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Abstract

In this paper, we develop and present an arbitrary high order well-balanced finite volume WENO
method combined with the modified Patankar Deferred Correction (mPDeC) time integration method
for the shallow water equations. Due to the positivity-preserving property of mPDeC, the resulting
scheme is unconditionally positivity preserving for the water height. To apply the mPDeC approach, we
have to interpret the spatial semi-discretization in terms of production-destruction systems. Only small
modifications inside the classical WENO implementation are necessary and we explain how it can be
done. In numerical simulations, focusing on a fifth order method, we demonstrate the good performance
of the new method and verify the theoretical properties.

Keywords: positivity preserving, well-balanced, WENO, modified Patankar, shallow water, deferred correc-
tion.

1 Introduction

In the last years, the development of structure preserving high-order methods for hyperbolic conserva-
tion/balance laws have been an active field of research [5, 6, 14, 35, 24, 58, 63]. In the context of the shallow
water equations, one is mainly interested in maintaining positive levels of water height, in conserving the
equilibrium/stationary states and in entropy conservation/dissipation methods. There exists various ways
to obtain these desired results, e.g. the applications of limiters for the positivity is only one example, cf.
[8, 50, 38, 42, 49, 15, 65] and references therein.
In this paper, we also deal with these issues and we present a new high-order, well-balanced, positivity
preserving method for the shallow water equation starting from a classical WENO scheme. In order to
obtain well-balanced (WB) solutions, we subtract the residual of the a priori known stationary solution from
our numerical scheme as shown in [8].
Then, to ensure the positivity of the water height, the modified Patankar Deferred Correction (mPDeC)
method is used for the time-integration of this variable. Even if (modified) Patankar (mP) methods have
been already used inside a numerical method for fluid simulations [30, 31, 40], those mP schemes have been
based on extensions of classical RK methods and they are of maximum order three1. By applying the

∗Corresponding authors: mirco.ciallella@inria.fr (M. Ciallella), lorenzo.micalizzi@math.uzh.ch (L. Micalizzi),
poeffner@uni-mainz.de (P. Öffner), davide.torlo@sissa.it (D. Torlo)

1Mostly, they have been only used for the source terms, multicomponent terms or in a post-processing process.
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modified Patankar trick inside the Deferred Correction (DeC) framework, the authors of [46] were able to
construct a conservative, arbitrarily high-order and positivity preserving method for production-destruction
systems (PDS) of ordinary differential equations.
To obtain a positive WENO spatial reconstruction, a positive limiter must be used [66, 48]. In this work the
mPDeC is applied for the first time to a PDE problem, with a finite volume WENO spatial discretization.
This lead to a high order accurate method enjoying all the previously cited properties (WB, positivity
preservation).
Finally, in order to apply mPDeC on the semi-discretized problem, the finite volume method must be
rewritten into a PDS and we explain in details how this can be done. It should be stressed out that only
small modifications inside the classical finite volume implementation are necessary as it can be seen in the
reproducibility repository [18]. To our opinion the modifications can be adapted to most WENO codes in a
straightforward manner and the approach is a good alternative to already existing methods.
The paper is structured as follows: In Section 2, we introduce the considered model, the classical shallow
water equations, and we repeat the basic properties focusing on steady state solutions and the positivity of the
water height. Next, in Section 3 we describe the used classical finite volume WENO approach from [56, 57]
and its well-balanced modification from [8]. We focus on the fifth order WENO method. However, all
the ingredients to go to arbitrary high order can be found in the related repository [18]. In Section 4,
the time-integration is considered focusing on Deferred Correction (DeC), the modified Patankar approach
and its combination to the modified Patankar DeC (mPDeC) method developed in [46]. In Section 5,
we describe how mPDeC can be combined with the WENO approach. It is important to interpret the
semi-discretization in terms of production-destruction systems. Details of the implementation are given
with additional algorithms. Then, in Section 6, we verify the theoretical properties of the scheme with
numerical simulations with WENO5 focusing on the high-order accuracy, the well-balanced and the positivity
preserving properties. In addition, we demonstrate also the excellent performance for more challenging test
cases. Finally, in Section 7 we summarize the obtained results and perspectives for future works.
In Appendixes A and B we describe in details the WENO reconstruction and apply it for WENO5 with
4-points Gaussian quadrature rule, which, up to our knowledge, is not available in literature.

2 Shallow Water Equations

2.1 Model

The shallow water equations (SWE) model the behaviour of shallow free surface flows under the action of
gravity. They are used to simulate the flows in rivers and coastal areas, and can be applied to predict
tides, storm surge levels and coastline changes from hurricanes and ocean currents. They are also used
in atmospheric flows, debris flows, and certain hydraulic structures like open channels and sedimentation
tanks. SWEs take the form of non-homogeneous hyperbolic conservation laws with source terms modeling
the effects of bathymetry and viscous friction. In this paper, we will consider the effect of the bathymetry as
the only source term. If the bottom topography is assumed to be constant with respect to time, the SWEs
can be recast in balance law form as:

∂u

∂t
+∇ · F(u) = S(u, x, y) on ΩT = Ω× [0, T ] ⊂ R2 × R+ (1)

with conserved variables, flux and source terms given by

u =

 hhu
hv

 , F(u) =
[
F G

]
=

 hu hv

hu2 + g h
2

2 huv

huv hv2 + g h
2

2

 , S(u, x, y) = −gh

 0
∂b
∂x (x, y)
∂b
∂y (x, y)

 (2)

where h represents the relative water height, u = (u, v) are the flow speed components, g is the gravity
acceleration and b(x, y) is the local bathymetry. The source term helps modeling the effects induced on the
flow caused by the bathymetry changes in space. Finally, it is also convenient to introduce the free surface
water level η := h+ b. All the aforementioned variables can be better interpreted by looking at Figure 1.
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Figure 1: Shallow Water Equations: definition of the variables.

2.2 Properties of the model

As it is described inter alia in [10, 9, 37, 51, 65], the construction and development of effective and accurate
numerical methods for the shallow water equations have received much interest in the last decades and it is
still ongoing. In particular, one is interested in schemes that preserve physical quantities or structures from
the continuous level. In this paper, we are targeting two types of difficulties which are often encountered
when working with SWE: the preservation of steady state solutions and water height positivity2.

2.2.1 Steady state solutions

The SWE system (2) is known to admit some steady state solutions whose form depends on the equilibrium
between the source terms S and the remaining terms of the equations. The numerical simulations should
be able to capture these behaviors even on coarse grids. Without additional techniques, many methods
fail at balancing the source terms and the flux, resulting in small pertubations of the steady state. The
perturbations could be then amplified by the method causing a bad approximation of the exact behaviour.
This situation is sometimes called numerical storm in such context. To prevent it, one is interested in
schemes that are capable of exactly balancing the flux and the source terms to obtain the desired steady-
state solution. Numerical schemes enjoying this property are called well-balanced schemes.
The still water surface is often the first equilibrium taken in consideration. It is given by

u = v = 0; η(x, y, t) = h(x, y, t) + b(x, y) ≡ η0 ∈ R+
0 , ∀ (x, y) ∈ Ω, t ∈ [0, T ]. (3)

It represents a steady-state solution, and is referred to as lake at rest. However, that is only a special case
of the moving water equilibrium. Provided we verify the compatibility condition for the bathymetry
which is (−v, u) · ∇b = 0, the steady state solutions are characterized by the invariants

h(x, y, t)u(x, y, t) = Const. and E(x, y, t) =
1

2
||u(x, y, t)||2 + g(h(x, y, t) + b(x, y, t)) = Const. (4)

Here, E is the specific total energy (moving water equilibrium variable), cf. [51] for more details.
Obviously, the lake at rest (3) is a special case of (4) when the velocity reduces to zero. Because of these
reasons, it is desirable to solve (2) with well-balanced schemes and also our described method has this
property as we shall describe in Section 3.2.

Remark 2.1 (C-Property). As described in [13, 50, 51], instead of speaking of well-balanced schemes, one
could alternatively say that a scheme enjoys the C-property if it preserves exactly the steady state (3).
However one still speaks of C-property when referring to other steady states (4). When the conservation of
the steady state is not exact but is obtained within error rates below the formal accuracy of the scheme, one
often speaks of generalized C-property [50].

2We do not focus on entropy/energy preservation, see [9, 49] and reference therein for this topic.

3



2.2.2 Positivity of the solution

The other major difficulty which pops up in many simulations of the SWE is the appearance of dry regions
in many real applications as for example dam break problems, flood waves and run-up phenomena at a coast
with tsunamis. Here, the water height (h = 0) will be zero. As a result, all eigenvalues of the Jacobian
of the flux coincide, cf. [51] and the SWE model will be not strictly hyperbolic anymore. If, by numerical
oscillations h becomes negative, the problem is also not well-posed and the calculations will simply break
down. It is thus essential for a good scheme to preserve the positivity of h at any time and any point.
Especially, in situations when we have dry and wet areas, the scheme has to be constructed such that it can
handle these numerical challenges. In this paper, we shall target the issue of positivity of the solutions by
combining a positivity preserving time-integration method together with the WENO approach. More about
this will follow in Section 4.3.

Remark 2.2. Apart from the wet-dry areas in which the value of h approaches 0, we may have some regions
of the space domain in which the bottom topography b overcomes the water level resulting in areas which
are completely dry. In this context, the given definition (3) of the lake at rest steady state is unsatisfactory
because in the mentioned regions we have η0 < b which, if we strictly stick to (3), would give h < 0 which
does not correspond to the physics of the phenomen that must be modeled. Therefore in such cases we need
to modify the definition of the lake at rest steady state introducing the so-called dry lake at rest

u = v = 0; h(x, y, t) =

{
η0 − b(x, y), if b ≤ η0,

0, else,
∀ (x, y) ∈ Ω, t ∈ [0, T ]. (5)

3 Space discretization: Finite Volume method

The system of PDEs considered herein will be solved by means of the Method Of Lines (MOL). Thus, space
and time are going to be treated separately. This section has the goal of presenting a standard high order
finite volume framework. In particular, we will consider a Cartesian setting but the method can be easily
applied to a general unstructured framework in a straightforward way.
The computational domain Ω is covered with Nx ×Ny non-overlapping control volumes

Ωi,j = [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2] (6)

with the dimensions given by ∆x = xi+1/2 − xi−1/2 and ∆y = yj+1/2 − yj−1/2.
Considering the system of hyperbolic balance laws described by (1) and (2), for the control volume Ωi,j we
can define the cell average at time t:

Ui,j(t) :=
1

∆x∆y

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

u(x, y, t) dxdy. (7)

Integrating (1) over Ωi,j provides the semi-discrete evolution formula with respect to Ui,j

dUi,j(t)

dt
+

1

∆x
(Fi+1/2,j(t)− Fi−1/2,j(t)) +

1

∆y
(Gi,j+1/2(t)−Gi,j−1/2(t)) = Si,j(t) (8)

where Si,j is the cell average of the source terms over cell Ωi,j at time t

Si,j(t) :=
1

∆x∆y

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

S(x, y, t) dxdy (9)

and Fi+1/2,j and Gi,j+1/2 are the cell-averages of the physical fluxes over cell boundaries at time t:

Fi+1/2,j(t) =
1

∆y

∫ yj+1/2

yj−1/2

F(u(xi+1/2, y, t)) dy, (10)

Gi,j+1/2(t) =
1

∆x

∫ xi+1/2

xi−1/2

G(u(x, yj+1/2, t)) dx. (11)
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Equation (8), along with all the previous definitions, is so far exact.
From now until the end of this section, by an abuse of notation, we will not explicitly write the dependence
on t in all variables. Ui,j , Fi+1/2,j , Gi,j+1/2 and Si,j can be then approximated to the desired order of
accuracy using appropriate quadrature formulae and reconstruction techniques. From now on, we shall focus
only on Fi+1/2,j (Gi,j+1/2 is obtained in a similar manner). Many low order and high order reconstruction
techniques have been developed in the last decades. Few of them can be found in [26, 62, 19, 57, 25, 7, 20, 44].
Once the reconstruction has been performed, at each face we have two sets of values of U, corresponding to
xLi+1/2 and xRi+1/2, which will be referred to as the left and right extrapolated values:

uLi+1/2,θ = u(xLi+1/2, yθ) , uRi+1/2,θ = u(xRi+1/2, yθ). (12)

In our case, the weighted essentially non-oscillatory (WENO) [56, 57] reconstruction has been considered to
avoid severe oscillations at discontinuities. By applying a consistent quadrature rule, and dropping the time
dependence, the flux in the x-direction reads,

Fi+1/2,j =
1

∆y

Nθ∑
θ=1

wθF(u(xi+1/2, yθ)) =
1

∆y

Nθ∑
θ=1

wθF̂(uLi+1/2,θ,u
R
i+1/2,θ). (13)

where the subscript θ = 1, . . . , Nθ corresponds to different Gaussian points yθ ∈ [yj−1/2, yj+1/2] and weights
wθ ∈ [0, 1]. The last step in the evaluation of the fluxes replaces F(u(xi+1/2, yθ)) in (13) with a monotone

and consistent numerical flux F̂(uL,uR). The consistency is proved only if F̂(u,u) = F(u).
In our scheme we employ a Rusanov-type Riemann solver:

F̂(uL,uR) =
1

2

(
F(uR) + F(uL)

)
− 1

2
smax

(
uR − uL

)
, (14)

where smax is the maximum eigenvalue of the normal flux-Jacobian of the system (1).
In order to express the dependence of some quantities on several cell averages Ui,j , it is useful to collect
them all in the vector U.

3.1 Weighted Essentially Non-Oscillatory (WENO) method

As it is described in Shu’s seminal paper [56] the classical WENO (as well as ENO) approach contains three
major steps:

1. Use the WENO reconstruction procedure which will be described in the following to obtain the values
at the Gaussian points. This step involves two one-dimensional reconstructions in the two directions.

2. Compute the numerical flux at quadrature points and integrate them at each cell interface.

3. Form a classical semidiscrete FV method and apply a time-integration method to update the cell
averaged values.

3.1.1 Scalar reconstruction

The goal of the WENO method is to compute point-wise value of variable of interest u(x, y) at Gaussian
quadrature points (xi+1/2, yθ), in order to have a conservative and high order accurate procedure. In general,
two ways can be followed to obtain the same result: genuine multidimensional reconstruction [55] and
dimension-by-dimension reconstruction [59, 12]. The latter is a procedure made up by successive one-
dimensional reconstruction sweeps and it is much simpler and less computationally expensive than the
genuine multidimensional one. For this reason, we shall only focus on this one.
The high order reconstructed variables we are looking for will be referred to as uLi+1/2,θ and uRi+1/2,θ. For
the left values, we need to reconstruct the variable inside the cell Ωi,j , while, for the right values, similar
arguments apply on the cell Ωi+1,j . We aim at reconstructing the variables with an accuracy of order p (p
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odd). So, we define a stencil of p cells, {Ωlx,ly , lx = i− r + 1, . . . , i+ r − 1, ly = j − r + 1, . . . , j + r − 1},
where 2r− 1 = p. For instance, WENO5 has accuracy p = 5, with r = 3, and uses a 5-cells stencil from i− 2
to i+ 2.
In the first step of the two-dimensional reconstruction, a one-dimensional WENO reconstruction along the
x-direction is performed obtaining the averages at cell interface xi+1/2 with respect to the y-direction for
ly = j − r + 1, . . . , j + r − 1

vRly =
1

∆y

∫ yly+1/2

yly−1/2

u(xRi+1/2, y) dy, vLly =
1

∆y

∫ yly+1/2

yly−1/2

u(xLi+1/2, y) dy. (15)

In the second sweep we perform another one-dimensional reconstruction along the y-direction in the Gaussian
integration points on the y-axis (x = xi+1/2, y = yθ), with yθ ∈ [yj−1/2, yj+1/2]. The reconstructed values can

be, more generally, defined for each WENO sweep as the one-dimensional averages qi = 1
∆ξ

∫ ξi+1/2

ξi−1/2
q(ξ) dξ

of a function q(ξ) where ∆ξ = ξi+1/2 − ξi−1/2 is the cell size.
For each one-dimensional step of the procedure, there are r candidate stencils for reconstruction. For each
of these stencils, made up by r cells, there is a correspoding polynomial of degree (r − 1) referred as pm(ξ)
m = 0, . . . , r − 1. The goal of the WENO reconstruction is that of using all information coming from the
r stencils employed for the reconstruction. For this reason, the WENO approach defines the reconstructed
value as a convex combination of the r values of all polynomials in each quadrature point, weighted with
positive nonlinear weights. The weights are chosen in order to achieve (2r − 1)th order of accuracy when
the solution is smooth and prefer the smoother stencils when discontinuities occur in the field. For a given
(quadrature) point ξ̃ the design of weights consists of three steps. Firstly, the optimal linear weights dm
are sought so that the combination of all polynomials with these weights produces the polynomial of degree
(2r− 2) corresponding to the large stencil. Then, the nonlinear weights ωm can be defined as ωm = αm∑r−1

k=0 αk

with αm = dm
(βm+ε)2 , where ε is a small constant introduced to avoid division by zero (we use ε = 10−6 in the

simulations) and βm are the smoothness indicators

βm =

r−1∑
k=1

∫ ξi+1/2

ξi−1/2

(
dk

dxk
pm(ξ)

)2

∆ξ2k−1dξ , m = 0, . . . , r − 1. (16)

If some of dm are negative then a special procedure must be used to tackle the reconstruction problem [55].

The final WENO reconstructed quantity is given by q(ξ̃) =
∑r−1
k=0 pk(ξ̃)ωk.

The numerical experiments presented herein have been performed through a piece-wise parabolic WENO5
reconstruction (r = 3), which formally corresponds to fifth order accurate approximation for smooth so-
lutions. However, in order to actually retain the fifth-order accuracy the quadrature formulae must be
consistent with the WENO reconstruction. As Titarev and Toro stated in [59], the best results in terms of
accuracy and computational cost for r = 3 are obtained if the two-point Gaussian quadrature rule is used.
However, this leads eventually to a formal fourth order of accuracy. For this reason, we implemented the
four-point Gaussian quadrature rule with positive optimal weights. Up to our knowledge, the two-point
Gaussian quadrature has already been thoroughly discussed in many references cited above. However, the
case with 4-point Gaussian quadrature has not been fully described in literature, hence, we are going to
introduce all the coefficients needed to use such formula in Appendix B and a Matlab script to compute the
weights and coefficients for all orders is provided in [18].

Remark 3.1 (Positivity limiter). We aim at a positive solution and during the reconstruction procedure, it
might happen that h(xLi+1/2) or h(xRi+1/2) become negative. In order to ensure that positive cell averages lead
to positive reconstructions at the cell interfaces, we use the positivity limiter introduced by Perthame and
Shu [48] and developed for two dimensional problems in [66]. The limiter is used in the simulation section
with a parameter ε = 10−6 as minimum water height, if not otherwise specified. We refer to [65, 66] for
details on the implementation. This limiter when used in combination with the forward Euler (FE) method
restricts the CFL conditions to CFLFE := wLobatto

1 the weight of the Gauss–Lobatto quadrature rule of the
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corresponding space accuracy. For instance, with WENO5, CFLFE = 1/12. The restriction slightly improves

for high order SSPRK methods, for example we have CFLSSPRK(5,4) ≈ 1.508·CFLFE. Unfortunately, explicit
SSPRK methods are at most fourth order accurate, so for fifth order schemes (as DeC5), there is no warranty
that the solution stays nonnegative under any CFL condition. Instead, we highlight that the new presented
approach is unconditionally positive and thus not subjected to any CFL restriction.

3.2 Well-Balanced modification of the standard Finite Volume method

In order to achieve Well-Balancing with respect to the (eventually dry) lake at rest steady state, in this work
we coupled the WENO formulation with a simple modification firstly introduced in [8]. The modification
consists in recasting the original problem into an equivalent one in terms of the deviation of the seeked
solution U from the reference solution Ũ which must be preserved. In the particular case in which a steady

solution (∂Ũ∂t = 0) must be preserved, the modification leads to the new problem

d

dt
Ui,j+

1

∆x
(Fi+1/2,j(U)− Fi−1/2,j(U))− 1

∆x
(Fi+1/2,j(Ũ)− Fi−1/2,j(Ũ))+

1

∆y
(Gi,j+1/2(U)−Gi,j−1/2(U))− 1

∆y
(Gi,j+1/2(Ũ)−Gi,j−1/2(Ũ)) =

Si,j(U)− Si,j(Ũ),

(17)

which can be interpreted as a classical finite volume formulation with modified fluxes and source:

Fi+1/2,j(U) = Fi+1/2,j(U)− Fi+1/2,j(Ũ),

Gi,j+1/2(U) = Gi,j+1/2(U)−Gi,j+1/2(Ũ),

Si,j(U) = Si,j(U)− Si,j(Ũ).

(18)

This approach is very easy to code and, further, the structures related to the steady reference solution can
be computed in advance once and then used for every timestep without affecting the computational time.
It must be underlined that, with this technique, all cell average computations, WENO reconstruction and
source terms of the reference solution are performed following the same procedures and quadrature rules
carried out for solving the balance law. Hence, all the terms always match when at the equilibrium.

4 Time discretization

After the description of the space discretization, we will introduce the time discretization in the this section.
Due to the MOL approach, it is enough to focus here on the simple ODE case. The time discretization
is one of the major point of this paper since we want to apply for the first time the arbitrary high-order,
conservative and positivity preserving modified Patankar Deferred Correction method (mPDeC) together
with the described WENO approach to the shallow water equations resulting in a high-order, conservative,
unconditionally positivity preserving, non-oscillatory and well-balanced scheme. In agreement with [39], we
refer to the numerical methods which are provably positive with respect to the water height without any
CFL restriction, i.e., for all time steps ∆t > 0, as unconditionally positivity preserving, in the context of
the numerical solution of the shallow water equations.
Before describing the combined algorithm, we introduce the Deferred Correction (DeC) method [21] as
described in [1, 6, 60] and we repeat its modification using the Patankar trick from [46, 45, 61].

4.1 Deferred Correction method

The general DeC approach has been introduced in [21] and has been further developed and applied in [17, 36,
41] in different contexts, whereas a simplified version was presented in [1]. In [1], a compact operator notation
was also introduced and we shall follow this framework herein. However, even if the notation changed, the
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main idea of DeC is always the same. DeC is based on the Picard-Lindelöf Theorem in the continuous setting
and the classical proof makes use of Picard iterations to minimize the error and to obtain convergence. DeC
is constructed to mimic these Picard iterations at the discrete level and decreases the approximation error
in several iterative steps. To explain the method, we consider the following time-dependent initial value
problem

y′(t) = f(y(t)), y(t0) = y0, (19)

where y : R→ RS and f : RS → RS resulting from our MOL approach.
For our description, two operators are introduced: L1 and L2. Here, the L1 operator represents a low-order
easy-to-solve numerical scheme, e.g. the explicit Euler method, and L2 is a high order operator that can
present difficulties in its practical solution, e.g. an implicit RK scheme. The DeC method can be written as
a combination of these two operators. Given a time interval [tn, tn+1], we subdivide it into M subintervals

tn = tn,0 = t0

y0

tn,1 = t1

y1

tn,m = tm

ym

tn,M = tM = tn+1

yM

Figure 2: Time interval divided into subintervals

{[tn,m−1, tn,m]}Mm=1, where tn,0 = tn and tn,M = tn+1. Therefore, we mimic for every subinterval [t0, tm] the
Picard–Lindelöf Theorem for both operators L1 and L2. With an abuse of notation, we drop the dependency
on the timestep n for subtimesteps tn,m and substates yn,m as denoted in Figure 2.
Then, the L2 operator is given by

L2(y0, . . . , yM ) :=


yM − y0 −∆t

∑M
r=0 θ

M
r f(yr)

...

y1 − y0 −∆t
∑M
r=0 θ

1
rf(yr)

. (20)

where θmr are the weights of a high order quadrature rule in {tm}Mm=0.
The L2 operator represents a high order numerical scheme if set equal to zero, i. e., L2(y0, . . . , yM ) = 0.
The order depends on the distribution of the subtimesteps, for instance, with M equispaced subtimesteps
one obtains (M + 1)th order, while with M Gauss–Lobatto quadrature subtimesteps one has (2M)th order.
Unfortunately, the resulting scheme is implicit and, further, the terms f may be nonlinear. The L1 operator
is given by the forward Euler discretization for each state ym in the time interval, i. e.,

L1(y0, . . . , yM ) :=


yM − y0 − βM∆tf(y0)
...

y1 − y0 − β1∆tf(y0)

(21)

with coefficients βm := tm−t0
tM−t0 .

To simplify the notation and to describe DeC, we introduce the matrix of states for the variable y at all
subtimesteps.

y := (y0, . . . , yM ) ∈ R(M+1)×S , such that (22)

L1(y) := L1(y0, . . . , yM ) and L2(y) := L2(y0, . . . , yM ). (23)

The DeC algorithm uses a combination of the L1 and L2 operators to provide an iterative procedure. The
aim is to recursively approximate y∗, the numerical solution of the L2(y∗) = 0 scheme, similarly to the
Picard iterations in the continuous setting. The successive states of the iteration process will be denoted by
the superscript (k), where k is the iteration index, e.g. y(k) ∈ R(M+1)×S . The total number of iterations

8



(also called correction steps in the following) is denoted by K. To describe the procedure, we have to refer
to both the m-th subtimestep and the k-th iteration of the DeC algorithm. We will indicate the variable by
ym,(k) ∈ RS . Finally, the DeC method can be written as

DeC Algorithm

y0,(k) := y(tn), k = 0, . . . ,K,

ym,(0) := y(tn), m = 1, . . . ,M,

L1(y(k)) = L1(y(k−1))− L2(y(k−1)) with k = 1, . . . ,K,

(24)

where K is the number of iterations that we want to compute.
Using the procedure (24), we need, in particular, as many iterations as the desired order of accuracy p, i. e.,
K = p. This means that we choose the number of subtimesteps in a way that the order of the L2 operator
is itself equal to p. In practice, for each correction and each subtimestep, L1,m(y(k)) = L1,m(y(k−1)) −
L2,m(y(k)) reduces to solve

ym,(k)
α − y0

α −∆t

M∑
r=0

θmr fα(yr,(k−1)) = 0, ∀α = 1, . . . , I. (25)

For more information and properties of the DeC approach, we refer to [3, 29] and references therein. In the
following, we explain how to adapt the DeC approach to obtain a conservative and positivity preserving time
integration scheme.

4.2 Patankar method for production-destruction systems

Many problems (19) in nature can be written as a production destruction system (PDS) for the unknown
y ∈ RS

fα(y) =

S∑
β=1

(pα,β(y)− dα,β(y)), (26)

where pα,β , dα,β ≥ 0 are the production and destruction terms, respectively. The production and destruction
terms are conveniently written as matrices. Applications for PDS are for example the biological and/or
chemical reactions such as algal bloom [11]. Also parts (or all) of the semi discretization of hyperbolic
conservation/balance laws can be interpreted in such PDS system as described in [30, 31, 39] and also later
in this work. The calculated solutions are often describing physical quantities that enjoy some properties,
for instance concentrations of chemicals or water height in the context of SWE should be nonnegative. The
following definition may be introduced for ODE systems:

Definition 4.1. An ODE (19) is called positive, if positive initial data y0 > 0 result in positive solutions
y(t) > 0,∀t. Here, inequalities for vectors are interpreted componentwise, i.e., y(t) > 0 means ∀α : yα(t) > 0.
A PDS (26) is conservative, if pα,β(y) = dβ,α(y), ∀α, β, y.

These properties should be preserved by the numerical scheme as well. Thus, we introduce the following
discrete counterpart.

Definition 4.2. A numerical method computing yn+1 ≈ y(tn+1) given yn ≈ y(tn) is called conservative,
if
∑
α y

n+1
α =

∑
α y

n
α. It is called unconditionally positive, if yn > 0 implies yn+1 > 0 for any time step

∆t > 0.

From literature [11], it is well-known that the implicit Euler method is conservative and unconditionally
positive preserving whereas the explicit Euler method is only conservative (it might be positive under time

9



step restrictions). To avoid solving a fully nonlinear system of equations, the so–called Patankar modifications
have been applied to the explicit Euler method. To build an unconditionally positive numerical scheme,
Patankar had the idea [47] of firstly weighting the destruction term in the original explicit Euler method
with a coefficient as follows

yn+1
α = ynα + ∆t

 S∑
β=1

pα,β(yn)−
S∑
β=1

dα,β(yn)
yn+1
α

ynα

 , α = 1, . . . , S. (27)

Indeed, the resulting scheme (27) is unconditionally positive and the implicit terms can be collected on the
left hand side, but the conservation relation is violated. Burchard et al. had the idea [11] not only to weight
the destruction term but also the production term:

yn+1
α = ynα + ∆t

 S∑
β=1

pα,β(yn)
yn+1
β

ynβ
−

S∑
β=1

dα,β(yn)
yn+1
α

ynα

 , α = 1, . . . , S. (28)

They called their constructed scheme (28) modified Patankar scheme and proved that it is is uncon-
ditionally positive and conservative. The resulting scheme is linearly implicit, meaning that collecting all
the implicit terms on the left hand side, we obtain a linear system at each time iteration. Based on this
technique, extensions to second and third order modified Patankar Runge–Kutta (MPRK) methods have
been made by several researchers in such context, cf. [30, 31, 33, 34]. Also the semi implicit RK methods
proposed in [16] can be interpreted as Patankar methods as they weight only the destruction terms [61].
Finally, in [46] an arbitrarily high-order, conservative and positivity preserving scheme based on the DeC
framework has been constructed. Herein we describe the main idea. For the details of the properties and
proofs, we refer again to [46].

4.3 Modified Patankar Deferred Correction method

The modified Patankar Deferred Correction (mPDeC) is based on the DeC algorithm (25) and it consists
in a modification of the L2 operator through the modified Patankar trick. This amounts to weight the
production-destruction terms with respect to the intermediate approximations.

Using the fact that initial states y
0,(k)
α are identical for any correction k, the mPDeC correction steps can be

rewritten [46] for k = 1, . . . ,K, m = 1, . . . ,M and ∀α = 1, . . . , S as

ym,(k)
α − y0

α −
M∑
r=0

θmr ∆t

S∑
β=1

pα,β(yr,(k−1))
y
m,(k)
γ(β,α,θmr )

y
m,(k−1)
γ(β,α,θmr )

− dα,β(yr,(k−1))
y
m,(k)
γ(α,β,θmr )

y
m,(k−1)
γ(α,β,θmr )

 = 0, (29)

where θmr are the DeC quadrature weights in time and

γ(α, β, θ) :=

{
α if θ ≥ 0,

β if θ < 0.

Finally, the new numerical solution is yn+1 = yM,(K). As in the classical DeC framework, the choice of the
distribution, the number of subtimesteps M and the number of iterations K determines the order of accuracy
of the scheme. To reach order p, classically M = p−1 equispaced subintervals and K = p corrections should
be used. As proven in [46], the scheme is conservative, positivity preserving and can reach arbitrary high
order.
A description of the assembly of the mass matrix of the system (29) is described in Algorithm 1 and one
timestep of the mPDeC algorithm is sketched in Algorithm (24) where the evolution formula is given by
Algorithm 2.
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Remark 4.3 (Subtimestep distribution). In our numerical simulations, we apply Gauss-Lobatto nodes in
every timestep. They have the advantage of requiring less subtimesteps to reach pth order of accuracy. In
the following we will use M = 3 Gauss-Lobatto subtimesteps, which guarantee 6th order of accuracy for the
operator L2 and K = 5 iterations aiming at a 5th order scheme to match the spatial discretization accuracy
of WENO5.

Remark 4.4 (Solution of the linear system). At each subtimestep m and iteration (k) we need to solve the
linear system given by (29). The mass matrix obtained has the following form:

M(ym,(k−1))α,β =


1 + ∆t

M∑
r=0

S∑
β=1

θmr

y
m,(k−1)
α

(
dα,β(yr,(k−1))1{θmr >0} − pα,β(yr,(k−1))1{θmr <0}

)
, for α = β,

−∆t

M∑
r=0

θmr

y
m,(k−1)
β

(
pα,β(yr,(k−1))1{θmr >0} − dα,β(yr,(k−1))1{θmr <0}

)
, for α 6= β,

(30)
where 1 is the indicator function. The mass matrix assembly algorithm is described in Algorithm 1. The
linear system will then read

M(ym,(k−1))ym,(k) = y(tn). (31)

Remark 4.5 (Division on almost wet areas). When the water height is low, we might encounter troubles
in computing the divisions in (30) as the denominator might be very small. They hypothesis behind the
production and destruction system that says that as hα → 0 also dα → 0, can be difficult to be obtain at a
numerical level. Hence, to be sure that those divisions do not lead to extremely high values when they should
go to 0, we slightly modify the way we implement the division as suggested in [40]. Given any numerator n
and denominator d of (30), we approximate the division by

n

d
≈

{
0 d < ε,

2d·n
d2+max{d2,ε} d ≥ ε,

(32)

with ε a small tolerance value. Along the computations, if not specified, we will use ε := 10−6. This
formulation allow to smoothly pass from n

d to 0 as d→ 0. Moreover, when d2 ≥ ε the division will be exact.

In the following, we apply the mPDeC time marching algorithm (29) to the WENO finite volume semidis-
cretization to solve the shallow water equations. Below we describe the actual implementation procedure.

5 Implementation of well-balanced mPDeC-WENO Scheme

In the following part, we will describe how the semi-discretization, using the WENO approach, can be written
and interpreted as a PDS in order to apply the mPDeC scheme. We will see that only small modifications
in the WENO code are necessary. Furthermore, this interpretation is not only restricted to the WENO
procedure but can also applied to other high-order FV/FD discretizations. Our WENO approach is working
only as a generic example. Finally, the complete algorithm will be presented.

5.1 WENO and production-destruction systems

First of all we must underline the fact that in order to preserve the positivity of the water height h, the
mPDeC scheme is going to be applied only to the first equation of system (1) as h is the only variable that
must stay nonnegative. Thus, a simple DeC approach is going to be used to evolve the momentum equations.
So from now on, we shall only talk about the modifications introduced for the first equation to turn it into
a production-destruction system. Given the foundations of finite volume schemes, each control volume has
fluxes entering and exiting its boundary and, for each boundary face, the flux going from element α = [i, j]
to element β = [l, r] is going to be equal in module and opposite in sign to the flux from element β to element
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Algorithm 1 Mass

Require: Production-destruction functions pα,β(·), dα,β(·), ∆t, previous correction variables y(k−1), current
subtimestep m.

1: M← I
2: for α = 1 to S do
3: for β = 1 to S do
4: for r = 0 to M do
5: if θmr ≥ 0 then

6: Mα,β ←Mα,β −∆tθmr
pα,β(yr,(k−1))

y
m,(k−1)
β

7: Mα,α ←Mα,α + ∆tθmr
dα,β(yr,(k−1))

y
m,(k−1)
α

8: else

9: Mα,β ←Mα,β + ∆tθmr
dα,β(yr,(k−1))

y
m,(k−1)
β

10: Mα,α ←Mα,α −∆tθmr
pα,β(yr,(k−1))

y
m,(k−1)
α

11: end if
12: end for
13: end for
14: end for
15: return M

Algorithm 2 mPDeC Update formula

Require: y(k−1), ∆t, production-destruction functions pα,β(·), dα,β(·), m.

1: Compute the mass matrix M(ym,(k−1))←Mass(pα,β(·), dα,β(·),∆t,y(k−1),m) using Algorithm 1

2: Compute ym,(k) solving the linear system M(ym,(k−1))ym,(k) = yn given by (29) with Jacobi Algorithm
3

3: return ym,(k)

Algorithm 3 Jacobi iterative method

Require: D diagonal of the matrix, L off-diagonal terms of the matrix, r right hand side of the system, tol
tolerance.

1: err← 2 · tol, k ← 0, xk ← r
2: while err > tol do
3: k ← k + 1
4: xk+1 ← D−1(r− Lxk)
5: err← ||xk − xk−1||
6: end while
7: return xk+1
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Figure 3: Cell Ωi,j , its four neighbors and its production and destruction terms.

α. This is the key feature for turning a finite volume schemes into a PDS. Note that the source is zero on h
component.
Therefore, we can define the production and destruction terms for a general α = [i, j] and the neighboring
β = [l, r] as

p[i,j],[i−1,j](U) = +
1

∆x
Fi−1/2,j(U)+, d[i,j],[i−1,j](U) = − 1

∆x
Fi−1/2,j(U)−,

p[i,j],[i+1,j](U) = − 1

∆x
Fi+1/2,j(U)−, d[i,j],[i+1,j](U) = +

1

∆x
Fi+1/2,j(U)+,

p[i,j],[i,j−1](U) = +
1

∆y
Gi,j−1/2(U)+, d[i,j],[i,j−1](U) = − 1

∆y
Gi,j−1/2(U)−,

p[i,j],[i,j+1](U) = − 1

∆y
Gi,j+1/2(U)−, d[i,j],[i,j+1](U) = +

1

∆y
Gi,j+1/2(U)+,

(33)

where with the superscript + and − we denote the positive and the negative part respectively. All the
other pα,β and dα,β not defined here are set to 0. Clearly, this define a conservative and positive PDS, as
the properties in Definition 4.1 are verified. The visualization of the production and destruction terms in
Figure 3 may help the reader. We clearly observe that the matrices (pα,β) and (dα,β) are S × S sparse
matrices, with, at most, 4 nonzero entries per row and S = Nx ·Ny.
Once the production and destruction matrices have been assembled, the next step consist in running the
mPDeC algorithm in Eq. (29). Note that the matrix built in (30) is sparse as well with at most 5 nonzero
entries for each row (4 nonzero entries of the production/destruction terms and the diagonal term). Hence, in
the numerical computations we will use the classical Jacobi iterative method, see Algorithm 3, to obtain the
solution of system (29) at each iteration. Indeed, it is provable [46, 11] that the Jacobi iteration algorithm
converges when applied on the matrix defined in (30).
In all calculations, we set the tolerance to machine precision and the algorithm converge towards the solution
in few iterations. Experimentally, we have seen that usually 10-20 iterations suffice, in the worst cases 40
iterations are needed and the number of iterations do not depend much on the mesh size. Overall, considering
the assembly the mass matrix, the inversion of the system with Jacobi iterations, the whole mPDeC procedure
increases the computational costs of around 18% with respect to the original DeC algorithm using the same
CFL. The code has not been construct with the goal of optimizing all the procedures, so it might well be
that this extra computational cost can be decreased with better implementations. The greatest advantage
is anyway that no CFL restrictions are required in order to guarantee the positivity of the solution. So, a
CFL= 1 suffices to guarantee the stability of the method. In the numerical test section, we will also detail
the number of Jacobi iterations and the overhead computational cost that the method brings into the system
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with respect to the explicit method.

Remark 5.1 (Efficiency and properties of Jacobi iterative method). Though being a very simple algorithm,
Jacobi iterative method is particularly effective for this application. Indeed, the mass matrix in RS×S is
very sparse, i.e., only 5S non-zero elements, hence, at each iterations, only 5S multiplications are computed.
Moreover, experimentally, we have seen that the overhead computational cost of the Jacobi solver is around
10% of the whole computational cost and that the iterations needed are usually below 20, see section 6.
Moreover, Jacobi guarantees the positivity of the solution at every iteration of the procedure.
Clearly, there are other many iterative methods to solve linear system [54], e.g. Krylov preconditioning
methods. All of these methods have larger complexity per iteration, but may converge faster to the solution
of the system. Nevertheless, for most of these methods it is not possible to guarantee the positivity of the
solution of the iterative solver along the process. That is why, we will use the Jacobi iterative method.

5.2 Full Algorithm

After describing how the WENO (FV) procedure can be interpreted as a PDS, we give a more precise
description of the full algorithm which is used to calculate the numerical solution.
In our version of this approach, we have to adapt the steps taking into account the re-interpretation of the
WENO approach as a production destruction system and the well balancing approach and this is described
in Algorithm 4.
Finally, we can combine all the ingredients described above in a full algorithm as in Algorithm 5. There,
we simply use the mPDeC to evolve in time and the production and destruction functions are given by the
WENO description from above.

Algorithm 4 WENO FV with PDS structure

Require: Ui,j , well balanced fluxes
1: Reconstruct on the quadrature points on cell interfaces the variable U in a high order fashion
2: Compute the numerical fluxes at quadrature points on cell interfaces F̂(uL,uR)
3: Subtract the correction for well balanced problems and obtain F and G
4: Integrate over the cell interface to obtain the numerical fluxes Fi+1/2,j ,Fi−1/2,j and Gi,j−1/2,Gi,j+1/2

5: Compute pα,β(U), dα,β(U) as in (33)
6: return pα,β(U), dα,β(U)

Algorithm 5 Full algorithm

Require: U0
i,j , T

1: t = 0
2: while t < T do
3: Compute ∆t by CFL restrictions
4: Un+1=DeC(Un,∆t, WENOPDS) with DeC Algorithm (24) where update formula (29) is used for h

and (25) is used for hu and hv and the WENO PSD function are given by Algorithm 4
5: t = t+ ∆t
6: end while

Conclusion 5.2. The described method is high order accurate, positivity preserving, conservative, non-
oscillatory and well-balanced for the shallow water equation.

Remark 5.3 (Difference with respect to classical WENO). We want to highlight the differences between a
classical WENO and the proposed algorithm are minimal. Indeed, once the spatial discretization is performed
with a simple WENO step we need to apply two easy modifications. The first one consists in subtracting
the flux related to the steady state variables. The second one consists in the definition of the production and
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destruction terms. Then the mPDeC can be applied as a simple time integration scheme. The code and these
modifications are available at the reproducibility repository [18].

Remark 5.4 (Advantages of mPDeC). We shall remark that the presented method does not require any CFL
constraint to obtain positive solutions for h, while the classical positivity limiter for WENO5 requires a CFL
number of 1/12 ≈ 0.083. Clearly, a CFL number for a classical explicit method must be anyway used (between
1 and 1.5), but this allow to run the simulation with much less time steps than a classical explicit WENO
scheme, with the extra computational cost of the Jacobi iterative method, which is negligible with respect the
cost of decreasing the CFL number of factor of 12. Moreover, the procedure allows to have a provably positive
method with arbitrarily high order of accuracy, while with positive limiters applied to WENO schemes only
SSPRK methods guarantee the positivity of the solutions and they exist only up to order 4 [27].

Remark 5.5 (Stability and accuracy of combined time-integration methods). We combined two time-
integration methods, the mPDeC and the DeC approach. How can we assess the stability and accuracy
properties the combined method. For the accuracy of the combined scheme, we can exclude a loss of accuracy
as long as the two methods are consistent up to the same order of accuracy, even if applied separately to each
equation. For instance, one could perform a simple Taylor expansion to prove the error behavior for each
component and also in the combination step-after-step. In practice, as done in [46], it is sufficient to develop
the Taylor expansion on the modified Patankar weighting coefficients to obtain a high order approximation
of the DeC. This is also verified in our numerical tests. Stability is more problematic since it is not clear
how to analyze it even for modified Patankar schemes in the ODE case, where only few preliminary works
are available [32, 61]. This is also due to the nonlinear character of the scheme itself. Therefore, a stability
investigation for PDEs is far beyond the goals of this paper. However, in general explicit methods have a
more restrictive stability region than implicit methods. Therefore, we will simple assume that our stability
region is determined by the underlying explicit method (DeC).

6 Numerical Simulations

The goal of this section is to present the results obtained with the fifth order positivity-preserving mPDeC
scheme, compared to that given by the classical fifth order DeC time integration method. The first test case
consists in assessing the convergence properties of the spatial and temporal discretization on an unsteady
vortex-type solution [53]. Afterwards, we focus on testing the well-balanced implementation for the lake
at rest solution by showing its impact on perturbation analysis. Finally, three challenging simulations
are performed to prove its capabilities to cope with wet-dry fronts. It is important to underline that in all
simulations, especially those involving shocks, when there is no comparison with DeC5 (dam break problems),
the mPDeC5 method obtains consistent results with respect to classical methods. For all the simulations
carried out herein periodic boundary conditions have been considered together with the local Lax-Friedrichs
(Rusanov) numerical flux.

6.1 Unsteady vortex

In order to verify the order of accuracy we consider a moving smooth vortex. The computational domain is
the square [0, 3] × [0, 3]. The initial condition is given by some perturbations δ applied on a homogeneous
background field (h0, u0, v0) = (1, 2, 3). Hence, the perturbation for the depth variable h is

h(r) = h0 − δh(r) = h0 − γ

{
e
− 1

arctan3(1−r2) , if r < 1,

0, else,
with r =

√
(x− 1.5)2 + (y − 1.5)2 (34)

and the vortex amplitude is γ = 0.1. The velocity field is affected by the following perturbations(
δu
δv

)
=
√

2 g ∂rh

(
(y − 1.5)
−(x− 1.5)

)
, (35)
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Figure 4: Unsteady vortex: test case setting.

where ∂rh = ∂rh(r) is a function of the radial distance from the center of the vortex

∂rh(r) =
3 γ e

− 1
arctan3(1−r2)

arctan4(r2 − 1)((r2 − 1)2 + 1)
. (36)

It is important to highlight the fact that this solution is C∞, which is a fundamental property for testing
arbitrarily high order schemes. Many vortex-type solutions can be found available online but most of them
can only be used to test lower order schemes. The exact solution of this problem is given by

h(x, y, t) = h(x−u0t, y− v0t, 0), u(x, y, t) = u(x−u0t, y− v0t, 0), v(x, y, t) = v(x−u0t, y− v0t, 0). (37)

For the unsteady vortex, two convergence tests are run for WENO5 coupled with both the time integration
schemes DeC5 and mPDeC to corroborate the fact that, for smooth flows, the results should be almost
identical. We used CFL=0.7. The convergence tests are run on cartesian meshes of size 25 × 25, 50 × 50,
100×100, 200×200, 300×300, 400×400, 500×500 and 600×600. The computational mesh of the coarsest
grid and initial condition for this test case are shown in Figure 4. For these convergence tests we used a
tolerance ε = 10−30 both for the positivity limiter and the mPDeC divisions, since the errors that we obtain
are of the order of 10−8. The error ||εh(u)|| is the L1 norm of the difference between the exact solution
and the approximated one. Figure 5 points out the predicted fifth order behavior for both time integration
schemes.
In Figure 6 we study the computational costs of the two methods (mPDeC5 and DeC5) with respect to
different CFL numbers and mesh refinements. In Figure 6(a) we plot the ratio of computational time
of mPDeC5 over the computational time of DeC5 needed to finish the simulation for the same CFL and
mesh. We see that for fine meshes, when the computational times are more reliable, all ratios are close to
1.1. This means that the overhead that mPDeC5 requires, with respect to an explicit method, is of about
10%. In Figure 6(b) we plot errors with respect to computational times and we see a very small difference
between mPDeC5 and DeC5, while there is a huge difference in computational costs when changing the
CFL. The mPDeC5 is guaranteed to run at any CFLFE < 1, while the positivity for other SSPRK methods
is guaranteed only for CFLFE < 1/12 with WENO5. Hence, there is huge advantage with mPDeC. Finally,
in Figure 6(c) we can observe on average how many iterations are needed to solve the linear system and
a confidence interval defined by the average ± 1

2 standard deviation. It is clear that Jacobi iterations are
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Figure 5: Unsteady vortex: convergence tests.
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Figure 7: Lake at rest: test case setting.

mainly driven by the CFL number, which explicitly appear as a coefficient of the mass matrix minus the
identity. Indeed, all factors ∆t dh or ∆t ph are linearly dependent on the CFL as production and destruction
terms are proportional to 1

∆x .

6.2 Lake at rest

As already introduced in the theoretical part, this test case is needed to prove the presented scheme is
well-balanced. The computational domain is the square [0, 1]× [0, 1] and the steady solution of this problem
and bathymetry are briefly summarized below

b(x, y) = 0.1 sin (2π x) cos (2π y) , h(x, y) = 1 − b(x, y), u = v = 0. (38)

This benchmark can also be used to test once again the order of accuracy of our discretization. Indeed,
we expect the method to converge with a fifth order slope when not well-balanced and we expect machine
precision errors for all the well-balanced tests. This simulation has been performed with four different
settings: DeC5 and mPDeC5, well-balanced and not well-balanced. For all cases, we employed a fifth order
WENO discretization for the spatial derivatives and CFL=0.9. Also for this test, we chose ε = 10−30 to
check the accuracy of the scheme with errors of the order of 10−10. As expected, the error computed for the
well-balanced simulations is exactly zero therefore we did not plot them along with the other results. The
interested reader can run the simulations and test the properties of our method by downloading the code
available at the reproducibility repository [18]. The Cartesian mesh employed for this convergence test are
4 × 4, 8 × 8, 16 × 16, 32 × 32, 64 × 64 and 128 × 128. The exact solution is presented in Figure 7, along
with the 32× 32 mesh. As can be noticed from Figure 8, mPDeC5 allows a fifth order convergence rate as
theoretically proved with results almost identical to those of DeC5.

6.3 Wet-dry lake at rest

Now we test the capability of dealing with wet and dry regions of the scheme in a very simple context. We
consider a bathymetry given by a bump

b(x, y) =

{
e

1− 1
1−r2 , if r2 < 1,

0, else ,
where r2 = x2 + y2, (39)
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Figure 8: Lake at rest: convergence tests without preserving the exact solution.

100 101 102 103 104

10−2

10−1

Time

‖ε
(h

)‖

102 102.5

10−2

10−1

Mesh elements in x

‖ε
(h

)‖

SSPRK(6,4)-WENO5 CFL=0.1
mPDeC5-WENO5 CFL=0.1

DeC5-WENO5 CFL=0.1

SSPRK(6,4)-WENO5 CFL=0.2
mPDeC5-WENO5 CFL=0.2

DeC5-WENO5 CFL=0.2

SSPRK(6,4)-WENO5 CFL=1
mPDeC5-WENO5 CFL=1

DeC5-WENO5 CFL=1
mPDeC5-WENO5 CFL=1.5

second order

Figure 9: Wet and dry lake at rest test: error and computational time.

on the domain [−5, 5]× [−2, 2]. The lake at rest solution is

h(x, y) = max{0.7− b(x, y), 0}, u = v = 0. (40)

The maximum of the bathymetry is 1, hence, there is a dry island at the center of the domain. For practical
purposed, we set the initial conditions to be

h0(x, y) = max{0.7− b(x, y), ε}, u = v = 0, (41)

with ε = 10−6. We consider final time T = 1.
First, we test the non-well-balanced schemes, to asses the capability of preserving the water height positivity

and the accuracy of such methods. The positivity of the classical schemes is not preserved, even with the
positivity limiter of remark 3.1. In the dry region, the SW model (2) does not hold and for the time
integration schemes it is hard to verify hypotheses that guarantee the positivity of the solution. Hence, for
the classical schemes, we force the positivity of the water height every time we need to compute the flux
or to convert the variables from conservative to primitive and vice versa. On the other hand, the mPDeC
scheme always preserve the positivity of the solution and none of these tricks is required.
In figure 9 we observe that for similar computational times, the mPDeC5-WENO5 gives the same accuracy
of all classical schemes. For all schemes the accuracy is 2, as the solution is not C1 everywhere. The
difference is that mPDeC5-WENO5 can be run up to CFL=1, without any problem, while for CFL=1 the
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Table 1: Almost dry lake at rest: mPDeC5-WENO5

Nx Error h Order h Error u Order u Error v Order v
600 8.346e-05 3.899 7.759e-04 3.057 6.911e-04 3.091
700 4.166e-05 4.508 4.526e-04 3.498 3.648e-04 4.144
800 2.134e-05 5.007 2.533e-04 4.346 1.886e-04 4.941
1000 6.185e-06 5.551 7.406e-05 5.511 5.225e-05 5.753
1200 2.219e-06 5.621 2.478e-05 6.006 1.774e-05 5.924
1400 1.120e-06 4.438 1.034e-05 5.669 7.561e-06 5.532
1600 5.896e-07 4.804 5.200e-06 5.148 3.799e-06 5.155

Table 2: Almost dry lake at rest: SSPRK(6,4)-WENO5

Nx Error h Order h Error u Order u Error v Order v
600 8.378e-05 3.891 7.765e-04 3.057 6.907e-04 3.091
700 4.191e-05 4.493 4.532e-04 3.493 3.644e-04 4.147
800 2.160e-05 4.963 2.538e-04 4.342 1.884e-04 4.942
1000 6.426e-06 5.434 7.432e-05 5.504 5.228e-05 5.745
1200 2.569e-06 5.029 2.502e-05 5.972 1.797e-05 5.857
1400 1.376e-06 4.051 1.058e-05 5.586 7.805e-06 5.410
1600 9.062e-07 3.127 5.496e-06 4.901 4.096e-06 4.829

SSPRK(6,4)-WENO5 scheme, even with the checks on the positivity, can have problems and might have
exploding velocities and water heights. Since the reconstruction does not guarantee the positivity for such
high CFLs, it is not safe to run such simulations.
Adding the well-balanced technique we obtain machine precision errors for all schemes.

6.4 Almost dry lake at rest

Now we modify the previous test, in order to have a smooth solution and to be able to obtain a fifth order
accuracy in the schemes. We consider again the bathymetry (39) on the domain [−5, 5]× [−2, 2]. The lake
at rest solution is defined, this time, as

h(x, y) = max{0.999− b(x, y), 0}, u = v = 0. (42)

Notice that the bathymetry has a peak with value 1, but, depending on the mesh refinement, the peak will
be lower. In most of the simulations, this test will be completely wet and C∞. If we discretize the mesh with
more than 600× 180 elements, the water level will be below the threshold ε = 10−6. As before, we initialize
the water heigth at least equal to ε = 10−6 and we let the schemes evolve up to final time T = 1.
We compare the mPDeC5-WENO5 and the SSPRK(6,4)-WENO5 schemes. The test is steady, hence, we
expect only the spatial discretization to be the only responsible of the order of accuracy. For the SSPRK(6,4)-
WENO5 to be run, we need to introduce some extra checks on the water height and computations of the
flux, so that it does not become negative, while for the mPDeC5 time integration we do not need this type
of extra corrections. In both cases we expect to have a small perturbation of the solution while computing
the L1 error, indeed, the initial condition set with minimum level at 10−6 should introduce an error, in very
few cells, of this order.
In table 1 there is the error analysis for the mPDeC5-WENO5 method, while in table 2 there is the one
referred to the SSPRK(6,4)-WENO5 method. Despite expecting the error of the initialization to become
evident around error of 10−6, for the mPDeC5 simulation, this small perturbation confined to very few cells
does not propagate much and lead to very accurate results also for errors ≈ 5 · 10−7. Even the correction
in remark 4.5 does not seem to affect the accuracy of the solution, probably because the water height never
reaches values much lower than 10−6. So, the order of accuracy stays very close to five, the expected one,
even for almost dry solutions.
On the other side, in the SSPRK simulation the need of extra corrections in the flux every time the solution
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Figure 10: Perturbation analysis over a steady solution: test case setting

is below 10−6 adds further errors that are visible at level of L1 error around 10−6. Indeed, it seems that the
error of the water height starts plateauing close to that value. And there it loses the expected fifth order of
accuracy.

6.5 Perturbation of the lake at rest

In order to better highlight the improvements one gets with the well-balanced implementation, a perturbation
analysis is run on a problem with both wet and dry areas. This test case is run on the rectangular domain
[−5, 5] × [−2, 2]. The bathymetry is given by (39). The lake at rest solution that we are going to conserve
with the well-balanced implementation is

h(x, y) = max{0.7− b(x, y), ε}, u = v = 0, (43)

with ε = 10−6, whereas the perturbation shape that we want to study is

h̃(x, y) = h(x, y) +

{
0.05 e

1− 1
(1−ρ2)2 , if ρ2 < 1,

0, else ,
where ρ2 = 9((x+ 2)2 + (x− 0.5)2). (44)

Two simulations have been performed: one with the well-balanced correction and one without. Both sim-
ulations use WENO5 as spatial discretization and mPDeC5 for integrating the ODEs coming from the
semi-discrete system. From this test on the tolerances of the positivity limiter and of the mPDeC5 divisions
is set to ε = 10−6. The computational mesh and bathymetry plot are shown in Figure 10.
The results obtained for the two implementations are displayed in Figure 11 where only the isolines of the
water height h are shown. Four snapshots are presented at different times of the simulation, t = 0, 0.25, 0.5, 1.
The results on the right-hand side of Figure 11 are those computed without the well-balancing correction. As
can be noticed, in this case, the numerical error propagates from the nonconstant bathymetry area around
the island placed in the middle of the domain. This error propagates and interacts with the perturbation,
making the perturbation waves indistinguishable from the noise. This test case allows to better assess the
well-balanced implementation already tested in the previous test case. Indeed, for this case, we have a dry
area which involves a jump in the derivative of the water height causing a reduction of the order of accuracy
given by the WENO method, whose limiters work with the high order derivatives of the solution. On the
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other side, the simulation runs with the well-balanced correction allows to exactly preserve the lake at rest
solution over which the perturbation analysis is carried out. This leads to a much better capturing of the
perturbation, whose evolution is not influenced by the spurious disturbances coming from the wet-dry area.

6.6 Circular dry dam break problem

We simulate the break of a circular dam separating two basins with water heights h1 = 2.5 and h2 = ε = 10−6,
meaning that the water in the first basin is falling over a dry area which is all around it. The radius of
the discontinuity is r = 7. A sketch of the initial condition, along with the computational mesh, is given
in Figure 12. The computational domain is the square [0, 40] × [0, 40] discretized with 100 × 100 cells and
the simulation is run until a final time tend = 0.9. This is a somewhat challenging test for the mPDeC5–
WENO5 method that has to face both the capture of a sharp discontinuity and the progressing wetting of
a dry area while always maintaining its appealing properties. The results are printed for different times,
t = 0, 0.3, 0.6, 0.9, in Figure 13 showing the evolution of the water height. The advantages of the mPDeC5
have been clearly proven by running this challenging test case with different CFL conditions. As a matter
of fact, we managed to run this test case with a CFL up until 1.5 while ensuring positivity. In particular,
the water height equation does not cause any CFL restriction due to the nature of the method used to solve
it, which is unconditionally positive. However, since the momentum equations are solved by means of an
explicit DeC scheme, the CFL must be bounded. It should be noticed that, in order to retain positivity
in the spatial reconstruction, a positivity limiter has been implemented. For explicit SSPRK methods,
this limiter has been proven to cause a huge restriction in the CFL condition, which now has to be less
than 1

12CFLSSPRK. Nevertheless, since arbitrary high order DeC cannot be recast as a convex combination
of explicit Euler method, there is no proof that the solution would stay positive also under that strict
condition. On the other side, in the modified Patankar DeC framework, the limiter is only imposed on the
water height equation which is unconditionally positive for any CFL by definition. This means that even
when the limiter plays a role in the simulation, like in this case, the scheme stays positive with much higher
CFL numbers. Furthermore, it should be underlined the fact that the system is linear implicit, which only
requires a simple linear solver, e.g. Jacobi method. Even though implicit methods are much slower than their
explicit counterpart, solving a linear problem in this case only yields to a 18% increase in the computational
time with respect to the fully explicit DeC5, which is nothing compared to the CFL restriction imposed by
the positivity limiter.

6.7 Circular wet dam break problem

Next, we consider a wet dam break problem with a setup similar to the previous one. In this case the water
height of the two basins are h1 = 10 and h2 = 0.5, like it was done in [52]. In this case, the computational
domain is the square [0, 50]× [0, 50] discretized by a 200× 200 mesh. The simulation is run until tend = 0.8
with CFL=1 and the solutions is displayed only for one quarter of the domain. Figure 14 displays the final
snapshot of the solution at time tend = 0.8 plotted both in 2D and 3D displaying the correct evolution of the
water height and the time evolution of the water depth extracted along the diagonal of the portion of the
domain studied. The method shows good properties such as discontinuities sharply captured, no oscillations
and high order approximation of smooth features.

6.8 Wave over dry island

For the last test case, we simulate a wave crashing over a dry island showing the robustness of our method
when facing more realistic simulations. The computational domain is the rectangle [−5, 5]×[−2, 2] discretized
by a 400× 120 mesh. The simulation can be reproduced by taking Eq. (39) for the bathymetry b(x, y) and
the following initial conditions

h(x, y) = 0.7− b(x, y) +

{
0.5 e

1− 1
(1−ρ2)2 , if ρ2 < 1,

0, else,
where ρ2 = (x+ 2)2, (u, v) = (1, 0), (45)
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Figure 11: Perturbation analysis over a steady solution: water height h isolines for well-balanced (left-hand side) and
non well-balanced (right-hand side) results.
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Figure 12: Circular dry dam break: computational domain and initial solution.

in case h(x, y) ≤ ε = 10−6, we set h(x, y) = ε and u = 0. The simulation has been run with the
WENO5−mPDeC5 scheme until a final time t = 1 with CFL=0.9 and the results are displayed in Fig-
ure 16 for different times t = 0, 0.25, 0.5, 0.75, 1.
In this case, the variable η = h + b has been chosen to be plotted since it better represents the underlying
physics. It should be noticed that the top of the island, which is dry at the beginning, gets wet and dry
several times during the simulation while never giving rise to problems due to negative water height. This is
instead something that we cannot ensure for the DeC5 case. The simulation starts with a background state
moving with speed u = 1 which helps the wave traveling towards the island and immediately starts wetting
the island from the left and drying it on the right. The wave breaks into two smaller waves respectively
approaching and moving away from the island following the eigenvalues of the flux Jacobian. At time t = 0.25
a run up is happening where the traveling wave is trying to submerge the top of the island while, on the other
side, a section of the island is drying. In consecutive times, the wave overtakes the island causing different
interacting shock fronts and two symmetrical minimum points highlighted in dark blue at time t = 1. Several
structures could been observed in this simulations and the repeated wetting/drying procedures never results
in troubles for the mPDeC method.
In Figure 15 we depict the average number of Jacobi iteration needed for every linear system. The plot
compares different CFL numbers and mesh refinements which keep the aspect ratio. The average is plotted
with a confidence interval given by ± 1

2 standard deviation. We observe that the CFL number is very incisive
in determining how many Jacobi iterations are needed. For low CFL it seems that larger matrices needs
more iterations, but this is not uniform with all the tests, as shown in the unsteady vortex test.

7 Summary and Outlook

We have presented a new well-balanced, positivity preserving high order numerical method for solving the
shallow water equations. By re-writing the WENO semi-discretization in terms of productions-destructions
terms, we were able to use the modified Patankar Deferred Correction methods of arbitrarily high-order to
ensure the unconditionally positivity of water height. The restriction on the CFL number comes only from
the explicit DeC-solver for the momentum equations. The used CFL numbers are of the order of 1 and are
much larger than the ones used in explicit SSPRK WENO methods in combination with positivity preserving
limiters [65], where the CFL must be lowered to 1/6 or 1/12. One can relax further the CFL constraint by
using implicit DeC or RK methods, though introducing more difficulties. Even if we have only presented
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Figure 13: Circular dry dam break: water height h isocontours.
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Figure 16: Wave over dry island: η = h+ b isocontours at different times.
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a fifth order method in this manuscript, the approach is actually of arbitrary high-order. With classical
explicit approaches, one must use SSPRK to guarantee positivity and, as known from literature [27], explicit
(implicit) SSPRK methods exist only up to order four (sixth) for general cases.
By applying mPDeC, we avoid those issues and the price to pay is that of solving a (very sparse) linear
system for the water height. However, as mentioned before, this increase in computational costs is around
18% percent in our numerical simulations, but the procedure can still be optimized. In the future, a detailed
performance test in terms of accuracy and run-time is planned.
Additionally, in this work we have only considered positivity preservation and well-balanced properties. In
the next step, we would like to extend our investigation to entropy conservative/stable methods. Here,
various approaches exist as described inter alia in [2, 4, 14, 22, 23, 49], but from our perspective the convex
limiting strategies seems the most promising one [28, 35]. In order to do so, the basic stability properties of
Patankar methods as ODE solvers have to be first fully understood [32, 61].
Finally, herein we have focused on the shallow water system. However, the method can be easily adapted to
more complex models, e.g. the shallow water equations together with biochemical processes like algae bloom
in oceans, seas and open water cancels or the Euler equations of gas dynamics, where special treatments
for the pressure positivity are necessary [67, 64]. Those extensions can and will be also considered in future
works.

A Reconstruction of the primitive variable

The goal of this section is that of deepening the procedure to compute the coeffiecients of the polynomials and
linear weights needed to compute the WENO procedure in Section 3. The results and the actual coefficients
for WENO5 with 4 Gaussian quadrature points are written in Section B.
In the following assemble the system that allow to find the coefficients for the WENO polynomial at any
quadrature point. The symbolic Matlab script coded for this purpose is also available at [18]. With few
adjustments, the script can be used to compute all the ingredients needed for a WENO reconstruction of
arbitrary high order with arbitrary high order quadrature formulae.
The reconstruction of the primitive variables is needed in a high order finite volume method, as only cell
averages are available from the previous time step. For the sake of simplicity we are going to work in
a simpler one-dimensional scalar framework since the reconstruction is done dimension-by-dimension. We
consider a scalar function u(x) whose cell averages ui are known. We aim at reconstructing this variable as a
polynomial v(x), where the polynomial may vary in different points. In particular, it will be useful to use a
primitive of v(x) which we denote by P(x) =

∫ x
x0
v(s)ds. Indeed, we can impose that for every cell average,

we have

ui =
1

∆x

∫ xi+1/2

xi−1/2

u(x) dx
!
=

∫ xi+1/2

xi−1/2

v(x)dx =
P(xi+1/2)− P(xi−1/2)

∆x
. (46)

The stencil considered for this example is the one used for the WENO5 reconstruction, which is made up by
five cell averages as denoted in Figure 17.

xi−5/2 xi−3/2 xi−1/2 xi+1/2 xi+3/2 xi+5/2

ui−2 ui−1 ui ui+1 ui+2

Figure 17: Stencil of five cell averages for WENO5 reconstruction.

The next step consists in using interpolating polynomials ϕj−1/2, e.g. Lagrange polynomials at cell interfaces,
to approximate the primitive P(x), i.e.,

P(x) =

k2+1∑
j=k1

aj−1/2 ϕj−1/2(x) where ϕj−1/2(x) =

k2+1∏
`=k1,i6=j

x− x`−1/2

xj−1/2 − x`−1/2
(47)
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where k1 and k2 are the extreme indexes of the considered stencil. So, given then k2−k1 +1 cell averages, the
degree of the polynomial P will be k2−k1 +2. For instance, when working with WENO5, the reconstruction
is composed by a linear combination of three lower order polynomials of degree 3, so with P ∈ P4, obtained
through three cell averages. Then, the 3 polynomials, which then depend on the whole 5 cells stencil, will be
be combined with weights which depends on the quadrature points into a fifth order accurate reconstruction.
In order to have this result, we need to compute the aforementioned three lower order polynomials and a
high order polynomial made up by information coming from the whole stencil.
Let us begin with the procedure to compute the high order polynomial with all available cell averages, i.e.,
k1 = −2 and k2 = 2. The lower order polynomials can be easily computed following the same approach
explained hereafter. In this case P(x) is a sixth order polynomial and v(x) = P ′(x) is a fifth order polynomial
which gives the right accuracy order. Using (46) for all cell averages in the stencil with the definition of P
given in (47) and using the property of Lagrangian polynomials ϕj−1/2(x`−1/2) = δj,`, we obtain a system
of equations for the coefficients aj−1/2 with solution

aj−1/2 =

{
0, if j = k1,∑−k1+j−1
`=−k1 ui+`, j = k1 + 1, . . . , k2 + 1.

(48)

Finally, the expression for the high order, ho, approximation polynomial vho(x) can be written as

vho(x) =

k2+1∑
j=k1

aj−1/2ϕ
′
j−1/2(x) =

k2∑
`=−k1

cho` (x)ui+` =

2∑
`=−2

cho` (x)ui+`, (49)

where cho` are obtained collecting all the coefficients and basis functions related to ui+`. In this way, for

any quadrature point ξ̃ ∈ [xi−1/2, xi+1/2] we can evaluate this high order polynomial vho(ξ̃). Following the
same procedure for three lower order polynomials, lo, associated to the 3-cells stencils S0 = {ui, ui+1, ui+2},
S1 = {ui−1, ui, ui+1} and S2 = {ui−2, ui−1, ui}, we obtain an expression for these low order polynomials

vloj (x) =

2−j∑
`=−j

cloj`(x)ui+`. (50)

The last step concerns the computation of the ideal linear weights. These are the weights that allow to recover
the high order reconstruction from a linear combination of the lower order ones for a given quadrature point
ξ̃. Therefore, we need to find the linear weights dj such that

vho(ξ̃) =

2∑
j=0

dj v
lo
j (ξ̃) ⇐⇒

2∑
`=−2

cho` (ξ̃)ui+` =

2∑
j=0

2−j∑
`=−j

dj c
lo
j`(ξ̃)ui+`, ∀ui+`. (51)

Since (51) must hold for any quintuplet {ui+`}2`=−2, we can write a system of five equations in the 3 linear

weights dj for each quadrature point ξ̃, i.e.,

2∑
j=0

dj c
lo
j`(ξ̃) = cho` (ξ̃), ∀` = −2, . . . , 2. (52)

This is an overdetermined system with five equations and only three unknowns dj that can be easily solved
by means of a least squares method. Moreover, the solutions found verify exactly all the equations, implying
that some of the equations are linearly dependent.

B WENO recontruction (r = 3) with four-point Gaussian quadra-
ture rule

The goal of this section is to present the fifth order WENO reconstruction with four-point Gaussian quadra-
ture rule. Up to our knowledge, there is no reference in literature that explicitly define linear weights and
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polynomial coefficients needed for this WENO reconstruction. Reference [59] well described the fifth-order
WENO5 with two-point Gaussian quadrature rule, which unfortunately does not allow to go beyond fourth
order. Instead, with the four-point Gaussian quadrature rule, one could reach even eighth order.
Let us consider a one-dimensional cell [ξi−1/2, ξi+1/2], we hereafter provide the expressions for

q(ξ−i+1/2) , q(ξ+
i−1/2) , q

ξi ± ∆ξ

2

√
3

7
+

2

7

√
6

5

 , q

ξi ± ∆ξ

2

√
3

7
− 2

7

√
6

5

 , (53)

which are used for the first sweep (first two terms corresponding to the two boundaries) and the second
sweep (the last two terms corresponding to the 4 quadrature points). For r = 3 we have only three candidate
stencil for the reconstruction

S0 = (i, i+ 1, i+ 2) , S1 = (i− 1, i, i+ 1) , S2 = (i− 2, i− 1, i). (54)

The corresponding smoothness indicators are given by:

β0 =
13

12
(qi − 2qi+1 + qi+2)

2
+

1

4
(3qi − 4qi+1 + qi+2)

2
,

β1 =
13

12
(qi−1 − 2qi + qi+1)

2
+

1

4
(qi−1 − qi+1)

2
,

β2 =
13

12
(qi−2 − 2qi−1 + qi)

2
+

1

4
(qi−2 − 4qi−1 + 3qi)

2
.

The optimal weights dm for the left boundary extrapolated value q−i+1/2 at xi+1/2 are

d0 =
3

10
, d1 =

3

5
, d2 =

1

10
(55)

and q−i+1/2 is given by

q−i+1/2 =
1

6
ω0 (−qi+2 + 5qi+1 + 2qi) +

1

6
ω1 (−qi−1 + 5qi + 2qi+1) +

1

6
ω2 (2qi−2 − 7qi−1 + 11qi) . (56)

The optimal weights dm for the right boundary extrapolated value q+
i−1/2 at xi−1/2 are

d0 =
1

10
, d1 =

3

5
, d2 =

3

10
(57)

and q+
i−1/2 is given by

q+
i−1/2 =

1

6
ω0 (2qi+2 − 7qi+1 + 11qi) +

1

6
ω1 (−qi+1 + 5qi + 2qi−1) +

1

6
ω2 (−qi−2 + 5qi−1 + 2qi) . (58)

For the first Gaussian quadrature point ξq1 = ξi − ∆ξ
2

√
3
7 + 2

7

√
6
5 , the optimal weights are:

d0 =
269
√

42
√

2
√

30 + 15

50428
− 1751

√
35
√

2
√

30 + 15

504280
− 411

√
30

100856
+

21855

100856
,

d1 =
411
√

30

50428
+

28573

50428
,

d2 =
1751

√
35
√

2
√

30 + 15

504280
− 269

√
42
√

2
√

30 + 15

50428
− 411

√
30

100856
+

21855

100856
.

(59)
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The reconstructed value can be computed from the three polynomials associated to each stencil:

p0(ξ
q
1) =


√

5
√

6

140
+

3

√
2
√

5
√

6
35

+ 3
7

4
+

85

84

 qi +

−√5
√

6

70
−

√√√√ 2
√

5
√

6

35
+

3

7
−

1

42

 qi+1 +


√

5
√

6

140
+

√
2
√

5
√

6
35

+ 3
7

4
+

1

84

 qi+2,

p1(ξ
q
1) =


√

5
√

6

140
+

√
2
√

5
√

6
35

+ 3
7

4
+

1

84

 qi−1 +

(
41

42
−

√
5
√

6

70

)
qi +


√

5
√

6

140
−

√
2
√

5
√

6
35

+ 3
7

4
+

1

84

 qi+1,

p2(ξ
q
1) =


√

5
√

6

140
−

√
2
√

5
√

6
35

+ 3
7

4
+

1

84

 qi−2 +


√√√√ 2
√

5
√

6

35
+

3

7
−

√
5
√

6

70
−

1

42

 qi−1 +


√

5
√

6

140
−

3

√
2
√

5
√

6
35

+ 3
7

4
+

85

84

 qi.

For the second Gaussian quadrature point ξq2 = ξi − ∆ξ
2

√
3
7 −

2
7

√
6
5 , the optimal weights are:

d0 =
411
√

30

100856
− 269

√
42
√

15− 2
√

30

50428
− 1751

√
35
√

15− 2
√

30

504280
+

21855

100856
,

d1 =
28573

50428
− 411

√
30

50428
,

d2 =
1751

√
35
√

15− 2
√

30

504280
+

269
√

42
√

15− 2
√

30

50428
+

411
√

30

100856
+

21855

100856
.

(60)

The reconstructed value can be then computed from the three polynomials associated to the three stencil:

p0(ξ
q
2) =

 3

√
3
7
− 2
√

5
√

6
35

4
−

√
5
√

6

140
+

85

84

 qi +

√5
√

6

70
−

√√√√ 3

7
−

2
√

5
√

6

35
−

1

42

 qi+1 +


√

3
7
− 2
√

5
√

6
35

4
−

√
5
√

6

140
+

1

84

 qi+2,

p1(ξ
q
2) =


√

3
7
− 2
√

5
√

6
35

4
−

√
5
√

6

140
+

1

84

 qi−1 +

(√
5
√

6

70
+

41

42

)
qi +

 1

84
−

√
3
7
− 2
√

5
√

6
35

4
−

√
5
√

6

140

 qi+1,

p2(ξ
q
2) =

 1

84
−

√
3
7
− 2
√

5
√

6
35

4
−

√
5
√

6

140

 qi−2 +

√5
√

6

70
+

√√√√ 3

7
−

2
√

5
√

6

35
−

1

42

 qi−1 +

 85

84
−

3

√
3
7
− 2
√

5
√

6
35

4
−

√
5
√

6

140

 qi.

For the third Gaussian quadrature point ξq3 = ξi + ∆ξ
2

√
3
7 −

2
7

√
6
5 , the optimal weights are:

d0 =
1751

√
35
√

15− 2
√

30

504280
+

269
√

42
√

15− 2
√

30

50428
+

411
√

30

100856
+

21855

100856
,

d1 =
28573

50428
− 411

√
30

50428
,

d2 =
411
√

30

100856
− 269

√
42
√

15− 2
√

30

50428
− 1751

√
35
√

15− 2
√

30

504280
+

21855

100856
.

(61)

The reconstructed value can be then computed from the three polynomials associated to the three stencil:

p0(ξ
q
3) =

 85
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−

3

√
3
7
− 2
√

5
√

6
35

4
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140
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√5
√

6
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2
√

5
√

6

35
−

1

42

 qi+1 +

 1

84
−

√
3
7
− 2
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√

6
35

4
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√
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6
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√
5
√

6

140
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140
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For the fourth Gaussian quadrature point ξq4 = ξi + ∆ξ
2

√
3
7 + 2

7

√
6
5 , the optimal weights are:
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.

(62)

The reconstructed value can be then computed from the three polynomials associated to the three stencil:

p0(ξ
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For all Gaussian quadrature points the solution in ξ can be easily built by assembling the three polynomials.
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