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FORMULATION AND WELL-POSEDNESS OF UNILATERAL MULTIBODY DYNAMICS

The classical theory of rigid bodies systems undergoing perfect bilateral constraints has received firm mathematical foundations for a long time. We extend it to the case where there are perfect unilateral constraints also. The formulation follows the line initiated by Schatzman (1978) and Moreau (1983). We give a parametrization-free formulation and try to identify the most general form of impact constitutive equation which is compatible with well-posedness. Then, well-posedness is proved under the assumption of analyticity of the data, since it is known, thanks to Bressan (1960) and Schatzman (1978), that uniqueness does not hold in the C 00 setting.

1.

Background: multibody systems with perfect bilateral constraints

Consider a finite collection of rigid bodies undergoing perfect bilateral constraints. It is classically associated with a manifold Q ( called the configuration manifold of the system) of finite dimension d {called the number of degrees-of-freedom of the system).

A motion of the system is a curve on Q, that is a mapping q(t) from a real interval I into Q. When a motion is smooth enough, there exists a time-derivative q(t) in tangent space T q ( t ) Q also called a (generalized) velocity of the system. We shall also denote it by (q(t), q(t)). An arbi trary element v ( also denoted by ( q, v), q being the basepoint of v) of the tangent bundle TQ is called a {virtual) state of the system.

Given the mass distribution in each of the solids, one classically ob tains the kinetic energy K which appears to define a positive definite quadratic form on each tangent space T q Q of the configuration man ifold, endowing it with a Riemannian structure. The induced scalar product and norm will be denoted by (•, • ) q and 11 • ll q , whereas the du ality product between tangent space T q Q and cotangent space T;Q will be denoted by(•, •) q -With this notation, we have:

( 1 2 K q,v) = 2 llvll q •
The modelling of forces makes use of duality. Internal and external forces acting on the system in the configuration q are represented by a linear form f E T;Q. Given an arbitrary virtual velocity (q, v) of the system, the real number(/, v} q is the virtual power of internal and external forces for the virtual velocity (q, v). The cotangent vector f is usually allowed to depend on the current state (q, v) and also on time t.

Hence, we are given a mapping/ : TQ x JR + ➔ T*Q satisfying:

\/(q,v)E TQ, VtEJR + , II,if( q,v ; t ) ) = q, ( 1 
)
( IIQ is the natural projection on T*Q), called the force mapping.

Since such a structure appears systematically in the modelling of the dynamics of rigid bodies systems with perfect bilateral constraints, we are led to make the following definition.

Definition 1 A simple discrete mechanical system is a pair (Q, /) whe re:

■ Q is a finite-dimensional Riemannian manifold called the configu ration manifold.

■ f: TQ x JR + ➔ T*Q is a mapping satisfying (1), called the force mapping.

Now, consider an arbitrary smooth motion q ( t) of the system. The power of inertial forces is by definition the time derivative of the kinetic energy:

: t K ( q, q) = : t � llq( t )ll! ct > = (�q( t ) , q( t )) = / b �q( t ) , q( t )) , q(t) \ q(t)
where D/dt denotes the covariant derivative along the curve q(t) associ ated with the Levi-Civita connection, and b the isomorphism from TQ onto T*Q canonically associated with the Riemannian metric. For any virtual velocity ( q, v) of the system, the real number (b Dq / dt, v) q is nat urally called the virtual power of inertial forces in the virtual velocity (q, v). Given any local parametrization of the system ( local chart), it admits the well-known representation: b�q = (:

t : i K ( q, q )-� i K ( q, q )) dq i .
The fundamental principle of classical dynamics asserts that the vir tual power of inertial forces should equal the virtual power of external and internal forces, for any virtual velocity. We obtain immediately the equation of motion:

'tit, b�cj(t) = f(q(t), cj(t);t).
Next, we are given an initial state ( qo, vo) E TQ. Then, the evolution problem associated with the dynamics of rigid bodies system with perfect bilateral constraints is the Cauchy problem:

Problem I. Find T > 0 and q E 0 2 {[0, T[ ; Q) such that: • (q(0), cj(0)) = (qo, vo), • 't/tE[0, T[, b�cj(t) = f (q(t ), cj(t), t).
Well-posedness is ensured by the following.

Theorem 2 (Cauchy) The Riemannian configuration manifold is as sumed to be of class 0 2 and the mapping f:

TQ x JR + -+ T*Q is of class 0 1 .
Then, there exists a unique maximal solution for problem I.

More precisely, theorem 2 states that there exists Tm > 0 {T m E JR + U { +oo}) and Qm E 0 2 ([0, T m [, Q) being a solution of problem I such that any other solution of problem I is a restriction of Qm• Of course, we expect that Tm = +oo, in which case the dynamics is said to be eternal. This situation cannot be taken for granted, in general. In the usual cases encountered in mechanics, eternal dynamics is ensured by the following general sufficient condition.

Theorem 3 The configuration manifold Q is assumed to be a complete Riemannian manifold. The effort mapping f is supposed to admit the following estimate: ll f(q, v ; t) II; � l(t) (1 +d (q, q o ) + llvll q ), for all ( q, v) E TQ and almost all t E [to, +oo[, where d( •, •) is the Riemannian distance and l(t), a (necessarily nonnegative) function of L}oc ( JR ; JR) .

Then, the dynamics is eternal: Tm = +oo.

Formulation of unilateral multibody dynamics

The consideration of elementary examples shows that the dynamics of rigid bodies systems can lead to predictions of the motion in which some bodies of the system ov erlap in the real world. Of course, this cannot be allowed. Hence, very often, one has to add the statement of non-penetration conditions to a simple discrete mechanical system. This is a simple occurrence of a unilateral constraint. Here, we shall recall briefly the general formulation of the resulting evolution problem. This is due essentially to Schatzman {1978) and Moreau {1983).

Consider a simple discrete mechanical system according to defini tion 1. A unilateral constraint is a restriction on the admissible of the system which is expressed by means of a finite number n of smooth real-valued functions 'Pi on the configuration manifold Q, so that the set of all admissible configurations A is given by: A= {q E Q; 'v'i E {1,2, ... ,n}, '-Pi(q) � 0}.

(

) 2 
The set of all active constraints in the admissible configuration q E A is defined by: J(q ) = {iE{l,2, ... ,n}; 'Pi(q) =O} .

The following hypothesis is usual in this framework. The functions 'Pi are assumed to be functionally independent in the sense that, for all q EA, the dipi(q) (i E J(q )) are linearly independent in T*Q.

The cone of admissible right velocities in the configuration q is defined by: V(q) = {v E T q Q; 'v'i E J(q ), { dipi(q), v} q � O}, and we denote by N*(q) its polar cone for the duality (T q Q, T;Q):

the polar cone of V(q) for the euclidean structure of T q Q being N(q) = #(N*(q)) (# = b-1 ).

The equation of motion has to be corrected with some reaction efforts R:

D • + L q -f( •+ . ) R
"Ttq,q , t + .

(3)

We require the unilateral constraint to be perfect, that is, the reaction effort R has to take values in the normal cone N*(q). It is well known that the dynamics of such a system involves some time-discontinuities of velocity called impacts. Therefore, we cannot expect that the equation of motion (3) should be satisfied in a classical sense, but rather in a distributional sense. Actually, it is usual to require that R should be a vector-valued mesasure rather than a general distribution. Hence, we define the class of motions MM A(I; Q) (motions with measure acceler ation) to be the set of all absolutely continuous motions q(t) from a real interval I to Q admitting a right velocity q + (t) at every instant t of I and such that the function q + (t) has locally bounded variation over I. Bounded variation is classically only for functions taking values in a normed vector space. However, for any absolutely continuous curve q(t) on a lliemannian manifold, parallel translation along q(t) classically provides intrinsic identification of the tangent spaces at different points of the curve and so, the definitions can easily be carried over to this case (for a precise mathematical setting, see [START_REF] Ballard | The dynamics of discrete mechanical systems with perfect unilateral constraints[END_REF]). Any mo tion q E MMA(I; Q) admits a left and right velocity, qand q+, in the classical sense at any instant. Moreover, any motion q E MMA(I; Q) is intrinsically associated with the covariant Stieltjes measure Dq + of its right velocity q + . The equation of motion takes the form:

where dt denotes the Lebesgue measure. It remains to express the con dition that R should take values in N*(q) when Risa measure.

Convention. We shall write: RE -N*(q(t)) to mean: there exist n nonpositive real measures Ai such that: n R = L Ai dc,oi(q(t)) and i=l 'v'iE{l,2, ... ,n } , SuppAiC{t; c,oi(q(t))=0} . ( 4) With this convention, the final form of the equation of motion is: R = �Dq + -f(q(t),q + (t);t) dt E -N *(q(t))

(5)

It is classical that this equation of motion has to be completed with some constitutive impact equation describing the outcome of any impact occurrence. We shall assume an impact constitutive equation of general form:

(6) To ensure compatibility with the equation of motion ( 5), the mapping F should satisfy:

'v'q EA, 'v'v-E -V(q), F (q, v-) E V(q), F ( q, v-) -v-E -N(q). ( 7 ) 
Moreover, we add the assumption that the kinetic energy of the system cannot increase during an impact:

'v' q EA, 'v' v-E -V(q), (8) 
Now, we formulate the evolution problem associated with the dy namics of rigid bodies systems with perfect bilateral and unilateral con straints. The initial condition is assumed to be compatible with the realization of the constraint: v 0 V(qo).

Problem II. Find T > 0 and q E MMA([0, T[; Q) such that:

• (q(0), q + (0)) = (qo, vo),

• 'v't E [ 0, T[ , q(t) EA, • R � �D q + -f (q(t),q + (t) ; t) dt E -N* (q(t)), • 'v'tE)0,T[ , q + (t)=.r(q(t),q-(t)).
The equation of motion is understood in the sense of convention ( 4), and the impact constitutive equation is supposed to fulfill requirements ( 7) and ( 8).

Well-posedness of unilateral multibody dynamics

To study existence and uniqueness of solution for problem II, we need to state some regularity hypotheses on the data. It was pointed out by [START_REF] Bressan | Incompatibilita dei teoremi di esistenza e di unicita del moto per un tipo molto comune e regolare di sistemi meccanici[END_REF] and [START_REF] Schatzman | A class of nonlinear differential equations of second order in time[END_REF], through a striking example, that under the strong hypotheses that the data are all of class C 00 there may exist non-unique solutions for problem II. It was [START_REF] Percivale | Uniqueness in the elastic bounce problem, I[END_REF] and [START_REF] Schatzman | Uniqueness and continuous dependence on data for one dimen sional impact problems[END_REF] who were the first to notice that this trouble could be overcome by assuming that the data are analytic. But their analysis was limited to one-degree-of-freedom systems. The general case is treated in [START_REF] Ballard | The dynamics of discrete mechanical systems with perfect unilateral constraints[END_REF], [START_REF] Ballard | Formulation and well-posedness of the dynamics of rigid bodies systems with perfect unilate ral constraints[END_REF] and is now briefly recalled.

From now on, we assume the following Regularity hypothesis. The Riemannian configuration manifold Q, the functions 'P i and the mapping f: TQ x JR + ➔ T * Q are analytic.

Proposition 4 Let qo EA and vo E V(q 0 ). Then, there exist Ta > 0, an analytic curve Qa: [ 0, Ta[ ➔ Q and n analytic functions Aa i : [ to, Ta[ ➔ IR such that:

• (qa(0),qf(0)) = (qo,vo),

• Vt E [0, Ta[, � � Qa(t) = f(qa(t), Qa(t); t) + t Aai(t) dcpi{ Q a{t)), i=l • �� :, [ 1 0, 2 T�[_ , .
Aa i{t ) :'.S 0, 'Pi(qa(t)) :'.S 0, Aa i{t ) 'Pi(Qa(t)) = 0 .

V Z 1 1

1 n, Moreover, the solution of this evolution problem is unique the sense that any other analytic solution (T, q, .\ 1 , ... , A n) is either a restriction or an analytic extension of ( Ta, Q a, Aa 1 , ... , Aan)- An early proof of proposition 4 can be found in L6tstedt {1 982).

Corollary 5 There exists an analytic solution (T a , q 0 ) for problem II.

Naturally, the analytic solution furnished by corollary 5 will cease to exist at the first instant of impact. This is the reason why we have considered the wider class MMA which contains motions which are not differentiable in the classical sense. Considering motions in MMA will allow us to extend the solution beyond the first instant of impact. But, we mu st ensure that admitting the wider class of solutions MMA will not introduce parasitic solutions. This is the aim of the following theorem. 

Theorem 8

The configurotion manifold Q is assumed to be a complete Riemannian manifold and the mapping f is supposed to admit the fol lowing estimate: ll f ( q ,v ; t )II; � l (t ) (1 + d( q,qo) + llvll q ), for all ( q , v ) E TQ and almost all t E [O, +oo[, where d( •, •) is the Riemannian distance and l (t ) , a (necessarily nonnegative) function of L} oc: ( JR; R).

Then, the dynamics is eternal, that is, the maximal solution for prob lem II is defined on [O, +oo[. 

Theorem 6

 6 Let ( Ta , Q a) be the solution for problem II furnished by corollary 5, and (T, q) be an arbitrary solution for problem II. Then, there exists a real number To {0 < To :'.S min{T a , T}) such that: Ql[O,To[ = Qal[O,To[ • In other terms, there is local uniqueness for problem II. Local uniqueness is the difficult part in the study of well-posedness of problem IL Corollary 7 There exists a unique maximal solution for problem II. It was noticed above that the analytical solution for problem II fur nished by corollary 5 fails to exist at the first instant of impact. To overcome this fact, we have proved that local uniqueness still holds in the wider class of motion MMA which allows impacts. However, the maximal solution for problem II may stop to exist at finite time for un physical reasons. In other terms, we still do not know if the class MMA is wide enough. Actually, it is wide enough as shown by the following theorem which should be brought aside theorem 3.