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The complete theory of curved beams in terms of kinematic and stress, considering thickness effect and out-of-plane loads (torsion included) is provided in this paper. The engineering beam approach is followed; therefore, the key-point is the invariance of the cross-section shape during the undeformeddeformed configuration change. The normal circumferential stress and the tangential stresses due to torsion derive from the latter assumption; the other two normal stress (radial and axial) and tangential stresses due to pure shear are obtained through a generalization of Jourawsky's approach for curved beams. The obtained stress state is triaxial and takes into account five of the six components of the stress tensor. The kinematic equations obtained are valid for any compact (non-thin-walled) and non-hollowed cross-section.

The complete stress solution, instead, is limited to the further assumption of double-symmetric crosssections. For the case of rectangular sections an analytical solution in closed-form is available. For other sections, the procedure requires the numerical evaluation of some geometric integrals. The reliability of the proposed solution is tested in the planar loading case comparing it with the analytical solution in 2D Elasticity; for the out-of-plane loading cases the comparisons are carried out with FEM analyses (3D solid elements). The proposed model agrees very well for both comparisons. An interesting advantage of this solution is the capability to carry out post-processing stress analyses on curved beam structures, using the results obtained from beam finite elements (one-dimensional) and avoiding the recourse to higher element types (3D solid elements).

Introduction 1.A short review

Curved beams are structural elements widely used in many fields of Engineering, as mechanical, aeronautical, naval and civil. The use of these elements takes advantage of curvature for mechanical resistance and stiffness, chiefly if loaded against curvature. In fact, the curvature causes the coupling of flexural and membrane deformation mechanisms. Classical example are arches, girder hooks, leaf springs and the fuselage reinforcement ribs. Another advantage is the high value of elastic energy stored when comparing it with straight beams having similar weight or overall dimension. Therefore, curved beams are sought in many applications for their compactness. Compression coil springs are a typical example in which the desired stiffness is gained while preventing the typical axial buckling of straight beams; furthermore, they allow an almost linear behaviour even when large displacements occur, but strains keep below the elastic limit of the material.

The study and analysis of curved beams is a well-known issue, natural extension of straight beam analyses, which aroused the interest of many researchers since mid-nineteenth century. For the case of curved beams having the mean line contained in a plane (plane of curvature) in the undeformed configuration, the first contribution dates back to 1858 by Emil Winkler [START_REF] Winkler | Formänderung und Festigkeit gekrümmter Körper, insbesondere der Ringe (Change in shape and Strength of Curved bodies, especially Rings)[END_REF]. In his first work Winkler deals with beams loaded in the plane of curvature and, with a one-dimensional model (engineering approach to beams), deduces that the stress along the axis (also named circumferential or hoop stress in a constant curvature beam) presents a hyperbolic trend, rather than the linear one known for straight beams. Some of the results provided in this work have been updated and corrected in a subsequent published book (Winkler, 1867, chap. XL).

The pioneering work of Winkler stimulated the interest of structural engineers; equivalent deductions of the engineering planar curved beam model can be found in [START_REF] Résal | De l'équilibre d'èlasticitè et de la resistance du ressort à boudin (Balance of elasticity and resistance of the coil spring)[END_REF][START_REF] Grashof | Theorie der Elastizität und Festigkeit (Theory of Elasticity and Strength)[END_REF][START_REF] Von Bach | Elastizität und Festigkeit[END_REF]. Several discussions and references to papers and experimental results, carried on in the same period, can be found in the book of von Bach [START_REF] Von Bach | Elastizität und Festigkeit[END_REF] and in [START_REF] Whittemore | Test of some girder hooks[END_REF][START_REF] Gough | Design of Crane Hooks and Other Components of Lifting Gear[END_REF]. Previous cited works confirm the validity of Winkler results and the inaccuracy of the straight beam The previous mentioned approaches, making use of 3D elasticity, requires the recourse to numerical integration to get the effective stress field. Surprisingly, to the best of our knowledge of existing literature, a one-dimensional model (engineering/technical) valid also for thick curved beams providing the complete stress solution for in and out-of-plane loadings, was never formalized.

Considering the engineering approach, the first work accounting of out-of-plane loads is developed by Odqvist [START_REF] Odqvist | Theorie der elastischen Ringe starker Krümmung (Theory of elastic rings of great curvature[END_REF][START_REF] Shaffer | Stresses in rings deformed out of their plane[END_REF][START_REF] Oden | Mechanics of Elastic Structures[END_REF] who generalized the circumferential stress (Winkler's formula) for the case of combined skew bending and normal tension. However, he does not consider the tangential stresses due to shear force and torsion moment. A well-known approximate formula to consider the tangential stresses caused by torsion is due to Wahl [START_REF] Wahl | Mechanical Springs[END_REF][START_REF] Dragoni | Mechanical design of bimaterial helical springs with circular crosssection[END_REF], from which derives the Wahl's curvature stress correction factor for helical springs. This is used by US and Japanese standards for the static (since the springs are mechanical components that always need to work elastically) and fatigue design of closed coil helical springs. Furthermore, none of the latter engineering approaches above mentioned consider the radial and tangential stress components. It is interesting to point out that, as shown by the solution of the plane strain problem, in curved beams the radial stress cannot be discarded, since it may assume values reaching the same order of magnitude of the circumferential stresses. This is well evidenced in the design of disks and thick pipes.

Aims and scope

This paper provides a complete one-dimensional curved beam model (engineering/technical beam) that considers both the loads acting in the curvature plane and those normal to it (out-of-plane loads). The goal is to obtain a model that include the thickness and curvature effects on stresses, accounting not only the circumferential stress (Winkler and Odqvist solutions), but also the radial and axial normal stresses (the axial direction is intended as normal to the curvature plane), and the tangential stresses due to shear forces and torsion moment.

The engineering approach does not take into account in-plane and out-of-plane warping. It presents the advantage of being able to provide simple and explicit formulae, which do not require the numerical integration of PDE systems with Neumann boundary conditions, as it is necessary for the rigorous models governed by 3D Elasticity. Despite the advantages of simpler analytical solutions, it must be kept in mind the restrictive hypotheses in which the engineering model is valid. In order to have a complete view of the field and the limits of application of the model, a summary of the hypotheses follow:

-Small displacements -compared to the maximum thickness of the cross-section -are assumed; therefore, the loads are thought to be applied on the undeformed configuration.

-Small strains are assumed; therefore, non-linear components of the Green strain tensor are omitted.

-The material is assumed to be linear and elastic, homogeneous and isotropic, with same behaviour under tension and compression.

-Engineering stress-strain relationship is assumed; then, circumferential, radial and normal stresses are decoupled (null Poisson coefficient).

-In the undeformed configuration, the mean line is planar (lies in the curvature plane) and presents constant curvature.

-The cross-section is assumed constant, transversely non-deformable (non-in-plane warping deformation), compact (non-thin-walled), and non-hollowed. For the evaluation of radial, normal and tangential stresses, the beam section is limited to double symmetry. These assumptions are evidenced, when used, during the exposition of §2 for convenience.

The solution of the displacement field (beam kinematic) is not explored in this paper, that aims to provide the full stress analysis of curved beams. A significant use of this solution is to provide a post-processing stress analysis, using the load results obtained by beam finite element modelling. This would make it possible to obtain a stress-state information comparable with a 3D solid meshing, while reaching significant simplifications that reduce the time spent for the analysis.

Deduction of the Curved beam model 2.1 Kinematic Assumption. Circumferential and tangential stresses

The first two figures Fig. 1 and Fig. 2 represent a curved beam with constant cross-section in 2D and 3D view, respectively. The axis of the beam is assumed to develop in a plane; this implies that the curve of centroids, that joins all of them, stays on plane (𝑥, 𝑧) . The curve of centroids describes an arc of circumference.

Small displacements, if compared to the maximum thickness of the cross-section, are assumed. Therefore, the applied loads do not modify the geometry of the structure, and so that the equilibrium is enforced on the undeformed configuration.

Two orthogonal coordinate systems are used as shown in Fig. 1; a Cartesian (fixed) coordinate system (𝑥, 𝑦, 𝑧) and an intrinsic (moving curvilinear frame) coordinate system (𝜉, 𝜂, 𝑠), both originating at a section centroid. Moreover, 𝑠 is the curvilinear abscissa which moves along the curve of centroids, the 𝜂 direction is orthogonal to the plane of curvature and always parallel with 𝑦-axis. The relations between the two coordinate systems are straightforward to obtain: to compact the notation.

𝑥 = (𝑅 + 𝜉) cos 𝜓 -𝑅 ( 
The radius vector that gives the position of a point belonging to the beam in the undeformed configuration is defined as:

𝒓(𝜉, 𝜂, 𝑠) = 𝑥 𝒆 𝑥 + 𝑦 𝒆 𝑦 + 𝑧 𝒆 𝑧 (4)

The curvilinear orthonormal base vectors are defined as:

𝒆 𝑖 = 1 ℎ 𝑖 𝜕𝒓 𝜕𝑞 𝑖 (𝑞 𝑖 , 𝑖 = 𝜉, 𝜂, 𝑠) (5)
where ℎ 𝑖 are the metric Lamé coefficients (scale factors):

ℎ 𝑖 = ‖ 𝜕𝒓 𝜕𝑞 𝑖 ‖ (6)
Expanding components: where 𝒆 𝑠 is the unit tangent vector. Since ℎ 𝜉 = ℎ 𝜂 = 1, the coordinates (𝜉, 𝜂) of the cross-section are locally Cartesian. In what follows, the directions 𝒆 𝜉 , 𝒆 𝜂 , 𝒆 𝑠 are called radial, axial and circumferential (or tangent), respectively.

ℎ 𝜉 = √ ( 𝜕𝑥 𝜕𝜉 ) 2 + ( 𝜕𝑦 𝜕𝜉 ) 2 + ( 𝜕𝑧 𝜕𝜉 ) 2 = 1 (7) ℎ 𝜂 = √ ( 𝜕𝑥 𝜕𝜂 ) 2 + ( 𝜕𝑦 𝜕𝜂 ) 2 + ( 𝜕𝑧 𝜕𝜂 ) 2 = 1 (8) ℎ 𝑠 = √ ( 𝜕𝑥 𝜕𝑠 ) 2 + ( 𝜕𝑦 𝜕𝑠 ) 2 + ( 𝜕𝑧 𝜕𝑠 ) 2 = (1 + 𝜉 𝑅 ) (9) 
The radius vector that gives the position of a point belonging to the beam in the deformed configuration is:

𝑹(𝜉, 𝜂, 𝑠) = 𝒓 + 𝑼 ( 13 
)
Where 𝑼 is the displacements vector (Fig. 2):

𝑼(𝜉, 𝜂, 𝑠) = 𝑉 𝒆 𝜉 + 𝑊𝒆 𝜂 + 𝑈 𝒆 𝑠 ( 14)

Small strains are assumed; therefore, the linear physical components of the Green strain tensor in the orthogonal curvilinear frame (𝜉, 𝜂, 𝑠) can be deduced -being known the scale factors ℎ 𝑖 -using the general expressions in orthogonal curvilinear coordinates [START_REF] Sokolnikoff | Mathematical Theory of Elasticity[END_REF]Lui et al., 2010 ;[START_REF] Boresi | Elasticity in Engineering Mechanics[END_REF]:

𝜺 = 𝜀 𝑖𝑗 𝒆 𝑖 ⊗ 𝒆 𝑗 (𝑖, 𝑗 = 𝜉, 𝜂, 𝑠) (15) 
Where:

𝜀 𝑖𝑖 = 𝜀 𝑖 = 1 ℎ 𝑖 𝜕(𝑼 • 𝒆 𝑖 ) 𝜕𝑞 𝑖 + ∑ (𝑼 • 𝒆 𝑘 ) ℎ 𝑖 ℎ 𝑘 𝑘≠𝑖 𝜕ℎ 𝑖 𝜕𝑞 𝑘 (𝑖, 𝑘, 𝑞 𝑖 = 𝜉, 𝜂, 𝑠) (16) 𝛾 𝑖𝑗 = 2𝜀 𝑖𝑗 = ℎ 𝑖 ℎ 𝑗 𝜕 𝜕𝑞 𝑗 ( 𝑼 • 𝒆 𝑖 ℎ 𝑖 ) + ℎ 𝑗 ℎ 𝑖 𝜕 𝜕𝑞 𝑖 ( 𝑼 • 𝒆 𝑗 ℎ 𝑗 ) (𝑖 ≠ 𝑗 ; 𝑖, 𝑗, 𝑞 𝑖 = 𝜉, 𝜂, 𝑠) (17)
Therefore, using the eq.(7-12,14) into the eq.( 16,17):

𝜀 𝜉 = 𝜕𝑉 𝜕𝜉 (18) 𝜀 𝜂 = 𝜕𝑊 𝜕𝜂 (19) 𝜀 𝑠 = 1 (1 + 𝜉 𝑅 ) ( 𝜕𝑈 𝜕𝑠 + 𝑉 𝑅 ) (20) 𝛾 𝜉𝜂 = 𝜕𝑉 𝜕𝜂 + 𝜕𝑊 𝜕𝜉 (21) 𝛾 𝜉𝑠 = 1 (1 + 𝜉 𝑅 ) ( 𝜕𝑉 𝜕𝑠 - 𝑈 𝑅 ) + 𝜕𝑈 𝜕𝜉 (22) 𝛾 𝜂𝑠 = 1 (1 + 𝜉 𝑅 ) 𝜕𝑊 𝜕𝑠 + 𝜕𝑈 𝜕𝜂 ( 23 
)
Note that for 𝑅 → ∞ the previous strain field converges to the straight beam one. Moreover, as will be more evident in the following,

ℎ 𝑠 = (1 + 𝜉 𝑅
) is a crucial coefficient to estimate the influence of the curvature on the stress trend. Therefore, it is advisable to consider the use of curved beam theory instead of the straight one for reliable stress analysis of initial curved one-dimensional structures.

To determine the displacement field, we proceed with a kinematic-constraint assumption (namely a semiinverse approach): the transverse (in-plane) inextensibility of the cross-section 𝜀 𝜉 = 𝜀 𝜂 = 𝛾 𝜉𝜂 = 0. In other words, this implies that the cross-section shape remains unchanged between the undeformed-deformed configuration; so that, the in-plane-warping is restrained. Using this kinematic assumption in the eq. (18,19,21), the radial and normal displacement components 𝑉 and 𝑊 are:

𝑉(𝜂, 𝑠) = 𝑣 -(𝜂 -𝜂 𝑐 ) 𝜃 (24) 𝑊(𝜉, 𝑠) = 𝑤 + (𝜉 -𝜉 𝑐 ) 𝜃 (25) 
𝜉 𝑐 , 𝜂 𝑐 are the coordinates of the rotation axis, currently unknown; 𝑣 and 𝑤 are its displacements. 𝜃 is the value of the rotation around the unit tangent vector 𝒆 𝑠 . Remind that 𝑣, 𝑤 and 𝜃 are functions only of the curvilinear abscissa 𝑠. For the determinations of the displacement coordinate 𝑈, we proceed with a Taylor series expansion centred on the cross-section rotation point (𝜉 𝑐 , 𝜂 𝑐 ), truncated at the first order (First-Order Shear model):

𝑈(𝜉, 𝜂, 𝑠) = 𝑢 -(𝜉 -𝜉 𝑐 ) 𝛽 + (𝜂 -𝜂 𝑐 ) 𝛼 (26) 
Similarly as above, 𝑢 is the displacement of the cross-section in the tangential direction, while 𝛼 and 𝛽 are the rotations of the cross-section around 𝒆 𝜉 and 𝒆 𝜂 ; 𝑢, 𝛼, 𝛽, 𝜉 𝑐 , 𝜂 𝑐 are functions of 𝑠.

The displacements field is now brought back in one-dimensional form (i.e. engineering model) where 𝑠 is the only implicit independent variable.

Applying the displacements fields (24-26) in the non-null strain components (20,22,23) one obtains:

𝜀 𝑠 (𝜉, 𝜂, 𝑠) = 1 (1 + 𝜉 𝑅 ) [(𝑢 ′ + 𝑣 𝑅 ) -(𝜉 -𝜉 𝑐 ) 𝛽 ′ + (𝜂 -𝜂 𝑐 ) (𝛼 ′ - 𝜃 𝑅 )] (27) 𝛾 𝜉𝑠 (𝜉, 𝜂, 𝑠) = 1 (1 + 𝜉 𝑅 ) [(𝑣 ′ - 𝑢 𝑅 ) + (𝜉 -𝜉 𝑐 ) 𝛽 𝑅 -(𝜂 -𝜂 𝑐 ) (𝜃 ′ + 𝛼 𝑅 )] + 𝛽 (28) 𝛾 𝜂𝑠 (𝜉, 𝜂, 𝑠) = 1 (1 + 𝜉 𝑅 ) [𝑤 ′ -(𝜉 -𝜉 𝑐 )𝜃 ′ ] + 𝛼 (29)
Where the apex indicates the derivatives by respect to the curvilinear abscissa:

( ) ′ = 𝑑 𝑑𝑠 ( )
From equations (28,29) it follows that, even if a simple planar bending is considered (i.e. 𝜃 = 𝜃 ′ = 𝛼 = 𝑤 ′ = 0), the section does not remain orthogonal to the tangent vector and it does not keep planar. However, if 𝑅 → ∞, the present curved model brings back to Timoshenko's straight beam model, where the section does not remain orthogonal to the tangent vector but it keeps planar.

Assuming that the material is linear-elastic and isotropic, known the strain field, the stress one is: Eq. ( 30) implies, as it is usual in engineering models, that the Poisson coefficient is null.

𝜎 𝑠 (𝜉,
The resulting forces and couples acting on the centroid of the generic cross-section are defined below (Fig. 2): where it appears that 𝐼 𝜉 ≠ 𝐼 𝜂 , differently from the case of straight beams.

𝑇 𝜉 (𝑠) = ∫ 𝜏 𝜉𝑠 𝐴 𝑑𝐴 (33) 
For 𝑅 → ∞ the eq.(45-50) lead to the well-known static moments defined for straight beams, that, to avoid disagreements, in what follows are indicated with the superscript ∞:

𝑆 𝜉 ∞ = ∫ 𝜂 𝐴 𝑑𝐴 ; 𝑆 𝜂 ∞ = ∫ 𝜉 𝐴 𝑑𝐴 ; 𝐼 𝜉 ∞ = ∫ 𝜂 2 𝐴 𝑑𝐴 (51) 𝐼 𝜂 ∞ = ∫ 𝜉 2 𝐴 𝑑𝐴 ; 𝐼 𝜉𝜂 ∞ = ∫ 𝜉𝜂 𝐴 𝑑𝐴 ; 𝐼 𝑝 ∞ = 𝐼 𝜉 ∞ + 𝐼 𝜂 ∞ ( 52 
)
Some of the integrals that appear in the eq.(39-44), downstream of previous definitions, can be written in the compact notation above given. After simple algebra and considering that 𝑆 𝜉 ∞ = 𝑆 𝜂 ∞ = 0 inasmuch the reference (𝜉, 𝜂, 𝑠) originates in the centroid of the cross-section, one obtains: Using (68-70) in ( 27) and considering eq.( 30), the circumferential stress is:

𝑆 𝜉 = - 𝐼 𝜉𝜂 𝑅 ( 
𝜎 𝑠 (𝜉, 𝜂, 𝑠) = 𝑁 𝐴 - 𝑀 𝜂 𝐴𝑅 - 𝑀 𝜂 𝐼 𝜉 + 𝑀 𝜉 𝐼 𝜉𝜂 𝐼 𝜉 𝐼 𝜂 -𝐼 𝜉𝜂 2 ( 𝜉 1 + 𝜉 𝑅 ) + 𝑀 𝜉 𝐼 𝜂 + 𝑀 𝜂 𝐼 𝜉𝜂 𝐼 𝜉 𝐼 𝜂 -𝐼 𝜉𝜂 2 ( 𝜂 1 + 𝜉 𝑅 ) (71)
Eq.( 71) extends the Winkler's formula to the case of skewed bending and non-symmetrical sections. As expected, eq.( 71) is equivalent to the Navier's trinomial formula for 𝑅 → ∞. Now, from the latter it is possible to obtain the coordinates of the rotation centre (𝜉 𝑐 , 𝜂 𝑐 ), still unknown. Rearranging eq.( 71) in the case of pure bending (𝑁 = 0):

𝜎 𝑠 = 𝑀 𝜉 𝐼 𝜉 𝐼 𝜂 -𝐼 𝜉𝜂 2 [ 𝜂𝐼 𝜂 1 + 𝜉 𝑅 - 𝜉𝐼 𝜉𝜂 1 + 𝜉 𝑅 ] -𝑀 𝜂 [ 𝐼 𝜉𝜂 𝐼 𝜉 𝐼 𝜂 -𝐼 𝜉𝜂 2 ( 𝜂 1 + 𝜉 𝑅 ) - 𝐼 𝜉 𝐼 𝜉 𝐼 𝜂 -𝐼 𝜉𝜂 2 ( 𝜉 1 + 𝜉 𝑅 ) - 1 𝐴𝑅 ] (72)
and imposing that 𝜎 𝑠 computed in (𝜉 𝑐 , 𝜂 𝑐 ) is null for any combination of (𝑀 𝜉 , 𝑀 𝜂 ), the following two equations must be simultaneously satisfied:

𝐼 𝜂 𝜂 𝑐 -𝐼 𝜉𝜂 𝜉 𝑐 = 0 (73) 𝐼 𝜉𝜂 𝜂 𝑐 -𝐼 𝜉 𝜉 𝑐 - 𝐼 𝜉 𝐼 𝜂 -𝐼 𝜉𝜂 2 𝐴𝑅 (1 + 𝜉 𝑐 𝑅 ) ( 74 
)
from which the coordinates of the rotation centre are obtained:

𝜉 𝑐 = - 𝐼 𝜂 𝑅 𝐴𝑅 2 + 𝐼 𝜂 (75) 𝜂 𝑐 = - 𝐼 𝜉𝜂 𝑅 𝐴𝑅 2 + 𝐼 𝜂 (76)
An identical solution is gained manipulating eq. ( 62,63,67) to get the 𝜏 𝜉𝑠 , 𝜏 𝜂𝑠 expressions and imposing them null in correspondence of the centre of rotation. In other words, the centre of bending coincides with the shear centre. As expected, the positioning of this centre depends on section shape as well as on curvature radius.

It is worth to mention that for double symmetrical sections, the mixed moment of inertia 𝐼 𝜉𝜂 = 0 so that,

similarly to what happens for straight beams, if 𝑅 → ∞ (𝜉 𝑐 , 𝜂 𝑐 ) → 0.

Using (75,76) the eq.(62-64) considerably simplify:

𝑇 𝜉 𝐺 = (𝑣 ′ - 𝑢 𝑅 ) (𝐴 + 𝐼 𝜂 𝑅 2 ) -𝛽𝐴 (77) 𝑇 𝜂 𝐺 = 𝑤 ′ (𝐴 + 𝐼 𝜂 𝑅 2 ) + 𝛼𝐴 (78) 𝑁 𝐸 = (𝑢 ′ + 𝑣 𝑅 ) (𝐴 + 𝐼 𝜂 𝑅 2 ) (79)
Using the eq.(75-78) one obtains:

(𝑣 ′ - 𝑢 𝑅 ) = -𝛽 𝜉 𝑐 𝐴𝑅 𝐼 𝜂 - 𝑇 𝜉 𝐺 𝜂 𝑐 𝑅 𝐼 𝜉𝜂 (80) 𝑤 ′ = 𝛼 𝜉 𝑐 𝐴𝑅 𝐼 𝜂 - 𝑇 𝜂 𝐺 𝜉 𝑐 𝑅 𝐼 𝜂 (81) 
Applying (80,81) in the eq.( 67) that concerns torsion:

(𝜃 ′ + 𝛼 𝑅 ) = 𝑀 𝑠 + 𝑇 𝜉 𝜂 𝑐 -𝑇 𝜂 𝜉 𝑐 𝐺 (𝐼 𝑝 + 𝜉 𝑐 𝐼 𝜂 𝑅 + 𝜂 𝑐 𝐼 𝜉𝜂 𝑅 ) (82)
Now, using (80-82) in (28,29) and taking in mind the simple constitutive relations given by eq.(31-32), the tangential stresses are obtained (separating the torsional contribution to the shear one):

𝜏 𝜉𝑠 (𝜉, 𝜂, 𝑠) = 𝜏 𝜉𝑠 𝑡𝑜𝑟 + 𝜏 𝜉𝑠 𝑠ℎ (83) 𝜏 𝜂𝑠 (𝜉, 𝜂, 𝑠) = 𝜏 𝜂𝑠 𝑡𝑜𝑟 + 𝜏 𝜂𝑠 𝑠ℎ (84) 
Where:

𝜏 𝜉𝑠 𝑡𝑜𝑟 (𝜉, 𝜂, 𝑠) = - 𝑀 𝑠 + 𝑇 𝜉 𝜂 𝑐 -𝑇 𝜂 𝜉 𝑐 𝐼 𝑝 + 𝜉 𝑐 𝐼 𝜂 𝑅 + 𝜂 𝑐 𝐼 𝜉𝜂 𝑅 ( 𝜂 -𝜂 𝑐 1 + 𝜉 𝑅 ) (85) 𝜏 𝜂𝑠 𝑡𝑜𝑟 (𝜉, 𝑠) = 𝑀 𝑠 + 𝑇 𝜉 𝜂 𝑐 -𝑇 𝜂 𝜉 𝑐 𝐼 𝑝 + 𝜉 𝑐 𝐼 𝜂 𝑅 + 𝜂 𝑐 𝐼 𝜉𝜂 𝑅 ( 𝜉 -𝜉 𝑐 1 + 𝜉 𝑅 ) (86) 𝜏 𝜉𝑠 𝑠ℎ (𝜉, 𝑠) = 𝑇 𝜉 (1 + 𝜉 𝑅 ) 𝑅 2 𝐴𝑅 2 + 𝐼 𝜂 (87) 𝜏 𝜂𝑠 𝑠ℎ (𝜉, 𝑠) = 𝑇 𝜂 (1 + 𝜉 𝑅 ) 𝑅 2 𝐴𝑅 2 + 𝐼 𝜂 (88)
As expected, only the shear forces and the torsion moment contribute to the tangential stresses. Eq.(85,86)

represent the torsional contribution and, similarly to circumferential stress, present a sort of hyperbolic trend. These formulae turn out to be similar to the well-known approximate Wahl's formula [START_REF] Wahl | Mechanical Springs[END_REF] for the torsion of circular helical springs. In Wahl's equation the shift between the rotation centre and the centroid is accounted, but the polar moment is considered unchanged by respect to the straight beam. The range of applicability of the tangential stresses due to torsion provided for a curved beam is analogous to the well-known engineering formula 𝜏 𝑡𝑜𝑟 = (𝑀 𝑠 /𝐼 𝑝 ∞ ) √𝜉 2 + 𝜂 2 for the straight beam; so that, moving away from the circular sections the approximation increases in a similar manner. Considering circular sections, when 𝑅 tends to infinity eq.( 85,86) provide the same values given for straight circular beams.

When only torsional loads are considered, the problem of curved beams has been faced by many authors, due to the wide diffusion of helical springs. Many formulations can be found in literature, starting from the PDE with Neumann boundary conditions and using 3D Elasticity [START_REF] Heymans | The Torsion Problem of Curved Beams[END_REF][START_REF] Göhner | Schubspannungsverteilung im Querschnitt einer Schraubenfeder (Shear stress distribution in the cross section of a helical spring)[END_REF]Göhner, 1931(a) ; Göhner, 1931(b) ;[START_REF] Göhner | Zur Berechnung des gebogenen oder gedrillten Ringstabs mit Kreisquerschnitt und der zylindrischen Schraubenfeder (For calculating the curved or twisted ring bar with a circular crosssection and the cylindrical helical spring)[END_REF][START_REF] Tricomi | Su di un notevole caso di deformazione di una trave curva (On a notable case of deformation of a curved beam)[END_REF][START_REF] Finniecome | Analysis of Effect of Wire Curvature on Allowable Stresses in Helical Springs[END_REF][START_REF] Freiberger | The uniform torsion of an incomplete tore[END_REF][START_REF] Okubo | The Torsion and Stretching of Spiral Rod I[END_REF][START_REF] Langhaar | Torsion of curved beams of rectangular cross section[END_REF][START_REF] Ohasi | 任意断面を有するコイルばねの応力 (The Stress of a Coil Spring which has an Arbitrary Sectional Form)[END_REF][START_REF] Okubo | The Torsion and Stretching of Spiral Rod II[END_REF][START_REF] Henrici | On helical springs of finite thickness[END_REF][START_REF] Chattarji | Torsion of curved beams of rectangular cross-section having transverse isotropy[END_REF][START_REF] Okubo | The Torsion and Stretching of Spiral Rod III[END_REF][START_REF] Lang | Pure twist of a solid circular ring sector[END_REF][START_REF] Bert | Stress analysis of closely-coiled helical springs using differential quadrature[END_REF][START_REF] Gao | The refined theory of rectangular curved beams[END_REF][START_REF] Cornwell | Stress concentration factors for the torsion of curved beams of arbitrary crosssection[END_REF][START_REF] Cornwell | Stress concentration factors for the torsion of curved beams of arbitrary crosssection[END_REF].

The shear contributions given by eq.( 87,88), also present a hyperbolic trend. When 𝑅 → ∞ they converge to 𝑇 𝐴 , that is the simple result of the Timoshenko kinematic model (first order shear model) for straight beams. Considering it, a more refined solution for shear load contributions can be found, that satisfies the boundary conditions at section edges. This is discussed in the following section, together with the determination of other stress components.

Virtual Cuts Method. Radial, axial and tangential shear stresses

In §2.1 the kinematic assumption of non-planar deformation of the section has been made. This allowed the deduction of the circumferential and a first approximation of the tangential stresses for curved beams.

As evidenced from the plane strain solution of the rectangular curved beam [START_REF] Timoshenko | Theory of elasticity[END_REF][START_REF] Muskhelishvili | Some Basic Problems of the Mathematical Theory of Elasticity[END_REF][START_REF] Amenzade | Theory of Elasticity[END_REF][START_REF] Oden | Mechanics of Elastic Structures[END_REF][START_REF] Dally | Experimental Stress Analysis[END_REF][START_REF] Ragab | Engineering Solid Mechanics Fundamentals and Applications[END_REF][START_REF] Richards | Principles of Solid Mechanics[END_REF][START_REF] Doghri | Mechanics of Deformable Solids[END_REF][START_REF] Barber | Elasticity. Solid Mechanics and Its Applications[END_REF][START_REF] Irgens | Continuum Mechanics[END_REF][START_REF] Sadd | Elasticity : Theory, Applications, and Numerics[END_REF][START_REF] Mase | Continuum Mechanics for Engineers[END_REF][START_REF] Boresi | Elasticity in Engineering Mechanics[END_REF][START_REF] Lai | Introduction to Continuum Mechanics[END_REF][START_REF] Gould | Introduction to Linear Elasticity[END_REF][START_REF] Ecsedi | A half circular beam bending by radial loads[END_REF], and in accordance with the disc stress theory, the curved geometry causes an additional radial stress. This implies that, there is a radial stress 𝜎 𝜉 which might rise up (for thick curved beams) to a comparable order of magnitude than the circumferential one. The stress 𝜎 𝜉 also cannot be deduced by the kinematic assumption made in §2.1.

Furthermore, the tangential stress fields due to pure shear 𝜏 𝜉𝑠 𝑠ℎ , 𝜏 𝜂𝑠 𝑠ℎ (87,88) do not respect the obvious vanishing expected at the edges. Therefore, we need a better method for their computation.

The idea is to correct both mentioned lacks using a simple approach, well-known and commonly used in engineering beam modelling. It follows the Jourawsky's idea, based only on average equilibrium conditions on section cuts. This method, initially proposed by Jourawsky [START_REF] Jourawsky | Sur la résistance d'un corps prismatique et d'une pièce composée en bois ou en tôle de fer à une force perpendiculaire à leur longueur (On the resistance of a prismatic body and a piece made of wood or sheet metal to a force perpendicular to their length)[END_REF] and then suggested again in [START_REF] Rankine | A manual of applied mechanics[END_REF][START_REF] Grashof | Theorie der Elastizität und Festigkeit (Theory of Elasticity and Strength)[END_REF] is widely used to derive an approximate shear stresses distribution for straight beams [START_REF] Timoshenko | Strength of Materials[END_REF][START_REF] Bruhns | Advanced Mechanics of Solids[END_REF][START_REF] Mariano | Fundamentals of the Mechanics of Solids[END_REF]. The here proposed approximation is gained by application of Jourawsky's equilibria on two orthogonal directions which present a mutual influence, differently on what happens for straight beams. This is due to effect of the curvature. This double application provides the equations of the radial and normal stresses 𝜎 𝜉 , 𝜎 𝜂 together with the tangential stresses caused by pure shear 𝜏 𝜉𝑠 𝑠ℎ , 𝜏 𝜂𝑠 𝑠ℎ .

In what follows curved beams whose sections are constant, non-hollowed, double symmetric with symmetry along the 𝜂 axis (Fig. 3) are taken into account. The section may be described through the quantities ℎ(𝜉) and 𝑏(𝜂) providing the trend of the section height and width at every point. The beam is loaded by concentrated and distributed forces and moments. Considering a segment with infinitesimal length 𝑑𝑠 but finite width and height (Fig. 4), this can be virtually cut by a plane parallel to the (𝒆 𝜉 , 𝒆 𝑠 ) , respectively (Fig. 5). The overall force acting on the face 𝑑𝑠 + presents components along the following orthogonal directions:

(𝒆 𝜉 + , 𝒆 𝜂 + , 𝒆 𝑠 + ) = 𝑙𝑖𝑚 𝑠→ 𝑑𝑠 2 (𝒆 𝜉 , 𝒆 𝜂 , 𝒆 𝑠 ) = (𝒆 𝑥 ′ + 𝑑𝑠 2𝑅 𝒆 𝑧 ′ , 𝒆 𝑦 ′ , - 𝑑𝑠 2𝑅 𝒆 𝑥 ′ + 𝒆 𝑧 ′ ) (89)
Similarly at the opposite face (𝑑𝑠 -):

(𝒆 𝜉 -, 𝒆 𝜂 -, 𝒆 𝑠 -) = -𝑙𝑖𝑚 𝑠→- 𝑑𝑠 2 (𝒆 𝜉 , 𝒆 𝜂 , 𝒆 𝑠 ) = (-𝒆 𝑥 ′ + 𝑑𝑠 2𝑅 𝒆 𝑧 ′ , -𝒆 𝑦 ′ , - 𝑑𝑠 2𝑅 𝒆 𝑥 ′ -𝒆 𝑧 ′ ) (90)
The eq.(10-12) have been applied to deduce (89,90).

Two areas of interest are identified in Fig. 4,6; the area 𝐴 𝜉 (𝜂) , identical in the two end-sections and function of the cut position 𝜂, and the infinitesimal area

𝑑𝐴 𝜉 ⊥ (𝜂) = 𝑏(𝜂) 𝑑𝑠.
In what follows, the superscript "𝑟" indicates that the tangential stresses 𝜏 𝜉𝑠 𝑠ℎ,𝑟 , 𝜏 𝜂𝑠 𝑠ℎ,𝑟 due to pure shear obtained without considering the equilibrium on the cross-section at boundary. In fact, this last equilibrium requires that the tangential stress vector due to pure shear 𝝉 = 𝜏 𝜉𝑠 𝑠ℎ 𝒆 𝜉 + 𝜏 𝜂𝑠 𝑠ℎ 𝒆 𝜂 must be tangent to the edge of the section. Therefore, 𝜏 𝜉𝑠 𝑠ℎ,𝑟 , 𝜏 𝜂𝑠 𝑠ℎ,𝑟 indicates the true shear stresses for the case of rectangular cross-section (hence the superscript "𝑟" ). The idea is to separate the problem. First, the solution of 𝜏 𝜉𝑠 𝑠ℎ,𝑟 (𝜉, 𝑠), 𝜏 𝜂𝑠 𝑠ℎ,𝑟 (𝜂, 𝑠) is obtained, even if this does not fulfil the section boundary equilibrium.

Subsequently, the equilibrium at the boundary is re-established by additional terms 𝜏 𝜉𝑠 𝑐𝑜𝑟𝑟 (𝜉, 𝜂, 𝑠), 𝜏 𝜂𝑠 𝑐𝑜𝑟𝑟 (𝜉, 𝜂, 𝑠), so that the resulting tangential stress vector 𝝉 = (𝜏 𝜉𝑠 𝑠ℎ,𝑟 + 𝜏 𝜉𝑠 𝑐𝑜𝑟𝑟 )𝒆 𝜉 + (𝜏 𝜂𝑠 𝑠ℎ,𝑟 + 𝜏 𝜂𝑠 𝑐𝑜𝑟𝑟 ) 𝒆 𝜂 is made tangent to the edge of the cross-section. Imposing the equilibrium satisfaction at the bottom part (Fig. 6), the stresses along 𝜂: In eq.( 94) appears another unknown stress: 𝜏 𝜉𝑠 𝑠ℎ,𝑟 . This implies the need to perform another cut, orthogonal to the previous one. Namely, the beam segment is virtually cut again by a plane now parallel to the (𝒆 𝜂 , 𝒆 𝑠 )

𝜎 𝜂 𝑟 (𝜂, 𝑠) = - 1 𝑏(𝜂) ∫ 𝜕𝜏 𝜂𝑠 𝑠ℎ,𝑟 𝜕𝑠 𝐴 𝜉 (𝜂) 𝑑𝐴 ̃ (93) 𝜏 𝜂𝑠 𝑠ℎ,𝑟 (𝜂, 𝑠) = - 1 𝑏(𝜂) ∫ ( 𝜕𝜎 𝑠 𝜕𝑠 + 𝜏 𝜉𝑠 𝑠ℎ,𝑟
directions (cut develops in the direction normal to the curvature plane (𝒆 𝜉 , 𝒆 𝑠 )) at the position 𝜉 (Fig. 8).

Similarly as before, the equilibrium satisfaction is required on the two parts; right one is chosen. The overall acting forces are shown in Fig. 9 (the right edge surface is considered unloaded). are the averaged stresses along the height ℎ, indicated in the following as 𝜎 𝜉 𝑟 , 𝜏 𝜉𝑠 𝑠ℎ,𝑟 .

Fig. 8 Virtual cut with a plane parallel to (𝒆 𝜂 , 𝒆 𝑠 ) directions Imposing the satisfaction of equilibrium (Fig. 9) one obtains:

𝜎 𝜉 𝑟 (𝜉, 𝑠) = 1 ℎ(𝜉) (1 + 𝜉 𝑅 ) ∫ ( 𝜎 𝑠 𝑅 - 𝜕𝜏 𝜉𝑠 𝑠ℎ,𝑟 𝜕𝑠 ) 𝐴 𝜂 (𝜉) 𝑑𝐴 ̃ (97) 𝜏 𝜉𝑠 𝑠ℎ,𝑟 (𝜉, 𝑠) = 1 ℎ(𝜉) (1 + 𝜉 𝑅 ) ∫ ( 𝜕𝜎 𝑠 𝜕𝑠 + 𝜏 𝜉𝑠 𝑠ℎ,𝑟 𝑅 ) 𝐴 𝜂 (𝜉)
𝑑𝐴 ̃ (98)

In the eq.( 97), as well as the eq.( 94), the stress 𝜏 𝜉𝑠 𝑠ℎ,𝑟 appears; therefore, the eq.( 98) must be solved first.

Again, the integration domain of the area 𝐴 𝜂 (𝜉) (Fig. 10) on the cross-section can be written equivalently Eq.( 98) requires the derivative of eq.( 71):

𝜕𝜎 𝑠 𝜕𝑠 = 𝑁 ′ 𝐴 - 𝑀 𝜂 ′ 𝐴𝑅 - 𝑀 𝜂 ′ 𝐼 𝜂 ( 𝜉 1 + 𝜉 𝑅 ) + 𝑀 𝜉 ′ 𝐼 𝜉 ( 𝜂 1 + 𝜉 𝑅 ) (99)
Then, this is used into previous eq. (94,97,98) Where, 𝑆 𝜂 𝐴 𝜉 (𝜂) , 𝑆 𝜂 𝐴 𝜂 (𝜉) are the first order generalized static moment of the areas 𝐴 𝜉 , 𝐴 𝜂 on the 𝜂 direction.

In the eq.(100-102) the terms containing 𝑆 𝜉 𝐴 𝜂 (𝜉) and 𝐼 𝜉𝜂 have been omitted since the section is assumed to be symmetrical on the 𝜂 axis.

Applying the eq.( 102) in ( 98), an Integro-Differential Equation is obtained:

ℎ(𝜉) (1 + 𝜉 𝑅 ) 𝜏 𝜉𝑠 𝑠ℎ,𝑟 = (𝑁 ′ - 𝑀 𝜂 ′ 𝑅 ) 𝐴 𝜂 (𝜉) 𝐴 - 𝑀 𝜂 ′ 𝐼 𝜂 𝑆 𝜂 𝐴 𝜂 (𝜉) + ∫ 𝜏 𝜉𝑠 𝑠ℎ,𝑟 𝑅 𝐴 𝜂 (𝜉) 𝑑𝐴 ̃ (103)
Deriving the eq.( 103) with respect to ξ, with the purpose to obtain an ordinary differential equation, some of the previous terms become:

𝑑𝐴 𝜂 (𝜉) 𝑑𝜉 = 𝑑 𝑑𝜉 ∫ ℎ(𝜉 ̃) 𝑑𝜉 b 2 𝜉 = -ℎ(𝜉) (104) 𝑑𝑆 𝜂 𝐴 𝜂 (𝜉) 𝑑𝜉 = 𝑑 𝑑𝜉 ∫ 𝜉 ̃ ℎ(𝜉 ̃) (1 + 𝜉 R) 𝑑𝜉 b 2 𝜉 = - 𝜉 ̃ ℎ(𝜉) (1 + 𝜉 𝑅 ) (105) 𝜕 𝜕𝜉 ∫ 𝜏 𝜉𝑠 𝑠ℎ,𝑟 𝐴 𝜂 (𝜉) 𝑑𝐴 ̃= 𝜕 𝜕𝜉 ∫ 𝜏 𝜉𝑠 𝑠ℎ,𝑟 (𝜉 ̃, 𝑠) ℎ(𝜉 ̃) 𝑑𝜉 b 2 𝜉 = -𝜏 𝜉𝑠 𝑠ℎ,𝑟 ℎ(𝜉) (106) 
From which:

𝜕 𝜕𝜉 [(1 + 𝜉 𝑅 ) ℎ(𝜉) 𝜏 𝜉𝑠 𝑠ℎ,𝑟 ] (1 + 𝜉 𝑅 ) + (1 + 𝜉 𝑅 ) ℎ(𝜉) 𝑅 𝜏 𝜉𝑠 𝑠ℎ,𝑟 = -(𝑁 ′ - 𝑀 𝜂 ′ 𝑅 ) (1 + 𝜉 𝑅 ) ℎ(𝜉) 𝐴 + 𝑀 𝜂 ′ 𝐼 𝜂 ℎ(𝜉) 𝜉 (107)
Noting that the left hand side can be written as 107) becomes:

𝜕 𝜕𝜉 [(1 + 𝜉 𝑅 ) 2 ℎ(𝜉) 𝜏 𝜉𝑠 𝑠ℎ,𝑟 ] = -(𝑁 ′ - 𝑀 𝜂 ′ 𝑅 ) (1 + 𝜉 𝑅 ) ℎ(𝜉) 𝐴 + 𝑀 𝜂 ′ 𝐼 𝜂 ℎ(𝜉) 𝜉 (108)
Integrating by parts the previous equation, the shear stress 𝜏 𝜉𝑠 𝑠ℎ,𝑟 presents the expression:

𝜏 𝜉𝑠 𝑠ℎ,𝑟 (𝜉, 𝑠) = 1 ℎ(𝜉) (1 + 𝜉 𝑅 ) 2 [𝑀 𝜂 ′ ( 𝐴 𝜂 (𝜉) 𝐴𝑅 + 𝑆 𝜂 ∞,𝐴 𝜂 (𝜉) ( 1 𝐼 𝜂 + 1 𝐴𝑅 2 )) -𝑁 ′ ( 𝐴 𝜂 (𝜉) 𝐴 + 𝑆 𝜂 ∞,𝐴 𝜂 (𝜉) 𝐴𝑅 )] (109) 
Where 𝑆 𝜂 ∞,𝐴 𝜂 (𝜉) is the first order static moment (eq.( 51)) of the area 𝐴 𝜂 in the ξ direction. It is useful to verify that for 𝑅 → ∞ the eq.( 109) provides the well-known Jourawsky formula for the case of straight beams.

Since 𝜏 𝜉𝑠 𝑠ℎ,𝑟 is now known, it is possible to obtain the other stresses components. Applying the eq.( 109) in ( 94) and using eq.( 100), the expression of 𝜏 𝜂𝑠 𝑠ℎ,𝑟 is similarly reached:

𝜏 𝜂𝑠 𝑠ℎ,𝑟 (𝜂, 𝑠) = 𝑁 ′ 𝑏(𝜂) ( 1 𝐴𝑅 ∫ 𝐴 𝜂 (𝜉 ̃) + 1 𝑅 𝑆 𝜂 ∞,𝐴 𝜂 (𝜉 ̃) ℎ(𝜉 ̃) (1 + 𝜉 R) 2 𝐴 𝜉 (𝜂) 𝑑𝐴 ̃-𝐴 𝜉 (𝜂) 𝐴 ) - 𝑀 𝜉 ′ 𝐼 𝜉 𝑏(𝜂) 𝑆 𝜉 𝐴 𝜉 (𝜂) + + 𝑀 𝜂 ′ 𝑏(𝜂) ( 𝐴 𝜉 (𝜂) 𝐴𝑅 + 𝑆 𝜂 𝐴 𝜉 (𝜂) 𝐼 𝜂 - 1 𝐴𝑅 2 ∫ 𝐴 𝜂 (𝜉 ̃) ℎ(𝜉 ̃) (1 + 𝜉 R) 2 𝑑𝐴 ̃-1 𝑅 ( 1 𝐼 𝜂 + 1 𝐴𝑅 2 ) 𝐴 𝜉 (𝜂) ∫ 𝑆 𝜂 ∞,𝐴 𝜂 (𝜉 ̃) ℎ(𝜉 ̃) (1 + 𝜉 R) 2 𝐴 𝜉 (𝜂) 𝑑𝐴 ̃) (110) 
As previous specified, the stress components 𝜏 𝜉𝑠 𝑠ℎ,𝑟 , 𝜏 𝜂𝑠 𝑠ℎ,𝑟 do not satisfy the equilibrium on the crosssection boundary, inasmuch, the tangential stress vector 𝝉 = 𝜏 𝜉𝑠 𝑠ℎ,𝑟 𝒆 𝜉 + 𝜏 𝜂𝑠 𝑠ℎ,𝑟 𝒆 𝜂 is tangent to the edge only for the case of a rectangular cross-section. The boundary equilibrium can be re-established in the case of double symmetrical and not-hollow cross-sections. The method consists to superimpose at 𝜏 𝜉𝑠 𝑠ℎ,𝑟 , 𝜏 𝜂𝑠 𝑠ℎ,𝑟 a linear antisymmetric corrective tangential stress fields 𝜏 𝜉𝑠 𝑐𝑜𝑟𝑟 , 𝜏 𝜂𝑠 𝑐𝑜𝑟𝑟 , such as to orient the tangential stresses along the edges (Fig. 11). Therefore, the correct tangential stress components are: Fig. 11 Corrective stress fields such as to restore the edge equilibrium Furthermore, accounting of these corrections on the stress fields 𝜎 𝜂 𝑟 , 𝜎 𝜉 𝑟 the eq.(93,97) turns into:

𝜏 𝜉𝑠 𝑠ℎ (
𝜎 𝜂 (𝜂, 𝑠) = - 1 𝑏(𝜂) ∫ 𝜕𝜏 𝜂𝑠 𝑠ℎ 𝜕𝑠 𝐴 𝜉 (𝜂) 𝑑𝐴 ̃ (115) 𝜎 𝜉 (𝜉, 𝑠) = 1 ℎ(𝜉) (1 + 𝜉 𝑅 ) ∫ ( 𝜎 𝑠 𝑅 - 𝜕𝜏 𝜉𝑠 𝑠ℎ 𝜕𝑠 ) 𝐴 𝜂 (𝜉) 𝑑𝐴 ̃ (116)
The complete solution of all five components of the stress tensor are given in a synthetic writing-form in §2.4, together with a useful grouping of the integrals that appear in the solution.

In the present paragraph the section equilibrium has been set. The subject of the next paragraph is to solve the relationships between the applied loads and the internal resultant forces and moments along the curvilinear abscissa.

Equilibrium equations along the curvilinear abscissa

Considering a loaded curved beam in static equilibrium, Fig. 12 shows a finite segment of the beam between the curvilinear abscissa 𝑠 = 0 and another generic value. In 𝑠 = 0 some forces and moments are present and represented in the Cartesian frame 𝑭 0 = T 𝜉0 𝒆 𝑥 + T 𝜂0 𝒆 𝑦 + N 0 𝒆 𝑧 , 𝑴 0 = 𝑀 𝜉0 𝒆 𝑥 + 𝑀 𝜂0 𝒆 𝑦 + 𝑀 𝑠0 𝒆 𝑧 (in 𝑠 = 0 the two references, fixed and mobile, coincide). In a generic section the resultant forces and moments are represented in the curvilinear frame 𝑭 = T 𝜉 𝒆 𝜉 + T 𝜂 𝒆 𝜂 + N 𝒆 𝑠 , 𝑴 = 𝑀 𝜉 𝒆 𝜉 + 𝑀 𝜂 𝒆 𝜂 + 𝑀 𝑠 𝒆 𝑠 . Additional distributed forces and moments (per unit length) are also considered, and evaluated in the fixed frame for the convenience of further developments 𝒒 = 𝑞 𝑥 𝒆 𝑥 + 𝑞 𝑦 𝒆 𝑦 + 𝑞 𝑧 𝒆 𝑧 , 𝒎 = 𝑚 𝑥 𝒆 𝑥 + 𝑚 𝑦 𝒆 𝑦 + 𝑚 𝑧 𝒆 𝑧 .

Fig.12 Equilibrium of the infinitesimal beam segment

Using the assumption of small displacements, the displacement vector 𝑼 can be neglected if compared to the vector radius of the undeformed configuration 𝒓, namely eq.( 13), 𝑹 = 𝒓 + 𝑼 ≅ 𝒓. Using the eq.(10-12), some useful relations follow: The eq.(117-119) are the inverse relations of eq.(10-12), while eq.(120-122) are the Frenet-Serret equations.

𝒆 𝑥 =
The vector 𝑹 can be expressed, by respect to the curvilinear base vectors, using the eq.(1-4,117-119) by means of the centroid location:

𝑹 = 𝒓 𝐶 + 𝒓 𝐶𝑃 (123) 
where: By imposing the Newton-Euler equations of static equilibrium and, using the additive decomposition of the vector 𝑹 in eq.( 123):

𝒓 𝐶 =
𝑭(𝑠) = 𝑭 0 -∫ 𝒒 𝑑𝑠s 0 (126) 𝑴(𝑠) = 𝑴 0 -𝒓 𝐶 × 𝑭(𝑠) -∫ 𝒓 𝐶 × 𝒒 𝑠 𝑜 𝑑𝑠̃-∫ 𝒎 𝑑𝑠s 0 ( 127 
)
Where 𝑠̃ is a dummy variable, and the rotation equilibrium pole is the origin of the fixed Cartesian reference.

Substituting eq.( 126) in (127):

𝑴(𝑠) = 𝑴 0 -𝒓 𝐶 × 𝑭 0 + 𝒓 𝐶 × ∫ 𝒒 𝑑𝑠s 0 -∫ 𝒓 𝐶 × 𝒒 𝑠 𝑜 𝑑𝑠̃-∫ 𝒎 𝑑𝑠s 0 ( 128 
)
To make explicit the eq.( 126,128), all the vectors quantities must be expressed in the same reference system.

The mobile curvilinear reference is chosen. Applying the change-basis relations given by eq.( 117 This transformation refers only to the generic end-point 𝑠, hence the projectors sin 𝜓 , cos 𝜓 do not have to be integrated in the eq.( 132). Using the latter in the eq.( 132):

∫ 𝒒 𝑑𝑠s It is interesting to highlight an additional consideration: the latter six equations hold also in the case of nonconstancy of the radius of curvature 𝑅(𝑠). Since in the following verification of the results ( §3) the adopted configuration for the comparisons is the cantilever beam, it is very useful here to specialize the equations to this specific case. In such a statically-determined situation, the value of 𝑭 0 and 𝑴 0 can be obtained through simple equilibrium. For the beam loaded by concentrated forces and couples 𝑭 𝐿 , 𝑴 𝐿 at the end 𝑠 = 𝐿 ( 𝜓 = 𝜓 𝐿 ) (Fig. 12) and distributed loads along the curvilinear axis 𝒒 = 𝑞 𝜉 𝒆 𝜉 + 𝑞 𝜂 𝒆 𝜂 + 𝑞 𝑠 𝒆 𝑠 , 𝒎 = 𝑚 𝜉 𝒆 𝜉 + 𝑚 𝜂 𝒆 𝜂 + 𝑚 𝑠 𝒆 𝑠 , the imposition of equilibrium provides:

𝑭 0 = 𝑭 𝐿 + 𝑭 𝑞 (143) 𝑴 0 = 𝑴 𝐿 + 𝑴 𝐹 𝐿 + 𝑴 𝑞 + 𝑴 𝑚 (144)
Where, in this case, the vector quantities are more suitably expressed in the fixed Cartesian basis: Going back to the stress values given by eq. (109,110,115,116), they require the resultant forces and couples 𝑭 , 𝑴 and their first and second derivatives by respect to the curvilinear abscissa 𝑠. The easiest way is to directly make a derivative of eq.(126,127), thus obtaining:

𝑭 𝐿 =
𝑑𝑭(𝑠) 𝑑𝑠 = -𝒒 (157) 𝑑𝑴(𝑠) 𝑑𝑠 = -𝒆 𝑠 × 𝑭(𝑠) -𝒎 (158)
Making explicit the previous equations in the mobile curvilinear reference, using the eq.(120-122) for the covariant derivative, the first and second derivates of the resultant forces and couples are provided:

𝑇 𝜉 ′ = 𝑁 𝑅 -𝑞 𝜉 (159) 𝑇 𝜂 ′ = -𝑞 𝜂 (160) 𝑁 ′ = - 𝑇 𝜉 𝑅 -𝑞 𝑠 (161) 𝑀 𝜉 ′ = 𝑀 𝑠 𝑅 + 𝑇 𝜂 -𝑚 𝜉 (162) 𝑀 𝜂 ′ = -𝑇 𝜉 -𝑚 𝜂 (163) 𝑀 𝑠 ′ = - 𝑀 𝜉 𝑅 -𝑚 𝑠 (164)
Hence, a second derivation provides:

𝑁 ′′ = - 𝑁 𝑅 2 + 𝑞 𝜉 𝑅 -𝑞 𝑠 ′ (165) 𝑀 𝜉 ′′ = - 𝑀 𝜉 𝑅 2 -𝑞 𝜂 - 𝑚 𝑠 𝑅 -𝑚 𝜉 ′ (166) 𝑀 𝜂 ′′ = - 𝑁 𝑅 + 𝑞 𝜉 -𝑚 𝜂 ′ ( 167 
)
All the necessary relations to establish the relations between the applied load and the internal stress field are available; in the forthcoming paragraph these are given explicitly.

Whole solution in complete form

All the necessary equations have been set. Therefore, in this section an explicit writing of the whole solution for the five stress tensor components is given. This holds for compact, doubly-symmetric cross-sections, having a symmetry axis (𝜂) orthogonal to the curvature plane. In this case, the mixed inertia moment 𝐼 𝜉𝜂 = 0, as above discussed.

The first two components, radial and normal stresses 𝜎 𝜉 , 𝜎 𝜂 , are given by eq.( 168,169) where the integrals are condensed into symbolic terms. These may be obtained from lengthy but trivial algebra manipulations of eq.(115,116), taking into account: eq.( 101), the derivatives by respect to the curvilinear abscissa of the eq. (111,112) and the derivatives of the resultant forces 𝑁, 𝑀 𝜉 , 𝑀 𝜂 (eq.(161-163,165-167)). The third one, i.e. the circumferential stress 𝜎 𝑠 is straighforward derived by eq.( 71), when considering 𝐼 𝜉𝜂 = 0 (eq.170).

Considering the two tangential components 𝜏 𝜉𝑠 , 𝜏 𝜂𝑠 they are split into pure shear eq.( 171,172) and torsional load contributions eq.(85,86) as done above.

𝜎 𝜉 (𝜉, 𝑠) = -𝑁 𝐼 in the previous expressions of the stress components. These integrals have a general definition, valid for all double symmetric sections with a symmetrical axis lying on the curvature plane. For every integral a strongly reduced order of integration is performed and this is given after the second equality sign in eq.( 179- 201). These simplified representations, obtained by a repetitive use of the four domain equations of the areas 𝐴 𝜉 (𝜂), 𝐴 𝜂 (𝜉) ( §2.2, Fig. 7,10), allow lower analytical and/or numerical computational efforts. To distinguish the integration variables and domains that represent the same physical dimension, three pairs of dummy variables are introduced: 𝑑𝐴 ̃= 𝑑𝜉 ̃𝑑𝜂 ̃ , 𝑑𝐴 * = 𝑑𝜉 * 𝑑𝜂 * , 𝑑𝐴 ̂= 𝑑𝜉 ̂𝑑𝜂̂ .

𝐼 1 𝜎 𝜉 (𝜉) = 𝐴 𝜂 (𝜉) 𝐴 𝑅 ℎ(𝜉) (1 + 𝜉 𝑅 ) = 1 𝐴 𝑅 ℎ(𝜉) (1 + 𝜉 𝑅 ) ∫ ℎ(𝜉 ̃) 𝑑𝜉 b 2 𝜉 (179) 𝐼 2 𝜎 𝜉 (𝜉) = 1 ℎ(𝜉) (1 + 𝜉 𝑅 ) ( 𝐴 𝜂 (𝜉) 𝐴𝑅 + 𝑆 𝜂 𝐴 𝜂 (𝜉) 𝐼 𝜂 𝑅 ) = 1 ℎ(𝜉) (1 + 𝜉 𝑅 ) ∫ ℎ(𝜉 ̃) [ 1 𝐴𝑅 2 + 𝜉 Ĩ𝜂 𝑅 (1 + 𝜉 R) ] 𝑑𝜉 b 2 𝜉 (180) 𝐼 3 𝜎 𝜉 (𝜉) = 1 𝐴 ℎ(𝜉) (1 + 𝜉 𝑅 ) ∫ 𝐴 𝜂 (𝜉 ̃) + 1 𝑅 𝑆 𝜂 ∞,𝐴 𝜂 (𝜉 ̃) ℎ(𝜉 ̃) (1 + 𝜉 R) 2 𝑑𝐴 Ã𝜂 (𝜉) = 1 𝐴 ℎ(𝜉) (1 + 𝜉 𝑅 ) ∫ ∫ ℎ(𝜉 * ) (1 + 𝜉 * 𝑅 ) (1 + 𝜉 R) 2 𝑏 2 𝜉 b 2 𝜉 𝑑𝜉 * 𝑑𝜉 ̃ (181) 𝐼 4 𝜎 𝜉 (𝜉) = 1 𝐴 ℎ(𝜉) (1 + 𝜉 𝑅 ) ∫ 𝐴 𝜂 (𝜉 ̃) 𝐴 𝜂 (𝜉) 𝑑𝑏(𝜂 ̃) 𝑑𝜂 ̃ 𝜉 b2 (𝜂 ̃) 𝑑𝐴 ̃= = 1 2 𝐴 ℎ(𝜉) (1 + 𝜉 𝑅 ) ∫ ∫ 𝑏(𝜂 * ) ( 𝑏 2 (𝜂 ̃) 4 -𝜉 2 ) 𝑏 2 (𝜂 ̃) 𝜂 -ℎ 2 ℎ(𝜉) 2 - ℎ(𝜉) 2 𝑑𝑏(𝜂 ̃) 𝑑𝜂 ̃ 𝑑𝜂 * 𝑑𝜂 ̃ (182) 𝐼 5 𝜎 𝜉 (𝜉) = 1 𝐴 𝑅 ℎ(𝜉) (1 + 𝜉 𝑅 ) = ∫ ∫ 𝐴 𝜂 (𝜉 * ) + 1 𝑅 𝑆 𝜂 ∞,𝐴 𝜂 (𝜉 * ) 𝑏(𝜂 ̃) ℎ(𝜉 * ) (1 + 𝜉 * 𝑅 ) 2 𝐴 𝜉 (𝜂 ̃) 𝐴 𝜂 (𝜉) 𝑑𝑏(𝜂 * ) 𝑑𝜂 * 𝜉 * 𝑏(𝜂 * ) 𝑑𝐴 * 𝑑𝐴 ̃= = 1 𝐴 𝑅 ℎ(𝜉) (1 + 𝜉 𝑅 ) ∫ ∫ ∫ ∫ 𝜉 * ℎ(𝜉 ̂) (1 + 𝜉 R) ( 𝑏(𝜂 ̃) 2 -𝜉) 𝑏(𝜂 ̃)𝑏(𝜂 * ) ℎ(𝜉 * ) (1 + 𝜉 * 𝑅 ) 2 𝑏 2 𝜉 * 𝜂 -ℎ(𝜉 * ) 2 𝑏(𝜂 ̃) 2 - 𝑏(𝜂 ̃) 2 ℎ(𝜉) 2 - ℎ(𝜉) 2 𝑑𝑏(𝜂 * ) 𝑑𝜂 * 𝑑𝜉 ̂𝑑𝜂 * 𝑑𝜉 * 𝑑𝜂 ̃ (183) 𝐼 6 𝜎 𝜉 (𝜉) = 1 𝐼 𝜉 ℎ(𝜉) (1 + 𝜉 𝑅 ) ∫ 𝑆 𝜉 𝐴 𝜉 (𝜂 ̃) 𝐴 𝜂 (𝜉) 𝑑𝑏(𝜂 ̃) 𝑑𝜂 ̃𝜉b 2 (𝜂 ̃) 𝑑𝐴 ̃= = 1 4 𝐼 𝜉 ℎ(𝜉) (1 + 𝜉 𝑅 ) ∫ ∫ ( 𝑏 2 (𝜂 ̃) 4 -𝜉 2 ) (𝜂 ̃2 - ℎ 2 (𝜉 * ) 4 ) 𝑏 2 (𝜂 ̃) (1 + 𝜉 * 𝑅 ) 𝑏(𝜂 ̃) 2 - 𝑏(𝜂 ̃) 2 ℎ(𝜉) 2 - ℎ(𝜉) 2 𝑑𝑏(𝜂 ̃) 𝑑𝜂 ̃ 𝑑𝜉 * 𝑑𝜂 ̃ (184) 𝐼 7 𝜎 𝜉 (𝜉) = 1 ℎ(𝜉) (1 + 𝜉 𝑅 ) ∫ 𝐴 𝜂 (𝜉 ̃) 𝐴𝑅 + ( 1 𝐼 𝜂 + 1 𝐴𝑅 2 ) 𝑆 𝜂 ∞,𝐴 𝜂 (𝜉 ̃) ℎ(𝜉 ̃) (1 + 𝜉 R) 2 𝐴 𝜂 (𝜉) 𝑑𝐴 ̃= = 1 ℎ(𝜉) (1 + 𝜉 𝑅 ) ∫ ∫ ℎ(𝜉 * ) [ 1 𝐴𝑅 + 𝜉 * ( 1 𝐼 𝜂 + 1 𝐴𝑅 2 )] (1 + 𝜉 R) 2 𝑏 2 𝜉 b 2 𝜉 𝑑𝜉 * 𝑑𝜂 ̃ (185) 𝐼 8 𝜎 𝜉 (𝜉) = 1 ℎ(𝜉) (1 + 𝜉 𝑅 ) ∫ ( 𝐴 𝜉 (𝜂 ̃) 𝐴𝑅 + 𝑆 𝜂 𝐴 𝜉 (𝜂 ̃) 𝐼 𝜂 ) 𝐴 𝜂 (𝜉) 𝑑𝑏(𝜂 ̃) 𝑑𝜂 ̃𝜉b 2 (𝜂 ̃) 𝑑𝐴 ̃= = 1 2 ℎ(𝜉) (1 + 𝜉 𝑅 ) ∫ ∫ ( 𝑏 2 (𝜂 ̃) 4 -𝜉 2 ) (𝜂 ̃+ ℎ(𝜉 * ) 2 ) 𝑏 2 (𝜂 ̃) 𝑏(𝜂 ̃) 2 - 𝑏(𝜂 ̃) 2 ℎ(𝜉) 2 - ℎ(𝜉) 2 [ 1 𝐴𝑅 + (𝜂 ̃-ℎ(𝜉 * ) 2 ) 2𝐼 𝜂 (1 + 𝜉 * 𝑅 ) ] 𝑑𝜉 * 𝑑𝜂 ̃ (186) 𝐼 9 𝜎 𝜉 (𝜉) = 1 ℎ(𝜉) (1 + 𝜉 𝑅 ) ∫ ∫ 𝐴 𝜂 (𝜉 * ) 𝐴𝑅 2 + ( 1 𝐼 𝜂 𝑅 + 1 𝐴𝑅 3 ) 𝑆 𝜂 ∞,𝐴 𝜂 (𝜉 * ) 𝑏(𝜂 ̃)ℎ(𝜉 * ) (1 + 𝜉 * 𝑅 ) 2 𝐴 𝜉 (𝜂 ̃) 𝐴 𝜂 (𝜉) 𝑑𝑏(𝜂 * ) 𝑑𝜂 * 𝜉 * 𝑏(𝜂 * ) 𝑑𝐴 * 𝑑𝐴 ̃= = 1 ℎ(𝜉) (1 + 𝜉 𝑅 ) ∫ ∫ ∫ ∫ 𝜉 * ℎ(𝜉 ̂) ( 𝑏(𝜂 ̃) 2 -𝜉) 𝑏(𝜂 ̃)𝑏(𝜂 * ) ℎ(𝜉 * ) (1 + 𝜉 * 𝑅 ) 2 𝑏 2 𝜉 * 𝜂 -ℎ(𝜉 * ) 2 𝑏(𝜂 ̃) 2 - 𝑏(𝜂 ̃) 2 ℎ(𝜉) 2 - ℎ(𝜉) 2 𝑑𝑏(𝜂 * ) 𝑑𝜂 * [ 1 𝐴𝑅 2 + 𝜉 ̂( 1 𝐼 𝜂 𝑅 + 1 𝐴𝑅 3 )] 𝑑𝜉 ̂𝑑𝜂 * 𝑑𝜉 * 𝑑𝜂 ̃ (187) 𝐼 1 𝜎 𝜂 (𝜂) = 1 𝐴 𝑅 𝑏(𝜂) ∫ ∫ 𝐴 𝜂 (𝜉 * ) + 1 𝑅 𝑆 𝜂 ∞,𝐴 𝜂 (𝜉 * ) 𝑏(𝜂 ̃) ℎ(𝜉 * ) (1 + 𝜉 * 𝑅 ) 2 𝐴 𝜉 (𝜂 ̃) 𝐴 𝜉 (𝜂) 𝑑𝐴 * 𝑑𝐴 ̃= = 1 𝐴 𝑅 𝑏(𝜂) ∫ ∫ ∫ ℎ(𝜉 ̂) (1 + 𝜉 R) (𝜂 ̃+ ℎ(𝜉 * ) 2 ) ℎ(𝜉 * ) (1 + 𝜉 * 𝑅 ) 2 𝑑𝜉 ̂𝑑𝜉 * 𝑑𝜂 b 2 𝜉 * 𝑏(𝜂 ̃) 2 - 𝑏(𝜂 ̃) 2 𝜂 - ℎ 2 (188) 𝐼 2 𝜎 𝜂 (𝜂) = 1 𝐴 𝑏(𝜂) ∫ 𝐴 𝜉 (𝜂 ̃) 𝑏(𝜂 ̃) 𝐴 𝜉 (𝜂) 𝑑𝐴 ̃= 1 𝐴 𝑏(𝜂) ∫ ∫ 𝑏(𝜂 * ) 𝑑𝜂 * 𝑑𝜂 η -ℎ 2 𝜂 - ℎ 2 (189) 𝐼 3 𝜎 𝜂 (𝜂) = 1 𝐴 𝑏(𝜂) ∫ 𝐴 𝜂 (𝜉 ̃) + 1 𝑅 𝑆 𝜂 ∞,𝐴 𝜂 (𝜉 ̃) ℎ(𝜉 ̃) (1 + 𝜉 R) 2 𝐴 𝜉 (𝜂) 𝑑ℎ(𝜉 ̃) 𝑑𝜉 ̃ 𝜂 h(𝜉 ̃) 𝑑𝐴 ̃= = 1 2 𝐴 𝑏(𝜂) ∫ ∫ ℎ(𝜉 * ) (1 + 𝜉 * 𝑅 ) (𝜂 2 - ℎ 2 (𝜉 ̃) 4 ) ℎ 2 (𝜉 ̃) (1 + 𝜉 R) 2 𝑑ℎ(𝜉 ̃) 𝑑𝜉 b 2 . 𝜉 b(𝜂) 2 - 𝑏(𝜂) 2 𝑑𝜉 * 𝑑𝜉 ̃ (190) 𝐼 4 𝜎 𝜂 (𝜂) = 1 𝐼 𝜉 𝑏(𝜂) ∫ 𝑆 𝜉 𝐴 𝜉 (𝜂 ̃) 𝑏(𝜂 ̃) 𝐴 𝜉 (𝜂) 𝑑𝐴 ̃= 1 2 𝐼 𝜉 𝑏(𝜂) ∫ ∫ (𝜂 ̃2 - ℎ 2 (𝜉 * ) 4 ) (1 + 𝜉 * 𝑅 ) 𝑏(𝜂 ̃) 2 - 𝑏(𝜂 ̃) 2 𝜂 - ℎ 2 𝑑𝜉 * 𝑑𝜂 ̃ (191) 𝐼 5 𝜎 𝜂 (𝜂) = 1 𝐼 𝜂 𝑏(𝜂) ∫ 𝑆 𝜂 𝐴 𝜉 (𝜂 ̃) 𝑏(𝜂 ̃) 𝑑𝐴 Ã𝜉 (𝜂) = 1 𝐼 𝜂 𝑏(𝜂) ∫ ∫ 𝜉 * (𝜂 ̃+ ℎ(𝜉 * ) 2 ) (1 + 𝜉 * 𝑅 ) 𝑏(𝜂 ̃) 2 - 𝑏(𝜂 ̃) 2 𝜂 - ℎ 2 𝑑𝜉 * 𝑑𝜂 ̃ (192) 𝐼 6 𝜎 𝜂 (𝜂) = 1 𝑏(𝜂) ∫ 𝐴 𝜉 (𝜂 ̃) 𝐴𝑅 + ( 1 𝐼 𝜂 + 1 𝐴𝑅 2 ) 𝑆 𝜂 ∞,𝐴 𝜂 (𝜉 ̃) ℎ(𝜉 ̃) (1 + 𝜉 R) 2 𝑑ℎ(𝜉 ̃) 𝑑𝜉 ̃ 𝜂 h(𝜉 ̃) 𝐴 𝜉 (𝜂) 𝑑𝐴 ̃= = 1 2 𝑏(𝜂) ∫ ∫ ℎ(𝜉 * ) (𝜂 2 - ℎ 2 (𝜉 ̃) 4 ) ℎ 2 (𝜉 ̃) (1 + 𝜉 R) 2 𝑏 2 . 𝜉 b(𝜂) 2 - 𝑏(𝜂) 2 𝑑ℎ(𝜉 ̃) 𝑑𝜉 ̃ [ 1 𝐴𝑅 + 𝜉 * ( 1 𝐼 𝜂 + 1 𝐴𝑅 2 )] 𝑑𝜉 * 𝑑𝜉 ̃ (193) 𝐼 7 𝜎 𝜂 (𝜂) = 1 𝑅 𝑏(𝜂) ∫ ∫ 𝐴 𝜂 (𝜉 * ) 𝐴𝑅 + ( 1 𝐼 𝜂 + 1 𝐴𝑅 2 ) 𝑆 𝜂 ∞,𝐴 𝜂 (𝜉 * ) 𝑏(𝜂 ̃) ℎ(𝜉 * ) (1 + 𝜉 * 𝑅 ) 2 𝐴 𝜉 (𝜂 ̃) 𝐴 𝜉 (𝜂) 𝑑𝜉 ̂𝑑𝜉 * 𝑑𝜂 ̃= = 1 𝑅 𝑏(𝜂) ∫ ∫ ∫ ℎ(𝜉 ̂) (𝜂 ̃+ ℎ(𝜉 * ) 2 ) ℎ(𝜉 * ) (1 + 𝜉 * 𝑅 ) 2 [ 1 𝐴𝑅 + 𝜉 ̂( 1 𝐼 𝜂 + 1 𝐴𝑅 2 )] 𝑑𝜉 ̂𝑑𝜉 * 𝑑𝜂 b 2 𝜉 * 𝑏(𝜂 ̃) 2 - 𝑏(𝜂 ̃) 2 𝜂 - ℎ 2 (194) 𝐼 1 𝜏 𝜉𝑠 (𝜉) = 1 𝐴 ℎ(𝜉) (1 + 𝜉 𝑅 ) 2 (𝐴 𝜂 (𝜉) + 𝑆 𝜂 ∞,𝐴 𝜂 (𝜉) 𝑅 ) = 1 𝐴 ℎ(𝜉) (1 + 𝜉 𝑅 ) 2 ∫ ℎ(𝜉 ̃) (1 + 𝜉 R) 𝑏 2 𝜉 𝑑𝜉 ̃ (195) 𝐼 2 𝜏 𝜉𝑠 (𝜉) = 1 ℎ(𝜉) (1 + 𝜉 𝑅 ) 2 [ 𝐴 𝜂 (𝜉) 𝐴𝑅 + 𝑆 𝜂 ∞,𝐴 𝜂 (𝜉) ( 1 𝐼 𝜂 + 1 𝐴𝑅 2 )] = = 1 ℎ(𝜉) (1 + 𝜉 𝑅 ) 2 ∫ ℎ(𝜉 ̃) [ 1 𝐴𝑅 + 𝜉 ̃( 1 𝐼 𝜂 + 1 𝐴𝑅 2 )] 𝑏 2 𝜉 𝑑𝜉 ̃ (196) 𝐼 1 𝜏 𝜂𝑠 (𝜂) = 𝐴 𝜉 (𝜂) 𝐴 𝑏(𝜂) = 1 𝐴 𝑏(𝜂) ∫ 𝑏(𝜂 ̃) 𝜂 - ℎ 2 𝑑𝜂 ̃ (197) 𝐼 2 𝜏 𝜂𝑠 (𝜂) = 1 𝐴 𝑅 𝑏(𝜂) ∫ 𝐴 𝜂 (𝜉 ̃) + 1 𝑅 𝑆 𝜂 ∞,𝐴 𝜂 (𝜉 ̃) ℎ(𝜉 ̃) (1 + 𝜉 R) 2 𝐴 𝜉 (𝜂) 𝑑𝐴 ̃= 1 𝐴 𝑅 𝑏(𝜂) ∫ ∫ ℎ(𝜉 * ) (1 + 𝜉 * 𝑅 ) (𝜂 + ℎ(𝜉 ̃) 2 ) ℎ(𝜉 ̃) (1 + 𝜉 R) 2 𝑏 2 . 𝜉 b(𝜂) 2 - 𝑏(𝜂) 2 𝑑𝜉 * 𝑑𝜉 ̃ (198) 𝐼 3 𝜏 𝜂𝑠 (𝜂) = 𝑆 𝜉 𝐴 𝜉 (𝜂) 𝐼 𝜉 𝑏(𝜂) = 1 2 𝐼 𝜉 𝑏(𝜂) ∫ (𝜂 2 - ℎ 2 (𝜉 ̃) 4 ) (1 + 𝜉 R) 𝑏(𝜂) 2 - 𝑏(𝜂) 2 𝑑𝜉 ̃ (199) 𝐼 4 𝜏 𝜂𝑠 (𝜂) = 1 𝑏(𝜂) ( 𝐴 𝜉 (𝜂) 𝐴 𝑅 + 𝑆 𝜂 𝐴 𝜉 (𝜂) 𝐼 𝜂 ) = 1 𝑏(𝜂) ∫ (𝜂 + ℎ(𝜉 ̃) 2 ) [ 1 𝐴𝑅 + 𝜉 Ĩ𝜂 (1 + 𝜉 R) ] 𝑑𝜉 ̃ (200) 𝑏(𝜂) 2 - 𝑏(𝜂) 2 𝐼 5 𝜏 𝜂𝑠 (𝜂) = 1 𝑏(𝜂) ∫ 𝐴 𝜂 (𝜉 ̃) 𝐴𝑅 2 -( 1 𝐼 𝜂 𝑅 + 1 𝐴𝑅 3 ) 𝑆 𝜂 ∞,𝐴 𝜂 (𝜉 ̃) ℎ(𝜉 ̃) (1 + 𝜉 R) 2 𝑑𝐴 ̃= 𝐴 𝜉 (𝜂) = 1 𝑏(𝜂) ∫ ∫ ℎ(𝜉 * ) (𝜂 + ℎ(𝜉 ̃) 2 ) ℎ(𝜉 ̃) (1 + 𝜉 R) 2 𝑏 2 . 𝜉 b(𝜂) 2 - 𝑏(𝜂) 2 [ 1 𝐴𝑅 2 -𝜉 * ( 1 𝐼 𝜂 𝑅 + 1 𝐴𝑅 3 )] 𝑑𝜉 * 𝑑𝜉 ̃ (201)
While the overall properties of the section can be computed as:

𝐴 = ∫ ℎ(𝜉) 𝑑𝜉 𝑏 2 - 𝑏 2 ; 𝐼 𝜉 = 1 12 ∫ ℎ 3 (𝜉) (1 + 𝜉 𝑅 ) 𝑑𝜉 𝑏 2 - 𝑏 2 ; 𝐼 𝜂 = ∫ 𝜉 2 ℎ(𝜉) (1 + 𝜉 𝑅 ) 𝑑𝜉 𝑏 2 - 𝑏 2 (202)
It is interesting to highlight that, if the section also concave, this can be thought as the combination (sum) of convex parts.

For generic cross-sections, these integrals are solved numerically by using standard algorithms.

If the section is rectangular, strong simplifications do occur. In fact, the terms 

Comparisons and verifications

In this section some comparisons are shown to test the reliability of the proposed method. The first test is carried out with the analytical solution in the 2D Elasticity framework of a curved plane-strain rectangular beam, in-plane loaded (e.g. [START_REF] Barber | Elasticity. Solid Mechanics and Its Applications[END_REF]. To the best of authors knowledge, there are no analytical solution for out-of-plane loads to compare in 3D Elasticity framework. Therefore, the second test regards the effects of out-of-plane loads which may only be compared with a numerical solution (F.E.M.).

Curved rectangular beam loaded in-plane: check of the Proposed Solution vs 2D Elasticity

A curved cantilever beam with rectangular cross-section is represented in Fig. 13. The semicircle (𝜓 𝐿 = 180°) curved beam is loaded in plane by the two forces 𝑇 𝜉𝐿 , 𝑁 𝐿 and the moment 𝑀 𝜂𝐿 . The solution here proposed for this case is fully analytical and is provided in closed-form in §A.1. The 2D Elasticity solution (plane-strain) is also analytical and well known for a quarter of a circle, is generalized for any angle (0 < 𝜓 < 2𝜋) in §A.3. For these comparisons, the applied loads at the end (𝑠 = 𝐿) are: 𝑇 𝜉𝐿 = 𝑁 𝐿 = 10 𝑘𝑁 and 𝑀 𝜂𝐿 = 10 𝑘𝑁𝑚. The resultant forces and moment in the generic section are computed through eq. (137,139.141,151,153,155). The solutions are given for three values of the ratio 𝑏 𝑅 = (0.50/1.00/1.25). This matching is very interesting, since the two solutions refer to much different approaches: the engineering beam of our proposal and the solution accounting 2-D elastic strain compatibility. This last one, however, is only known for rectangular sections; instead, our proposal extends its availability over a wider class of sections but requires the numerical solutions of some integrals. Furthermore, in this case, as known, the radial normal stress and the tangential stress are much smaller than the circumferential one; they tend to arrange themselves symmetrically, with the maximum in correspondence of the cross-section centroid. For the case of circular cross-section, the same material, load, geometry (the radius of the circular section is 𝜌 = 50 𝑚𝑚) and evaluated cross-section (𝜓 = 90° ) are considered. A higher refinement of the mesh was performed to ensure a consistent h-convergence (414720 elements, Fig. 22). For this case, recovering the equations obtained in §2.4, some of the stress components (𝜎 𝑠 , 𝜏 𝜉𝑠 𝑡𝑜𝑟 , 𝜏 𝜂𝑠 𝑡𝑜𝑟 ) can be fully analytically obtained; others (eq. 203-206) need, for the circular section, to numerically evaluate at least 15 integrals and introduce their values in the analytical solution.

The FEM and the proposed solution results (von Mises stress) are shown in Fig. 23,24, while the Fig. 25 gives the absolute and relative differences of the two methods. The difference between the two maximum 

Conclusion

This paper provides the engineering theory of curved beams, including thickness, curvature and out-ofplane load effects. The first part concerns the deduction of the beam kinematics. Small strains and displacements (compared to the thickness) hypotheses are assumed. The strain-displacement relations are derived using the general expression of the linearized Green strain tensor, in orthogonal curvilinear coordinates. The material is assumed to be linear and elastic, homogeneous, isotropic, with same behaviour under tension and compression. To obtain the displacement field, the in-plane inextensibility of the crosssection is imposed, neglecting planar warping; this assumption is largely lawful in the case of compact sections (no thin-walled sections) covered in this paper. The complete beam kinematics is then provided, together with the designations of moments of inertia other than the well-known definitions that are customary for straight beams. Furthermore, through the imposed kinematic-field, the circumferential stress and the torsional tangential stresses are found. The tangential stress field belonging to torsion is of an engineering type, therefore it does not consider the out-of-plane warping so that, the only section shape sensitivity accounts of the geometric parameters 𝐼 𝑝 , 𝜉 𝑐 , 𝜂 𝑐 . The tangential stresses due to pure shear, which derives from the kinematic assumption, gives a trend depending on the ratio between distance from the centroid and the radius of curvature. This cannot be used for reliable stress analyses. Therefore, for the case of compact doubly symmetric and not-hollowed cross sections, a generalized Jourawsky approach, applied on curved beams, is carried out. The purpose is to enhance the approximation of the engineering beam theory in regards to the pure shear tangential stresses, and to evaluate the radial and axial normal stress components. The equilibrium is imposed after the application of two orthogonal virtual cuts. A further correction of the pure shear tangential stresses takes into account the effects of section edges.

Considering all above, five terms of the stress tensor are present in this solution, three normal and two tangential components. The complete solution is shown in §2.4, where some geometric integrals appear in the expression of the stress components, as a consequence of the generalized Jourawsky approach applied on curved beams. For a generic doubly symmetric cross-section these integrals can be computed using standard numerical algorithms, while for the special case of rectangular cross-sections the analytical solution is available ( §A.1), in closed form. The whole general solution converges to the well-known straight beam for 𝑅 → ∞. The equilibrium along the curvilinear abscissa, i.e. the computation of the resultant forces is performed and made explicit in presence of concentrated and/or distributed loads.

Analytical and numerical comparison are shown. The first check concerns the 2D-Elasticity analytical solution known in literature, lawful for curved beams with rectangular cross-sections, loaded in-plane. The second check accounts of out-of-plane loads, and the comparison is carried out with a FEM solution (3D solid elements) for both rectangular and circular cross-sections. The comparisons performed show that the enhancements of this engineering beam model allow to significantly converge the results to those given by more complete 3D Elasticity analyses.

A considerable point of view is that the proposed formulae can be used to provide a post-processing stressanalysis of curved beams, concerning all section points, when the end loads and/or distributed loads are known. By this way one obtains a stress-state information comparable to that which would occur using a 3D Finite Element Analysis, by means of a noticeable reduction of the computational effort.

Appendix A.1 Analytical solution for rectangular section

For a rectangular cross-section of dimensions 𝑏 × ℎ, the integrals 𝐼 4 𝜎 𝜉 = 𝐼 𝑓 𝜂 (𝛽 ̃) = 1 . It is worth to pointing out that, if the section is square and a curvature exists, the two moment of inertia 𝐼 𝜉 , 𝐼 𝜂 are not equal.

A.2 Moments of inertia for circular section

For the case of circular cross-sections with radius 𝜌 , the moments of inertia are: 𝑓 𝜂 (𝛽 ̃) = 1 . Again, the two moment of inertia 𝐼 𝜉 , 𝐼 𝜂 are not equal.

𝐼 𝜉 =

A.3 2D Elasticity solution of rectangular curved beam loaded in plane

The plane strain analytical solution for a clamped circular curved beam having a rectangular cross section, subjected to combined planar load 𝑇 𝜉𝐿 , 𝑁 𝐿 , 𝑀 𝜂𝐿 is already been addressed by many authors (in separate cases) e.g. [START_REF] Cheung | Effect of axial loads on radial stress in curved beams[END_REF][START_REF] Barber | Elasticity. Solid Mechanics and Its Applications[END_REF][START_REF] Boresi | Elasticity in Engineering Mechanics[END_REF], ordinarily for the case in which 
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Fig. 6
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 9 Fig.9 Axial cut resulting forces on the right part of the beam after cut
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 10 Fig.10 Integration domains due to virtual axial cut

  ) 𝜏 𝜉𝑠 𝑠ℎ,𝑟 ], the eq.(

  𝑹 | 𝜉, 𝜂 = 0 = 𝑅(cos 𝜓 -1) 𝒆 𝑥 + 𝑅 sin 𝜓 𝒆 𝑧 = 𝑅(1 -cos 𝜓) 𝒆 𝜉 + 𝑅 sin 𝜓 𝒆 𝑠 (124) 𝒓 𝐶𝑃 = 𝑹 -𝒓 𝐶 = 𝜉 cos 𝜓 𝒆 𝑥 + 𝜂 𝒆 𝑦 + 𝜉 sin 𝜓 𝒆 𝑧 = 𝜉 𝒆 𝜉 + 𝜂 𝒆 𝜂 (125)

  -119) the previous terms turn into: 𝑭 0 = (T 𝜉0 cos 𝜓 + N 0 sin 𝜓)𝒆 𝜉 + T 𝜂0 𝒆 𝜂 +(-T 𝜉0 sin 𝜓 + N 0 cos 𝜓)𝒆 𝑠 (129) 𝑴 0 = (𝑀 𝜉0 cos 𝜓 + 𝑀 𝑠0 sin 𝜓)𝒆 𝜉 +𝑀 𝜂0 𝒆 𝜂 + (-𝑀 𝜉0 sin 𝜓 + 𝑀 𝑠0 cos 𝜓)𝒆 𝑠 (130) 𝒓 𝐶 × 𝑭 0 = -T 𝜂0 𝑅 sin 𝜓 𝒆 𝜉 + ( T 𝜉0 𝑅 sin 𝜓 + N 0 𝑅(1 -cos 𝜓)) 𝒆 𝜂 + T 𝜂0 𝑅(1 -cos 𝜓) 𝒆 𝑠 (131) Concerning the integral quantities, the direction-change of the curvilinear base vectors along the curvilinear abscissa should be taken into account: 𝑞 𝑥 𝒆 𝑥 + 𝑞 𝑦 𝒆 𝑦 + 𝑞 𝑧 𝒆 𝑧 )𝑑𝑠s 0 = ∫ [(𝑞 𝑥 cos 𝜓 ̃+ 𝑞 𝑧 sin 𝜓 ̃)𝒆 𝜉 +𝑞 𝑦 𝒆 𝜂 + (-𝑞 𝑥 sin 𝜓 ̃+ 𝑞 𝑧 cos 𝜓 ̃)𝒆 𝑠 ]exchange from the Cartesian components (𝑞 𝑥 , 𝑞 𝑦 , 𝑞 𝑧 ) to the linear distributed forces (𝑞 𝜉 , 𝑞 𝜂 , 𝑞 𝑠 ) expressed in the curvilinear reference, the well-known covariant transformation-law of the components are used: 𝑞 𝑥 = 𝑞 𝜉 cos 𝜓 -𝑞 𝑠 sin 𝜓 ; 𝑞 𝑦 = 𝑞 𝜂 ; 𝑞 𝑧 = 𝑞 𝜉 sin 𝜓 + 𝑞 𝑠 cos 𝜓 (133)

  𝜉 cos(𝜓 -𝜓 ̃) -𝑞 𝑠 sin(𝜓 -𝜓 ̃)) 𝒆 𝜉 +𝑞 𝜂 𝒆 𝜂 + (𝑞 𝜉 sin(𝜓 -𝜓 ̃) + 𝑞 𝑠 cos(𝜓 -𝜓 ̃)) 𝒆 𝑠 ] 𝑑𝑠 s 0 (134) By carrying out the same procedure for the other vector components of the eq.(126,128): 𝑚 𝑥 𝒆 𝑥 + 𝑚 𝑦 𝒆 𝑦 + 𝑚 𝑧 𝒆 𝑧 )𝑑𝑠s 0 = ∫ [(𝑚 𝜉 cos 𝜓 -𝑚 𝑠 sin 𝜓)𝒆 𝑥 +𝑚 𝜂 𝒆 𝑦 +(𝑚 𝜉 sin 𝜓 + 𝑚 𝑠 cos 𝜓)𝒆 𝑧 ] 𝑑𝑠s 0 = ∫ [(𝑚 𝜉 cos(𝜓 -𝜓 ̃) -𝑚 𝑠 sin(𝜓 -𝜓 ̃))𝒆 𝜉 +𝑚 𝜂 𝒆 𝜂 +(𝑚 𝜉 sin(𝜓 -𝜓 ̃) + 𝑚 𝑠 cos(𝜓 -𝜓 ̃))𝒆 𝑠 ] 𝑑𝑠s 0 (136) Using the eq.(129-131,134-136) in the eq.(126-128), the resultant forces and moments at the generic abscissa 𝑠 are explicitly obtained: T 𝜉 (𝑠) = T 𝜉0 cos 𝜓 + N 0 sin 𝜓 + ∫ [-𝑞 𝜉 cos(𝜓 -𝜓 ̃) + 𝑞 𝑠 sin(𝜓 -𝜓 ̃)) = -T 𝜉0 sin 𝜓 + N 0 cos 𝜓 -∫(𝑞 𝜉 sin(𝜓 -𝜓 ̃) + 𝑞 𝑠 cos(𝜓 -𝜓 ̃))𝑑𝑠s 0 (139)𝑀 𝜉 (𝑠) = 𝑀 𝜉0 cos 𝜓 + (𝑀 𝑠0 + R T 𝜂0 ) sin 𝜓 + ∫[(𝑚 𝑠 -𝑅 𝑞 𝜂 ) sin(𝜓 -𝜓 ̃) 𝒆 𝜉 -𝑚 𝜉 cos(𝜓 -𝜓 ̃)𝑠) = 𝑀 𝜂0 -T 𝜉0 𝑅 sin 𝜓 -N 0 𝑅(1 -cos 𝜓) + ∫ [𝑞 𝜉 𝑅 sin(𝜓 -𝜓 ̃) + 𝑞 𝑠 (1 -cos(𝜓 -𝜓 ̃)) -𝑚 𝜂 ] 𝑠) = -𝑀 𝜉0 sin 𝜓 + 𝑀 𝑠0 cos 𝜓 -T 𝜂0 𝑅(1 -cos 𝜓) + ∫[𝑞 𝜂 𝑅 (1 -cos(𝜓 -𝜓 ̃)) -𝑚 𝜉 sin(𝜓 -𝜓 ̃) -𝑚 𝑠 cos(𝜓 -𝜓 ̃
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 1316 Fig.13 Curved beam with rectangular cross-section
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 17 Fig.17 shows the case of thinner sections than the previous ones, namely for values of the ratio 𝑏 𝑅 =
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 17 Fig.17 Convergence of the proposed solution and 2D elasticity to straight beams for smaller thicknesses
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 21 Fig.21 F.E.M. and Proposed Solution von Mises stress comparison for the rectangular cross-section: relative and absolute differences
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 22 Fig.22Curved beam with circular cross-section: applied loads and mesh refinement
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  the curved beam forms a quarter of a circle (𝜓 𝐿 = 𝜋 2 For comparison reasons, the solution is here presented in general form, namely for 𝜓 𝐿 ∈ [0, 2𝜋). By virtue of the linearity of the problem, the resulting stresses consider the superposition of loads. The solutions are reported using the standard notation: the positive directions convention adopted in Fig.13.

  

  

  

  

  

  

  

  

  

  

  It is interesting to highlight that only if the section is symmetric on the 𝜂 axis, the mixed moment of inertia 𝐼 𝜉𝜂 is null, but this is not true if the section is only symmetrical on 𝜉. The analytical integration of the moments of inertia are reported in Appendix §A.1, A.2 for the cases of square and circular cross sections,

	𝑇 𝜉 𝐺	= (𝑣 ′ -	𝑢 𝑅	) ∫ 𝐴	𝑑𝐴 (1 + 𝑅 𝜉	)	-	𝛽 [𝐴 -	1 𝑅 𝐼 𝜂 = ∫ ∫ 𝜉 -𝜉 𝑐 (1 + 𝜉 𝑅 ) 𝐴 𝜉 2 𝑑𝐴 (1 + 𝑅 𝐴 ) ] -(𝜃 ′ + 𝜉 𝑑𝐴	𝛼 𝑅	) ∫ 𝐴	𝜂 -𝜂 𝑐 (1 + 𝜉 𝑅 )	𝑑𝐴	(39) (48)
	𝑇 𝜂 𝐺	= 𝑤 ′ ∫ 𝐴		𝑑𝐴 (1 + 𝑅 𝜉	)	+	𝛼𝐴 -𝜃 ′ ∫ 𝐴	𝜉 -𝜉 𝑐 (1 + 𝜉 𝑅 ) 𝐼 𝜉𝜂 = ∫ 𝑑𝐴 𝐴	𝜉𝜂 (1 +	𝑅 𝜉	)	𝑑𝐴	(40) (49)
																				𝐼 𝑝 = 𝐼 𝜉 + 𝐼 𝜂	(50)
	𝑁 𝐸	= (𝑢 ′ +		𝑣 𝑅	) ∫ 𝐴	𝑑𝐴 (1 + 𝑅 𝜉	)	-	𝛽 ′ ∫ 𝐴	𝜉 -𝜉 𝑐 (1 + 𝜉 𝑅 )	𝑑𝐴 + (𝛼 ′ -	𝜃 𝑅	)	∫ 𝐴	𝜂 -𝜂 𝑐 (1 + 𝑅 ) 𝜉	𝑑𝐴	(41)
	𝑀 𝜉 𝐸	= (𝑢 ′ +	𝑣 𝑅	) ∫ 𝐴	𝜂 (1 +	𝜉 𝑅	)	𝑑𝐴 -𝛽 ′	∫ 𝐴	𝜂 (𝜉 -𝜉 𝑐 ) (1 + 𝜉 𝑅 )	𝑑𝐴	+ (𝛼 ′ -	𝜃 𝑅	) ∫ 𝐴	𝜂 (𝜂 -𝜂 𝑐 ) (1 + 𝑅 ) 𝜉	𝑑𝐴	(42)
	𝑀 𝜂 𝐸	= -(𝑢 ′ +	𝑣 𝑅	) ∫ 𝐴	𝜉 (1 +	𝜉 𝑅	)	𝑑𝐴 + 𝛽 ′	∫ 𝐴	𝜉 (𝜉 -𝜉 𝑐 ) (1 + 𝜉 𝑅 )	𝑑𝐴	-(𝛼 ′ -	𝜃 𝑅	) ∫ 𝐴	𝜉 (𝜂 -𝜂 𝑐 ) (1 + 𝑅 ) 𝜉	𝑑𝐴	(43)
	𝑀 𝑠 𝐺	= 𝑤 ′ ∫ 𝐴	𝜉 (1 +	𝜉 𝑅	)	𝑑𝐴	-(𝑣 ′ -	𝑢 𝑅	) ∫ 𝐴	𝜂 (1 +	𝜉 𝑅	)	𝑑𝐴 + 𝛼 [∫ 𝜉 𝑑𝐴 + 𝐴	1 𝑅	∫ 𝐴	𝜂 (𝜂 -𝜂 𝑐 ) (1 + 𝑅 ) 𝜉	𝑑𝐴	]	-
			𝛽 [	1 𝑅	∫ 𝐴	𝜂 (𝜉 -𝜉 𝑐 ) (1 + 𝜉 𝑅 )	𝑇 𝜂 (𝑠) = ∫ 𝜏 𝜂𝑠 𝐴 𝑑𝐴 -∫ 𝜂 𝑑𝐴 𝐴 ] + 𝜃 ′ [∫ 𝜉 (𝜉 -𝜉 𝑐 ) 𝑑𝐴 (1 + 𝜉 𝑅 ) 𝐴	𝑑𝐴 + ∫ 𝐴	𝜂 (𝜂 -𝜂 𝑐 ) (1 + 𝑅 ) 𝜉	𝑑𝐴	]	(34) (44)
	𝑁(𝑠) = ∫ 𝜎 𝑠 𝐴 In previous equations the integral quantities appear as a function only of the geometry of the cross-𝑑𝐴	(35)
	section. It is useful to define the following generalized static moments of the first and second order:
																				𝑀 𝜉 (𝑠) = ∫ 𝜂 𝜎 𝑠	𝑑𝐴	(36)
																				𝐴 𝑆 𝜉 = ∫ 𝐴	𝜂 (1 +	𝑅 𝜉	)	𝑑𝐴	(45)
																				𝑀 𝜂 (𝑠) = -∫ 𝜉 𝜎 𝑠	𝑑𝐴	(37)
																				𝐴 𝑀 𝑠 (𝑠) = ∫ (𝜉 𝜏 𝜂𝑠 -𝜂 𝜏 𝜉𝑠 ) 𝑆 𝜂 = ∫ 𝜉 (1 + 𝑅 𝐴 ) 𝜉 𝑑𝐴	𝑑𝐴	(38) (46)
	𝐴 How these forces and couples are related to the applied external loads and what is their trend along the 𝐼 𝜉 = ∫ 𝜂 2 (1 + 𝑅 𝐴 ) 𝜉 𝑑𝐴 (47)
	curvilinear abscissa 𝑠 is discussed in §2.3.
	Using eq.(30-32) and eq.(27-29) in the previous ones, they result:

  The two areas of interest are 𝐴 𝜂 (𝜉) , function of the position 𝜉 of the cut, and the infinitesimal area 𝑑𝐴 𝜂

									ℎ(𝜉)
	𝜏 𝜉𝑠	𝑠ℎ,𝑟 (𝜉, 𝑠) =	1 ℎ(𝜉)	-	2 2 ℎ(𝜉) ∫ 𝜏 𝜉𝑠	𝑠ℎ (𝜉, 𝜂, 𝑠)	𝑑𝜂	(96)
									⊥ = ℎ(𝜉) (1 +	𝜉 𝑅	) 𝑑𝑠. On the
	lateral surface 𝑑𝐴 𝜂 ⊥ acts the resulting forces 𝜎 𝜉	𝑟 𝑑𝐴 𝜂 ⊥ and 𝜏 𝜉𝑠	𝑠ℎ,𝑟 𝑑𝐴 𝜂 ⊥ , where:
								ℎ(𝜉)
	𝜎 𝜉	𝑟 (𝜉, 𝑠) =	1 ℎ(𝜉)	-	2 2 ℎ(𝜉) ∫ 𝜎 𝜉 (𝜉, 𝜂, 𝑠)	𝑑𝜂	(95)

  T 𝜉𝐿 𝒆 𝜉 + T 𝜂𝐿 𝒆 𝜂 + N 𝐿 𝒆 𝑠 = (T 𝜉𝐿 cos 𝜓 𝐿 -N 𝐿 sin 𝜓 𝐿 ) 𝒆 𝑥 + T 𝜂𝐿 𝒆 𝑦 + (T 𝜉𝐿 sin 𝜓 𝐿 + N 𝐿 cos 𝜓 𝐿 ) 𝒆 𝑧 (145) 𝑭 𝑞 = ∫(𝑞 𝜉 𝒆 𝜉 + 𝑞 𝜂 𝒆 𝜂 + 𝑞 𝑠 𝒆 𝑠 ) 𝑑𝑠 𝑀 𝜉𝐿 𝒆 𝜉 + 𝑀 𝜂𝐿 𝒆 𝜂 + 𝑀 𝑠𝐿 𝒆 𝑠 = (𝑀 𝜉𝐿 cos 𝜓 𝐿 -𝑀 𝑠𝐿 sin 𝜓 𝐿 ) 𝒆 𝑥 + 𝑀 𝜂𝐿 𝒆 𝑦 + (𝑀 𝜉𝐿 sin 𝜓 𝐿 + 𝑀 𝑠𝐿 cos 𝜓 𝐿 ) 𝒆 𝑧 (147) 𝑚 𝜉 cos 𝜓 -𝑚 𝑠 sin 𝜓)𝒆 𝑥 + 𝑚 𝜂 𝒆 𝑦 + (𝑚 𝜉 sin 𝜓 + 𝑚 𝑠 cos 𝜓)𝒆 𝑧 ] 𝑑𝑠 Using the eq.(145-150) in the (143-144) the generalized loads resulting at the first end follows:T 𝜉0 = T 𝜉𝐿 cos 𝜓 𝐿 -N 𝐿 sin 𝜓 𝐿 + ∫(𝑞 𝜉 cos 𝜓 -𝑞 𝑠 sin 𝜓) 𝑑𝑠 𝑀 𝜉𝐿 cos 𝜓 𝐿 -𝑀 𝑠𝐿 sin 𝜓 𝐿 -T 𝜂𝐿 𝑅 sin 𝜓 𝐿 + ∫(-𝑞 𝜂 𝑅 sin 𝜓 + 𝑚 𝜉 cos 𝜓 -𝑚 𝑠 sin 𝜓) 𝑑𝑠 𝑀 𝜂𝐿 + T 𝜉𝐿 𝑅 sin 𝜓 𝐿 -N 𝐿 𝑅(1 -cos 𝜓 𝐿 ) + ∫[𝑞 𝜉 𝑅 sin 𝜓 -𝑞 𝑠 𝑅(1 -cos 𝜓) + 𝑚 𝜂 ] 𝑑𝑠

			𝐿
				(151)
			0
	𝐿		
	T 𝜂0 = T 𝜂𝐿 + ∫ 𝑞 𝜂 𝑑𝑠	(152)
	0		
			𝐿
	N 0 = T 𝜉𝐿 sin 𝜓 𝐿 + N 𝐿 cos 𝜓 𝐿 + ∫(𝑞 𝜉 sin 𝜓 + 𝑞 𝑠 cos 𝜓) 𝑑𝑠	(153)
			0
	𝑀 𝜉0 = 𝐿	(154)
				0
	𝑀 𝜂0 = 𝐿	(155)
				0
	𝐿 𝑀 𝑠0 = 𝑀 𝐿
				(156)
				0	0	(146)
	𝑴 𝐿 = 𝑴 𝐹 𝐿 = 𝒓 𝐶 | 𝑠 = 𝐿	× 𝑭 𝐿
	= -T 𝜂𝐿 𝑅 sin 𝜓 𝐿 𝒆 𝑥 + [T 𝜉𝐿 𝑅 sin 𝜓 𝐿 -N 𝐿 𝑅(1 -cos 𝜓 𝐿 )]𝒆 𝑦 -T 𝜂𝐿 𝑅(1 -cos 𝜓 𝐿 )𝒆 𝑧
				(148)
	𝐿		𝐿
	𝑴 𝑞 = ∫ 𝒓 𝐶 × 𝒒 𝑑𝑠	= ∫ [-𝑞 𝜂 𝑅 sin 𝜓 𝒆 𝑥 + (𝑞 𝜉 𝑅 sin 𝜓 -𝑞 𝑠 𝑅(1 -cos 𝜓)) 𝒆 𝑦 -𝑞 𝜂 𝑅(1 -cos 𝜓)𝒆 𝑧 ] 𝑑𝑠
	0		0
				(149)
	𝐿		
	𝑴 𝑚 = ∫(𝑚 𝜉 𝒆 𝜉 + 𝑚 𝜂 𝒆 𝜂 + 𝑚 𝑠 𝒆 𝑠 )𝑑𝑠	=
	0		
	= ∫[(𝐿			(150)
	0		

𝐿 0 = ∫[(𝑞 𝜉 cos 𝜓 -𝑞 𝑠 sin 𝜓)𝒆 𝑥 + 𝑞 𝜂 𝒆 𝑦 + (𝑞 𝜉 sin 𝜓 + 𝑞 𝑠 cos 𝜓)𝒆 𝑧 ]𝑑𝑠 𝜉𝐿 sin 𝜓 𝐿 + 𝑀 𝑠𝐿 cos 𝜓 𝐿 -T 𝜂𝐿 𝑅(1 -cos 𝜓 𝐿 ) + + ∫[-𝑞 𝜂 𝑅(1 -cos 𝜓) + 𝑚 𝜉 sin 𝜓 + 𝑚 𝑠 cos 𝜓]𝑑𝑠

Table 1

 1 Comparison of maximum stresses 𝜎 𝜉 between the proposed solution and the 2D Elasticity

	𝑚𝑎𝑥|𝜎 𝜉 |	𝑏 𝑅	= 0.50	𝑏 𝑅	= 1.00	𝑏 𝑅	= 1.25
	[𝑀𝑃𝑎]						
		𝜓 = 50°	𝜓 = 150°	𝜓 = 50°	𝜓 = 150°	𝜓 = 50°	𝜓 = 150°
	2D Elasticity.	23.61		26.70	16.09		18.15	11.53	12.96
	Proposed Solution	23.72		26.83	16.25		18.33	11.79	13.25

Table 2

 2 Comparison of maximum stresses 𝜎 𝜂 between the proposed solution and the 2D Elasticity

	[𝑀𝑃𝑎] 𝑚𝑎𝑥|𝜎 𝑠 |	𝑏 𝑅	= 0.50	𝑏 𝑅	= 1.00	𝑏 𝑅	= 1.25
		𝜓 = 50°	𝜓 = 150°	𝜓 = 50°	𝜓 = 150°	𝜓 = 50°	𝜓 = 150°
	2D Elasticity	147.37		170.03	83.82		97.15	50.25	58.65
	Proposed Solution	146.68		168.57	83.52		96.12	50.47	58.13

Table 3

 3 Comparison of maximum stresses 𝜏 𝜉𝑠 between the proposed solution and the 2D Elasticity

	𝑚𝑎𝑥|𝜏 𝜉𝑠 |	𝑏 𝑅	= 0.50	𝑏 𝑅	= 1.00	𝑏 𝑅	= 1.25
	[𝑀𝑃𝑎]						
		𝜓 = 50°	𝜓 = 150°	𝜓 = 50°	𝜓 = 150°	𝜓 = 50°	𝜓 = 150°
	2D Elasticity	3.52		0.92	2.36		0.61	1.65	0.43
	Proposed Solution	3.55		0.92	2.38		0.62	1.67	0.43

  The stress-field due to a radial force 𝑇 𝜉𝐿 is:

	𝜎 𝜉 𝑇 𝜉𝐿 (𝜉, 𝑠) =	𝑇 𝜉𝐿 ℎ	sin(𝜓 𝐿 -𝜓(𝑠)) 𝐶 1	[	1 𝑟(𝜉)	-	𝑟 𝑒 2 𝑟 𝑖 2 (𝑟 𝑒 2 + 𝑟 𝑖 2 )	1 𝑟 3 (𝜉)	-	𝑟(𝜉) (𝑟 𝑒 2 + 𝑟 𝑖 2 )	]	(𝐴. 28)
	𝜎 𝑠 𝑇 𝜉𝐿 (𝜉, 𝑠) =	𝑇 𝜉𝐿 ℎ	sin(𝜓 𝐿 -𝜓(𝑠)) 𝐶 1	[	1 𝑟(𝜉)	+	𝑟 𝑒 2 𝑟 𝑖 2 (𝑟 𝑒 2 + 𝑟 𝑖 2 )	1 𝑟 3 (𝜉)	-	3 𝑟(𝜉) (𝑟 𝑒 2 + 𝑟 𝑖 2 )	]	(𝐴. 29)
	𝜏 𝜉𝑠 𝑇 𝜉𝐿 (𝜉, 𝑠) = -	𝑇 𝜉𝐿 ℎ	cos(𝜓 𝐿 -𝜓(𝑠)) 𝐶 1	[	1 𝑟(𝜉)	-	𝑟 𝑒 2 𝑟 𝑖 2 (𝑟 𝑒 2 + 𝑟 𝑖 2 )	1 𝑟 3 (𝜉)	-	𝑟(𝜉) (𝑟 𝑒 2 + 𝑟 𝑖 2 )	]	(𝐴. 30)
	𝐶 1 = ln ( 𝑟 𝑒 𝑟 𝑖	) -	𝑟 𝑒 2 -𝑟 𝑖 2 𝑟 𝑒 2 + 𝑟 𝑖 2							(𝐴. 31)

values is very small -402.52 MPa (FEM) and 406.46 MPa (proposed solution) -if compared with the maximum values themselves, while the region of the maximum absolute (or relative) differences is, again, non-coincident with maximum stress locations. For both cases examined, 𝜎 𝜂 values are much smaller if compared to 𝜎 𝜉 and 𝜎 𝑠 ones. Neglecting 𝜎 𝜂 slightly affects the results; therefore, a further profit can be gained omitting the computation of the integrals that regard 𝜎 𝜂 . This evidence, clear for these two sections, should be confirmed before the adoption of this simplification for other section shapes. An additional consideration worth to be done. The integrals are all governed by geometric quantities. For rectangular beams they are solved in closed form. For other section shape, as an example circular section (but this concept can be extended to any section shape), they could be computed once for all, considering the variability of the ratio given by section width vs radius of curvature.

The stress-field due to an axial force 𝑁 𝐿 is: