interesting since it is the only shape that allows an analytical evaluation of the elastic-plastic response; results are given in Appendix ( §A.1). The numerical and analytical borders are perfectly superimposed. The state diagrams are reported in dimensionless form for the rectangular cross-section (Fig. 7) 𝑁 𝑝 = 𝑏ℎ 𝜎 ̅ 𝑦 , 𝑀 𝑝 = 𝑏ℎ 2 4 𝜎 ̅ 𝑦 . This implies that Fig. 7 is effective for any rectangular section (whatever is the side ratio), valid for any elastic-perfectly plastic material and rectangular cross-section.

Fig. 8 shows the state diagram regions for any elliptical cross-section (eventually circular), comparing it with the previous rectangular one. The region subdivisions of an I-section are represented in Fig. 9. The dimensionless state diagram does not include all possible cases for this type of section. The I-section involves four geometric parameters (for example, the two sizes and the thicknesses of web and flanges) instead of two, as in the previous cases. This implies that the state diagram can be build-up specifying the ratio between section height/flanges thickness and the balance between section wide/web thickness. In Fig. 9, two cases of height/flanges and wide/web thickness ratios are shown. Besides the difference in the geometric shape, it is interesting to observe that the limiting regions slightly move. The eq.s(3.2, 3.3; 3.5, 3.6; 3.8, 3.9; 3.10, 3.11) are strongly non-linear versus the plasticization fronts 𝑦 𝑝 + , 𝑦 𝑝 -and therefore difficult to solve, but they are explicit in 𝑁, 𝑀. Hence it is straightforward to perform a reverse procedure in which the values 𝑦 𝑝 + , 𝑦 𝑝 -, 𝜎 𝑇 , 𝜎 𝐵 are imposed, while the pairs (𝑁, 𝑀) that realise this elastic-plastic state are directly obtained. At this point, the one-to-one correspondences between the elasticplastic fronts and 𝑁, 𝑀 can be used to predict the kinematic behaviour of each sections slice.

The numerical operations to achieve this correspondence are provided below.

For the upper one-sided plasticization state, the eq.s(3.2, 3.3) are computed for some sampling points in the

domain { 𝑦 𝑝 + ∈ [ℎ -, ℎ + ] × 𝜎 𝐵 ∈ [-𝜎 ̅ 𝑦 , 𝜎 ̅ 𝑦 ] }, for 𝑠𝑖𝑔𝑛 + equal to +1 and -1.
The result is the one-to-one correspondence in a lookup table form. Clearly, an interpolation is performed for any internal point noncoincident with those used for sampling. To understand the refinement request, it is anticipated that for the numerical validations in §5, a mesh-grid of 20 × 20 sample points is carried out; this choice is largely sufficient to get convergence in the elastic-plastic response of a beam (or a frame formed by several beams).

More refinements can be considered since the reverse operation requires a little computational cost. The dimensionless state diagrams are composed once and for all.

Similarly to the upper one-sided plasticization, for the lower one, the eq.s For the two-sided plasticization state, the eq.s(3.8, 3.9) are computed in the domain

{ 𝑦 𝑝 -∈ [ℎ -, ℎ + ] × 𝑦 𝑝 + ∈ [ℎ -, ℎ + ] 𝑤𝑖𝑡ℎ 𝑦 𝑝 + ≥ 𝑦 𝑝 -}, for 𝑠𝑖𝑔𝑛 ± = {+1, -1}.
The normalisation procedure of the obtained values is performed by carrying out the ratio between the obtained pairs (𝑁, 𝑀) and the values (𝑁 𝑝 , 𝑀 𝑝 ), while the plasticization fronts (𝑦 𝑝 -, 𝑦 𝑝 + ) are expressed in dimensionless form carrying out the ratio between them and the total height of the section ℎ = (ℎ + -ℎ -).

Fig. 11,12 show the state diagrams of an elliptic cross-section (circular included) obtained with the procedure described above; the relationship between the plastic fronts 𝑦 𝑝 -, 𝑦 𝑝 + and the section resultant forces 𝑁, 𝑀 is computed on a mesh-grid of 20 × 20 sample points, and the whole surfaces of the plastic fronts are obtained by interpolation. Similar diagrams can be build-up for other y-symmetric sections.

It is important to emphasise that the solutions for the cross-section cases shown in this paper are unique and no overlapping of different elastic-plastic regions does appear. Although, it is difficult to obtain a general and analytical proof of uniqueness and non-overlapping of the elastic-plastic regions for any symmetrical section. This is because all the equations involved are strongly (non-linear) and influenced by the geometrical shape of the cross-section. On the other hand, many tests were conducted on the y-symmetrical sections most frequently used in engineering design. They always provided numerical evidence of nonoverlapping.

4 Finite Element Formulation §2 inferred the kinematic equations and the analytical expressions of stresses and strains for all elasticplastic states (top, bottom, both). §3 showed that building up a state diagram for every geometric section is possible. We could not rigorously demonstrate it, but in all examined section shapes (some more than those reported here), the relationship among N, M and the elastic-plastic fronts is uniquely identified. This paragraph aims to exploit the analytical model that uses the plastic state diagram to compute the beam's tangent stiffness matrix, avoiding sampling inside cross-sections. In FE, a common way to formulate the stiffness matrix, called "displacement-stiffness based FE", assumes appropriate shape functions for the displacements. In §3, it was shown that knowing the resultants 𝑁, 𝑀 acting on the cross-sections, there is a correspondence with the actual plasticization fronts 𝑦 𝑝+ , 𝑦 𝑝-. Taking advantage of this peculiarity, it turns advantageous to evaluate the tangent stiffness matrix with a forceflexibility approach [START_REF] Marotta | Modelling of structures made of filiform beams: Development of a curved finite element for wires[END_REF][START_REF] Marotta | Contact management in knitted metal mesh through an adaptive node placing[END_REF] instead of the classical displacement-stiffness one. If the plasticity front modifies along the axial direction, the classical method requires a fine finite element discretisation along the line, combined with a refined sampling at every section; this increases the computational effort needed to reach result reliability. Conversely, the force-flexibility method allows to sum (not assemble!) the flexibility of each section-slice and consequently to build up the end-to-end tangent stiffness matrix of a partially plasticized beam (Fig. 13), whose d.o.f.'s number is simply six.

The interpolation functions referring to nodal displacements approximate the solution so that the hconvergence is reached. The key point of the force-flexibility method is that, given the applied forces, the resultant flexibility turns out by the sum of contributions not linked to any shape function. 

Tangent stiffness of Force-Flexibility Beam

This paragraph aims to formulate a finite element of a partially plasticized beam in its local reference. Imposing the satisfaction of the equilibrium in a generic abscissa 𝑥, the vector of the internal forces {𝑭 𝑖𝑛𝑡 (𝑥)} = {𝑁(𝑥), 𝑇(𝑥), 𝑀(𝑥)} 𝑇 is linked to the forces {𝑭 𝐼 } = {𝐹 1 , 𝐹 2 , 𝐹 3 } 𝑇 applied at the node I:

{𝑭 𝑖𝑛𝑡 (𝑥)} = [𝑻(𝑥)] {𝑭 𝐼 } (4.1)
Where:

[𝑻(𝑥)] = [ -1 0 0 0 0 -1 0 𝑥 -1 ] (4.2)
Namely, the computed internal forces respect the equilibrium from node I to any generic abscissa x.

The eq.( 4.1) is fundamental to deducing the flexibility matrix [𝑪 𝐼𝐼 ] of a partially plasticized element (Fig. 13). In incremental perfect plastic analysis, the tangent stiffness matrix is driven by the elastic regions inside each section slice. From the numerical point of view, sampling along the abscissa of the element is carried out (Fig. 13,14).

Each 𝑘 𝑡ℎ -sample (or section-slice) identifies two extremal coordinates, 𝑥 𝑘 and 𝑥 𝑘+1 . The sampling is driven so that the elastic-plastic state is assumed invariant at each slice, i.e. the plastic fronts 𝑦 𝑝 + , 𝑦 𝑝 -keep unchanged along a single section-slice (Fig. 13 

𝑑𝐴 𝑑𝑥 = 1 2𝐸 𝐴 𝑒 ± [1 + (𝑆 𝑒 ± ) 2 𝐼 𝑒 ± 𝐴 𝑒 ± -(𝑆 𝑒 ± ) 2 ] • ∫ 𝑁 2 𝑥 𝑘+1 𝑥 𝑘 𝑑𝑥 + 𝐴 𝑒 ± (𝜒 𝑒 + ) 2 2𝐺𝐴 2 ∫ 𝑇 2 𝑥 𝑘+1 𝑥 𝑘 𝑑𝑥 + + 𝐴 𝑒 ± 2𝐸 (𝐼 𝑒 ± 𝐴 𝑒 ± -(𝑆 𝑒 ± ) 2 ) • ∫ 𝑀 2 𝑥 𝑘+1 𝑥 𝑘 𝑑𝑥 + 𝑆 𝑒 ± 𝐸 (𝐼 𝑒 ± 𝐴 𝑒 ± -(𝑆 𝑒 ± ) 2 ) • ∫ 𝑁 • 𝑀 𝑥 𝑘+1 𝑥 𝑘 𝑑𝑥 + - 𝑠𝑖𝑔𝑛 ± • 𝜎 ̅ 𝑦 𝐸 𝐴 𝑒 ± [𝐴 𝑒 ± + (2𝐴 𝑝 + ± -𝐴) 𝐼 𝑒 ± 𝐴 𝑒 ± -2𝐴 𝑒 ± 𝑆 𝑒 ± 𝑆 𝑝 + ± 𝐼 𝑒 ± 𝐴 𝑒 ± -(𝑆 𝑒 ± ) 2 ] • ∫ 𝑁 𝑥 𝑘+1 𝑥 𝑘 𝑑𝑥 + - 𝑠𝑖𝑔𝑛 ± • 𝜎 ̅ 𝑦 𝐸 [ 2𝐴 𝑒 ± 𝑆 𝑝 + ± -(2𝐴 𝑝 + ± -𝐴) 𝑆 𝑒 ± 𝐼 𝑒 ± 𝐴 𝑒 ± -(𝑆 𝑒 ± ) 2 ] • ∫ 𝑀 𝑥 𝑘+1 𝑥 𝑘 𝑑𝑥 + 𝑈 𝑒,𝑘 ± ,𝑐𝑜𝑛𝑠𝑡 (4.8) 
Where 𝑈 𝑒,𝑘 +,𝑐𝑜𝑛𝑠𝑡 , 𝑈 𝑒,𝑘 -,𝑐𝑜𝑛𝑠𝑡 , 𝑈 𝑒,𝑘 ± ,𝑐𝑜𝑛𝑠𝑡 (not expanded for brevity) are elastic energy contributions where the internal forces 𝑁, 𝑇, 𝑀 do not appear; therefore, they vanish when differentiating the energy by respect to the internal forces, and they do not contribute to flexibility.

The plastic contributions are: If the plastic fronts do not move within an iteration (i.e. within a Newton-Raphson iteration) of a non-linear analysis, the non-appearance of the internal forces 𝑁, 𝑇, 𝑀 in (4.9 -4.11) implies that their contributions to tangent flexibility are null.

𝑈 𝑝,𝑘 + = ∫ ∫ (𝜎 ̅ 𝑦 )
The flexibility matrix of the entire elastic-plastic beam, associated with node I, is obtained, making twice the derivative of the strain complementary energy (4.4) with respect to the incremental vector {𝑭 𝐼 }: Note that the flexibility components computed for every slice contain the information of the slice locations in the whole element. In synthesis, after identifying the elastic-plastic state of the 𝑘 𝑡ℎ section-slice (using the state diagrams), the corresponding flexibility coefficients can be computed through the eq.s(4.14 -4.37).

[𝑪 𝐼𝐼 ] = 𝜕 2 𝑈

Through the tangent flexibility matrix [𝑪 𝐼𝐼 ], it is possible to build up the whole tangent stiffness matrix [𝑲]

of the partially plasticized element.

The FE formulation for a two-node beam element appears as:

{ {𝑭 𝐼 } {𝑭 𝐽 } } = [ [𝑲 𝐼𝐼 ] [𝑲 𝐼𝐽 ] [𝑲 𝐽𝐼 ] [𝑲 𝐽𝐽 ] ] { {𝑼 𝐼 } {𝑼 𝐽 } } (4.38)
The stiffness matrix associated with the I-node is simply

[𝑲 𝐼𝐼 ] = [𝑪 𝐼𝐼 ] -1 .
The incremental forces {𝑭 𝐽 } = {𝐹 4 , 𝐹 5 , 𝐹 6 } 𝑇 applied at the node II are related to the forces {𝑭 𝐼 } by means of the eq.(4.1), computing it at the element end 𝑥 = 𝐿 𝑒 :

{𝑭 𝐽 } = [𝑻] {𝑭 𝐼 } (4.39) 
Where:

[𝑻] = [ -1 0 0 0 0 -1 0 𝐿 𝑒 -1 ] (4.40)
Equating the second row of eq.(4.38) with eq.(4.39) and using the first row of eq. 𝑇 . Therefore, the complete stiffness matrix outcomes:

[𝑲] = [ [𝑲 𝐼𝐼 ] [𝑲 𝐼𝐼 ][𝑻] 𝑇 [𝑻] [𝑲 𝐼𝐼 ] [𝑻][𝑲 𝐼𝐼 ][𝑻] 𝑇 ] (4.41)
This allows keeping very low the total d.o.f.'s in a frame structure if compared to what would be necessary using the stiffness method (many beam elements would be required).

Distributed loads and effect of the elastic-plastic transition

Considering the effect of distributed loads, as it is well known, they depend on the internal deformability of the element. In our case, this is dominated by the elastic-plastic regions inside the element itself.

Therefore, the condensation of distributed loads to the end nodes should account for the internal elasticplastic state. It should be highlighted that the subdivision into elastic or partially-plastic sections through state diagrams requires the knowledge of the total loads (N, M) acting on the element and not only the incremental ones driven by the elastic regions.

Considering also the occurrence of distributed loads, the vector of the internal resultant forces {𝑭 𝑖𝑛𝑡 (𝑥)} in eq.(4.1) modifies:

{𝑭 𝑖𝑛𝑡 (𝑥)} = [𝑻(𝑥)] {𝑭 𝐼 } + {𝒒(𝑥)} (4.42) 
Where:

{𝒒(𝑥)} = { -∫ 𝑞 𝑥 (𝑥 ̃) 𝑑𝑥 x 0 -∫ 𝑞 𝑦 (𝑥 ̃) 𝑑𝑥 x 0 ∫ 𝑞 𝑦 (𝑥 ̃) (𝑥 -𝑥 ̃) 𝑑𝑥 x 0 } (4.43)
The condensation of acting loads to end nodes is now performed to obtain both the force vector {𝑸} due to the distributed loads and the contribution of the elastic response of the plasticized regions {𝑷} (Fig. 15).

These condensed nodal forces vectors are obtained by computing the nodal reaction forces of the element when it is totally constrained and reversing their sign. The Principle of the Minimum Complementary Energy is so performed using the nodal loads given in eq.(4.42). The two last displacement terms appearing in eq. (4.44) refer to the condensation of incremental distributed loads and the incremental regions that change status from elastic to plastic, respectively.

{𝒖 𝐼 } = {𝟎} = 𝜕𝑈({𝑭 𝐼 }) 𝜕{𝑭 𝐼 } = ∑ 𝜕(𝑈 𝑒 ,𝑘 + 𝑈 𝑒 ,𝑘 + + 𝑈 𝑒 ,𝑘 -+ 𝑈 𝑒 ,𝑘 ± ) 𝜕{𝑭 𝐼 } 𝑘(𝐿) 𝑘(0) = [𝑪 𝐼𝐼 ]{𝑭 𝐼 } + {𝒖 𝐼 𝑞 } + {𝒖 𝐼 𝑝 } (4.44)
In the latter equation, [𝑪 𝐼𝐼 ] is the flexibility matrix already obtained in eq.(4.12), the components of the other two vectors

{𝒖 𝐼 𝑞 } = {𝑢 1 𝑞 , 𝑢 2 𝑞 , 𝑢 3 𝑞 } 𝑇 , {𝒖 𝐼 𝑝 } = {𝑢 1 𝑝 , 𝑢 2 𝑝 , 𝑢 3 𝑝 } 𝑇 are exposed hereinafter. 𝑢 𝑖 𝑞 = ∑ 𝑢 𝑖 ,𝑘 𝑞 𝑘(𝐿) 𝑘(0) (𝑖 ∈ 1,2 ,3) (4.45) 
Where: Where: The relationship between the force vectors {𝑭 𝐽 } and {𝑭 𝐼 } is found by means of eq.(4.42), computing it at 𝑥 = 𝐿 :

𝑢 1 ,𝑘 𝑞 = 𝑐 11 ,𝑘 (𝑥 𝑘+1 -𝑥 𝑘 ) ∫ ∫ 𝑞 𝑥 (𝑥 ̃) 𝑥 0 𝑥 𝑘+1 𝑥 𝑘 𝑑𝑥 ̃ 𝑑𝑥 + 𝑐 13 ,𝑘 (𝑥 𝑘+1 -𝑥 𝑘 ) ∫ ∫ 𝑞 𝑦 (𝑥 ̃) • (𝑥 ̃-𝑥) 𝑥 0 𝑥 𝑘+1 𝑥 𝑖 𝑑𝑥 ̃ 𝑑𝑥 (4.
𝑢 1,𝑒 + ,𝑘 𝑝 = -𝑠𝑖𝑔𝑛 + • 𝜎 ̅ 𝑦 (𝑥 𝑘+1 -𝑥 𝑘 ) 𝐸𝐴 𝑒 + [𝐴 𝑒 + -𝐴 (1 + (𝑆 𝑒 + ) 2 𝐼 𝑒 + 𝐴 𝑒 + -(𝑆 𝑒 + ) 2 )] (4.50) 𝑢 1,𝑒 -,𝑘 𝑝 = -𝑠𝑖𝑔𝑛 -• 𝜎 ̅ 𝑦 (𝑥 𝑘+1 -𝑥 𝑘 ) 𝐸𝐴 𝑒 - [𝐴 𝑒 --𝐴 (1 + (𝑆 𝑒 -) 2 𝐼 𝑒 -𝐴 𝑒 --(𝑆 𝑒 -) 2 )] (4.51) 𝑢 1,𝑒 ± ,𝑘 𝑝 = -𝑠𝑖𝑔𝑛 ± • 𝜎 ̅ 𝑦 (𝑥 𝑘+1 -𝑥 𝑘 ) 𝐸𝐴 𝑒 ± [𝐴 𝑒 ± + (2𝐴 𝑝 + ± -𝐴) 𝐼 𝑒 ± 𝐴 𝑒 ± -2𝐴 𝑒 ± 𝑆 𝑒 ± 𝑆 𝑝 + ± 𝐼 𝑒 ± 𝐴 𝑒 ± -(𝑆 𝑒 ± ) 2 ] (4.52) 𝑢 2,𝑒 + ,𝑘 𝑝 = -𝑠𝑖𝑔𝑛 + • 𝜎 ̅ 𝑦 𝐴 𝑆 𝑒 + [(𝑥 𝑘+1 ) 2 -(𝑥 𝑘 ) 2 ] 2𝐸 (𝐼 𝑒 + 𝐴 𝑒 + -(𝑆 𝑒 + ) 2 ) (4.53) 𝑢 2,𝑒 -,𝑘 𝑝 = -𝑠𝑖𝑔𝑛 -• 𝜎 ̅ 𝑦 𝐴 𝑆 𝑒 -[(𝑥 𝑘+1 ) 2 -(𝑥 𝑘 ) 2 ] 2𝐸(𝐼 𝑒 -𝐴 𝑒 --(𝑆 𝑒 -) 2 ) (4.54) 𝑢 2,𝑒 ± ,𝑘 𝑝 = -𝑠𝑖𝑔𝑛 ± • 𝜎 ̅ 𝑦 [(𝑥 𝑘+1 ) 2 -(𝑥 𝑘 ) 2 ] 2𝐸 [ 2𝐴 𝑒 ± 𝑆 𝑝 + ± -(2𝐴 𝑝 + ± -𝐴) 𝑆 𝑒 ± 𝐼 𝑒 ± 𝐴 𝑒 ± -(𝑆 𝑒 ± ) 2 ] ( 4 
{𝑭 𝐽 } = [𝑻] {𝑭 𝐼 } + {𝒒 𝐽 } (4.59)
Where:

The eq.( 4.65) cannot be solved in one shot inasmuch as increasing loading, the plasticity progressively evolves, modifying the tangent stiffness of the structure and the condensation of the distributed loads on nodes even if small displacements are accounted. Hence, an incremental procedure driven by the Newton-Raphson algorithm [START_REF] Zienkiewicz | The Finite Element Method[END_REF][START_REF] Bathe | Finite Element Procedures[END_REF][START_REF] Bathe | Inelastic Analysis of Solids and Structures[END_REF] is necessary, where the loading process is divided into sub-steps (from now on, we refer to a generic one so that its specification is omitted for simplicity), and the convergence within sub-steps is obtained through iterations (represented with i); it is intended that within each NR iteration the The NR algorithm is a load-increment based approach. Hence, the incremental load multiplier ∆𝜆 is appropriately defined according to convergence evolution. Being known, after the generic iteration 𝑖 of the current sub-step, the following quantities: tangent stiffness matrix [𝑲] 𝑖 , condensed distributed load vector {𝑸} 𝑖 , vector {𝑷} 𝑖 of the elastic response of the plasticized parts, vector of internal loads {𝑭 𝑖𝑛𝑡 } 𝑖 and the residual vector {𝑹} 𝑖 , the incremental operative version of the eq.( 4.65) appears as: Solving eq.(4.66), the total displacement vector is updated as {𝑼} 𝑖+1 = {𝑼} 𝑖 + {∆𝑼} 𝑖+1 . In the force flexibility approach, in order to take advantage of the state diagram, the nodal required information is the applied nodal forces on the element. The next step is thus to restore the updated total internal load vector, element by element in its reference, that for the generic element with nodes 𝐼 and 𝐽 appear as: Using eq.(4.68) in (4.42), the internal trend of 𝑁(𝑥), 𝑀(𝑥) along each element is computed. Therefore, the new elastic-plastic state (plasticization fronts 𝑦 𝑝+ , 𝑦 𝑝-) is obtained at the centre of each 𝑘 𝑡ℎ section slice using the state diagrams ( §3.5).

{∆𝑼 𝑓 } 𝑖+1 = [𝑲 𝑓𝑓 ] 𝑖 -
{𝑭 𝑖𝑛𝑡 𝑒𝑙 } 𝑖+1 =
With the updated elastic-plastic state, new values, following the procedure detailed in §4.1, are obtained for: the global tangent stiffness matrix [𝑲] 𝑖+1 , the condensed distributed load vector the vector {𝑸} 𝑖+1 , the condensed force vector associated to the plastic parts {𝑷} 𝑖+1 . The plastic correction is added at the internal load vector: {𝑭 𝑖𝑛𝑡 𝑒𝑙 } 𝑖+1 = {𝑭 𝑖𝑛𝑡 𝑒𝑙 } 𝑖 + {∆𝑭 𝑖𝑛𝑡 𝑒𝑙 } 𝑖+1 + {∆𝑷 𝑒𝑙 } 𝑖+1 , where {∆𝑷 𝑒𝑙 } 𝑖+1 = {𝑷 𝑒𝑙 } 𝑖+1 -{𝑷 𝑒𝑙 } 𝑖 .

Therefore, it is straightforward to obtain the global internal load vector {𝑭 𝑖𝑛𝑡 } 𝑖+1 by assembling and reorienting all the element internal load vectors.

The residual vector {𝑹} 𝑖 is defined as the difference (considering only the free d.o.f.'s) among the applied (external) force vector and the global internal one. Therefore, the updated residual vector turns out as

{𝑹} 𝑖+1 = {𝑭 𝑒𝑥𝑡,𝑓 } 𝑖+1 -{𝑭 𝑖𝑛𝑡,𝑓 } 𝑖+1
, where {𝑭 𝑒𝑥𝑡,𝑓 } 𝑖+1 = ∆𝜆 ( {𝑭 𝑓 } + {𝑸 𝑓 } 𝑖+1 -[𝑲 𝑓𝑐 ] 𝑖+1 {𝑼 𝑐 }).

The iterations continue until a stop-criterion concerning a pre-set tolerance is satisfied and a new sub-step starts until the load multiplier reaches one.

Recovery of Internal Displacements

The force-based method, described in §4.1, allows building the tangent stiffness matrix and other ingredients useful for the FE calculation without using the displacement shape functions. These are generally used to recover the internal displacements by nodal ones, but the shape functions force a basic geometric description of the element itself. One of the main advantages of the force flexibility approach is that the element's geometric shape may be generic if the location of the centre of every section slice is known. However, from now on, the recovery of internal displacements refers to a straight beam. The procedure detailed is performed at the end of every NR iteration after deducing the vector of the internal forces {∆𝑭 𝑖𝑛𝑡 𝑒𝑙 } 𝑖+1 for all elements.

The internal displacements of any element are carried out in their local reference. They are obtained in correspondence with the end of the 𝑘 𝑡ℎ section-slice.

Considering an element with nodes I and J in its local coordinate system, subjected to known nodal internal forces and displacements {∆𝑭 𝑖𝑛𝑡, 𝐼 𝑒𝑙 } 𝑖+1 , {∆𝑭 𝑖𝑛𝑡, 𝐽 𝑒𝑙 } 𝑖+1 , {∆𝑼 𝐼 𝑒𝑙 } 𝑖+1 , {∆𝑼 𝐽 𝑒𝑙 } 𝑖+1 , the goal is to obtain the internal displacements vector {∆𝑼 𝑒𝑙 (𝑥 * )} 𝑖+1 with 𝑥 * ∈ (0, 𝐿 𝑒 ).

To obtain internal displacements through flexibility coefficients, a vector of test-forces {𝑭 * } = {𝑭 Therefore, the displacement vector of the internal point 𝑥 * is found through eq.(4.72). The whole shape of the deformed configuration of the beam element is found performing this procedure for all the points 𝑥 * corresponding to the ends of all section slices. Note that this recovery procedure may be carried out also if the geometric shape of the element is not straight, whether a curved element is considered, or if large displacements are accounted. In this scenario, the computation of the element flexibility matrix through the summation over each slice contribution should account for the actual orientation of every slices.

Validations of the Pre-Integrated FE

Starting now, some numerical tests are discussed to validate the reliability of the proposed beam element.

In all comparisons, the material considered has 𝐸 = 200 𝐺𝑃𝑎, 𝜈 = 0.3 (used for solid elements) and a yield stress 𝜎 ̅ 𝑦 = 250 𝑀𝑃𝑎 . Regarding the stop-criterion of the non-linear analysis, the relative accepted tolerance for the L2 norm of the residual vector is set equal to 10 -3 . The tests are limited to small displacements, so that all non-linearities are driven only by the plastic response inside the structures.

The results obtained with the proposed pre-integrated model are compared with those given by a FE software. As well known, FE solvers cannot manage elastic-perfectly plastic materials; therefore, a linear hardening with a very small plastic tangent modulus 𝐸 𝑝 = 𝐸/5000 is adopted.

The first test concerns a cantilever beam with a circular cross-section, fully described in Fig. 16. Two orthogonal loads are applied at the free end. The solution with the proposed pre-integrated element is obtained with only one element subdivided into 100 section slices, which results high enough to follow the trend of the plastic fronts. The modelling with FE software is carried out using 200 beam elements, each presenting the cross-section fiber subdivisions by 25 × 25 cells (Fig. 16), along radial and circumferential directions. The left graph of Fig. 16 shows the trend of the 𝑦 -displacements of the end-point vs load multiplier. A significant convergence of the results emerges at every load step, with a final displacement equal to 8.0989 10 -3 𝑚 and 8.0988 10 -3 𝑚 for the pre-integrated and fiber-section FE models, respectively. The final elastic-plastic state, namely the asset of the plasticization fronts, is shown in Fig. 17, where the solution of the proposed method is compared with the FE one. In synthesis, very close results are obtained, but the number of free d.o.f.'s is notably different: 3 for the pre-integrated element and 600 for the multiple beams FE solver.

Fig. [START_REF] Tran | Distributed plasticity approach for nonlinear analysis of nuclear power plant equipment: Experimental and numerical studies[END_REF] Cantilever beam with circular cross-section subjected to end-loads Fig. 17 Comparison of the final elastic-plastic extension between the Pre-Integrated and Fiber-Section FE

The second test regards a pinned-pinned tapered beam with a trapezoidal cross-section (Fig. 18), subjected to a linearly variable distributed load and a concentrated moment applied at the right end. The solution with the proposed method is obtained using only one element and 200 section-slice subdivisions.

The results given by the proposed single beam element are compared with two FE models; the first considers 250 beam elements with 20 × 20 cross-section fiber subdivisions per element. The second one, taking advantage of the fact that the plasticized zone is located away from the constraints, refers to solid element modelling (8 nodes brick). For this last, high mesh refinement is carried out to ensure a consistent h-convergence (181,440 elements) with a 32 × 32 subdivision along the 𝑦, 𝑧 -directions. Fig. 18 shows the 𝑦 -displacements of the middle point vs load multiplier of the two conventional modelling and the results

given by the pre-integrated element proposed. remarkable convergence on the elastic-plastic transition. Although, the three modelling require very different computational efforts. Assuming as reference the computational time 𝑡 𝑠𝑜𝑙𝑖𝑑 needed for solid element test, the time required for the pre-integrated and fiber-section FE approaches are 𝑡 𝑝𝑟𝑒-𝑖𝑛𝑡 = 0.016 • 𝑡 𝑠𝑜𝑙𝑖𝑑 and 𝑡 𝑓𝑖𝑏𝑒𝑟-𝑠𝑒𝑐 = 0.370 • 𝑡 𝑠𝑜𝑙𝑖𝑑 . Hence, 𝑡 𝑝𝑟𝑒-𝑖𝑛𝑡 = 0.0432 • 𝑡 𝑓𝑖𝑏𝑒𝑟-𝑠𝑒𝑐 . Note that the time occurred to pre-integrate the section is also included. In synthesis, the proposed method requires an axial subdivision but, thanks to the section state diagrams, the required time to execute is considerably lower than those required when element refinement is necessary (in one dimension for beams recurring to fiber subdivision, and three dimensions for solids).

The third test concerns a frame structure (Fig. 21) subjected to some concentrated loads and moments; the interest of this case is that it causes the development of several plastic regions. The solution with the preintegrated approach requires only eight beam elements, each subdivided into 100 section slices. The fibersection FE is set up with 1200 beam elements with 20 × 20 fiber subdivision. Fig. 21 shows the loadingdisplacement path of point P. For this frame case, the non-linearity of the response is much more evident if compared to previous tests, even if small displacements still hold. Fig. 22 highlights the final elasticplastic state of the frame structure. Overall, the results obtained with the two FE approaches are very close.

It is helpful to point out that the pre-integrated model allows to manage the total collapse of the section (hinge behaviour is attained in two sections in the left part of Fig. 22); on the contrary, the FEA does not allow this scenario due to linear hardening requirement and convergence difficulties arising when the crosssection is fully plasticized.

All the presented examples show that the convergence rate is always similar among the three modelling approaches; however, the benefits connected to the reduction of the total number of d.o.f. result dominant for the computational time. Thus, the advantages evidenced by the proposed elastic-plastic element may only increase when addressing more extended structures. 

Conclusion

The paper presents a rather new way to execute elastic-plastic computations of frame structures. As discussed in §1, two different approaches can be followed: lumped or distributed plasticity. The first is commonly used to analyse the load-bearing capacity to prevent collapse under operating loads (formation

The lower sided elastic-plastic (Fig. 4) case provides similar results, where the geometric quantities of interest are 𝐴 𝑒 -= 𝑏 ( All that remains is to obtain the relations inherent to the two-sided elastic-plastic case, where the geometric quantities are expressed as follows: Placing 𝑌 𝑝 + = 1/2 and 𝑌 𝑝 -= -1/2, the four transitions curve between the upper and lower one-sided elastic-plastic states and the two-sided one results:

𝐴 𝑒 ± =
𝑚 + sign ± [1 -𝑛 2 -(1 ± sign ± 𝑛) 2 3 ] = 0 (𝐴. 20)
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 12 Fig.12 Two-sided elastic-plastic State Diagrams: plasticization fronts 𝑦 𝑝 + , 𝑦 𝑝 -as function of 𝑛, 𝑚 for a generic elliptical (circular included) cross-section

Fig. 13

 13 Fig.13 Partially plasticized beam and section-slices subdivision

Fig. 14

 14 Fig.14 shows a partially plasticized element in its local reference with ending nodes I & J; forces and moments are intended in a generalised sense. The whole stiffness matrix [𝑲] is deduced from the knowledge of the 3×3 flexibility matrix [𝑪 𝐼𝐼 ], referred only to first node I. This last accounts for the actual expressions of the internal forces 𝑁, 𝑇, 𝑀 and it turns out as a sum (not an assembly!) of flexibility contributes.

Fig. 14

 14 Fig.14 Partially plasticized beam element in its local reference

  (4.38) it results [𝑲 𝐽𝐼 ] = [𝑻][𝑲 𝐼𝐼 ] and [𝑲 𝐽𝐽 ] = [𝑻][𝑲 𝐼𝐽 ]. Furthermore, the symmetry of the stiffness matrix implies that [𝑲 𝐼𝐽 ] = [𝑲 𝐽𝐼 ]

Fig. 15

 15 Fig.[START_REF] Tran | Distributed plasticity approach for the nonlinear structural assessment of offshore wind turbine[END_REF] Condensed loads of the partially plasticized beam element

  plastic state does not modify {∆𝑷} 𝑖 ≅ {𝟎}. The external forces and constrained (or imposed) displacements are associated with their total values using the incremental load multiplier ∆𝜆: {∆𝑭 𝑓 } = ∆𝜆 {𝑭 𝑓 }, {∆𝑸} 𝑖 = ∆𝜆 {{𝑸 𝑓 } 𝑖 , {𝑸 𝑐 } 𝑖 } 𝑇 , {∆𝑼 𝑐 } = ∆𝜆 {𝑼 𝑐 }. It is worth pointing out again that the vector {∆𝑸} 𝑖 changes between the iterations since the progressive evolution of the plasticization fronts changes the nodal condensation of the distributed loads.

Fig. 18 Fig. 19

 1819 Fig.[START_REF] Kim | Generalized finite element formulation for efficient firstorder plastic hinge analysis[END_REF] Pinned-pinned tapered trapezoidal beam subjected to linear variable distributed load and a concentrated moment applied at the right end

Fig. 20

 20 Fig.[START_REF] Gong | Adaptive gradual plastic hinge model for nonlinear analysis of steel frameworks[END_REF] Elastic-Plastic state of the middle cross-section of the second test-case according to the pre-integrated, fiber-section and solid FE approaches

Fig. 21 Fig. 22

 2122 Fig.21 Third test: frame structure with rectangular cross-sections, subjected to concentrated loads

9 )

 9 Use the latter quantities in eq.s(3.5, 3.6), repeating the previous steps, it results: From which, placing 𝑌 𝑝 -= -1/2, the two transitions straight line from the elastic state to the lower onesided elastic-plastic one turns out:

  

  

  

  

  

  

  

  

  While the associated stresses are simply 𝜎 𝑥 = 𝐸𝜀 𝑥 , 𝜏 𝑥𝑦 = 𝐺 𝛾 𝑥𝑦 .

	𝜒 =	𝐴 𝐼 2 ∫ ( 𝐴	𝑆(𝑦) 𝑏(𝑦) ) 2	𝑑𝐴 =	𝐴 𝐼 2 ∫ ℎ + ℎ -	1 𝑏(𝑦)	ℎ -( ∫ 𝑦 ỹ	𝑏(𝑦 ̃) 𝑑𝑦 ̃)2	𝑑𝑦	(2.15)
	Where 𝑦 ̃ is a dummy variable.								
	Using eq.s(2.11 -2.13) combined with (2.3, 2.4), the normal and shear strains are:
			𝜀 𝑥 (𝑥, 𝑦) =	𝑁 𝐸𝐴	-	𝑀 𝐸𝐼	𝑦	(2.16)
			𝛾 𝑥𝑦 (𝑥) =	𝜒 𝑇 𝐺𝐴				(2.17)
		ℎ +						ℎ +	
				𝑑𝑦 ; 𝐼 = ∫ 𝑦 2 𝑏(𝑦)	𝑑𝑦	(2.14)
		ℎ -						ℎ -	
	The shear correction factor 𝜒 is obtained by the energetic equivalence between the corrected Timoshenko
	shear model and the Jourawsky's shear distribution:				

  with the fundamental constraint

	𝑦 𝑝 + ≥ 𝑦 𝑝 -. The geometric quantities 𝐴 𝑒 ± , 𝐴 𝑝 + ± , 𝑆 𝑒 ± , 𝑆 𝑝 + ± , 𝐼 𝑒 ± , functions of 𝑦 𝑝 + and 𝑦 𝑝 -, are defined by eq.(2.45 -
	2.47).

  ,14).

		𝑈 𝑒,𝑘 = ∫ ∫ ( 𝜎 𝑥 2𝐸 2 𝐴 𝑥 𝑘+1 𝑥 𝑘	+	𝜏 𝑥𝑦 2𝐺 2	)	𝑑𝐴 𝑑𝑥 =	1 2𝐸 𝐴	∫ 𝑁 2 𝑥 𝑘+1 𝑥 𝑘	𝑑𝑥 +	1 2𝐸 𝐼	∫ 𝑀 2 𝑥 𝑘+1 𝑥 𝑘	𝑑𝑥 +	𝜒 2 2𝐺𝐴	𝑥 𝑘+1 𝑥 𝑘 ∫ 𝑇 2	𝑑𝑥	(4.5)
	𝑈 𝑒,𝑘 + = ∫ ∫ ( 𝐴 𝑒 + 𝑥 𝑘+1 𝑥 𝑘	𝜎 𝑥 2𝐸 2	+	𝜏 𝑥𝑦 2𝐺 2	)	𝑑𝐴 𝑑𝑥 =	1 2𝐸 𝐴 𝑒 + [1 +	(𝑆 𝑒 + ) 2 + 𝐴 𝑒 𝐼 𝑒 + -(𝑆 𝑒 + ) 2 ] • ∫ 𝑁 2 𝑥 𝑘+1 𝑥 𝑘	𝑑𝑥 +	𝐴 𝑒 + (𝜒 𝑒 + ) 2 2𝐺 𝐴 2 ∫ 𝑇 2 𝑥 𝑘+1 𝑥 𝑘	𝑑𝑥 +
					+	𝐴 𝑒 + + 𝐴 𝑒 2𝐸 (𝐼 𝑒 + -(𝑆 𝑒 + ) 2 )	• ∫ 𝑀 2 𝑥 𝑘+1 𝑥 𝑘	𝑑𝑥 +	+ 𝑆 𝑒 + 𝐴 𝑒 𝐸 (𝐼 𝑒 + -(𝑆 𝑒 + ) 2 )	𝑥 𝑘+1 𝑥 𝑘 • ∫ 𝑁 • 𝑀	𝑑𝑥 +
	+	𝑠𝑖𝑔𝑛 + • 𝜎 ̅ 𝑦 𝐸 𝐴 𝑒 +	[𝐴 𝑒 + -𝐴 (1 +	(𝑆 𝑒 + ) 2 + 𝐴 𝑒 𝐼 𝑒 + -(𝑆 𝑒 + ) 2 )] • ∫ 𝑁 𝑥 𝑘+1 𝑥 𝑘	𝑑𝑥 -	𝑠𝑖𝑔𝑛 + • 𝜎 ̅ 𝑦 𝐴 𝑆 𝑒 + 𝐸 (𝐼 𝑒 + 𝐴 𝑒 + -(𝑆 𝑒 + ) 2 )	𝑥 𝑘+1 𝑥 𝑘 • ∫ 𝑀	𝑑𝑥 + 𝑈 𝑒,𝑘 +,𝑐𝑜𝑛𝑠𝑡	(4.6)
	𝑈 𝑒,𝑘 -= ∫ ∫ ( 𝐴 𝑒 -𝑥 𝑘+1 𝑥 𝑘	𝜎 𝑥 2𝐸 2	+	𝜏 𝑥𝑦 2𝐺 2	)	𝑑𝐴 𝑑𝑥 =	1 2𝐸 𝐴 𝑒 -[1 +	(𝑆 𝑒 -) 2 -𝐴 𝑒 𝐼 𝑒 --(𝑆 𝑒 -) 2 ] • ∫ 𝑁 2 𝑥 𝑘+1 𝑥 𝑘	𝑑𝑥 +	𝐴 𝑒 -(𝜒 𝑒 -) 2 2𝐺𝐴 2 ∫ 𝑇 2 𝑥 𝑘+1 𝑥 𝑘	𝑑𝑥 +
					+	𝐴 𝑒 --𝐴 𝑒 2𝐸 (𝐼 𝑒 --(𝑆 𝑒 -) 2 )	• ∫ 𝑀 2 𝑥 𝑘+1 𝑥 𝑘	𝑑𝑥 +	-𝑆 𝑒 -𝐴 𝑒 𝐸 (𝐼 𝑒 --(𝑆 𝑒 -) 2 )	𝑥 𝑘+1 𝑥 𝑘 • ∫ 𝑁 • 𝑀	𝑑𝑥 +
	+	𝑠𝑖𝑔𝑛 -• 𝜎 ̅ 𝑦 𝐸 𝐴 𝑒 -	[𝐴 𝑒 --𝐴 (1 +	(𝑆 𝑒 -) 2 -𝐴 𝑒 𝐼 𝑒 --(𝑆 𝑒 -) 2 )] • ∫ 𝑁 𝑥 𝑘+1 𝑥 𝑘	𝑑𝑥 -	𝑠𝑖𝑔𝑛 -• 𝜎 ̅ 𝑦 𝐴 𝑆 𝑒 -𝐸 (𝐼 𝑒 -𝐴 𝑒 --(𝑆 𝑒 -) 2 )	𝑥 𝑘+1 𝑥 𝑘 • ∫ 𝑀	𝑑𝑥 + 𝑈 𝑒,𝑘 -,𝑐𝑜𝑛𝑠𝑡	(4.7)
	𝑈 𝑒,𝑘 ± = ∫ ∫ ( 𝑥 𝑘+1 𝐴 𝑒 ± 𝑥 𝑘	𝜎 𝑥 2𝐸 2	+	2 2𝐺 𝜏 𝑥𝑦	)				
	The Complementary Strain Energy is thus the sum of the energy types among all section slices in the
	interval [0, 𝐿]:												
									𝑘(𝐿)			
						𝑈 = ∑[(𝑈 𝑒,𝑘 + 𝑈 𝑒,𝑘 + + 𝑈 𝑒,𝑘 -+ 𝑈 𝑒,𝑘 ± ) + (𝑈 𝑝,𝑘 + + 𝑈 𝑝,𝑘 -+ 𝑈 𝑝,𝑘 ± )]	(4.4)
									𝑘(0)			
	The energetic contributions for each 𝑘 𝑡ℎ section-slice are reported hereinafter, using the associated strain
	and stress fields for each elastic-plastic regimes eq.s(2.16, 2.17; 2.18, 2.27, 2.28; 2.29, 2.34, 2.35; 2.40,

2.49, 2.50). Each 𝑘 𝑡ℎ -section slice may have its material and geometric quantities, e.g. 𝐸 ,𝑘 , 𝐴 ,𝑘 , 𝐼 ,𝑘 , 𝑥 𝑘 , 𝑥 𝑘+1 etc., but, to simplify the notation, the subscript k for these quantities is omitted in the following formulas.

Considering the elastic contributions, they are:

  Coefficients of the flexibility matrix [𝑪 𝐼𝐼 ] 𝑒 + ,𝑘 :Coefficients of the flexibility matrix [𝑪 𝐼𝐼 ] 𝑒 -,𝑘 :

	𝑐 13,𝑒 ,𝑘 = 0 𝑐 22,𝑒 ,𝑘 = (𝑥 𝑘+1 ) 3 -(𝑥 𝑘 ) 3 𝐸𝐴 𝑐 23,𝑒 -,𝑘 = -𝐴 𝑒 -[(𝑥 𝑘+1 ) 2 -(𝑥 𝑘 ) 2 ] + 2𝐸(𝐼 𝑒 -𝐴 𝑒 --(𝑆 𝑒 -) 2 ) 𝜒 2 (𝑥 𝑘+1 -𝑥 𝑘 ) 𝐺𝐴 𝑐 23,𝑒 ,𝑘 = -2𝐸𝐴 (𝑥 𝑘+1 ) 2 -(𝑥 𝑘 ) 2 𝑐 33,𝑒 -,𝑘 = 𝐴 𝑒 -(𝑥 𝑘+1 -𝑥 𝑘 ) 𝐸(𝐼 𝑒 -𝐴 𝑒 --(𝑆 𝑒 -) 2 )		(4.16) (4.30) (4.17) (4.18) (4.31)
	𝑐 33,𝑒 ,𝑘 = Coefficients of the flexibility matrix [𝑪 𝐼𝐼 ] 𝑒 ± ,𝑘 : 𝐸𝐼 (𝑥 𝑘+1 -𝑥 𝑘 )		(4.19)
	𝑐 11,𝑒 ± ,𝑘 = [1 +	(𝑆 𝑒 ± ) 2 ± 𝐴 𝑒 𝐼 𝑒 ± -(𝑆 𝑒 ± )	2 ]	(𝑥 𝑘+1 -𝑥 𝑘 ) 𝐸 𝐴 𝑒 ±		(4.32)
	𝑐 11,𝑒 + ,𝑘 = [1 + 𝑐 12,𝑒 ± ,𝑘 = -𝑆 𝑒 ± [(𝑥 𝑘+1 ) 2 -(𝑥 𝑘 ) 2 ] (𝑆 𝑒 + ) 2 𝐼 𝑒 + 𝐴 𝑒 + -(𝑆 𝑒 + ) 2 ] (𝑥 𝑘+1 -𝑥 𝑘 ) 𝐸𝐴 𝑒 + 2𝐸 (𝐼 𝑒 ± 𝐴 𝑒 ± -(𝑆 𝑒 ± ) 2 )		(4.20) (4.33)
	𝑐 12,𝑒 + ,𝑘 = -𝑐 13,𝑒 ± ,𝑘 = 𝑆 𝑒 𝑆 𝑒 + [(𝑥 𝑘+1 ) 2 -(𝑥 𝑘 ) 2 ] 2𝐸(𝐼 𝑒 + 𝐴 𝑒 + -(𝑆 𝑒 + ) 2 ) ± (𝑥 𝑘+1 -𝑥 𝑘 ) 𝐸 (𝐼 𝑒 ± 𝐴 𝑒 ± -(𝑆 𝑒 ± ) 2 )		(4.21) (4.34)
	({𝑭 𝐼 }) 𝜕({𝑭 𝐼 }) 𝑇 𝜕{𝑭 𝐼 } = ∑[𝑪 𝐼𝐼 ] 𝑒 ,𝑘 𝑘(𝐿) + [𝑪 𝐼𝐼 ] 𝑒 + ,𝑘 + [𝑪 𝐼𝐼 ] 𝑒 -,𝑘 + [𝑪 𝐼𝐼 ] 𝑒 ± ,𝑘 = ∑ 𝜕 2 (𝑈 𝑒 ,𝑘 + 𝑈 𝑒 ,𝑘 + + 𝑈 𝑒 ,𝑘 -+ 𝑈 𝑒 ,𝑘 ± ) 𝜕({𝑭 𝐼 }) 𝑇 𝜕{𝑭 𝐼 } 𝑘(𝐿) 𝑘(0) + (𝑥 𝑘+1 -𝑥 𝑘 ) 𝑆 𝑒 𝐸(𝐼 𝑒 + 𝐴 𝑒 + -(𝑆 𝑒 + ) 2 ) 𝐴 𝑒 + [(𝑥 𝑘+1 ) 3 -(𝑥 𝑘 ) 3 ] 3𝐸(𝐼 𝑒 + 𝐴 𝑒 + -(𝑆 𝑒 + ) 2 ) + (χ e + ) 2 𝐴 𝑒 𝐴 𝑒 ± [(𝑥 𝑘+1 ) 3 -(𝑥 𝑘 ) 3 ] 3𝐸 (𝐼 𝑒 ± 𝐴 𝑒 ± -(𝑆 𝑒 ± ) + (χ e ± ) 2 𝐴 𝑒 ± (𝑥 𝑘+1 -𝑥 𝑘 ) 𝐺𝐴 2 2 ) + (𝑥 𝑘+1 -𝑥 𝑘 ) 𝐺𝐴 2 𝑐 23,𝑒 + ,𝑘 = -𝑐 13,𝑒 + ,𝑘 = 𝑐 22,𝑒 + ,𝑘 = 𝑐 22,𝑒 ± ,𝑘 = 𝐴 𝑒 + [(𝑥 𝑘+1 ) 2 -(𝑥 𝑘 ) 2 ] 2𝐸(𝐼 𝑒 + 𝐴 𝑒 + ) 2 ) 𝑐 23,𝑒 ± ,𝑘 = -𝐴 𝑒 ± [(𝑥 𝑘+1 ) 2 -(𝑥 𝑘 ) 2 ] 2𝐸 (𝐼 𝑒 ± 𝐴 𝑒 ± -(𝑆 𝑒 ± ) 2 ) + -(𝑆 𝑒 𝑐 33,𝑒 + ,𝑘 = 𝐴 𝑒 + (𝑥 𝑘+1 -𝑥 𝑘 ) 𝐸(𝐼 𝑒 + 𝐴 𝑒 + -(𝑆 𝑒 + ) 2 ) 𝑐 33,𝑒 ± ,𝑘 = 𝐴 𝑒 ± (𝑥 𝑘+1 -𝑥 𝑘 ) 𝐸 (𝐼 𝑒 ± 𝐴 𝑒 ± -(𝑆 𝑒 ± ) 2 )	=	(4.12) (4.22) (4.35) (4.23) (4.36) (4.24) (4.25) (4.37)
		𝑘(0)	
	Omitting for simplicity the subscripts referring to node I, the flexibility components are:
	𝑐 𝑖𝑗 = ∑ 𝑐 𝑖𝑗 ,𝑘 𝑘(𝐿) 𝑐 11,𝑒 -,𝑘 = [1 + (𝑆 𝑒 = ∑ 𝑐 𝑖𝑗,𝑒 ,𝑘 𝑘(𝐿) -) 2 𝐼 𝑒 -𝐴 𝑒 --(𝑆 𝑒 -) 2 ] (𝑥 𝑘+1 -𝑥 𝑘 ) + 𝑐 𝑖𝑗,𝑒 + ,𝑘 + 𝑐 𝑖𝑗,𝑒 -,𝑘 + 𝑐 𝑖𝑗, 𝑒 ± ,𝑘 𝐸 𝐴 𝑒 -	(𝑖, 𝑗 ∈ 1,2,3)	(4.13) (4.26)
	𝑘(0) Only 6 coefficients are reported below due to the symmetry of the flexibility matrices in eq.(4.12). 𝑘(0) 𝑐 12,𝑒 -,𝑘 = -𝑆 𝑒 -[(𝑥 𝑘+1 ) 2 -(𝑥 𝑘 ) 2 ] 2𝐸(𝐼 𝑒 -𝐴 𝑒 --(𝑆 𝑒 -) 2 )	(4.27)
	Coefficients of the flexibility matrices [𝑪 𝐼𝐼 ] 𝑒 ,𝑘 : 𝑐 11,𝑒 ,𝑘 = 𝑐 13,𝑒 -,𝑘 = 𝑆 𝑒 -(𝑥 𝑘+1 -𝑥 𝑘 ) 𝐸(𝐼 𝑒 -𝐴 𝑒 -) 2 ) --(𝑆 𝑒 (𝑥 𝑘+1 -𝑥 𝑘 ) 𝐸𝐴 𝑐 12,𝑒 ,𝑘 = 0 𝑐 22,𝑒 -,𝑘 = 𝐴 𝑒 -[(𝑥 𝑘+1 ) 3 -(𝑥 𝑘 ) 3 ] 3𝐸(𝐼 𝑒 -𝐴 𝑒 --(𝑆 𝑒 -) 2 ) + (χ e -) 2 𝐴 𝑒 -(𝑥 𝑘+1 -𝑥 𝑘 ) 𝐺𝐴 2		(4.28) (4.14) (4.15) (4.29)

  The internal displacements vector {∆𝑼 𝑒𝑙 (𝑥 * )} 𝑖+1 is obtained as the kinematic composition of the rigid motion driven by node J {∆𝑼 𝐽 𝑒𝑙 } 𝑖+1 and the deformation at the generic internal point 𝑥 * by respect to the Where [𝑹 𝐽 ] is the rotation matrix that accounts for the rotation angle at node J. The test-forces vector {𝑭 * } is assumed null after the derivative operation.Performing the derivative operation of eq.(4.70) with respect to the test-forces vector {𝑭 * }. It is evident that only the section-slices in 𝑥 ∈ [𝑥 * , 𝐿 𝑒 ] are involved in the calculation of the energy associated with the If the slices are small enough, the integral between 𝑥 𝑘 and 𝑥 𝑘+1 may be substituted by the values at

	𝑐 31 ,𝑘 *	= 𝑐 31 ,𝑘				(4.81)
	𝑐 32 ,𝑘 *	= 𝑐 32 ,𝑘				(4.82)
	node J {∆𝑼 𝐽 𝑑𝑒𝑓 (𝑥 * )} 𝑐 33 ,𝑘 * = 𝑐 33 ,𝑘	𝑖+1	.		(4.83)
	{∆𝑼 𝑒𝑙 (𝑥 * )} 𝑖+1 = [𝑹 𝐽 ] 𝑇 ({∆𝑼 𝐽 𝑒𝑙 } 𝑖+1 The coefficients of the vector {𝒖 𝑞, * } are: 𝑘(𝐿)	+ {∆𝑼 𝐽 𝑑𝑒𝑓 (𝑥 * )}	𝑖+1	)	(4.72)
					𝑢 𝑖 𝑞, * = ∑ 𝑢 𝑖 ,𝑘 𝑞, *	(𝑖 ∈ 1,2,3)	(4.84)
	The deformation aliquot {∆𝑼 𝐽 𝑑𝑒𝑓 (𝑥 * )} Complementary Energy, where the complementary strain energy (eq.s(4.12 -4.15)) is computed using the 𝑘(𝑥 * ) is obtained applying the Principle of the Minimum 𝑖+1 Where:
	𝑢 1 ,𝑘 𝑞, * = 𝑢 1 ,𝑘 𝑞 internal forces in eq.(4.70). deformation aliquot: 𝑢 2 ,𝑘 𝑞, * = -𝑥 𝑘+1 𝑐 13 ,𝑘 0 𝑥 𝑥 𝑘 (𝑥 𝑘+1 -𝑥 𝑘 ) ∫ ∫ 𝑞 𝑥 (𝑥 ̃)	• (𝑥 -𝑥 * ) 𝑑𝑥 ̃ 𝑑𝑥 +	(4.85)
	{∆𝑼 𝐽 𝑑𝑒𝑓 (𝑥 * )} = ∑ 𝜕(𝑈 𝑒 ,𝑘 + 𝑈 𝑒 ,𝑘 𝑖+1 = 𝜕𝑈 ({∆𝑭 𝑖𝑛𝑡, 𝐼 𝑒𝑙 𝜕{𝑭 * } } 𝑖+1 + + 𝑈 𝑒 ,𝑘 -+ 𝑈 𝑒 ,𝑘 , {𝑭 * } ) -(𝑥 𝑘+1 -𝑥 𝑘 ) | {𝑭 * } = {𝟎} 𝑥 𝑘+1 = 𝑐 33 ,𝑘 ∫ ∫ 𝑞 𝑦 (𝑥 ̃) • (𝑥 ̃-𝑥) 𝑥 0 𝑥 𝑘 𝑘(𝐿) ± ) 𝜕{𝑭 * } | {𝑭 * } = {𝟎} 𝑘(𝑥 * ) = [𝑪 * ]{∆𝑭 𝑖𝑛𝑡, 𝐼 𝑒𝑙 } 𝑖+1 + {𝒖 𝑞, * } + {𝒖 𝑝, * } (4.73) (𝑥 -𝑥 * ) 𝑑𝑥 ̃ 𝑑𝑥 (4.86) 𝑢 3 ,𝑘 𝑞, * = 𝑢 3 ,𝑘 𝑞 (4.87)
	The coefficients of the matrix [𝑪 * ] are: respective centres.
	𝑐 𝑖𝑗 * = ∑ 𝑐 𝑖𝑗 ,𝑘 * 𝑘(𝐿) The coefficients of the vector {𝒖 𝑝, * } are: 𝑘(𝐿) 𝑘(𝑥 * ) The coefficients 𝑐 𝑖𝑗 𝑢 𝑖 𝑝, * = ∑ 𝑢 𝑖 ,𝑘 𝑝, * 𝑘(𝑥 * ) 𝑐 11 ,𝑘 * = 𝑐 11 ,𝑘 Where:	(𝑖, 𝑗 ∈ 1,2,3) (𝑖 ∈ 1,2,3)	1 * , 𝑭 2 * , 𝑭 3 * } (4.74) (4.88) (4.75)
	is applied to point 𝑥 * . The resultant internal force field is: 𝑐 12 ,𝑘 * = 𝑐 12 ,𝑘 𝑢 1 ,𝑘 𝑝, * = 𝑢 1 ,𝑘 𝑝	(4.76) (4.89)
	{𝑭 𝑖𝑛𝑡 (𝑥)} = { = 𝑐 13 ,𝑘 = 𝑐 21 ,𝑘 [ (𝑥 𝑘+1 -𝑥 * ) 2 -(𝑥 𝑘 -𝑥 * ) 2 [𝑻(𝑥)]{∆𝑭 𝑖𝑛𝑡, 𝐼 𝑒𝑙 } 𝑖+1 [𝑻(𝑥)]{∆𝑭 𝑖𝑛𝑡, 𝐼 𝑒𝑙 } 𝑖+1 + [𝑻 * (𝑥)]{𝑭 * } + {𝒒(𝑥)} , 𝑥 ∈ [𝑥 * , 𝐿 𝑒 ] + {𝒒(𝑥)} , 𝑥 ∈ [0, 𝑥 * ) ] 𝑝, * = 𝑢 2 ,𝑘 𝑐 13 ,𝑘 * 𝑐 21 ,𝑘 * 𝑢 2 ,𝑘 𝑝 [ (𝑥 𝑘+1 -𝑥 * ) 2 -(𝑥 𝑘 -𝑥 * ) 2 ] (𝑥 𝑘+1 ) 2 -(𝑥 𝑘 ) 2 (𝑥 𝑘+1 ) 2 -(𝑥 𝑘 ) 2 𝑢 3,𝑘 𝑝, * = 𝑢 3 ,𝑘 𝑝	(4.70) (4.77) (4.90) (4.78) (4.91)
	where: 𝑐 22 ,𝑘 * = (𝑐 22 ,𝑘 -𝑐 23 ,𝑘 * = 𝑐 23 ,𝑘 [ (𝑥 𝑘+1 -𝑥 * ) 2 -(𝑥 𝑘 -𝑥 * ) 2 [𝑻 * (𝑥)] = [ -1 (χ e -) 2 𝐴 𝑒 -(𝑥 𝑘+1 -𝑥 𝑘 ) 𝐺𝐴 2 ) [1 -0 0 (𝑥 𝑘+1 ) 2 -(𝑥 𝑘 ) 2 ]	0 ((𝑥 𝑘+1 ) 3 -(𝑥 𝑘 ) 3 )𝑥 * (𝑥 𝑘+1 ) 3 -(𝑥 𝑘 ) 3 ] + 0 -1 0 (𝑥 -𝑥 * ) 3 2 -1 ]	(χ e -) 2 𝐴 𝑒 -(𝑥 𝑘+1 -𝑥 𝑘 ) 𝐺𝐴 2	(4.79) (4.71) (4.80)

* are directly derived from the already computed flexibility coefficients 𝑐 𝑖𝑗 ,𝑘 in eq.(4.13).

All the 9 coefficients of the matrix [𝑪 * ] are reported below, inasmuch a non-symmetric matrix forms:

  Using the eq.(A.11-A.15) in eq.s(3.8 -3.9), after some algebra, the following equations result: Solving the eq.(A.[START_REF] Tran | Distributed plasticity approach for nonlinear analysis of nuclear power plant equipment: Experimental and numerical studies[END_REF], where the correct solution is the positive root, putting it in the eq.(A.17) and expressing the results in dimensionless form, it turns out:

							𝑏 (𝑦 𝑝 + -𝑦 𝑝 -)	(𝐴. 11)
			𝐴 𝑝 + ± = 𝑏 (	ℎ 2	-𝑦 𝑝 + )	(𝐴. 12)
			𝑆 𝑒 ± =	𝑏 2	[(𝑦 𝑝 + )	2 -(𝑦 𝑝 -)	2 ]	(𝐴. 13)
			𝑆 𝑝 + ± =		𝑏 2	[	ℎ 2 4	-(𝑦 𝑝 + )	2	]	(𝐴. 14)
			𝐼 𝑒 ± =		𝑏 3	[(𝑦 𝑝 + )	3 -(𝑦 𝑝 -)	3 ]	(𝐴. 15)
	(𝑦 𝑝 + )	2 + ( 𝑏 sign ± 𝜎 ̅ 𝑦 𝑁	) 𝑦 𝑝 + + [( 𝑏 sign ± 𝜎 ̅ 𝑦 𝑁	) 2	-3 (	𝑀 𝑏 sign ± 𝜎 ̅ 𝑦	) -	3 4	ℎ 2 ] = 0	(𝐴. 16)
			𝑦 𝑝 -= -𝑦 𝑝 + -	𝑁 𝑏 sign ± 𝜎 ̅ 𝑦	(𝐴. 17)
		𝑌 𝑝 + (𝑛, 𝑚) = -	sign ± 2	𝑛 +	√3 2	√1 -𝑛 2 + sign ± 𝑚	(𝐴. 18)
		𝑌 𝑝 -(𝑛, 𝑚) = -	sign ± 2	𝑛 -	√3 2	√1 -𝑛 2 + sign ± 𝑚	(𝐴. 19)

The force vectors related to the distributed loads {𝑸} and internal forces associated with the switching plasticized parts {𝑷} are obtained using the eq. (4.44) 

The FE formulation of a partially plasticized beam element in its local reference is complete.

It is worth noting that the Force Flexibility Method here adopted allows extending its application to nonrectilinear elements if the internal geometrical shape is known.

Incremental Analysis Procedure

Previous section obtained the formulation of the elastic-plastic element in its local coordinate system. Using the standard FE procedure [START_REF] Zienkiewicz | The Finite Element Method[END_REF][START_REF] Bathe | Finite Element Procedures[END_REF], the assembled stiffness matrix and the force and displacements vectors are given on a global reference system:

[𝑲]{𝑼} + {𝑷} = {𝑭} + {𝑸} (4.64)

Partitioning in free (𝑓) and constrained (𝑐) d.o.f.'s :

of plastic hinges). The second allows a more detailed analysis of the structure's propagation and distribution of plasticity. There are two main strategies to obtain plastic distribution in beam sections: the use of solid elements that implies a considerable number of d.o.f.'s but it results poorly manageable for extensive size modelling; the other one requires a sampling among all beam sections to evaluate at every fiber the plastic state. This last one seems preferable; however, two main problems emerge. A considerable cross-section sampling is required to correctly grasp the distribution of the plasticization fronts within the section. The second problem concerns the high number of elements required to reliably follow the evolution of the plastic fronts along the axis. The combination of these two requirements significantly affects the computational time to solve frame structures exhibiting partial plasticization. It is advisable that in presence of other induced non-linearities, such as those emerging in large displacement analyses or contact activations, the convergence difficulties furtherly increase.

The scope of this paper tries to change the beam approach so that numerical heaviness is strongly reduced by providing two ideas: i) pre-integration of the elastic-plastic cross-section response, ii) a unique partially plasticized beam element that requires only 6 d.o.f.'s, whatever is the section shape or plastic distribution along with it. The previous two key-points allow to perform a FE Analysis that overcomes the internal sampling of all cross-sections (and therefore the computation for all internal sample point), so far common used, and that manage only the minimum number of degrees of freedom necessary.

The pre-integration is made possible by the introduction of the elastic-plastic State Diagram, which returns, for every symmetric cross-section, the position of the plastic fronts as a function of experienced loads 𝑁, 𝑀.

In this work, the elastic-perfectly plastic behaviour is assumed as well as the monotonic increase of all applied loads. Still, the deduction of the elastic-plastic State Diagram for hardening materials is presumed possible and will be investigated in future works.

The force-flexibility approach, which does not require any displacements shape function, is used to model with only one finite element a beam that experience variable plasticity along their axes, after its subdivision into several slices. However, this subdivision affects only the computation of every element of the stiffness matrix and do not alter the overall d.o.f.'s of the frame structure. In other words, the mesh refinement is not influenced by the plasticity increase. This allows to build up the tangent stiffness matrix of a partially plasticized element as a sum (not an assemble!) of the flexibility effects induced by each section slice.

Some numerical comparisons among the proposed pre-integrated beam, the FE modelling by beams with fiber-section sampling and solid FE are shown. It clearly emerges that the proposed beam element allows significant enhancements on the computational efforts while keeping strong convergence of the results among the three approaches.

A considerable point of view is that the proposed ideas can also be extended to curvilinear beams and for address problems with other non-linearity sources (e.g. large displacements, beams in contact etc.) combined with the material plasticity. The extension to hardening materials and multiaxial stress states, will be investigated in future works.

Appendix A.1 Analytical solution of the Elastic-Plastic State Diagram for rectangular sections

For a rectangular cross-section of dimensions 𝑏 × ℎ, the State Diagram can be fully deduced in an analytical closed form. For the upper one-sided elastic-plastic state (Fig. 3), the geometric quantities of interest are made explicit as: The negative solution is discarded inasmuch it provides the constant value 𝑦 𝑝 + = -ℎ/2, while the positive solution return:

The previous can be expressed in dimensionless form using the dimensionless parameters: 𝑛 = 𝑁/𝑁 𝑝 , 𝑚 = 𝑀/𝑀 𝑝 , where 𝑁 𝑝 = 𝑏ℎ𝜎 ̅ 𝑦 , 𝑀 𝑝 = (𝑏ℎ 2 𝜎 ̅ 𝑦 ) /4 and 𝑌 𝑝 + = 𝑦 𝑝 + /ℎ:

It is worth pointing out that, in this case, the lawful pairs (𝑛, 𝑚) are those included between the limit curves, still unknowns, between the upper one-sided elastic-plastic case (Fig. 7, 8, 9, 10) and the two-sided ones.

The limit curves (A.8), that delimit the transition between the elastic state to the upper one-sided elasticplastic one, are two straight lines that emerge from eq.(A.7) placing 𝑌 𝑝 + = 1/2: 𝑚 -2 3 (𝑛 -𝑠𝑖𝑔𝑛 + ) = 0 (𝐴. 8)

The curves in eq.(A.20) and (A.8, A.10) allow obtaining the limits of the elastic-plastic regimes, from which the appropriate pairs (𝑛, 𝑚) to use in eq.s(A.7, A.9, A.18, A. [START_REF] Hoang | An overview of the plastic-hinge analysis of 3D steel frames[END_REF]) can be calculated. Furthermore, the two external boundary curves that identify the full plastic state are obtained as a particular case of the two-sided elastic-plastic regime, imposing the merging of the two plastic fronts, hence by equating the eq.s(A.18,

A.19):

𝑚 + sign ± (1 -𝑛 2 ) = 0 (𝐴. 21)