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This paper provides an original approximate analytical solution of the Inflectional Heavy Elastica problem using the Curvilinear Abscissa Mapping Method (C.A.M.M.). The solution, unlike the classic approximate methods, is valid for a wide range of rotations (up to 90 °). As well known, the Heavy Elastica (inflectional or not) does not have an exact solution, even in the simplest load cases. CAMM approach allows to obtain an approximate analytical solution that even sounds for very large displacements and rotations. In the present contribute we refer to the inflectional case, which subsists when the orientation of the end-moment acts against the bending due to the lifting load. The proposed solution has a similar mathematical form and computational effort required for the classical non-inflectional Elastica (nondistributed loads). The results are validated by some numerical and experimental comparisons, highlighting a strong matching. Design-Charts are also provided, in which the variables of interest are deducible upon the trend of dimensionless parameters, as function of end rotation or end-applied moment.

Introduction

The well-known term Elastica refers to a model used in analytical mechanics with the purpose to investigate the finite deformation of one-dimensional beams, when loads and constraints are applied. It owes its authorship to the pioneering studies of J. Bernoulli and Euler [START_REF] Truesdell | The rational mechanics of flexible or elastic bodies[END_REF]. The first fundamental requirement for the application of beam-models is that one of the three geometric dimensions is preponderant over the others, the beam length. The other main requisite is that the stress-strain relationship keeps linear. These aspects are crucial, as they allow building up reliable mathematical models with a workable approach.

Downstream of that, one can consider all the quantities of interest as displacements, rotations, local stresses and strains, as functions of only one variable. Dealing with Elastica, it is common to restrict the analysis when the loading plane coincides with the deformation plane. Consequently, in the final configuration, the deformed beam axis is defined in a two-dimensional Euclidean space, with no-torsion. An engineering beam model accounting torsion is developed by Kirchhoff-Clebsch-Love's theory of rods [START_REF] Dill | Kirchhoff's Theory of Rod[END_REF][START_REF] Love | A Treatise on the Mathematical Theory of Elasticity[END_REF].

Large displacement and rotation theories are called geometrically non-linear beam theories, as it is required to apply the equilibrium in the unknown final configuration. This implies that the action of the loads causes the shift of the application points; thus, the force-displacement relationship turns into non-linear.

Modern engineering, e.g. aircraft or spatial design, requires weight reduction and high range of motion and the growing interest on compliant mechanisms is a tangible example [START_REF] Ahuett-Gaza | Studies about the use of semi-circular beams as hinges in large deflection planar compliant mechanisms[END_REF][START_REF] Howell | Compliant Mechanisms[END_REF]. This implies that designers inevitably drive their attention on thin structures. One of the characteristic properties of these structures is their relative high compliance; therefore, when loaded, the displacements of these structures cannot be considered as infinitesimal.

A well-known engineering problem is the deformed configuration due to lifting, lay and towing of subsea pipeline installation. There are several methods to install a pipeline and one of the most common is the Slayout [START_REF] Bai | Subsea Pipeline Integrity and Risk Management[END_REF][START_REF] Guo | Offshore Pipelines Design, Installation, and Maintenance[END_REF]. In this configuration, the own-weight of the pipe is contrasted by the stinger that provides a lifting force and a moment oriented against bending; this implies that an inflection point occurs. In this scenario, the length of the lifted pipe is unknown. This is a crucial point, that involves a non-immediate application of the well-known numerical methods, which need a shooting approach to get the solution. This problem leads to a Heavy Elastica of variable length supported on a ground. Some studies dedicated to this topic are: [START_REF] Ansari | Nonlinear stress analysis of offshore pipelines during pickup operations[END_REF][START_REF] Guo | Pipeline Lifting Mechanics Research of Horizontal Directional Drilling[END_REF][START_REF] Hibbit | Nonlinear analysis of some slender pipelines[END_REF][START_REF] Hobbs | The lifting of pipelines for repair or modification[END_REF][START_REF] Ngiam | Large Deflecion of Subsea Pipeline due to One Point Lifting[END_REF][START_REF] Ngiam | Intrinsic Coordinate Elements for Large Deflections of Offshore Pipelines[END_REF]. All previous authors employ a numerical approach to address this issue.

An always emerging question is: "When is it necessary to use the geometrically non-linear theory?".

Unfortunately, there is neither a precise rule nor a magic number that exactly answers the question. There are, however, some common recommendations based on maximum displacement: when it is higher than half the thickness of the beam or one-twentieth of the length, the geometric non-linearity should be considered. The need of non-linear theory approach rises with the increase of the geometrical slenderness of the beam, namely the Euler's slenderness factor 𝜆 = 𝐿 √𝐴/𝐼. In this paper, we focus our interest on slender beams. Two assumptions derive. The first is that it is legitimate to neglect the energy contributions due to axial and distortion (shear) strain. In fact, the ratio between the potential energy of axial and shear strains, and the potential bending energy, is proportional to the inverse of the square of Euler's slenderness factor. This implies being able to use the classical Elastica theory instead of the strain-refined Reissner Elastica theory [START_REF] Antman | Nonlinear Problems of Elasticity[END_REF][START_REF] Atanackovic | Stability Theory of Elastic Rods[END_REF][START_REF] O'reilly | Modeling Nonlinear Problems in the Mechanics of Strings and Rods: The Role of the Balance Laws[END_REF][START_REF] Reissner | On one-dimensional finite-strain beam theory: the plane problem[END_REF]. The second assumption is that the trend of the normal strain in the thickness can be considered linear even if the beam is subjected to high curvatures.

In this paper, distributed loads are also accounted, and the problem, according with literature, is usually referred as Heavy Elastica. The adjoin "Heavy" specification is significant since, differently than Elastica, it is not possible to get the solution by the evaluation of a single integral form. In other words, it will be clear hereinafter that the differential equation that derives by equilibrium, although simple, does not allow being integrated in its actual form. For an extensive review on analytical methods to obtain approximate analytical solutions and on the reasons for their limitations and/or inadequacies, refer to [START_REF] Iandiorio | Heavy Elastica soil-supported with lifting load and bending moment applied to an end: A new analytical approach for very large displacements and experimental validation[END_REF][START_REF] Spagnuolo | A targeted review on large deformations of planar elastic beams: extensibility, distributed loads, buckling and post-buckling[END_REF][START_REF] Wang | A critical review of the heavy elastica[END_REF].

The goal of this paper is to introduce an approximated analytical solution to the Inflectional Heavy Elastica problem with unilateral contact constraint, lifted with a load and bending moment applied to an end. The proposed solution is valid and reliable (as verified in the validation tests) for very large displacements and rotations (up to 90°) rather than for moderate rotations, as often proposed. This is an important feature that distinguishes the CAM method from the classical perturbative methods. The result is also consistent with the well-known elastic equation of the fourth-order that gives the linear solution for small displacements.

Unilateral contact Heavy Elastica with an inflection point was first addressed by [START_REF] Kooi | A unilateral contact problem with the heavy elastica[END_REF] using the finite difference method, coupled with the Newton-Raphson method, to solve the boundary value problem. Subsequently, a new numerical solution approach was given by [START_REF] Kooi | A unilateral contact problem with the heavy elastica solved by use of finite elements[END_REF] through a non-linear finite element model that accounts beam and contact-gap elements. Other studies dealing with the unilateral contact of Heavy Elastica are: [START_REF] Al-Sadder | Heavy Elastica beam under unilateral contact constraint[END_REF] that pursue the same numerical approaches by Kooi [START_REF] Kooi | A unilateral contact problem with the heavy elastica solved by use of finite elements[END_REF], for the case of noninflectional Heavy Elastica; [START_REF] Solyaev | Approximate analytical solution for a unilateral contact problem with heavy elastica[END_REF] with an analytical approach that refers to the perturbative analytical solution of Rohde [START_REF] Rohde | Large deflections of a cantilever beam with uniformly distributed load[END_REF].

The importance of the effective contact area is non-particularly interesting for slender beams, since the large displacements are slightly affected by local contact conditions. The soil is assumed as rigid and frictionless; therefore, the contact is modelled as a concentrated pinned constraint that only provides a vertical reaction. Due to absence of friction the beam segment in contact with the soil is non-influent. The size of the transient contact area was investigated by [START_REF] Keer | Two mixed problems for a semi-infinite layer[END_REF][START_REF] Kim | Contact problems involving beams[END_REF]; they found that this transient area is somewhat proportional to the thickness of the beam.

We assume bending moment be applied against curvature, such that an inflection point (i.e. a point where the curvature is zero) appears within the deformed configuration. The appearance of an inflection point in the final configuration is a crucial aspect for the Elastica and Heavy Elastica issue. The framework equations between the non-inflectional and inflectional Heavy Elastica cases are the same -unless a sign on the b.c.. This sign-change causes the solution process to develop on a different scenario. This happens because non-linearity governs the system. The difficulty for the seek of the analytical solution considerably grows when inflection occurs. This behaviour also occurs in the geometrically non-linear problem concerning the classical (not-Heavy) Elastica, e.g. [START_REF] Frish-Fay | Flexible bars[END_REF].

It is interesting to observe that the only attempt to analytically address the inflectional Heavy Elastica, to the best of the authors' knowledge, is [START_REF] Satō | Large deflection of a circular cantilever beam with uniformly distributed load[END_REF], using a perturbative approach.

To address the non-existence of an exact analytical solution for the Heavy Elastica and the inflection point appearance, the Curvilinear Abscissa Mapping Method (C.A.M.M.) is used in this paper. This approach (without the mention of its name) was first proposed by [START_REF] Fertis | Nonlinear Structural Engineering[END_REF] in a simplified form, which allows reliable solutions only for moderate displacements and rotations. In [START_REF] Iandiorio | Heavy Elastica soil-supported with lifting load and bending moment applied to an end: A new analytical approach for very large displacements and experimental validation[END_REF], the method has been refined and discussed to apply even for very large displacements and rotations of non-inflectional Heavy Elastica, supported by soil. In the present paper, we encompass occurrence of an internal inflection point (this happens when reversing the sign of the ending-moment). The starting-point is the same as [START_REF] Iandiorio | Heavy Elastica soil-supported with lifting load and bending moment applied to an end: A new analytical approach for very large displacements and experimental validation[END_REF], namely the assumption of parabolic mapping between curvilinear and Cartesian abscissae. The inflection occurrence implies that the three intersection points of the parabolic mapping are chosen in a non-fixed location as in the noninflectional case [START_REF] Iandiorio | Heavy Elastica soil-supported with lifting load and bending moment applied to an end: A new analytical approach for very large displacements and experimental validation[END_REF]. Furthermore, in this case there are two additional boundary conditions and two additional kinematic unknowns. Following the CAMM, the Heavy Elastica problem, whatever is the endbending sign, is led back at the same analytical complexity of classical end-loaded Elastica. Although the solution is approximate, it is valid on a very wide range of (beam) rotations and displacements, which is an original result if compared to other approximate (perturbative) solutions, effective for moderate rotations.

In §2 the method is fully explained. As it is known from Elastica case, the presence of inflection points increases the complexity of the analytical solution. Applying the CAMM, one can take advantage of the existence of an inflection point to enforce additional boundary conditions. In §3 some design charts are shown, where the analytical solution is computed for possible values of the main dimensionless parameter 

The geometrically non-linear beam model and its solution

Considering a reference system aligned with the unloaded rectilinear beam, the governing equations for the Heavy Elastica problem are [START_REF] Iandiorio | Heavy Elastica soil-supported with lifting load and bending moment applied to an end: A new analytical approach for very large displacements and experimental validation[END_REF]:

𝑑 2 𝜓(𝑠) 𝑑𝑠 2 + 𝐹 -𝑞(𝐿 -𝑠) 𝐸𝐼 cos 𝜓(𝑠) = 0 (1) 𝑦(𝑥) = 𝑦 0 + ∫ tan 𝜓(𝑠(𝑥 ̃)) 𝑑𝑥 ̃ 𝑥 0 (2) 𝐿 = ∫ 𝑑𝑥 cos 𝜓(𝑠(𝑥)) 𝑥 𝐿 0 (3)
where 𝑥 ̃ is a dummy variable. These equations are general and valid for the case of a Heavy Elastica subjected to concentrated forces at one end, and antagonistic distributed loads. Both F and q acts along the y-axis. The boundary conditions characterize the configuration under consideration. Hereinafter we consider the case of Heavy Elastica sustained by a rigid soil providing a unilateral contact. The beam feels its own weight and is lifted at the non-constrained end by a vertical force and a bending moment. The inflection appears within the deformed beam only when the sign of applied moment is negative (clockwise in Fig. 1), the null case is excluded because no inflection occurs in this circumstance. Boundary conditions follow: Note that the bending length L is unknown, dependent on applied loads and bending stiffness. Eq.s [START_REF] Ahuett-Gaza | Studies about the use of semi-circular beams as hinges in large deflection planar compliant mechanisms[END_REF][START_REF] Al-Sadder | Heavy Elastica beam under unilateral contact constraint[END_REF] turns into singular when 𝜓(𝑠) = ± 𝜋 2

( 𝑑𝜓(𝑠) 𝑑𝑠 | 𝑠 = 𝐿 = 𝑀 𝐸𝐼 ) < 0 (4) 
, so that we seek the solution in the interval (-

𝜋 2 , 𝜋 2 
), which is therefore the field of existence of the solution.

It is convenient to proceed considering the end angle 𝜓 𝐿 as known, and the applied moment M as reaction load to found; the suitability of this choice will be clearer in the following developments.

According to the bending orientation, 𝜓 ′ (𝑠 = 𝐿) < 0, but 𝜓 ′ (𝑠 = 0) = 0 , 𝜓(𝑠 = 0) = 0 ; therefore the angle 𝜓 cannot monotonically raise, ∃ 𝐿 𝑖 ∈ (0, 𝐿): 𝜓 ′ (𝑠 = 𝐿 𝑖 ) = 0 , i.e. an internal inflection point, noncoincident with the soil-contact, occurs. As will be shown later on, for the application of CAMM two additional boundary conditions, regarding the inflection point, are required:

𝑑𝜓(𝑠) 𝑑𝑠 | s=𝐿 𝑖 = 0 (9) 𝜓(𝑠) | s=𝐿 𝑖 = 𝜓 𝑖 (10) 
𝐿 𝑖 identifies the point, measured along the curvilinear abscissa, where the curvature is null and 𝜓 𝑖 is the corresponding angle.

Eq. ( 1) does not have any exact analytical solution. The CAM Method helps obtaining an approximated analytical solution, which provides reliable results over a wide-angle range. Since no reference analytical solution exists, the consistency of this method is discussed in §4, comparing it with fully numerical solutions (Runge-Kutta and F.E.M.) and experimental results.

The method assumes a mapping of the curvilinear abscissa with a function of the Cartesian abscissa. A suitable choice is parabolic mapping, since it combines accuracy, the introduction of a number of parameters that matches the allowable boundary conditions and the analytical inversion between x and s abscissae:

𝑠(𝑥) = 𝑎 ̃+ 𝑏 ̃ 𝑥 + 𝑐̃ 𝑥 2 (11) 
It is now necessary to enforce three points of intersection for the parabola:

𝑠 = 0 ↦ 𝑥 = 0 (12) 𝑠 = 𝐿 𝑖 ↦ 𝑥 = 𝑥 𝑖 (13) 𝑠 = 𝐿 ↦ 𝑥 = 𝑥 𝐿 ( 14 
)
Where 𝑥 𝑖 is the cartesian abscissa coordinate of the inflection point. By solving the system (12,13,14) using the eq. ( 11):

𝑎 ̃= 0 (15) 𝑏 ̃= 𝐿 𝑥 𝑖 [ ( 𝑥 𝑖 𝑥 𝐿 ) 2 -( 𝐿 𝑖 𝐿 ) ( 𝑥 𝑖 𝑥 𝐿 ) -1 ] ( 16 
) 𝑐̃= 𝐿 𝑥 𝑖 𝑥 𝐿 [ ( 𝐿 𝑖 𝐿 ) -( 𝑥 𝑖 𝑥 𝐿 ) ( 𝑥 𝑖 𝑥 𝐿 ) -1 ] (17) 
Therefore, the overall unknown governing constants are six: M, L, 𝐿 𝑖 , 𝑥 𝑖 , 𝑥 𝐿, 𝜓 𝑖 . The useful equations for their finding are eight: the seven boundary conditions (4,5,6,7,8,9,10) and the eq. ( 3). For the integration of eq.s (1,2) three integration constants arise, also to be determined by the boundary conditions. This implies that five useful equations and six unknown constants remain. To overcome this uncertainty, an additional kinematic equation linking some of the unknowns is necessary. Observing the form of eq.s [START_REF] Goldberg | On contact point motion in the vibration analysis of elastic rods[END_REF][START_REF] Hibbit | Nonlinear analysis of some slender pipelines[END_REF], it is convenient to introduce a further connection between the two abscissae:

( 𝐿 𝑖 𝐿 ) = 𝑛(𝜓 𝑖 ) ( 𝑥 𝑖 𝑥 𝐿 ) ( 18 
)
Following the discussion reported in [START_REF] Iandiorio | Heavy Elastica soil-supported with lifting load and bending moment applied to an end: A new analytical approach for very large displacements and experimental validation[END_REF], a proper choice for the function 𝑛(𝜓 𝑖 ) is:

𝑛(𝜓 𝑖 ) = cos ( 𝜓 𝑖 2 ) ( 19 
)
It is evident that this is not the only possible choice, but not all choices offer good results. As will be proven in §3 this choice provides reliable results for all cases of interest: small, moderate and large displacements/rotations, regardless of the applied loads, the distributed ones, and the bending stiffness. It is also important to point out that the selection of function 𝑛(𝜓 𝑖 ) does not change in any way the result relations obtained in this paragraph. The choice of eq. ( 19) only appears at the end of the analytic procedure, so it is very easy to implement different functions 𝑛(𝜓 𝑖 ).

Reconsidering eq. [START_REF] Dill | Kirchhoff's Theory of Rod[END_REF][START_REF] Goldberg | On contact point motion in the vibration analysis of elastic rods[END_REF][START_REF] Hibbit | Nonlinear analysis of some slender pipelines[END_REF][START_REF] Howell | Compliant Mechanisms[END_REF] and compacting the notation through new dimensionless values 𝑢 and 𝑚:

𝑠(𝑢) = (𝑏 𝑢 + 𝑐 𝑢 2 )𝐿 ( 20 
)
where:

𝑢 = ( 𝑥 𝑥 𝐿 ) ∈ (0, 1) (21) 
𝑏(𝜓 𝑖 ) = 𝑚 -𝑛 𝑚 -1 (22) 𝑐(𝜓 𝑖 ) = 𝑛 -1 𝑚 -1 (23) 
being 𝑚 = (

𝑥 𝑖 𝑥 𝐿 ) ( 24 
)
Starting the integration of eq. ( 1):

𝑑𝜓 𝑑𝑠 = ∫ 1 𝐸𝐼 [𝑞(𝐿 -𝑠) -𝐹] cos 𝜓(𝑠) 𝑑𝑠 + 𝑐 1 ( 25 
)
Using the trigonometric equation 𝑑𝑥 = cos 𝜓(𝑠) 𝑑𝑠 and the eq. [START_REF] Humer | Large deformation and stability of an extensible elastica with an unknown length[END_REF][START_REF] Iandiorio | Heavy Elastica soil-supported with lifting load and bending moment applied to an end: A new analytical approach for very large displacements and experimental validation[END_REF] in [START_REF] Kooi | A unilateral contact problem with the heavy elastica[END_REF] the non-solvable integral turns into a trivial form:

𝑑𝜓 𝑑𝑠 = ∫ 1 𝐸𝐼 [𝑞𝐿 (1 -𝑏 𝑢 -𝑐 𝑢 2 ) -𝐹] 𝑥 𝐿 𝑑𝑢 + 𝑐 1 ( 26 
)
Applying the b.c. [START_REF] Antman | Nonlinear Problems of Elasticity[END_REF], and noting that 𝑠 = 0 corresponds to = 0 , the integration constant 𝑐 1 vanishes:

𝑑𝜓 𝑑𝑠 = 𝑥 𝐿 𝑢 𝐸𝐼 [𝑞𝐿 (1 - 𝑏 2 𝑢 - 𝑐 3 𝑢 2 ) -𝐹] (27) 
To reduce the size of the following equations, this notation is introduced:

𝑓 𝑎 1 ,𝑎 2 (𝑡) = 1 - 𝑏 𝑎 1 𝑡 - 𝑐 𝑎 2 𝑡 2 (28) 
with 𝑎 1 , 𝑎 2 ∈ ℝ. Taking advantage if this notation, eq. ( 27) becomes:

𝑑𝜓 𝑑𝑠 = 𝑥 𝐿 𝑢 𝐸𝐼 [𝑞𝐿 𝑓 2,3 (𝑢) -𝐹] (29) 
Using the b.c. [START_REF] Ansari | Nonlinear stress analysis of offshore pipelines during pickup operations[END_REF][START_REF] Chen | An integral approach for large deflection cantilever beams[END_REF], considering 𝑠 = 𝐿 (𝑢 = 1), and 𝑠 = 𝐿 𝑖 (𝑢 = 𝑚), two equations outcome:

𝑀 𝑥 𝐿 = 𝑞𝐿𝑓 2,3 (1) -𝐹 (30) 
𝑞𝐿 𝑓 2,3 (𝑚) = 𝐹 [START_REF] Rohde | Large deflections of a cantilever beam with uniformly distributed load[END_REF] These equations will be useful later. By continuing the integration of the [START_REF] O'reilly | Modeling Nonlinear Problems in the Mechanics of Strings and Rods: The Role of the Balance Laws[END_REF]:

𝑑𝜓 𝑑𝑠 = 𝑑𝑥 𝑑𝑠 𝑑𝑢 𝑑𝑥 𝑑𝜓 𝑑𝑢 = cos 𝜓 𝑥 𝐿 𝑑𝜓 𝑑𝑢 = 𝑥 𝐿 𝑢 𝐸𝐼 [𝑞𝐿 𝑓 2,3 (𝑢) -𝐹] ( 32 
)
Integrating the previous one and using the b.c. [START_REF] Bai | Subsea Pipeline Integrity and Risk Management[END_REF]:

sin 𝜓 = 𝑥 𝐿 2 𝑢 2 2 𝐸𝐼 [𝑞𝐿𝑓 3,6 (𝑢) -𝐹] ( 33 
)
By applying the b.c. [START_REF] Atanackovic | Stability Theory of Elastic Rods[END_REF][START_REF] Bona | A generalized elastica-type approach to the analysis of large displacements of spring-strips[END_REF] other two equations are obtained:

sin 𝜓 𝐿 = 𝑥 𝐿 2 2 𝐸𝐼 [𝑞𝐿𝑓 3,6 (1) -𝐹] (34) 
sin

𝜓 𝑖 = 𝑥 𝐿 2 𝑚 2 2 𝐸𝐼 [𝑞𝐿𝑓 3,6 (𝑚) -𝐹] (35) 
The eq. [START_REF] Reissner | On one-dimensional finite-strain beam theory: the plane problem[END_REF][START_REF] Rohde | Large deflections of a cantilever beam with uniformly distributed load[END_REF][START_REF] Spagnuolo | A targeted review on large deformations of planar elastic beams: extensibility, distributed loads, buckling and post-buckling[END_REF][START_REF] Truesdell | The rational mechanics of flexible or elastic bodies[END_REF], together the eq. ( 3) constitute the non-linear system through which it is possible to obtain all the previously mentioned governing constants of the problem. Eliminating the parameter F in eq.s [START_REF] Rohde | Large deflections of a cantilever beam with uniformly distributed load[END_REF][START_REF] Spagnuolo | A targeted review on large deformations of planar elastic beams: extensibility, distributed loads, buckling and post-buckling[END_REF], after some algebraic manipulation and the expansion of the notation introduced in (28), one obtains:

12 𝐸𝐼 𝑞𝐿 sin 𝜓 𝐿 𝑥 𝐿 2 = 𝑚(1 + 2𝑛) -(1 + 𝑛) ( 36 
)
Similarly, eliminating F in eq.s [START_REF] Rohde | Large deflections of a cantilever beam with uniformly distributed load[END_REF] in [START_REF] Truesdell | The rational mechanics of flexible or elastic bodies[END_REF]:

12 𝐸𝐼 𝑞𝐿 sin 𝜓 𝑖 𝑥 𝐿 2 = 𝑛𝑚 3 (37)
Finally, making a ratio of eq. ( 36) with (37):

𝑛 ( sin 𝜓 𝐿 sin 𝜓 𝑖 ) 𝑚 3 -(1 + 2𝑛) 𝑚 + (1 + 𝑛) = 0 (38)
This cubic equation in 𝑚 allows, once solved, to derive 𝑚 = (

𝑥 𝑖 𝑥 𝐿
) only as a function of the unknown angle 𝜓 𝑖 . To solve the cubic equation, using the standard procedure [START_REF] Abramowitz | Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[END_REF], one should distinguish three cases: 𝜓 𝐿 > 0, 𝜓 𝐿 = 0 and 𝜓 𝐿 < 0 (Fig. 2).

-

If 𝜓 𝐿 ∈ (- 𝜋 2
, 0) only one solution lies in ℝ:

𝑚(𝜓 𝑖 ) = √𝑄 3 [ √ -1 + √∆ 3 + √ -1 -√∆ 3 ] (39) 
where:

𝑄 = 1 2 ( sin 𝜓 𝑖 sin 𝜓 𝐿 ) ( 1 + 𝑛 𝑛 ) (40) ∆= 1 - 8 27 𝑄 ( 1 + 2𝑛 1 + 𝑛 ) 3 (41) 
-if 𝜓 𝐿 = 0 the trivial linear case outcomes:

𝑚(𝜓 𝑖 ) = ( 1 + 𝑛 1 + 2𝑛 ) (42) -if 𝜓 𝐿 ∈ (0 , 𝜋 2 
) three real solutions exist:

𝑚(𝜓 𝑖 ) = √𝑃 cos ( 𝜗 -2𝑘𝜋 3 ) , 𝑘 ∈ (1,2,3) (43) 
where:

𝑃 = 4 3 ( 𝑠𝑖𝑛 𝜓 𝑖 𝑠𝑖𝑛 𝜓 𝐿 ) 1 + 2𝑛 𝑛 (44) 𝜗 = 𝑎𝑐𝑜𝑠 [- 3 2 ( 1 + 𝑛 1 + 2𝑛 ) √ 4 𝑃 ] ( 45 
)
For this last case of three, the correct solution, among all, is the only one having 𝑚 ∈ (0 ,1).

𝑚(𝜓 𝑖 ) = ( 𝑥 𝑖 𝑥 𝐿

) is now known for all the values of 𝜓 𝐿 ∈ (-

𝜋 2 , 𝜋 2 
). Previous solutions in 𝑚 do not allow to directly explicit 𝜓 𝐿 through m, so that it is convenient to assume 𝜓 𝐿 as a known variable and derive the applied moment 𝑀. This corresponds to substitute an equilibrium condition with a kinematic one.

The other unknown constants remain to be determined. By inserting the eq. ( 31) in [START_REF] Truesdell | The rational mechanics of flexible or elastic bodies[END_REF], replacing the parameter 𝑞𝐿, and noting that 𝑓 3,6 (𝑚) -𝑓 2,3 (𝑚) = 1 -𝑓 6,6 (𝑚) :

𝑥 𝐿 (𝜓 𝑖 ) = √ 𝐸𝐼 𝐹 √ 2 𝑓 2,3 (𝑚) sin 𝜓 𝑖 𝑚 2 (1 -𝑓 6,6 (𝑚)) ( 46 
)
The value of 𝑥 𝑖 (𝜓 𝑖 ) is immediately derived by eq. ( 24).

The characteristic deformed beam lengths comes from eq.s ( 31) and ( 18):

𝐿(𝜓 𝑖 ) = 𝐹 𝑞 1 𝑓 2,3 (𝑚) (47) 𝐿 𝑖 (𝜓 𝑖 ) = 𝐹 𝑞 𝑛 𝑚 𝑓 2,3 (𝑚) (48) 
Finally, inserting eq. ( 31) in [START_REF] Reissner | On one-dimensional finite-strain beam theory: the plane problem[END_REF] and using (46):

𝑀(𝜓 𝑖 ) = √𝐹𝐸𝐼 𝑓 2,3 (1) -𝑓 2,3 (𝑚) 𝑚 √ 2 sin 𝜓 𝑖 𝑓 2,3 (𝑚) (1 -𝑓 6,6 (𝑚)) (49) 
All the constants are now defined as only function of 𝜓 𝑖 . All that remains is to derive the variable 𝜓 𝑖 as function of the assumed parameters of the problem, namely: F, q, E, I, 𝜓 𝐿 .

Using the eq. [START_REF] Rohde | Large deflections of a cantilever beam with uniformly distributed load[END_REF]46) in [START_REF] Solyaev | Approximate analytical solution for a unilateral contact problem with heavy elastica[END_REF] the general function describing the trend of the tangent angle is available:

sin 𝜓 (𝜓 𝑖 , 𝑢) = sin 𝜓 𝑖 ( 𝑢 𝑚 ) 2 ( 𝑓 3,6 (𝑢) -𝑓 2,3 (𝑚) 1 -𝑓 6,6 (𝑚) ) (50) 
The latter can be used in the eq. ( 3), applying the [START_REF] Iandiorio | Heavy Elastica soil-supported with lifting load and bending moment applied to an end: A new analytical approach for very large displacements and experimental validation[END_REF] for normalization of the integral extremes:

𝐿 = 𝑥 𝐿 ∫ 𝑑𝑢 √1 -𝑠𝑖𝑛 2 𝜓 (51) 1 0
From the ratio of eq. (46,47) one obtain a dimensionless ratio of the lengths:

𝐿 𝑥 𝐿 = 𝐹 𝑞 √ 𝐹 𝐸𝐼 1 𝑓 2,3 (𝑚) √ 𝑚 2 (1 -𝑓 6,6 (𝑚)) 2 𝑓 2,3 (𝑚) sin 𝜓 𝑖 ( 52 
)
From which combining the (52) and ( 51):

( 𝐹 3 𝑞 2 𝐸𝐼 ) = 2 (𝑓 2,3 (𝑚)) 3 sin 𝜓 𝑖 𝑚 2 (1 -𝑓 6,6 (𝑚)) (∫ 𝑑𝑢 √1 -𝑠𝑖𝑛 2 𝜓 1 0 ) 2 (53) 
Where the sin 𝜓 function is given by eq. ( 50).

The Inflectional Heavy Elastica is therefore brought back to an integral form.

The eq. ( 53) is fundamental. Both terms are dimensionless. The term on the left contains all the known data of the problem, except the angle 𝜓 𝐿 (previously assumed) which is present in the coefficient m (eq. 38).

The right terms only contain kinematic quantities. This implies that known the dimensionless parameter

𝐹 3 𝑞 2 𝐸𝐼
and chosen the angle 𝜓 𝐿 , the right term to of the eq. ( 53) is a function of the only remaining variable of the problem, 𝜓 𝑖 . It is evident that the integral in (53) cannot be solved analytically, but only numerically.

It is therefore not possible to explicit the parameter 𝜓 𝑖 and this involves two paths: if 𝜓 𝑖 is known the integral is computed only once obtaining a direct solution for

𝐹 3 𝑞 2 𝐸𝐼
, on the other side; else if the dimensionless parameter is known an attempt solution is required to compute 𝜓 𝑖 . The need to proceed with iterative attempts is not peculiar only of the proposed procedure. In fact, the same requirement occurs for the analytical solutions concerning large displacement problems, as reported e.g. in [START_REF] Chen | An integral approach for large deflection cantilever beams[END_REF][START_REF] Bona | A generalized elastica-type approach to the analysis of large displacements of spring-strips[END_REF][START_REF] Frish-Fay | Flexible bars[END_REF] even in the simplest cases of a cantilever beam subjected only to an end-concentrate force.

The most important advantage of the CAM method is now revealed. The Heavy Elastica solution turns into an analytical form, now sharing the same computational complexity of the classical Elastica.

It is therefore now possible to calculate the complete deformed function. Using eq. ( 21) in (2) and then the (46):

𝑦(𝑢) = √ 𝐸𝐼 𝐹 √ 2 𝑓 2,3 (𝑚) sin 𝜓 𝑖 𝑚 2 (1 -𝑓 6,6 (𝑚)) ∫ sin 𝜓 √1 -𝑠𝑖𝑛 2 𝜓 𝑢 0 𝑑𝑢 ̃ ( 54 
)
The trend of the bending moment can be simply computed as:

𝑀(𝑢) = 𝐸𝐼 𝑑𝜓 𝑑𝑠 (55) 
Using the eq. [START_REF] Rohde | Large deflections of a cantilever beam with uniformly distributed load[END_REF][START_REF] Satō | Large deflection of a circular cantilever beam with uniformly distributed load[END_REF]46,49) one obtains:

𝑀(𝑢) = 𝑀 𝑢 𝑓 2,3 (𝑢) -𝑓 2,3 (𝑚) 𝑓 2,3 (1) -𝑓 2,3 (𝑚) (56) 
Imposing the derivative of the previous equation to zero, the point 𝑢 𝑀 where bending moment assumes its stationary value (internal point) is obtained. By choosing the positive (physical meaning) solution:

𝑢 𝑀 = ( 𝑏 2𝑐 ) [-1 + √ 1 + 4𝑐 𝑏 2 (1 -𝑓 2,3 (𝑚)) ] (57) 
The maximum absolute value of the bending moment is:

𝑀 𝑚𝑎𝑥 = max (𝑀(𝑢) | u=𝑢 𝑀 , |𝑀|) (58) 
The maximum bending moment (with positive sign) is between the contact point and the inflection point, where the curvature is positive and the taut fibres are in the bottom side. Conversely, the minimum (with negative sign) of the bending moment is in the lifting point itself, where the curvature is negative and the taut fibres are in the top side.

For the shear force:

𝑇(𝑢) = 𝑑𝑀(𝑠) 𝑑𝑠 = 𝐸𝐼 𝑑 2 𝜓 𝑑𝑠 2 (59)
Apply the eq.s [START_REF] Abramowitz | Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[END_REF][START_REF] Rohde | Large deflections of a cantilever beam with uniformly distributed load[END_REF] to the previous one:

𝑇(𝑢) = 𝐹 ( 𝑓 1,1 (𝑢) 𝑓 2,3 (𝑚) -1) cos 𝜓 (60)
The resulting reaction force of the soil when 𝑢 = 0 is the following:

𝑅 = 𝑇(𝑢) | u=0 = 𝐹 ( 1 𝑓 2,3 (𝑚) -1) (61)
that, in a one-dimensional model, represents the sum of the distribution of the contact forces [START_REF] Kim | Contact problems involving beams[END_REF]).

An advantage of the assumed parabolic mapping is the easiness of the transformation between the Cartesian and curvilinear abscissae. This implies that all above equations, which are functions of variable u, can be considered as a function of x by means of the simple eq.( 21), or they can be read as a function of s. Through the inverse of the map (20) and applying eq. ( 31):

𝑢(𝑠) = ( 𝑏 2𝑐 ) [-1 + √ 1 + 4𝑐 𝑏 2 𝑞 𝐹 𝑠 𝑓 2,3 (𝑚) ] ( 62 
)
This last is particularly useful in the following of the displacement of every physical point (Lagrangian approach).

Design Charts deduction

Previous analytical steps highlighted that the solution can be offered in terms of a dimensionless parameter

𝐹 3 𝑞 2 𝐸𝐼
and the angular value of the lifting point 𝜓 𝐿 . The first contains information regarding the concentrated lifting force, the distributed load, and the bending stiffness of the beam. The lifting moment applied does not appear explicitly, but it is intrinsically deduced by the choice of 𝜓 𝐿 . For a design chart scope, as discussed in §2, the eq. ( 53) can be solved directly (calculated only once and not by attempts), by imposing the angle 𝜓 𝐿 and the angle 𝜓 𝑖 and thus obtaining the consequent value of

𝐹 3 𝑞 2 𝐸𝐼
. The result is given in Fig. 3 where a parametric mapping

[𝜓 𝑖 ∈ (0, 𝜋 2 )] × [𝜓 𝐿 ∈ (- 𝜋 2 , 𝜋 2 )] → 𝐹 3 𝑞 2 𝐸𝐼
is presented. This graph is crucial, as it drives all the following ones. It allows identifying the limit conditions. If 𝜓 𝐿 > 0, limit values of the parameter

𝐹 3 𝑞 2 𝐸𝐼
are evidenced (marked with a circle); physically, this means that the inflection position tends to approach the lifting point, namely 𝜓 𝑖 → 𝜓 𝐿 . In this case, the maximum bending moment lies between the contact point and the inflection point. If 𝜓 𝐿 ≤ 0, the limit condition is determined by those values of

𝐹 3 𝑞 2 𝐸𝐼
(marked with a square) such that the inflection point is positioned at the contact point, namely 𝜓 𝑖 → 0.

In this case, the maximum value of the bending moment is the lifting moment 𝑀 itself. Being now known all the values of 𝜓 𝑖 as function of

𝐹 3 𝑞 2 𝐸𝐼
and 𝜓 𝐿 , the parametric and dimensionless graphs of all the variables of the problem can be obtained without further efforts.

In Fig. 4, the eq. ( 31) is shown in dimensionless form 𝑞 𝐿

𝐹

, where the variable to deduce is the bending length L. The same figure provides the contact reaction force R of the eq. ( 61), again in a dimensionless form. The reason that the two values can lie on the same graph is evident by the application of translational equilibrium 𝑞𝐿 = 𝐹 + 𝑅 (Fig. 1). Another interesting aspect of Fig. 4 is the constant value of interest. Some values the parameter 𝜓 𝐿 have been omitted for tedious curve overlapping. Finally, Fig. 7 gives the dimensionless lifting moment M as a function of

𝐹 3 𝑞 2 𝐸𝐼
and 𝜓 𝐿 .

Model verification

Reliability of the proposed analytical procedure is gained by comparing its solutions with numerical and experimental results. The comparison concerns three cases of 𝜓 𝐿 > 0, 𝜓 𝐿 = 0 and 𝜓 𝐿 < 0 corresponding to the three solution given for m.

The first of two fully numerical solution uses the fourth-order Runge-Kutta algorithm with error estimation of the fifth-order, to integrate eq.( 1) and the following equations:

𝑑𝑥 𝑑𝑠 = cos 𝜓 (63) 𝑑𝑦 𝑑𝑠 = sin 𝜓 (64)
This method presents some difficulties that need to be carefully analysed. They belongs to the form of eq.

(1) and the boundary value problem. In the eq. ( 1) the parameter L, namely the bending length, is present but unknown. This makes computationally harder the application of this method, which implies an attempt strategy. This issue is also addressed in [START_REF] Bosi | Self-encapsulation, or the "dripping' of an elastic rod[END_REF][START_REF] Goldberg | On contact point motion in the vibration analysis of elastic rods[END_REF][START_REF] Humer | Large deformation and stability of an extensible elastica with an unknown length[END_REF]. The conditions to integrate eq. ( 1), if the moment M is known, are the eq. (5,7) that are the initial value conditions and the eq. ( 4), representing the boundary condition. The attempt strategy to determine the right value of L is controlled by the satisfaction of the equilibrium given by eq.( 4), when a minimal residual is reached. Attempt is governed by a bisection approach; it requires the definition of an interval search for the unknown length L. There is no general optimal choice for these values, since the length L changes as a function of the load and stiffness parameters F, M, q, E, I. An obvious choice is to search the value of L between [ , 𝐿 𝑡𝑜𝑡 ] where < 𝐿 𝑡𝑜𝑡 , and 𝐿 𝑡𝑜𝑡 is the total length of the beam in the initial configuration (at rest), but for an ideal semi-infinite beam this value is difficult to set up. It is straightforward that the interval choice greatly influences the computation time for the solution. R.K.algorithm enforces the integration at every iteration along the whole length of the beam (i.e. for every discretized locations). Otherwise, it is important to emphasize that the estimate of 𝐿 𝑡𝑜𝑡 it is not necessary in the analytical solution, while it is essential for all fully-numerical methods.

Following R.K. approach, there are cases where the boundary value problem becomes even more demanding, inasmuch the moment applied at the end is unknown, and the end-angle 𝜓 𝐿 is fixed. In this case, discussed in §4.1, the boundary equation ( 6) is introduced. Consequently, two unknowns need to be shot, the length L and the moment M applied to the end; the solution strategy now requires a two-dimension The second method used for numerical comparison is the non-linear Finite Element Method. A very high number ( 103 ) of two-node cubic iso-parametric beam element were used, so that the h-convergence is largely guaranteed. In similarity with [START_REF] Kooi | A unilateral contact problem with the heavy elastica solved by use of finite elements[END_REF], the gap-element method is employed to account of soil contact. This implies that a distributed load gives the reaction contact force, unlike the analytical model where only a concentrated force acts. The value of the contact reaction results by subtracting to the total reaction load the weight of the part of the beam in contact with the soil.

About the attempt method to satisfy eq. ( 53) of the present proposed method, the bisection approach is chosen again. The search interval of the angle 𝜓 𝑖 is the higher as possible [𝛿, 𝜋 2

-𝛿] where 𝛿 = 0.017 𝑟𝑎𝑑 ≅ 1 𝑑𝑒𝑔 and an acceptable residual set to 10 -12 . Despite the wider choice of the search range of 𝜓 𝑖 and the very small residual value, the computational time required to solve the equation ( 53), whose satisfaction is the core of the method, is much lower than the time required by R.K. algorithm or F.E.

method. In §4.1 the ratio of the computing times between the R.K. method and the proposed method is provided for the three comparison cases. The first case -m is computed by eq. ( 43) -concerns an angle 𝜓 𝐿 > 0, the second onem is computed by eq. ( 39) -an angle 𝜓 𝐿 < 0. In both cases, the end-applied moment M is known (𝑀 = 8.060 the first and 𝑀 = 25.646 the second), so that the R.K. algorithm requires a one-dimension attempt method. The beam has a rectangular section wide of 19.95 mm, thickness 2.95 mm and made of a steel having 𝐸 = 209 𝐺𝑃𝑎.

Comparisons between Analytical and Numerical solutions

In both cases the lifting force applied is 𝐹 = 35 𝑁 and the distributed load 𝑞 = 17.562 𝑁𝑚 -1 . The results of the values of interest for the comparisons of both cases are reported, in Table 1 and Table 2, respectively.

The ratio of the calculation times between the R.K. and analytical methods for the two cases are respectively Fig. 10 concerns the case -m is computed by eq. ( 42) -of a lifting force applied in a central point of the beam. One can easily considers that this "bell" configuration is symmetrical by respect to the lifting direction. This allows studying only half of the structure, with half applied force and the reaction-moment applied at the lifting point turns to unknown. To find this last, the kinematic constraint condition 𝜓(𝑠) | s=L = 0 is enforced, which corresponds to eq. ( 6), specialized for 𝜓 𝐿 = 0. In this case, as discussed above, the R.K. algorithm requires a two-dimension attempt method. The vertical load acting on each half of the beam considered is 𝐹 = 35 𝑁. The comparison of the values of interest among the procedure proposed and the numerical methods are given in Tab. 3. The ratio of the calculation times between R.K.

and analytical method for this case rises up to (

𝑡 𝑅𝐾 𝑡 𝑎𝑛 ) 𝜓 𝐿 =0
= 132.06 , where the chosen search interval of the bisection method has the same extent for the length as before, and the moment spans over a 30% of the analytical value, [𝑀 𝑚𝑖𝑛 , 𝑀 𝑚𝑎𝑥 ] = 𝑀 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 × [0.7, 1.3] , indicating 𝑀 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 the value previously computed by the proposed method. Note that the time ratio is almost four times the previous one, according to the fact that the attempt method now faces two dimensions.

It is also interesting to investigate the trend of the absolute errors for the previous three cases of Fig. 8,9,10.

Fig. 11 shows the trends of the 𝑦(𝑠) displacements errors for the three boundary conditions. Absolute errors are computed referring to Runge-Kutta results, weighted with respect to the displacement of the end point 𝑦 𝐿 . The errors trends have no deterministic appearance, but two interesting aspects arise. The first is that the errors between Analytical-RK and FEM-RK are comparable in magnitude and similar in trend, this evidences that the analytical method performs analogously with the discretization error embedded in a refined F.E.M. analysis. The second observation is that the region showing maximum errors is the central one for all boundary cases. This is not surprising since both kinematic and loading b.c. are enforced at the edges. However, Fig. 11 evidences that the edge error, which is the matter of Tables 1,2,3 is well representative of the whole performance of the proposed analytical solution.

The absolute error trends concerning the other kinematic quantities 𝑥(𝑠), 𝜓(𝑠) are not presented, as they show a behaviour very similar to Fig. 11.

As can be seen from the results in the tables and the figures, where the distance between the contact points are shown, the proposed CAM Method matches very well with the other (here elected for comparison) numerical methods.

.

Experimental confirmation

The reliability of all proposed solutions where experimentally verified. The peculiar point is the relative simplicity of experimental set-up. However, despite its simplicity, these experiments become valuable and trivial to implement, when very large displacements occur.

The experimental setup enforces a known vertical displacement at the lifting point and a constraint on its rotation. The non-inflected part of the beam is in contact with the soil (Fig. 12).

Two concentrated forces are applied; the first acts at the sustenance point (representing the lifting point of the beam) and is measured through a precision balance. The second is essential to impose the moment, constituting with the first a force couple. This second load is measured by an adjustable loading-apparatus (Fig. 13), such as to maintain the force in the vertical direction, always following horizontally the displacement of the load point. The second load is progressively supplied until the desired end-rotation is reached. This condition is detected by installing a laser optical beam that signals the achievement of the desired rotation on a target. To increase density of the beam (i.e. the magnitude of the distributed load) a system of regularly positioned four little weights are glued and piled on the upper side of the beam. This allows an increase of the distributed vertical load, without introducing a further flexural stiffness. In the deformed configuration, the beam is partially lifted from the soil but a portion keeps in contact with it. The measurement of the residual length that remains in contact, named 𝐿 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 is the easiest method to check the model. The contact point is provided by sliding a thin calibrated sheet of paper under the beam. The measurement is obtained starting from the portion raised from the soil towards the portion in contact with it, until the movement of the sheet is prevented. To make this measurement as repeatable as possible, contact recognition can be detected when the sliding force presents an abrupt increase. To this goal, a limit load is given by the attraction capability of a magnet.

As shown in Fig. 14, the calibrated sheet is dragged by two wires at the ends of which there are two metal elements attracted by a small magnet. When the sheet fits between the beam and the ground, and the magnet attraction force is reached, the metallic heads disengage, evidencing the contact distance.

The geometrical and material data of the beam are the same as those reported in §4.1, the density is 𝜌 = 7736 kgm -3 and the total value of the distributed load (sum of the own weight and that of the additional weights) is q=17.562 𝑁𝑚 -1 .

Similarly as in §4.1, three tests were performed with three different end angles, the results are given in Table 4. The values obtained are in very good agreement and very convergent with the expected results.

The moment values match slightly less than the other compared quantities. But this is expected since a small deviation in the experimental boundary condition implies a significant variation of the resulting applied loads.

It is important to highlight that the experimental tests indicate the need to take into account a contact threshold. This means that, in the modelling activities, all points that have a vertical lift smaller than contact threshold are considered already in contact. This is crucial in order to compare the contact points identified by the proposed and the numerical methods with the experimental data. In the modelling, close to the contact point there is a significant region that experiences a very small vertical displacement (e.g. 10 -5 -10 -6 𝑚) , inasmuch the trend at the contact point tends to be an asymptotic-like.

In this region, there is no contact in the numerical sense, but, for a comparison with experiments, the contact yields. In the comparisons shown in Table 4 the contact threshold is set to 10 -4 m, in accordance with the thickness of the calibrated paper used for the experiments. Another effect to consider, when dealing with the experimental activities, is the distributed moment caused by the offset between the centre of mass of the piled weight loads and that of the beam section. To estimate how this affects the results, F.E.M. analyses where conducted, neglecting or considering this offset. The results show that the influence is largely negligible, on the order of the 0.01% of the maximum displacement.

Conclusion

In this paper the Curvilinear Abscissa Mapping Method (CAMM) is applied to solve the soil-supported Heavy Elastica problem with an internal inflection point. This problem does not present an exact analytical solution. The method provides an approximate analytical solution, which keeps its worthiness from infinitesimal to very large displacements and rotations. In the present context, CAM Method requires to be applied only one hypothesis: parabolic mapping of the curvilinear abscissa in the deformed configuration, by respect to the Cartesian abscissa. The coefficients of this parabolic mapping are uniquely determined by introducing an additional kinematic equation ( 18). This last is even compatible with the classical results concerning small displacements, so that the solution is applicable in the same manner for small, moderate or large deflections. The application of the CAMM for this inflectional case starts in a similar way to what is presented in [START_REF] Iandiorio | Heavy Elastica soil-supported with lifting load and bending moment applied to an end: A new analytical approach for very large displacements and experimental validation[END_REF], but it presents some essential differences in the analytical procedure which have been addressed in the present paper. The CAM Method is thus extended to Inflectional Elastica non contained in [START_REF] Iandiorio | Heavy Elastica soil-supported with lifting load and bending moment applied to an end: A new analytical approach for very large displacements and experimental validation[END_REF]. The main result is that the required computational effort for large displacements analyses of beams, subjected to distributed loads, -whatever is the presence of an internal inflection point -is led back to the same complexity of the classical end-loaded Elastica.

Only one non-explicit parameter affects the solution. This parameter can be determined, as in the case of classical non-inflectional Elastica (only concentrated force applied), with similar computational effort and strategy. The proposed solution allows graphical representations (Design Charts) with dimensionless axes, using the ending angle as a parameter. The solution is validated with the numerical evidences obtained by Runge-Kutta method and Finite Element Approach. There is an evident convergence of the results -less than 1% -among the kinematic variables of the highly deformed configuration.

In comparison with R.K., the proposed solution requires only one numerical shooting procedure; otherwise, R.K. needs the shooting over one or two variables, depending on boundary conditions. Furthermore, F.E.

approach requires the progressively application of the load, which also causes a continuous update of the lifted portion of the beam. Consequently, the proposed solution provides a considerable computational advantage with respect to the two mentioned methods, fully numerical. A further comparison was performed with three experimental tests, that highlighted the reliability of the proposed and numerical results, presenting a scatter always below 3%. 

  and parameterized by means of 𝜓 𝐿 or 𝑀 √𝐹𝐸𝐼 . To test the reliability of the proposed solution, even when large rotations occurs, three comparison cases with results by Runge-Kutta algorithm and Finite Element solutions are shown. To validate the model, experimental tests are performed for three values of the lifting point angle, generating three different solution paths. In the discussion of the tests, the importance of considering a contact threshold in the determination of the effective position of the contact points emerged as a key factor.

𝑑𝜓

  

.

  This is a result that can be verified with the classical beam theory considering small displacements, namely solving the differential equation of the elastic line 𝑦 𝐼𝑉 (𝑥) = -𝑞 𝐸𝐼 with boundary conditions 𝑦 𝐼𝐼𝐼 (𝑥 = 𝐿) = 𝐹 𝐸𝐼 ; 𝑦 𝐼𝐼 (𝑥 = 0) = 0 ; 𝑦 𝐼 (𝑥 = 𝐿) = 0 . This means that the solution converges to the linear theory (small displacements) when

Fig. 5 ,

 5 Fig.5,6 identify the dimensionless positions 𝑥 𝐿 and 𝑦 𝐿 of the lifting point which is the point of special

  attempt method. Similarly to before, it is possible to use the multivariate bisection method, with the search interval [ , 𝐿 𝑡𝑜𝑡 ] and the search interval [ , ]. The right values of L and M are controlled by satisfaction of the eq.(4,6), unless pre-set tolerances. In all following examples the value of 10 -9 is chosen for the absolute and relative tolerance of the R.K. algorithm, and an error value of 10 -5 [1/m] for the curvature (eq. 4) and slope 10 -3 [rad].

Fig. 8 ,

 8 Fig.8,9 regards two examples of comparison between the solutions obtained by the proposed method and

=

  35.19, where the chosen search interval of the bisection method coupled with the R.K. algorithm is limited [𝐿 𝑚𝑖𝑛 , 𝐿 𝑚𝑎𝑥 ] = 𝐿 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 × [0.7, 1.3] ; namely, the start extreme values are no more than 30% far from the value obtained with the analytical solution.
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 12345678911121314 Fig.1 Deformed beam configuration and used nomenclature (M is negative)

  

  

  

  

  

  

  

  

  

  

  

  

  

Table 1

 1 Kinematic values comparing the different methods when 𝜓 𝐿 >0, (F=35 and M=8.060)

Table 2

 2 Kinematic values comparing the different methods when 𝜓 𝐿 <0, (F=35 and M=25.646)

Table 3

 3 Kinematic values comparing the different when 𝜓 𝐿 =0, (F=35)

		𝒙 𝑳 [𝒎] 𝒚 𝑳 [𝒎]	𝝍 𝑳 [°]	𝒙 𝒊 [𝒎]	𝒚 𝒊 [𝒎]	𝝍 𝒊 [°]	𝑳 𝒊 [𝒎]	𝑳 [𝒎]
	Analytical	1.855	1.844	55.00	1.573	1.234	69.38	2.259	2.894
	Runge-Kutta	1.863	1.840	54.73	1.583	1.246	68.97	2.266	2.908
	F.E.M.	1.872	1.840	54.69	1.584	1.246	69.01	2.261	2.910
	% relative difference Analytical -R.-K.	0.43	0.22	0.40	0.63	0.96	0.59	0.31	0.48
	% relative difference Analytical -F.E.M.	0.91	0.22	0.56	0.69	0.96	0.53	0.10	0.55
		𝒙 𝑳 [𝒎] 𝒚 𝑳 [𝒎]	𝝍 𝑳 [°]	𝒙 𝒊 [𝒎]	𝒚 𝒊 [𝒎]	𝝍 𝒊 [°]	𝑳 𝒊 [𝒎]	𝑳 [𝒎]
	Analytical	2.516	0.771	-45.00	1.500	0.509	36.77	1.603	2.727
	Runge-Kutta	2.505	0.779	-44.83	1.508	0.516	37.04	1.620	2.745
	F.E.M.	2.513	0.772	-44.92	1.507	0.515	36.90	1.615	2.735
	% relative difference Analytical -R.-K.	0.44	2.31	0.38	0.53	1.36	0.73	1.05	0.66
	% relative difference Analytical -F.E.M.	0.12	1.42	0.18	0.46	1.16	0.35	0.74	0.29
		𝒙 𝑳 [𝒎] 𝒚 𝑳 [𝒎] 𝒙 𝒊 [𝒎]	𝒚 𝒊 [𝒎]	𝝍 𝒊 [°]	𝑳 𝒊 [𝒎]	𝑳 [𝒎] |𝑴| [𝑵𝒎]
	Analytical	2.336	1.365	1.613	0.813	50.73	1.835	2.827	20.073
	Runge-Kutta	2.335	1.353	1.612	0.807	51.42	1.862	2.854	20.394
	F.E.M.	2.338	1.358	1.612	0.810	51.13	1.860	2.852	20.296
	% relative difference Analytical -R.-K.	0.04	0.88	0.06	0.74	1.34	1.45	0.95	1.57
	% relative difference Analytical -F.E.M.	0.09	0.51	0.06	0.37	0.78	1.34	0.88	1.10

Table 4

 4 Comparisons among experimental, numerical, and proposed method results 24.927 11.725 372.50 24.921 12.526 368.01 24.921 12.604 372.02 24.927 12.589 376.47 y L =508 mm ψ L =-6.78 ° 26.095 13.967 255.00 26.375 14.555 268.55 26.375 14.691 265.84 26.275 14.554 269.76

		Experimental data		Analytical			Runge-Kutta		F.E.M.	
	Displ. & Rot.												
	imposed	𝐹	𝑀	𝐿 𝑐𝑜𝑛𝑡	𝐹	𝑀	𝐿 𝑐𝑜𝑛𝑡	𝐹	𝑀	𝐿 𝑐𝑜𝑛𝑡	𝐹	𝑀	𝐿 𝑐𝑜𝑛𝑡
		[N]	[Nm]	[mm]	[N]	[Nm]	[mm]	[N]	[Nm]	[mm]	[N]	[Nm]	[mm]
	y L =508 mm ψ L =7.33 °	22.944 9.567 505.00 23.277 10.234 500.97 23.277 10.336 506.36 23.335 10.229 509.03
	y L =508 mm												
	ψ L =0.00 °												

Fig.10 Comparison of solutions when 𝜓 𝐿
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