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Preface

"A theory is the more impressive the greater the simplicity of its premises is, the
more different kind of things it relates, and the more extended is its area of appli-
cability. Therefore the deep impression which classical thermodynamics made upon
me. It is the only physical theory of universal content concerning which I am con-
vinced that, within the framework of the applicability of its basic concepts, it will
never be overthrown".

Albert Einstein [54, p. 12], in 1949.

Goals – In this book, a new thermodynamic framework is proposed for the
design of new macroscopic models, as well as the combination of existing
models. Our goal is to popularize thermodynamics for model designers. The
mass, momentum and energy conservations, together with the second princi-
ple of thermodynamics, is written as:

.
ρ + ρdivv = 0

ρ
.
v − divσ = ρg

ρ
.
e + divq = r +σ ∶D

ρ
.
s + div (

q

θ
) ⩾

r

θ

(0.1)
(0.2)
(0.3)

(0.4)

These relations should be satisfied by any mathematical model expressed
locally as a continuum. See chapter 1 for the construction of these four re-
lations from fundamental principles of mechanics. Notations are grouped in
table 0.1, page 7. Here, ρ is the mass density, v, the velocity, e, the specific
internal energy, σ, the symmetric Cauchy stress tensor, q, the heat flux. The
internal energy e is assumed to depend upon some state variables, includ-
ing the specific entropy, denoted by s. Then, the temperature is defined by
θ = ∂e/∂s. As usual, the dot on the top of a quantity denotes its Lagrange rate,
e.g. .

ρ = ∂tρ + (v.∇)ρ. Also D = (∇v +∇v)/2 denotes the stretching. Finally, g
denotes the mass density of external forces, e.g. the gravity acceleration and r
is the heat sources.
Assuming that g and r are known, there remain six unknowns (ρ,v, e,σ,q, θ)
for three equations (0.1)-(0.3) together with the constraint (0.4). The usual
approach is to provide some additional constitutive equations for σ, q and e
versus (ρ,v, θ) and then, to check that (0.4) is satisfied. For instance, the
Newtonian model σ = 2ηD and the Fourier equation q = −k∇θ together with
e = Cpθ where η, k,Cp > 0 are constant, close the system of equations.
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2 Preface

Next, the dissipation is written as D = 2η∣D∣2 + k∣∇θ∣2/θ ⩾ 0, which implies
that (0.4) is satisfied (see corollary 1.20 page 29). During the development
of new constitutive equations, satisfying inequality (0.4) appears as a con-
straint that strongly restricts the possibilities. Moreover, the constraint (0.4)
remains difficult to check in general, even for very common constitutive equa-
tions. So, the temptation to bypass this check during the development of new
models is real and could have disastrous consequences, e.g. the unexpected
divergence of simulation codes due to ill-posed problems. The aim of the new
proposed framework is to allow a clear and easy developement of new consti-
tutive equations that automatically satisfy the second principle (0.4). Instead
of writing directly constitutive relations, model designers are encouraged to
first specify the energy and the dissipation potential.

Context – The thermodynamics of irreversible processes with internal vari-
ables and a dissipation potential is considered in this book. Thermodynam-
ics of irreversible processes started in 1940 with Eckart [50] who studied
viscous materials with heat conduction, see also de Groot and Mazur [40]
or Silhavy [169] for more historical references. The concept of dissipa-
tion potential was next introduced independently at least in 1968 by
Ziegler [191], in 1972 by Verhás [177], in 1973 by Edelen [51, 52] and in 1974
by Moreau [128]. In 1975, Halphen and Nguyen [81] proposed the framework
of standard generalized materials, that is based on possibly non-smooth dis-
sipation potentials. This clear and efficient framework is still widely used
in solid mechanics, see e.g. Maugin [125] for applications. Nevertheless,
this framework is limited to small displacements, which is a severe limita-
tion, especially when considering fluids. For complex fluids and soft solids
and assuming large strain, different approaches were developed. In 1964,
Kluitenberg [107] extended the Kelvin-Voigt viscoelastic solid model to in-
corporate large strain. Next, in 1976, Leonov [115] extended this work to
viscoelastic fluids. In 1984, Grmela [75] introduced the remarkable Poisson
bracket formalism (see also Beris and Edwards [6]), then extended in 1997
as the powerful generic framework by Grmela and Öttinger [76]. Never-
theless, the usage of thermodynamics is much less popular in the com-
plex fluids’ community than in that of elastoplastic solids’ community,
where the assumption of small displacements is still widely used. Concern-
ing kinematics, amazing discoveries on the Hencky strain tensor were
obtained independently as early as 1991 by Lehmann et al. [113], in 1996
by Reinhardt and Dubey [154, 155] and in 1997 by Xiao et al. [187, p. 92].
These authors (i) introduced a new objective tensor rate, the logarithmic
corotational rate, (ii) showed that the left Hencky strain is the only strain
measure that admits the stretching D as a corotational rate and (iii) that the
conjugacy via the Helmholtz energy of the left Hencky strain is the Cauchy
stress σ.
This contribution to thermodynamics is based on a clear and efficient frame
for the large strain case. Eulerian formulation is preferred as it is more
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suitable for handling large, possibly unbounded deformations. The main diffi-
culty is certainly the complexity of the formalism of kinematics in large strain:
it is the source of much confusion and discourages model designers from using
thermodynamics. The main new result of this book is theorem 4.1, page 100:
it expresses a necessary and sufficient condition for the second prin-
ciple (0.4) to be satisfied, so the proposed framework is an attempt to be as
general as possible. The new kinematic concept of thermal strain vector is
also proposed: it nicely closes the mathematical structure of the framework
while paving the way for the design of new types of macroscopic models.
This is illustrated by a new variant of the Cattaneo heat equation that fully
satisfies the second principle of thermodynamics.

Audience – This book is primarily intended for graduate students and re-
searchers in applied mathematics, engineering sciences, computational me-
chanics and physics. The reader is assumed to be familiar with classical me-
chanics, together with matrix and tensors algebra. Special care has been
devoted to making the material as self-contained as possible. The general
level of the book is best suited for a graduate-level course which can be built
by drawing on some of the present chapters. This material is an elaboration
from the lecture notes by the author for a graduate course at Grenoble Uni-
versity and ENSIMAG in France. It could be considered as the continuation
of a previous book [163] published by the author in 2016.

Outline – Thermodynamics is based on five postulates: four are presented
in chapter 1 and give a self-contained construction of the previous four fun-
damental relations (0.1)-(0.4). The fifth one is objectivity, at the beginning
of chapter 2, which allows us to better understand the deep impression made
on Einstein (see the quoted citation on page 1). Chapters 2 and 3 develop
respectively classic and less-classic results of kinematics that are necessary
for chapter 4, which presents the proposed framework. Finally, chapter 5
develops the example series, starting from very classic models for solid and
fluid, and finishing with the design of a new modified Cattaneo heat equation
combined with a complex viscoelastic fluid.
For the impatient reader, we suggest to first have a look at the main result
of this book, which is theorem 4.1, page 100, together with its associated
remark 4.3, while consulting notations in table 0.1, page 7. It is then possible
to directly browse the example series in chapter 5 and search for some favorite
applications.
Acknowledgments – The author is grateful to several colleagues for their
constructive remarks that helped improve the manuscript. In particular, my
warmest thanks go to Sébastien Boyaval, Ibrahim Cheddadi, François Graner
and Nathan Shourick. I am also thankful to Lauren Hodge for improving the
english of the manuscrit.





Notations

Let N ⩾ 1 be the dimension of the physical space and let (ek)1⩽k⩽N denote the
vectors of the canonical basis of RN . For any vector ξ ∈ RN , its components
in the canonical basis are denoted by (ξk)1⩽k⩽N . The set of real square N×N
matrices is denoted by RN×N . The tensor product of two vectors ξ and ζ ∈ RN

is denoted by ξ ⊗ ζ = (ξk ⊗ ζℓ)1⩽k,ℓ⩽N ∈ RN×N . For any m ∈ RN×N , its com-
ponents in the canonical basis (ek ⊗ eℓ)1⩽k,ℓ⩽N of RN×N are denoted by
(mk,ℓ)1⩽k,ℓ⩽N .

The matrix space RN×N is equipped with the scalar product defined by the
double dot product m ∶n = ∑

N
k,ℓ=1mk,ℓ nk,ℓ for all m,n ∈ RN×N and the as-

sociated matrix norm is ∣m∣ = (m ∶m)1/2. The identity matrix is denoted
by I. For any matrix m ∈ RN×N , the symmetric and skew-symmetric parts
are denoted respectively by

sym(m) =
m +mT

2
and skw(m) =

m −mT

2

The determinant is denoted by det(m), the trace by tr(m) and the deviatoric
part by dev(m) =m − (1/N)tr(m)I.

For convenience, RN×N
s denotes the set of real symmetric N×N matrices

and RN×N
s+ , those of real symmetric definite positive N×N matrices. The fol-

lowing standard notations from Lie groups (see e.g. Hall [79]) are considered
for matrix sets:

GL(N) = {m ∈ RN×N and det(m) ≠ 0}

GL+(N) = {m ∈ RN×N and det(m) > 0}

O(N) = {q ∈ RN×N and qT
= q−1}

SO(N) = {q ∈ RN×N , qT
= q−1 and det(q) = 1}

5



6 Notations

The matrix Lie algebra associated with SO(N) will also be used:

so(N) = {W ∈ RN×N and W T
= −W }

Here, GL(N) denotes the set of real square invertible matrices, GL+(N), ma-
trices with strictly positive determinant, O(N), orthogonal matrices, SO(N),
rotation matrices and so(N), skew-symmetric matrices.

Following del Piero [43] (see also Itskov [96, p. 124]), the tensor product of
two matrices a,b ∈ RN×N is denoted by a ⊠ b. It represents a fourth order
tensor, defined by (a ⊠ b) ∶m = ambT for all m ∈ RN×N . The component form
of this tensor products is (a ⊠ b)ijkℓ = aikbjℓ. Note that the tensor product ⊠
of two matrices differs from the tensor product ⊗ of two vectors. The tensor
product ⊠ satisfies (see e.g. Jog [100, p. 178]) for all a,b,c,d ∈ RN×N :

(a ⊠ b)(c ⊠ d) = (ac) ⊠ (bd) (0.5)

Notations are grouped in table 0.1. As far as possible, the most conventional
notations was used, in order to facilitate reading. Nevertheless, let us point
out that some textbooks use sometime the same notations, but with slightly
different definitions, which could be confusing. Let us review these source of
possible mistake.

• Here, ∇v = (∂vi/∂xj)i,j denotes the gradient of velocity, while some au-
thors denote by ∇v the tensor (∂vj/∂xi)i,j , i.e. its transpose.

• The divergence of a tensor, denoted by div, is here row-wise, while some
authors use the column-wise convention.

• Here, n denotes the outer unit normal vector, while some authors used
the outward convention.

• Also, the Cauchy stress tensor σ is defined such that the vector σn repre-
sents the force exerted on a surface oriented by n. Some authors consider
that the force is σTn, i.e. they consider the transpose of the present tensor
as the Cauchy stress and they still denote it σ.
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notation description
N physical space dimension, e.g. N = 3

∣.∣ vector and matrix norm
∣u∣2 = u.u and ∣τ ∣2 = τ ∶τ

n outward unit normal on the boundary of a domain
τ = u1 ⊗ u2 tensor product of two vectors
A = τ1 ⊠ τ2 fourth-order tensor product of two tensors

divu = ∑
N
i=1 ∂ui/∂xi, divergence of the vector u

div τ = ∑
N
j=1 ∂τi,j/∂xj , row-wise divergence of the tensor τ

ρ mass density
ρ0 mass density in the reference configuration
v velocity
∇v = (∂vi/∂xj)i,j , velocity gradient
σ Cauchy stress, such that σn is the force exerted on

a surface oriented by n

D = (∇v +∇vT )/2 : stretching, alias: strain rate
W = (∇v −∇vT )/2 : vorticity
De reversible strain rate
Dp =D −De

h left Hencky strain
he reversible left Hencky strain

alias: logarithm of conformation tensor
hp = h − he

B = exp(2h) : left Cauchy-Green tensor
Be = exp(2he) : reversible left Cauchy-Green tensor

alias: conformation tensor.
φ Lagrangian rate
○
a Zaremba-Jaumman corotational rate

∇
a,

△
a, ◻

a upper, lower-convected and Gordon-Schowalters rates
○
h(log) =D, logarithmic rate, see theorem 3.1
e specific internal energy
s specific entropy
θ = ∂e/∂s, temperature
ψ = e − θs, Helmholtz specific energy
Cp = −θ ∂2ψ/∂θ2, heat capacity
q heat flux vector
β thermal strain vector

s.t.
○
β = ∇f(θ), see definition 3.37

D dissipation
ϕ dissipation potential
ω gyroscopic function

Table 0.1 Notations used thoughout this book.





Chapter 1

Conservation

This chapter provides a self-contained construction of the four fundamental
relations (0.1)-(0.4), namely, the mass, momentum and energy conservations
together with the second principle of thermodynamics. This chapter is then
structured in four corresponding sections: each of them starts with the fun-
damental postulate and finishes with a corresponding theorem for the local
expression of the relation.

1.1 Mass

In the 18th century, the mass conservation was stated independently as early
as 1756 by Lomonosov and in 1773 by Lavoisier (see Fig. 1.1), who popu-
larized its principle as "rien ne se perd, rien ne se crée, tout se transforme"
(nothing is lost, nothing is created, everything is transformed). It is expressed
here for a continuum as:

Postulate 1.1 (mass conservation – non-local form).
The mass is conserved along the time inside any material system transported
by the velocity field.

Our first aim is to express this postulate by using mathematical notations.
At any time t ⩾ 0, the domain Ω(t) ⊂ RN is an open bounded subset of
the N -dimensional physical space, N ⩾ 1. The mass density ρ of the material
is a function, defined at any time t ⩾ 0 and at any location x ∈ Ω(t) of the
domain and its value, always positive, is denoted by ρ(t,x). The assumption
that ρ exists is a continuum hypothesis: it does not necessarily hold at the mi-
croscopic scale, e.g. when considering the molecular structure of the matter.
At macroscopic scales, this assumption is extremely accurate. The velocity
is a real vector, denoted as v(t,x) = (vi(t,x))1⩽i⩽N and the vector field is
simply denoted by v, see Fig. 1.1.left. The functions ρ and v are assumed to

9



10 Chapter 1. Conservation

Mikhail Lomonosov Antoine Lavoisier

v(t,x)

x

Ω

V(t)

Fig. 1.1 (left) Representation of the continuum in mechanics. (center) Mikhail
Lomonosov (1711-1765), in 1750. Painting by Leontiy Miropolskiy in 1787, from another
painting from Georg C. Prenner. Russian academy of sciences, S. Petersburg (public do-
main reproduction). (right) Antoine Lavoisier (1743–1794), in 1788. Detail of the painting
by David, "Lavoisier and his wife", Metropolitan museum of art, New-York (public domain
reproduction).

be sufficiently smooth so that the standard operations of calculus can be per-
formed on them. An arbitrary material system is represented by a bounded
subset V(t) ⊂ Ω(t) that is transported by the material in the domain Ω(t) at
any time t ⩾ 0. The mass conservation principle equivalently postulates that,
at any time t ⩾ 0, the mass variation inside V(t) is zero.

d

dt
(∫
V(t)

ρ(t,x)dx) = 0 (1.1)

This mass conservation principle could also be rewritten in a local form in-
stead of inside an arbitrary subdomain V(t). For this purpose, we need some
tools to write global equations in a local form. Observe also that the do-
main of integration V(t) depends on time: the time rate and the integration
could not be swapped directly. This swap requires the introduction of addi-
tional terms as presented in the forthcoming Reynolds formula as well as the
concept of divergence.

Definition 1.1 (divergence of a vector field).
Let (0, x1, . . . , xN) denote the Cartesian coordinate system. For any vector
field u defined in RN , its divergence is defined by:

divu =
N

∑
i=1

∂ui
∂xi

Proposition 1.2 (Reynolds transport formula).
Let v be any vector field defined in Ω(t) at any time t ⩾ 0 and let V(t) ⊂ Ω

https://commons.wikimedia.org/wiki/File:M.V._Lomonosov_by_L.Miropolskiy_after_G.C.Prenner_(1787,_RAN).jpg
https://commons.wikimedia.org/wiki/File:M.V._Lomonosov_by_L.Miropolskiy_after_G.C.Prenner_(1787,_RAN).jpg
https://commons.wikimedia.org/wiki/File:David_-_Portrait_of_Monsieur_Lavoisier_and_His_Wife.jpg


1.1. Mass 11

be any bounded subset transported by v. For any function φ, defined at any
time and at any point of Ω(t), we have

d

dt
(∫
V(t)

φ(t,x) dx) = ∫
V(t)
(
∂φ

∂t
+ div(φv)) dx (1.2)

Proof: This is a very classical theorem of continuum mechan-
ics: see e.g. Duvaut [49, p. 26], Chorin and Marsden [26, p. 10],
Temam and Miranville [173, p. 19] or Boyer and Fabrie [13, p. 5] for
the proof. ∎

In order to establish the local expression of the mass conservation, the fol-
lowing density argument is then used.

Definition 1.3 (set of dense parts of a domain).
Let Ω ⊂ RN , N ⩾ 1, be an open bounded subset of a N -dimensional physical
space. Let P(Ω) denote the set of all possible parts of Ω. Then, D ⊂ P(Ω), a
set of parts of Ω is said to be dense in Ω when for all x ∈ Ω and for all V ⊂ Ω
containing x, there exists an open part ω ∈ D such that x ∈ ω and ω ⊂ V.

There are many examples of a set of dense parts of Ω. The more classical
example is the set of all open balls contained in Ω. Another example is the set
of all open parallelepipeds whose faces are parallel to the axes of a Cartesian
coordinate system. Indeed, in any open ball centered in x, we can inscribe
an open parallelepiped centered in x, Also, the set of all open tetrahedrons
whose faces are parallel to four fixed and different planes is another valid
example of a set of dense parts of Ω.

Lemma 1.4 (from global to local by density).
Let Ω ⊂ RN , N ⩾ 1, be an open bounded subset of a N -dimensional physical
space. Let D be a set of dense parts of Ω. For all φ ∈ C0 (Ω̄), we have

∫
V
φ(x)dx = 0, ∀V ∈ D Ô⇒ φ = 0 in Ω

Proof: By contraposition, suppose that there exists x0 ∈ Ω such that
φ(x0) = α ≠ 0. Let us suppose first α > 0. Since φ is continuous, there ex-
ists a sufficiently small vicinity V0 ∈ D containing x0 such that meas(V0) > 0
and

α

2
⩽ φ(x), ∀x ∈ V0

Integrating over V0 yields

0 <
α meas(V0)

2
⩽ ∫

V
φ(x)dx

This is in contradiction with the hypothesis. When α < 0, set φ̃ = −φ
and α̃ = −α: it also leads to the same contradiction and thus φ = 0. ∎
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Now, all the necessary tools to establish the local form of the mass conserva-
tion are available.

Theorem 1.1 (mass conservation – local form).

∂ρ

∂t
+ div(ρv) = 0 in ]0,∞[×Ω (1.3)

Proof: Let us apply the Reynolds formula (1.2) with φ = ρ. The mass conser-
vation (1.1) becomes

∫
V(t)
(
∂ρ

∂t
+ div(ρv)) dx = 0

This relation is true at any time t ⩾ 0 and for any subdomain V(t) ⊂ Ω. Thus,
from lemma 1.4, the relation is true locally at any point in Ω and the proof
is complete. ∎

1.2 Momentum

The conservation of momentum was first postulated in 1667 by Newton [134],
see Fig. 1.2.left, in his celebrated book, re-edited in 1726. The previous ref-
erence is in Latin: see e.g. its French translation and commentary [135, 136]
written by Émilie du Châtelet (see Fig. 1.2.right) or its English [137] one,
written in 1846 by Motte. Émilie du Châtelet’s translation of this work into
French was published posthumously in 1756. It is is still considered as the
standard French translation. In addition, she has also contributed to our un-
derstanding of the conservation of energy, which will be developed in the next
section. Note that, while the sciences remained for a long time almost exclu-
sively male, Émilie du Châtelet was one of the first women scientists of influ-
ence whose writings were preserved. The conservation of momentum admits
the following general expression (see e.g. Temam and Miranville [173, p. 32]
or Duvaut [49, p. 38]):

Postulate 1.2 (conservation of momentum – non-local form).
There exists at least one chronology and frame of reference, called Galilean,
such that at each time and for every material system, the time rate of the
torque of the momentum is equal to the torque of the forces applied to the
system.

Remark 1.5 (Galilean frames).
The time rate of the momentum is also called the acceleration. Galilean frames
move with a time-independent translation: the frame motion could not in-
volve more general non-constant translation or rotation: indeed, otherwise,
the acceleration would be modified. Thus, the conservation of momentum is
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Isaac Newton Émilie du Châtelet

Fig. 1.2 (left) Isaac Newton (1642-1727), in 1689. Detail of a painting by Godfrey Kneller,
at Isaac Newton institute, Cambridge, UK. (public domain reproduction). (right) Émilie
du Châtelet (1706-1749). Painting by an anonymous artist, Nationalmuseum, Stockholm.
(public domain reproduction).

not invariant by changing to a non-Galilean frame. Observe that this pos-
tulate assumes the existence of at least one Galilean frame. In practice, it
can only be approximate and its choice depends upon the application: e.g.
relative to the Earth or to some stars. This choice was discussed in 1902 by
Poincarré [151], in the conclusion of his third chapter, as "Nous adoptons [ce
postulat] parce que certaines expériences nous ont montré qu’il serait com-
mode" (We adopt this postulate because some experiments have shown that
it would be convenient). Non-Galilean frames of reference are often consid-
ered in celestial mechanics, in meteorology or oceanography, or for rigid body
mechanics. In these cases, it is necessary to add to the forces applied to the
system some other suitable terms related to the modified acceleration, e.g.
the Coriolis pseudo-force. This idea of frame change will be revisited in more
a general way in the context of objectivity in section 2.3 of the next chapter,
see especially remark 2.7.

Our first aim is to express this postulate by using mathematical notations.
Let t ⩾ 0 be the time of the Galilean chronology and assume that the Carte-
sian coordinate system (0, x1, . . . , xN) is associated with a Galilean frame.
Let V(t) ⊂ Ω be any material system, transported by the velocity field v.
Before continuing, some auxiliary notations and definitions are required.

Definition 1.6 (exterior product of two vectors).
The exterior product of two vectors u = (ui)1⩽i⩽N and v = (vi)1⩽i⩽N ∈ RN is
denoted by u ∧ v and is defined from 2 skew(u⊗ v) = u⊗ v − v ⊗u i.e. from
the skew-symmetric part of the tensor product u⊗ v = (uivj)1⩽i,j⩽N . This
skew-symmetric part could then be identified as a vector in R

N(N−1)
2 , e.g. by

considering the upper- or lower-triangular part of the skew-symmetric matrix.

https://commons.wikimedia.org/wiki/File:Sir_Isaac_Newton_(1643-1727).jpg
https://commons.wikimedia.org/wiki/File:Ok%C3%A4nd_-_Gabrielle-%C3%89milie_Le_Tonnelier_de_Breteuil_(1706%E2%80%931749),_Marquise_du_Ch%C3%A2telet_-_NMDrh_796_-_Nationalmuseum.jpg
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When N = 2, the exterior product is written as

u ∧ v = (u1v2 − u2v1) e1∧ e2

and then is represented by a scalar in the e1∧ e2 basis. When N = 3, a
conventional choice for the exterior product u ∧ v is to express it in the
(e2∧ e3, e3∧ e1, e1∧ e2) basis so that its vector is comprised of three com-
ponents and coincides with those of the cross product u × v in the (ei)1⩽i⩽3
basis:

u × v =
⎛
⎜
⎝

u2v3 − u3v2
u3v1 − u1v3
u1v2 − u2v1

⎞
⎟
⎠
=

3

∑
i,j,k=1

εijkujvkei ∈ R3

where εijk is the usual Levi-Civita symbol. In the general N ⩾ 1 case:

u ∧ v = ∑
1⩽i<j⩽N

(ujvj − ujvi) ei∧ ej

i.e. the N(N−1)/2 components are (ujvj − ujvi)1⩽i<j⩽N in the
(ei∧ ej)1⩽i<j⩽N basis.

Definition 1.7 (momentum).
The density of momentum is defined by ρv where ρ is the mass density and v,
the velocity. The torque of the momentum of the system V(t) is expressed by
two quantities:

1) its linear resultant ∶ ∫
V(t)

ρ(t,x)v(t,x)dx

2) its angular resultant ∶ ∫
V(t)

ρ(t,x)v(t,x) ∧xdx

Next, there are two categories of applied forces: volume forces, acting inside
the system V(t) and surface forces, acting on its boundary ∂V(t). Volume
forces on the small and arbitrary volume V(t) represent external forces, acting
at distance, while surface forces are due to internal forces acting inside the
material, as V(t) ⊂ Ω(t) is inside the domain. Let us denote by ρg in V(t), the
density of volume forces. For instance, when representing gravity forces, the
vector g is the gravity acceleration. Other external forces acting on V(t) could
be added, e.g. magnetic forces due to a magnetic field. These forces depend
upon the specificities of the problem under consideration. The density of
surface forces acting on the boundary ∂V(t) at position x admits the general
form s(x,n), called the normal stress vector. Here, n denotes the outer unit
normal vector to the boundary ∂V(t) at position x. Surface forces express for
instance the pressures and friction between molecules at the microscopic scale.
Note that there exists in some mechanical textbooks a different convention
for the unit normal n, as the inner unit normal: which implies a change of
sign in formulas for the corresponding terms. Based on theses definitions, we
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are able to express the conservation of momentum for the system V(t) at any
time t. Two relations can be written, the conservation of linear momentum
and the conservation of angular momentum:

d

dt
(∫
V(t)

ρv dx) = ∫
V(t)

ρg dx + ∫
∂V(t)

s(x,n)ds

d

dt
(∫
V(t)

ρv ∧x dx) = ∫
V(t)

ρg ∧xdx + ∫
∂V(t)

s(x,n) ∧xds

(1.4a)

(1.4b)

Our next aim is to express these relations in local form. To do so, some
additional definitions and notations should be first introduced.

Definition 1.8 (tensor field).
A tensor field τ is a N×N real matrix-valued function, defined at any
time t ⩾ 0 and x ∈ Ω(t) by τ (t,x) = (τi,j(t,x))1⩽i,j⩽N .

Definition 1.9 (divergence of a tensor).
The divergence of a tensor field τ defined in Ω(t), is the vector field defined
by:

div τ =
⎛

⎝

N

∑
j=1

∂τi,j

∂xj

⎞

⎠
1⩽i⩽N

It means that the divergence of a tensor is a vector whose components are
the divergence of the rows of the tensor.

From the Reynolds formula, proposition 1.2, and using these notations, the
following vector version of the Reynolds formula is obtained.

Corollary 1.10 (Reynolds transport formula – vector version).

d

dt
(∫
V(t)

q(t,x) dx) = ∫
V(t)
(
∂q

∂t
+ div(q ⊗ v)) dx (1.5)

where v is the velocity. Let us apply (1.5) with q = ρv representing the density
of momentum. Then, the conservation of linear momentum (1.4a) is written
as

∫
V(t)
(
∂(ρv)

∂t
+ div(ρv ⊗ v) − ρg) dx = ∫

∂V(t)
s(x,n)ds (1.6)

Let us now concentrate on the right-hand-side of (1.6). The following Cauchy
theorem expresses the density of surface forces s(x,n) in a simple and elegant
way. As the time has no importance for this result, it is presented as time
independent. Next, we will be able to transform the boundary integral over
∂V(t) into a volume integral in V(t), thanks to the Stokes formula.

Proposition 1.11 (existence of the Cauchy [21] stress tensor).
Let Ω ⊂ RN be an open bounded subset of the N -dimensional space. Let f be
a bounded vector field defined in Ω, and s be a continuous vector field, defined
in Ω × S where S = {ν ∈ RN ; ∣ν ∣ = 1} denotes the unit ball. Assume that
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P

D x0

V1

V2

ν

Augustin-Louis Cauchy

ν

x1

x0 x2

x3

Fig. 1.3 (left) Cauchy’s proof of the Newton’s action and reaction principle. (center)
Augustin-Louis Cauchy (1789-1857) in 1821. Lithograph by Julien Léopold Boilly (public
domain reproduction). (right) Cauchy’s small tetrahedron.

∫
∂V

s(x,n)ds = ∫
V
f(x)dx, ∀V ⊂ Ω (1.7)

where n denotes the unit outward normal on ∂V. Then, s could be extended
with respect to its second argument from S to RN as a linear operator, i.e.
there exists a tensor σ, called the Cauchy stress tensor, such that

s(x,ν) = σ(x)ν (1.8)

for all x ∈ Ω and ν ∈ RN .

Proof: Here is an adaptation to an arbitrary space dimension N ⩾ 1 of the
Cauchy’s original proof for N = 3, which takes place in two steps. The first
step shows the principle of the action and the reaction. It was first postulated
in 1667 by Newton [134] and is also called Newton’s third fundamental rela-
tion (actio = reactio). In 1827, Cauchy [21] proved in his theorem 1 that this
third Newton’s postulate could be deduced from the two others. The second
step of the proof shows the linearity of the operator and the existence of
the tensor, the so-called Cauchy stress tensor. It was also shown by Cauchy
in 1827, in the same paper, see also Cauchy [20].
Step 1: action and reaction – Consider any x0 ∈ Ω and any ν ∈ S. Let ε > 0
and V = {y ∈ RN ; ∣y −x0∣ < ε} be the open ball centered in x0 with radius ε.
As Ω is an open set, there exists a radius ε0 > 0 sufficiently small such that
for all ε < ε0 we have V ⊂ Ω. Let P = {y ∈ RN ; (y −x0).ν = 0} be the plane
passing in x0 and whose normal is ν. This plane cuts V in two half balls
denoted as V1 and V2, as shown on Fig. 1.3.left, such that the outer normal
on ∂V1 ∩ P is −ν and that on ∂V2 ∩ P is ν. Let us apply (1.7) successively
to V, V1 and V2. We obtain

https://wellcomecollection.org/works/cy9nsaup
https://wellcomecollection.org/works/cy9nsaup
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∫
∂V

s(x,n)ds = ∫
V
f(x)dx

∫
∂V1∩P

s(x,ν)ds + ∫
∂V1/P

s(x,n)ds = ∫
V1

f(x)dx

∫
∂V2∩P

s(x,−ν)ds + ∫
∂V2/P

s(x,n)ds = ∫
V2

f(x)dx

As V = V1 ∪ V2 and ∂V = ∂V1/P ∪ ∂V2/P , subtracting the two last relations
from the first one leads to

∫
D
(s(x,ν) + s(x,−ν)) ds = 0

where D = ∂V1 ∩ P = ∂V2 ∩ P denotes the disc living on the plane P ,
centered in x0 and with radius ε, as shown on Fig. 1.3.left. Note that
D = {y ∈ RN ; (y −x0).ν = 0 and ∣y −x0∣ < ε}. As this is true for any disc D,
any x0 ∈ Ω and ν ∈ S, from lemma 1.4 we get

s(x,ν) = −s(x,−ν) ∀x ∈ Ω, ∀ν ∈ S (1.9a)

This is the local form of the action and reaction principle: from each part of
the disc D, the subregion V1 acting on V2 applies an action opposite to the
actions of V2 on V1, which is called reaction.
Step 2: linearity – Consider the Cartesian coordinate sys-
tem (0, x1, . . . , xN). Next, consider any x0 = (x0,i)1⩽i⩽N ∈ Ω
and any ν = (νj)1⩽j⩽N ∈ S. Suppose, without loss of gen-
erality, that νj > 0 for all j, 1 ⩽ j ⩽ N . Let ε > 0 and
V = {y ∈ RN ; yi > x0,i, 1 ⩽ i ⩽ N and (y −x0).ν < ε} be a small
N -dimensional simplex. It corresponds to a tetrahedron when N = 3,
as represented on Fig. 1.3.right. As Ω is an open set,
then ε could be chosen sufficiently small such that V ⊂ Ω. Let
Fj = {y ∈ RN ; yj = x0,j , yk > x0,k, k ≠ j and (y −x0).ν < ε}, 1 ⩽ j ⩽ N
be the N faces of the simplex that are parallel to the axes and
FN+1 = {y ∈ RN ; yj > x0,j ,1 ⩽ j ⩽ N and (y −x0).ν = ε} its (N+1)th
tilted face. Observe that the outward unit normal to Fj is −ej , 1 ⩽ j ⩽ N
and that of FN+1 is ν. Let us apply (1.7):

N

∑
j=1
∫
Fj

s(x,−ej)ds + ∫
FN+1

s(x,ν)ds = ∫
V
f(x)dx (1.9b)

On the one hand, (1.9a) yields s(x,−ej) = −s(x,ej) for all x ∈ Fj

and for all j = 1, . . . ,N . On the other hand, since s is continu-
ous with respect to its first variable s(x,ej) = s(x0,ej) + rj(ε) for all
x ∈ ∂V with limε→0 rj(ε) = 0. Similarly, on the last face for all x ∈ FN+1

we have s(x,ν) = s(x0,ν) + rN+1(ε) with limε→0 rN+1(ε) = 0. Note that
meas(Fj) = νjmeas(FN+1) and then, dividing (1.9b) by meas(FN+1) and re-
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arranging yields:

s(x0,ν) −
N

∑
j=1

νj s(x0,ej) =
1

meas(FN+1)
∫
V
f(x)dx +

N

∑
j=1

νj rj(ε) − rN+1(ε)

From the theorem’s hypothesis, recall that f is bounded. Thus, there exists
a constant C > 0, independent of ε, such that the absolute value of the sum
of f over V is bounded by meas(V)C. Then

RRRRRRRRRRR

s(x0,ν) −
N

∑
j=1

νj s(x0,ej)
RRRRRRRRRRR

⩽
C meas(V)

meas(FN+1)
+

RRRRRRRRRRR

N

∑
j=1

νj rj(ε) − r4(ε)
RRRRRRRRRRR

The hyper-volume of the N -simplex V is expressed as
meas(V) = εN (∏

N
j=1 νk) /N ! while the hyper-volume of the N sides, which

are (N−1)-simplex, is written as meas(Fj) = ε
N−1ν−1j (∏

N
k=1 νk) /(N−1)! for

all j, 1 ⩽ j ⩽ N . The Pythagorean formula extends to any N -simplex, such
as V, with a right corner, i.e. when all edges are perpendicular on a vertex,
here x0. After rearrangements, we get:

meas(FN+1) =
⎛

⎝

N

∑
j=1

meas(Fj)
2⎞

⎠

1
2

= Nε−1
⎛

⎝

N

∑
j=1

ν−2j
⎞

⎠

1
2

meas(V)

The previous bound becomes

RRRRRRRRRRR

s(x0,ν) −
N

∑
j=1

νj s(x0,ej)
RRRRRRRRRRR

⩽
C ε

N

⎛

⎝

N

∑
j=1

ν−2j
⎞

⎠

− 1
2

+

RRRRRRRRRRR

N

∑
j=1

νj rj(ε) − r4(ε)
RRRRRRRRRRR

Observe that the left-hand-side is independent of ε while the right-
hand-side tends to zero when ε→ 0. Let us introduce the notation
σi,j(x0) = s(x0,ej).ei for all i, j, 1 ⩽ i, j ⩽ N . Then

s(x0,ν) =
N

∑
i,j=1

σi,j(x0) νj ei, ∀x0 ∈ Ω, ∀ν ∈ S

This expression could be immediately extended from all ν ∈ S to all ν ∈ RN

and this extended expression is obviously linear in ν. Finally, the Cauchy
stress tensor is defined by σ = (σi,j)1⩽i,j⩽N and the proof is complete. ∎

Let us apply the Cauchy proposition 1.11 to the density of volume forces

f =
∂(ρv)

∂t
+ div(ρv ⊗ v) − ρg

Then, relation (1.6) becomes, with expression (1.8) of the surface forces in
terms of the Cauchy stress tensor:
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∫
V(t)
(
∂(ρv)

∂t
+ div(ρv ⊗ v) − ρg) dx = ∫

∂V(t)
σnds (1.10)

We are now looking to transform the boundary integral on the right-hand-
side into a volume integral. This will be done with the help of the forthcoming
Stokes formula, which will be generalized to tensors.

Proposition 1.12 (integral in space – Gauss).
For any subset V ⊂ Ω and any sufficiently regular function φ defined in V, we
have

∫
V

∂φ

∂xi
dx = ∫

∂V
φni ds, ∀i = 1,2,3

where n = (ni)1⩽i⩽N denotes the outward unit normal vector on ∂V in the
Cartesian coordinate system (0, x1, . . . , xN).

Proof: This is a classical result of continuum mechanics and differential ge-
ometry. See e.g. Irgens [94, p. 634] for its proof. ∎

Corollary 1.13 (divergence formula – Green-Ostrogradsky, Stokes).
For any subset V ⊂ Ω and any sufficiently regular vector field u defined in V,
the sum of its divergence is related to its flux across the boundary as:

∫
V
divudx = ∫

∂V
u.nds (1.11)

where n is the outward unit normal vector on ∂V.

Proof: This classical result of continuum mechanics is a direct consequence of
the previous Gauss theorem: using φ = ui where u = (ui)1⩽i⩽N and summing
over i yields the result. ∎

Corollary 1.14 (divergence formula – tensor extension).
For any subset V ⊂ Ω and any sufficiently regular tensor τ defined in V, we
have

∫
V
div τ dx = ∫

∂V
τ nds (1.12)

where n is the outward unit normal vector on ∂V.

Proof: This result is directly obtained from (1.11) by using as u any row
vector of τ and then summing. ∎

Applying (1.12) with τ = σ, the momentum conservation (1.10) becomes

∫
V(t)
(
∂(ρv)

∂t
+ div (ρv ⊗ v −σ) − ρg) dx = 0

This relation is true at any time t ⩾ 0 and for any subdomain V(t) ⊂ Ω(t) and
thus, from lemma 1.4, it is true locally at any point in Ω(t) and we obtain a
local expression of the conservation of linear momentum:
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∂(ρv)

∂t
+ div (ρv ⊗ v −σ) = ρg in ]0,∞[×Ω(t) (1.13)

Observe the rearrangement:

∂(ρv)

∂t
+ div(ρv ⊗ v)

=
∂ρ

∂t
v + ρ

∂v

∂t
+ div(ρv)v + ρ(v.∇)v

= ρ(
∂v

∂t
+ (v.∇)v) + (

∂ρ

∂t
+ div(ρv))v (1.14)

where (v.∇)v denotes the following vector

(v.∇)v =
⎛

⎝

N

∑
j=1

vj
∂vi
∂xj

⎞

⎠
1⩽i⩽N

Note that the parentheses are required here for (v.∇), since the expres-
sion v.∇v could also denote the left multiplication by the vector v of the
tensor ∇v, i.e.

v.(∇v) = (
N

∑
i=1

vi
∂vi
∂xj
)

1⩽j⩽N

≠ (v.∇)v

Here, the gradient of velocity tensor, denoted by ∇v, is defined by

∇v = (
∂vi
∂xj
)
1⩽i,j⩽N

Note that some textbooks adopt a different convention for the definition of ∇v

as (
∂vj

∂xi
)
1⩽i,j⩽N

i.e. the transposed tensor.

Using the local mass conservation (1.3), the last term of the right-hand-side
in (1.14) is zero and

∂(ρv)

∂t
+ div(ρv ⊗ v) = ρ(

∂v

∂t
+ (v.∇)v)

Replacing in (1.13), we obtain the following alternate formulation of the
conservation of linear momentum (1.4a).

Theorem 1.2 (conservation of momentum – local form).

ρ(
∂v

∂t
+ (v.∇)v) − divσ = ρg in ]0,∞[×Ω (1.15)

The conservation of angular momentum (1.4b) leads to the following result.
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Proposition 1.15 (symmetry of the Cauchy stress tensor).
The Cauchy stress tensor σ is symmetric.

Proof: Applying the Reynolds formula (1.5) with q = ρv ∧x to the left-hand-
side of (1.4b) and then, using the expression (1.8) of the density of surface
forces s(x,n) from the Cauchy proposition 1.11, we obtain, after some rear-
rangements:

∫
∂V(t)

(σn) ∧xds = ∫
V(t)

f ∧x dx (1.16)

where, for convenience, we have introduced the notation:

f =
∂(ρv)

∂t
+ div(ρv ⊗ v) − ρg

Let σ = (σi,j)1⩽i,j⩽N and n = (nj)1⩽j⩽N be expressed by their components in
the (0, x1, . . . , xN) Cartesian coordinate system. Then, after expansion, the
term (σn) ∧x can be rearranged as (σn) ∧x = τn where τ is the rectangular
tensor with N(N−1)/2 rows and N columns:

τ = (σi,kxj − σj,kxi)1⩽i<j⩽N
1⩽k⩽N

in the ((ei∧ ej)⊗ ek)1⩽i<j⩽N
1⩽k⩽N

basis. With this notation, (1.16) becomes:

∫
∂V(t)

τnds = ∫
V(t)

f ∧x dx

We are now able to transform the integral on the boundary into an integral
over the whole domain by applying the divergence formula (1.12) to the left-
hand-side:

∫
V(t)
(div τ − f ∧x) dx (1.17)

where div τ represents the vector with N(N−1)/2 components containing
the divergence of the rows of τ . Then, after expansion of the components,
the term div τ can be rearranged as div τ = r + (divσ) ∧x where r denotes
the following vector with N(N−1)/2 components:

r = (σi,j − σj,i)1⩽i<j⩽N

With these notations, after replacing f by its definition and using the local
expression (1.13) of the conservation of linear momentum, (1.17) becomes
successively,
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∫
V(t)

r dx = ∫
V(t)
(f − divσ) ∧x dx

= ∫
V(t)
(
∂(ρv)

∂t
+ div (ρv ⊗ v −σ) − ρg) ∧x dx

= 0

from the conservation of linear momentum (1.15). This relation is true at
any time t ⩾ 0 and for any subdomain V(t) ⊂ Ω(t). Thus, from lemma 1.4, the
relation is true locally i.e. r = 0 in ]0,∞[×Ω which means, from the definition
of r that the Cauchy stress tensor σ is symmetric. ∎

1.3 Energy

After the publication of Principia in 1667 by Newton [134], researchers such
as Émilie du Châtelet were quick to recognize that the concept of force and
momentum were not sufficient to tackle the motions of solid and fluid bod-
ies. Some other conservation principles were also required: the concept of
kinetic energy was first introduced and, gradually, the idea appeared that
mechanical motion could be converted into heat, e.g. by friction, leading fi-
nally to the concept of internal energy. In 1847, after about two centuries
of numerous research contributions, von Helmholtz [179] published what is
considered today as the modern expression of energy conservation. See [180]
for the English translation of the original German publication. This energy
conservation, also called the first principle of thermodynamics, is expressed
as:

Postulate 1.3 (energy conservation – non-local form).
For every material system, at each time, the time rate of the energy is the
sum of the power of the external forces applied to, and of the rate of heat
received by the system.

As for the mass and momentum conservations, our first aim is to express
this postulate by using mathematical notation. At any time t ⩾ 0, for any
material system V(t) ⊂ Ω transported by the velocity v, the energy is the
sum of the kinetic energy and the internal energy. The density of the kinetic
energy is ρ∣v∣2/2. We assume that there exists a measure denoted by e and
called the mass density of specific internal energy of the system, such that ρe
is the volume density of the internal energy. Then, the energy of any material
system V(t) ⊂ Ω(t) is expressed by

∫
V(t)

ρ(
∣v∣2

2
+ e) dx
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The external forces applied are of two kinds: the volume forces, applied in-
side V(t), and the surface forces, applied on ∂V(t). Following the notations
introduced in the previous section, the density of internal forces is denoted
by ρg and those of surface forces by s(.,n) where n denotes, as usual, the
outer unit normal on ∂V(t). Then, the power of external forces applied is

∫
V(t)

ρg.v dx + ∫
∂V(t)

s(t,x,n).v ds

Recall that, thanks to proposition 1.11, the density of surface forces is written
as s(.,n) = σn where σ is the Cauchy stress tensor.
Conversely, the rate of heat received by the system is of two kinds: volume
heat and surface heat. The rate of heat received in the small and arbitrary
volume V(t) ⊂ Ω(t) is performed by distance actions, e.g. radiative effects,
and its density is denoted by r. Those received on its boundary ∂V(t) are
performed by contact and friction actions, i.e. conduction inside the material,
as V(t) ⊂ Ω(t) is inside the domain, and its density is denoted by ζ(.,n).
Then, the rate of heat of the material system V(t) is

∫
V(t)

r dx + ∫
∂V(t)

ζ(t,x,n)ds

The mathematical expression of the conservation of energy in any material
system V(t) ⊂ Ω(t) is written as

d

dt
(∫
V(t)

ρ(
∣v∣2

2
+ e) dx)

= ∫
V(t)

ρg.v dx + ∫
∂V(t)

(σn).v ds + ∫
V(t)

r dx + ∫
∂V(t)

ζ(t,x,n)ds (1.18)

In order to obtain the conservation of energy in local form, the next step is
to obtain an integral over V(t). There are three terms that are not directly
written as an integral over V(t). The first one is the left-hand-side, which
could be treated by using the Reynolds formula. Also, the second term on the
right-hand-side requires some rearrangements followed by the Stokes formula.
Finally, the last term of the right-hand-side requires special treatment. Let
us start by the following corollary of the Reynolds theorem that will be used
several times in this chapter.

Corollary 1.16 (weighted Reynolds formula).
For all sufficiently regular φ defined in Ω(t) and all material sys-
tems V(t) ⊂ Ω(t) transported by the velocity field v, we have

d

dt
(∫
V(t)

ρφdx) = ∫
V(t)

ρ(
∂φ

∂t
+ v.∇φ) dx

Proof: From the Reynolds formula, proposition 1.2, we get successively:
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d

dt
(∫
V(t)

ρφdx) = ∫
V(t)
(
∂(ρφ)

∂t
+ div(ρφv)) dx

= ∫
V(t)
(
∂ρ

∂t
+ div(ρv)) φdx + ∫

V(t)
ρ (

∂φ

∂t
+ v.∇φ) dx

Then, using the mass conservation (1.3), the first term of the right-hand-side
is zero, which completes the proof. ∎

Applying the previous result with φ = ∣v∣2/2 + e leads to

d

dt
(∫
V(t)

ρ(
∣v∣2

2
+ e) dx) = ∫

V(t)
ρ (

.
v.v +

.
e) dx (1.19a)

where the dot denotes, as usual, the Lagrangian rate .
φ = ∂φ/∂t + v.∇φ for any

sufficiently regular function φ. The power of internal forces is subsequently
written as

∫
∂V(t)

(σn).v ds = ∫
∂V(t)

(σTv) .nds = ∫
V(t)

div (σTv) dx

from the Stokes formula, corollary 1.13, with u = σTv. Next, let us ex-
pand σ = (σi,j)1⩽i,j⩽N and v = (vj)1⩽j⩽N in the Cartesian coordinate sys-
tem (0, x1, . . . , xN).

∫
∂V(t)

(σn).v ds = ∫
V(t)

⎛

⎝

N

∑
i,j=1

∂

∂xj
(σi,j vi)

⎞

⎠
dx

= ∫
V(t)

⎛

⎝

N

∑
i,j=1

∂σi,j

∂xj
vj + σi,j

∂vi
∂xj

⎞

⎠
dx

= ∫
V(t)
{(divσ) .v +σ ∶∇v} dx

Recall that the Cauchy stress tensor is symmetric, thanks to proposition 1.15
and then

σ ∶∇v =
N

∑
i,j=1

σi,j
∂vi
∂xj
=

N

∑
i,j=1

σi,j + σj,i

2

∂vi
∂xj
=
1

2
σ ∶∇v +

1

2
σ ∶∇vT

= σ ∶D

where D = (∇v +∇vT ) /2 is the stretching. Finally, the power of internal
forces is expressed as

∫
∂V(t)

(σn).v ds = ∫
V(t)
{(divσ).v +σ ∶D} dx (1.19b)

Using (1.19a) and (1.19b), the conservation of energy (1.18) becomes, after
rearrangements:
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∫
V(t)
(ρ

.
v − divσ − ρg) .v dx + ∫

V(t)
(ρ

.
e −σ ∶D − r) dx

= ∫
∂V(t)

ζ(t,x,n)ds

Using the conservation of momentum (1.15), the first term of the left-hand-
side is zero and the conservation of energy reduces to

∫
V(t)
(ρ

.
e −σ ∶D − r) dx = ∫

∂V(t)
ζ(t,x,n)ds (1.19c)

Proposition 1.17 (existence of the heat flux vector field).
Let φ be a bounded function defined in Ω(t) and ζ be a continuous function
called the normal rate of heat, defined in Ω(t)×S where S = {ν ∈ RN ; ∣ν ∣ = 1}
denotes the unit sphere. Assume that

∫
∂V
ζ(x,n)ds = ∫

V
φ(x)dx, ∀V ⊂ Ω

where n denotes the unit outward normal on ∂V. Then, ζ could be extended
with respect to its second argument from S to RN as a linear operator, i.e.
there exists a vector q, called the heat flux, such that

ζ(x,ν) = −q(x).ν (1.20)

for all x ∈ Ω(t) and ν ∈ RN .

Proof: Note that this result is similar to the Cauchy proposition 1.11. The
proof is then obtained by choosing, in the Cauchy theorem, vectors s and f
whose components are all equal to ζ and φ, respectively. ∎

Note the presence of the minus sign in (1.20): its presence is conven-
tional in the definition of the heat flux. Applying the previous result with
φ = ρ

.
e −σ ∶D − r, relation (1.19c) becomes

∫
V(t)
(ρ

.
e −σ ∶D − r) dx = −∫

∂V(t)
q.nds

Then, applying the Stokes formula, corollary 1.13, to the right-hand-side
with u = q yields

∫
V(t)
(ρ

.
e + divq −σ ∶D − r) dx = 0

This relation is true at any time t ⩾ 0 and for any material system V(t) ⊂ Ω(t).
Thus, from lemma 1.4, the relation is true locally at any point in Ω(t) and
we finally obtain the following local form of the conservation of energy.

Theorem 1.3 (conservation of energy – local form).
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ρ(
∂e

∂t
+ v.∇e) + divq = σ ∶D + r in ]0,∞[×Ω (1.21)

1.4 Second principle

While the conservation of energy suggests the possibility of perpetual motion,
the second principle introduces the necessary concepts which explain why this
does not happen. Thus, a ball could bounce indefinitely on a table, but in
reality it ends up stopping, because with each bounce some of its kinetic
energy transforms and deteriorates irreversibly.
In 1824, Sadi Carnot [16], see Fig. 1.4.left, initiated modern thermodynam-
ics by studying thermal machines. The principles he described have since
been used in many machines, such as thermal motors, heat pumps, air con-
ditioners and refrigerating machines. Subsequently, the principles of thermo-
dynamics emerged simultaneously in the 1850s, primarily out of the works of
William Rankine, Rudolf Clausius, and William Thomson (Kelvin). In 1850,
Clausius [30] showed there was a contradiction between Carnot’s principle
and the original conservation of energy. He restated these two principles to
overcome this contradiction. Next, in 1865, he introduced the new concept
of entropy [31, p. 390], formed from the Greek word ὴ τρωπή which means
transformation. During heat dissipation, entropy measures the degraded
part of energy which becomes irreversibly lost for mechanical work. Later,
in 1877, Boltzmann (see Fig. 1.4.right) introduced with statistical thermody-
namics a new microscopic interpretation of entropy as s = k logw where k is
a constant and w is the number of different observed microstates. Thus, an
increase in entropy means a greater number of microstates and hence more
possible arrangements of a system’s total energy, or, in others terms, a more
disorderly distribution of energy.

Postulate 1.4 (second principle of thermodynamics – non-local form).
For every material system, at each time, the time rate of the entropy is greater
than or equal to the rate of external heat supply to the system.

As in the previous sections, our first aim is to express this postulate by using
mathematical notations. We assume that there exists a measure denoted by s
and called the mass density of specific entropy of the system, such that ρs is
the volume density of entropy. Then, at any time t ⩾ 0 and for any material
system V(t) ⊂ Ω(t), the entropy of this system is expressed by

∫
V(t)

ρ sdx

Next, the temperature is defined by θ = ∂e/∂s > 0 where e, the specific internal
energy, has been introduced in the previous section. The temperature θ is
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Sadi Carnot Rudolf Clausius Ludwig Boltzmann

Fig. 1.4 (left) Sadi Carnot (1796-1832). Oil portrait in 1813, with the student’s uni-
form of the École Polytechnique (Paris), painted by Louis-Léopold Boilly (public domain
reproduction). (center) Rudolf Clausius (1822-1888), detail of a photo taken by Theo Schaf-
gans and published in 1896 by Zeit. Phys. Chem., vol. 21 (public domain reproduction).
(right) Ludwig Boltzmann (1844-1906), photo of its grave in 2018 at the Vienna central
cemetery: we can read his formula for entropy, s = k logw, above the bust (public domain
reproduction).

assumed to be strictly positive: it means that the internal energy is strictly
increasing versus the entropy s. The rate of external supply to the system is
of two kinds, the volume rate and the surface one:

∫
V(t)

r

θ
dx + ∫

∂V(t)

ζ(t,x,n)

θ
ds

Here, r denotes the volume rate of heat density and ζ(t,x,n), the surface one.
These quantities were introduced in the previous section. Recall that, thanks
to proposition 1.17, there exists a heat flux q such that ζ(t,x,n) = −q.n.
Then, the second principle of thermodynamics is written as:

d

dt
(∫
V(t)

ρ sdx) ⩾ ∫
V(t)

r

θ
dx − ∫

∂V(t)

q.n

θ
dx

Applying the weighted Reynolds formula, corollary 1.16, to the left-hand-side
with φ = s and the Stokes formula, corollary 1.13, to the second term of the
right-hand-side with u = q/θ leads to

∫
V(t)
(ρ

.
s + div (

q

θ
) −

r

θ
) dx ⩾ 0

This relation is true at any time t ⩾ 0 and for any material system V(t) ⊂ Ω(t).
It is possible to adapt lemma 1.4 to an inequality instead of an equality: the
proof of this variant does not pose any difficulty and is left as an exercise to

https://commons.wikimedia.org/wiki/File:Sadi_Carnot.jpeg
https://doi.org/10.1515/zpch-1896-frontmatter21
https://commons.wikimedia.org/wiki/File:Rudolf_Clausius_01.jpg
https://commons.wikimedia.org/wiki/File:Grab_von_Ludwig_Boltzmann_auf_dem_Wiener_Zentralfriedhof.JPG
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the reader. Thus, the relation is true locally at any location in Ω(t) and we
finally obtain the following local expression.

Theorem 1.4 (second principle of thermodynamics – local form).

ρ
.
s + div (

q

θ
) −

r

θ
⩾ 0 in ]0,∞[×Ω (1.22)

Note that, in contrast to the first principle, theorem 1.3, the second principle
is an inequality. The vector q/θ is the entropy flux due to heat flow and r/θ
is the entropy supply due to distance actions, e.g. radiative effects.

Definition 1.18 (Helmholtz energy).
The entropy s is not directly measurable while the temperature θ is. Thus,
instead of the internal specific energy e, it is more convenient to work with
the Helmholtz specific energy, denoted as ψ and defined via a partial Legendre
transformation by

ψ(θ) = inf
s∈R

e(s) − θs (1.23a)

together with the change of variables associated with the optimality relation,
see e.g. Silhavy [169, p. 169]:

θ =
∂e

∂s
(s) ⇐⇒ s = −

∂ψ

∂θ
(θ) ⇐⇒ ψ = e − θs (1.23b)

No information is lost in the passage from e to ψ: the function e can be
reconstructed from ψ, even when the relation between the original s and the
new variable θ is forgotten.

Proposition 1.19 (Helmholtz energy).
The internal energy e is strictly increasing and strictly convex versus s if and
only if the two following properties are satisfied:
1) the Helmholtz energy ψ is strictly concave versus θ
2) the temperature θ > 0.
When it holds, the change of variable (1.23b) between s and θ is well-defined.

Proof: From (1.23b), the change of variable from s to θ is well-defined when
∂2e/∂s2 ≠ 0, assuming that e is two times continuously differentiable. Clearly,
it means that this second derivative has a constant sign. This condition ex-
tends to non-smooth cases as either e is strictly convex or strictly concave.
There are several reasons for e to be strictly convex, instead of concave:
one is for the heat capacity to be positive and the heat equation to be well-
posed: this will be studied in section 4.4. From classic properties of the partial
Legendre transformation, the Helmholtz energy defined by (1.23a) is strictly
concave versus θ if and only if e is strictly convex versus s. Finally, the condi-
tion θ > 0 requires, from (1.23b), that e is strictly increasing versus s, which
completes the proof. ∎
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An equivalent and more convenient expression of the second principle (0.4)
is the Clausius-Duhem inequality, obtained by combining the conservation of
energy (0.3) and the second principle (0.4) together. Its name comes from
Clausius [32], who invented entropy and stated its famous growth relation
for an isolated system, and Duhem [47], who arrived at the inequality from
phenomenological arguments. The Clausius-Duhem inequality is particularly
useful in determining if a constitutive equation is thermodynamically allowed.

Corollary 1.20 (Clausius-Duhem inequality).
The second principle, written equivalently in terms of the Helmholtz energy,
is:

D
def
= −ρ (

.
ψ + s

.
θ) +σ ∶D −

∇θ.q

θ
⩾ 0 in ]0,∞[×Ω (1.24)

The left-hand-side, denoted by D , represents the dissipation.

Proof: Multiplying (1.22) by θ and expanding θ div (q/θ) = divq − (∇θ.q)/θ
leads to

ρθ
.
s + divq −

∇θ.q

θ
− r ⩾ 0

By differentiation of (1.23b) we get
.
ψ =

.
e −

.
sθ − s

.
θ or equivalently

ρθ
.
s = ρ

.
e − ρ (

.
ψ + s

.
θ). Finally, replacing ρ.e by its expression from (1.21) di-

rectly yields the result. Conversely, replacing ψ by e + sθ in the Clausius-
Duhem inequality leads to the second principle by the same way. ∎

Finally, combining (0.3) and (1.23b) leads to the classic evolution equation
for the entropy :

ρ
.
s + div (

q

θ
) −

r

θ
=

D

θ
⩾ 0 (1.25)

since θ > 0 and D ⩾ 0.

Remark 1.21 (direction of the heat flux).
A frequent assumption is that the heat flux q and the temperature gradient
make an obtuse angle, i.e. q.∇θ ⩽ 0 such that the last term of the left-hand-
side of (1.24) is always positive. This is the case of the Fourier constitutive
equation q = −k∇θ with k > 0, see section 5.17, page 139. Some other consti-
tutive equations for q, such as the Cattaneo one (see section 5.18, page 141),
introduce a time delay in the Fourier equation and this assumption is no
longer true: a change of sign in q.∇θ should then be compensated by a vari-
ation of the other terms.





Chapter 2

Objectivity

This chapter introduces the foundations of the kinetics for large strain, as
developed during the second half of the 20th century. This formalism is still
often a source of confusion that seriously discourages model designers from
using thermodynamics. So, an attempt to clarify its main theoretical con-
cepts is proposed here, with the help of illustrations, tables and discussions
throughout this chapter.
The concept of reference configuration, in section 2.1 is associated with the
trajectory and finally linked to the flow map concept. Section 2.2 explores
some preliminary consequences of the kinetics of large strain for simple vis-
coelastic models. It further states that the Helmholtz energy ψ acts as a
potential for the reversible part σe of the Cauchy stress (theorem 2.1). Ther-
modynamics is based upon five postulates: four were presented in the previ-
ous chapter 1 and objectivity is the last of our postulates. It is presented in
section 2.3 together with its immediate consequences on kinematics. Then,
section 2.4 defines the left Cauchy-Green tensor, which is shown to be ob-
jective. In section 2.5, the Cauchy stress is obtained as the derivative of an
objective function. Section 2.6 develops a technical toolbox for studying the
eigenspace of matrices and tensors. The eigenprojectors formalism elegantly
covers the particular case of identical eigenvalues. Finally, section 2.7 in-
troduces isotropy as a new constraint upon objective functions: it permits
amazing simplifications in terms of eigenspace, as shown in the important
theorem 2.2.

2.1 Reference configuration

Let Ω0 ⊂ RN be an open subset called the reference configuration. The tra-
jectory issued from a material point X ∈ Ω0 is denoted by (χ(t,X))t⩾0 and
satisfies:

31
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t = 0

ϕ(0,X)

t > 0
x = χ(t,X) v(t,χ(t,X))

χ(0,X) =X ϕ(t,x) = ϕ̃(t,X)

Fig. 2.1 Trajectory χ(.,X) from initial position X to the current one x = χ(t,X).

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∂χ

∂t
(t,X) = v(t,χ(t,X)), ∀t > 0

χ(0,X) =X

(2.1a)

(2.1b)

The first relation (2.1a) states that the velocity is always tangent to the
trajectory while the second one (2.1b) states that the trajectory passes at
time t = 0 in X, as shown on Fig. 2.1. The existence and unicity of the
trajectory χ as the solution of (2.1a)-(2.1b) is guaranteed by the Cauchy-
Lipschitz theorem, assuming that the velocity field v is sufficiently regular.
More precisely, if the velocity is continuous versus t and uniformly Lipschitz-
continuous versus its second argument, i.e. when the Lipschitz constant is
independent of t, then there exists T ∈ ]0,∞], and a unique local trajectory
defined for all t ∈ ]0, T [. Under some additional conditions upon v, it is pos-
sible to obtain T =∞, i.e. a global-in-time solution. Nevertheless, in the gen-
eral case, the constant T ∈ ]0,∞] depends upon v and it is possible to exhibit
counter-examples1 of differential equations for which T <∞.

χ(t, .)

Ω0 Ω(t)

Fig. 2.2 Transformation χ(t, .) from the reference configuration to the current one.

Observe now Fig. 2.2. For a fixed time t ⩾ 0, the application
X ∈ Ω0 ↦ χ(t,X) ∈ Ω(t) is interpreted as the transformation or the defor-

1 For instance, when N =1 and v(t, x) = x3/2, which is uniformly Lipschitz-continuous
in Ω0 = ]0, 1[ with a constant 3/2, then (2.1a)-(2.1b) admits the explicit solu-
tion χ(t,X) = X/

√
1 −Xt for all t ∈ ]0, T [ and X ∈ Ω0, where T = 1 <∞ is the final time

for which the solution ceases to exist.
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mation from the reference configuration Ω0 to the current configuration
Ω(t) = χ(t,Ω0) at time t.
The gradient of deformation tensor is defined by F = ∇χ = (∂χi/∂Xj)1⩽i,jN .
Note that some authors adopt an alternative convention for the definition of
the gradient of vector-valued functions, as (∂χj/∂Xi)1⩽i,jN i.e. its transpose,
so be sure to double-check it before mixing formulas from different textbooks.
A simple differentiation of the trajectory equation (2.1a) with respect to the
space variables leads to the following linear system of ordinary equations
satisfied by the deformation gradient:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∂F

∂t
(t,X) = ∇v(t, χ(t,X))F (t,X), ∀t ∈ ]0, T [

F (0,X) = I

(2.2a)

(2.2b)

From the Jacobi formula (see e.g. Magnus and Neudecker [120, sec 8.3, p. 169]),
let us express the derivative of the determinant:

d

dt
(det(F (t,X))) = det(F (t,X)) tr(

∂F

∂t
(t,X) F −1(t,X))

= div(v(t,χ(t,X))) det(F (t,X)) from (2.2a)
det(F (0,X)) = 1 from (2.2b)

and then, after integration:

det(F (t,X)) = exp(∫
t

0
div(v(s,χ(s,X)))ds) > 0

Then, clearly, the trajectory is invertible for any t ∈ ]0, T [ and X ∈ Ω0. Note
that

ρ(t,χ(t,X)) = ρ0(X) (detF (t,X))
−1

is the mass density on the current configuration when ρ0 denotes its counter-
part on the reference configuration. The inverse tensor F −1 is also well-defined
and its time rate is written as

.
Ï
(F −1)= −F −1

.
FF −1 from Magnus and Neudecker [120, p. 208]

= −F −1∇v from (2.2a) (2.3)

By interpreting Fig. 2.2, the inverse transformation, denoted by χ−1, could
be simply obtained by reversing the time. An elegant way to express it is
based on the concept of flow map Υ , defined as the trajectory passing at a
given time t0 ∈ [0, T [ at x0 ∈ Ω(t0) and satisfying:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∂Υ

∂t
(t,x0; t0) = v(t,Υ (t,x0; t0)), ∀t ∈ ]0, T [

Υ (t0,x0; t0) = x0

(2.4a)

(2.4b)
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Observe that Υ (t1,Υ (t2,x1; t1); t2) = x1 for all t1, t2 ∈ [0, T [ and x1 ∈ Ω(t1)
i.e. the reverse flow map is obtained by swapping the two times. Next, remark
that the previous trajectory is expressed as χ(t,X) = Υ (t,X; 0) and that its
inverse is written simply χ−1(t,X) = Υ (0,X; t).

Leonhard Euler Luigi Lagrange

Fig. 2.3 (left) Leonhard Euler (1707-1783) in 1753, by Jakob E. Handmann, pastel on
paper, Kunstmuseum Basel (public domain reproduction). (right) Luigi Lagrange (1736-
1813) by Luigi Rados, stipple etching and engraving, Metropolitan museum of art, New-
York (public domain reproduction).

For a material particle, the position X ∈ Ω0 in the reference configuration is
referred to as its Lagrangian representation, while x = χ(t,X) ∈ Ω(t), in the
current configuration, is referred to as its corresponding Eulerian representa-
tion, see Fig. 2.3.left. For any field φ defined at any time t and any position
x = χ(t,X) ∈ Ω(t) of the current configuration, its value is denoted φ(t,x)
and is said to be an Eulerian field. Its corresponding Lagrangian field φ̃ is
defined for any time t and any position X ∈ Ω0 by φ̃(t,X) = φ(t,χ(t,X)),
see Fig. 2.3.right. Since χ is invertible, these two definitions are equivalent.
For instance, the velocity field v is defined as an Eulerian field while the
transformation χ itself is defined as a Lagrangian one. We then have

∂φ̃

∂t
(t,X) =

∂

∂t
{φ(t,χ(t,X))}

=
∂φ

∂t
(t,χ(t,X)) +

∂χi

∂t
(t,X).∇φ(t,χ(t,X))

= (
∂φ

∂t
+ v.∇φ) (t,χ(t,X))

Then, the material rate, also called the Lagrangian rate, is defined for both
Eulerian and Lagrangian fields and is simply denoted by a dot for simplicity:

https://commons.wikimedia.org/wiki/File:Leonhard_Euler_-_edit1.jpg
https://commons.wikimedia.org/wiki/File:Portrait_of_Luigi_Lagrange,_seated_with_an_easel_behind_him_at_right_with_a_mathematical_equation_MET_DP883417.jpg
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.
φ =

∂φ

∂t
+ v.∇φ =

∂φ̃

∂t
=

.
φ̃ (2.5)

This rate describes the change with time of the field φ at a moving posi-
tion χ(t,X) along the trajectory, i.e. as attached to a material parcel cen-
tered at the vicinity of the moving position.
Investigating for the derivatives with respect to space, we have for any i,
1 ⩽ i ⩽ N

∂φ̃

∂Xi
(t,X) =

∂

∂Xi
(φ(t,χ(t,X))) =

N

∑
j=1

∂χj

∂Xi
(t,X)

∂φ

∂xj
(t,χ(t,X))

⇐⇒ ∇X φ̃ = F
T
∇xφ

Since any quantity could be expressed equivalently both in Lagrangian and
Eulerian terms, when there is no ambiguity, we can drop the tilde and mix
both Lagrangian and Eulerian terms in the same equations.

2.2 Restrictions

Following Coleman and Noll [37], let us explore the consequences of the
Clausius-Duhem inequality (1.24) when combined with the previous frame-
work of kinematics for large strains. Some preliminary restrictions upon the
mathematical structure of constitutive equations are obtained. For simplicity,
a simple viscoelastic model without internal variables is considered here. Its
extension with internal variables is discussed in remark 2.4, at the end of this
section.

Definition 2.1 (simple viscoelastic model).
For a simple viscoelastic model, the Cauchy stress splits as

σ = σe +σp

where σe (resp. σp) represents its equilibrium (resp. out-of-equilibrium)
part. In the absence of internal thermodynamic state variables, the system
is completely determined by the temperature-deformation couple (θ,χ). At
any time t ⩾ 0 and any position x ∈ Ω(t), we are able to independently im-
pose some arbitrarily values to ∇θ and

.
F without changing θ and F , so

(θ,F ,∇θ,
.
F ) could be considered as independent variables for both σ, σp, q

and ψ while σe is assumed to depend only upon (θ,F ). It means that

σ(θ,F ,∇θ,
.
F ) = σe(θ,F ) +σp(θ,F ,∇θ,

.
F ) (2.6a)
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At equilibrium, i.e. when (∇θ,
.
F ) = (0,0), the Cauchy stress is given

by σ = σe and thus
σp(θ,F ,0,0) = 0 (2.6b)

Conversely, assume that the heat flux splits as

q(θ,F ,∇θ,
.
F ) = qe(θ,F ) + qp(θ,F ,∇θ,

.
F )

with qp(θ,F ,0,0) = 0

(2.6c)

(2.6d)

such that the heat flux reduces to q = qe at equilibrium.

Theorem 2.1 (Helmholtz energy as a potential, Coleman and Noll [37]).
Consider a simple viscoelastic material from definition 2.1. Such a material
satisfies the Clausius-Duhem inequality (1.24) if and only if the three condi-
tions are satisfied:
1) the Helmholtz energy ψ is independent of the variables ∇θ and

.
F .

2) The equilibrium stress and heat flux are written as

σe = ρ
∂ψ

∂F
F T

qe = 0

(2.7a)

(2.7b)

3) The dissipation satisfies

D = σp ∶D −
q.∇θ

θ
⩾ 0 (2.7c)

Proof: The proof is based on a reorganization of several argu-
ments from Coleman and Noll [37], Coleman and Mizel [34, 35],
Coleman and Gurtin [33] and Silhavy [169, p. 153]. Let us first prove
that (1)-(3) are necessary. The Lagrangian rate of the Helmholtz energy ψ
expands over the state variables as

.
ψ =

∂ψ

∂θ

.
θ +

∂ψ

∂F
∶
.
F +

∂ψ

∂∇θ
∇
.
θ +

∂ψ

∂
.
F
∶
..
F

Observe that, from (2.2a), we have
.
F = ∇vF or equivalently ∇v =

.
FF −1.

Next, since σ is symmetric, we deduce σ ∶D = σ ∶∇v = (σF −T ) ∶
.
F . Then, re-

placing the previous expression of
.
ψ in the Clausius-Duhem inequality (1.24)

and rearranging leads to

D = ρ(−s −
∂ψ

∂θ
)
.
θ + (σF −T − ρ

∂ψ

∂F
) ∶

.
F

− ρ
∂ψ

∂∇θ
∇
.
θ − ρ

∂ψ

∂
.
F
∶
..
F −

q.∇θ

θ
⩾ 0
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This inequality should be satisfied at any time t ⩾ 0 and any position x ∈ Ω(t).
The constitutive functions ψ, s, σ and q and the derivatives of ψ are evaluated
at (θ,F ,∇θ,

.
F ). Using the fact that every (θ,χ) deformation-temperature

path can be realized in a process, the values (θ,F ,∇θ,
.
F ,

.
θ,∇

.
θ,

..
F ) can be

chosen arbitrarily, subject to the restrictions θ > 0 and F ∈ GL+(N). Since
the left-hand-side of the previous inequality depends linearly upon

.
θ, ∇

.
θ

and
..
F , the coefficients in front of these variables must vanish, i.e.

∂ψ

∂θ
= −s,

∂ψ

∂∇θ
= 0 and

∂ψ

∂
.
F
= 0

Observe that the expression of the entropy s from the Helmholtz energy ψ is
not a novelty, as it was already stated from the optimality relations (1.23b)
associated with the Legendre transformation. The two other results are more
interesting: they mean that the Helmholtz energy ψ is independent of ∇θ
and

.
F i.e. the statement (1) of the theorem is obtained. The previous in-

equality then reduces to

D = (σF −T − ρ
∂ψ

∂F
) ∶

.
F −

q.∇θ

θ
⩾ 0 (2.8)

where σ and q depends upon (θ,F ,∇θ,
.
F ) and ψ only upon (θ,F ).

Recall that the system is completely determined by the temperature-
deformation (θ,χ) path. Next, assume that the previous inequality (2.8)
is satisfied at (t,X) and admits a smooth enough evolution. This then
means that this inequality should also hold for all (t′,X ′

) that belong
in a small enough vicinity of (t,X). Following an argument proposed by
Coleman and Gurtin [33, p. 600], eqn (5.7), let us arbitrarily choose in this
vicinity the following temperature-deformation path:

χ(t′,X ′
) = χ(t,X) + {F (t,X) + (t′ − t)

.
F 1} .(X

′
−X)

θ(t′,X ′
) = θ(t,X) +∇θ1.(X

′
−X)

where
.
F 1 and ∇θ1 are arbitrarily chosen. Observe that

.
F (t′,X ′

) =
.
F 1

and ∇θ(t′,X ′
) = ∇θ1. Then, by evaluating (2.8) at (t′,X ′

) and then passing
to the limit (t′,X ′

)→ (t,X), we get at (t,X):

(σF −T − ρ
∂ψ

∂F
) ∶

.
F 1 −

q.∇θ1
θ
⩾ 0

where σ and q are evaluated at (θ,F ,∇θ1,
.
F 1). Let us replace (∇θ1,

.
F 1) by

(ε∇θ1, ε
.
F 1) for any ε ∈ ]0,1]. We then obtain:

ε(σF −T − ρ
∂ψ

∂F
) ∶

.
F 1 − ε

q.∇θ1
θ
⩾ 0
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where σ and q are now evaluated at (θ,F , ε∇θ1, ε
.
F 1). Let now divide by ϵ

and, next, pass to the limit ε→ 0. By continuity of σ and q, we get

(σ(θ,F ,0,0)F −T − ρ
∂ψ

∂F
(θ,F )) ∶

.
F 1 −

1

θ
q(θ,F ,0,0).∇θ1 ⩾ 0

Since the left-hand-side of the previous inequality depends linearly upon
.
F 1

and ∇θ1, the coefficients in front of these variables must vanish, i.e.

σ(θ,F ,0,0)F −T = ρ
∂ψ

∂F
(θ,F )

q(θ,F ,0,0) = 0

Using (2.6a) at (θ,F ,∇θ,
.
F ) and (2.6b), we get σe(θ,F ) = σ(θ,F ,0,0) and

then we obtain (2.7a). Conversely, using (2.6d) and (2.6c), we obtain (2.7b)
i.e. statement (2) of the theorem is complete. Next, (2.7c) is the direct con-
sequence of the previous inequality (2.8) when using the split (2.6a) for the
Cauchy stress σ and statement (3) is proved. Finally, reversing the order
of the arguments shows that (1)-(3) imply D ⩾ 0 i.e. the Clausius-Duhem
inequality (1.24). ∎

Remark 2.2 (Helmholtz energy as an elastic potential).
● Part (1) of theorem 2.1 gives an important restriction upon the depen-
dence of ψ, while part (2), with (2.7a), states that ψ acts as a potential
for the equilibrium stress σe. Finally, part (3) with its expression (2.7c) of
the dissipation, shows that the equilibrium stress σe does not contribute to
dissipation: σe represents the reversible part of the Cauchy stress while σp

represents its irreversible part.
● Hyperelasticity was introduced in 1839 by Green [72, 73] They began by
considering only a subset of elastic models for which it is possible to express
the problem as a minimization of an elastic potential. When the viscous
term σp is absent, the previous model reduces to elasticity. Then, theorem 2.1
simply states that all elastic models should necessarily be hyperelastic for
the Clausius-Duhem inequality (1.24) to be satisfied, and, moreover, that the
elastic potential is the Helmholtz energy ψ.

Remark 2.3 (examples: elastic and viscoelastic solid models).
A simple and popular elastic model for solids is written as σ = 2Ge
where G > 0 is an elastic coefficient and e = (FF T

− I) /2 is the left Green-
Lagrange strain tensor. This is a simplified version of the neo-Hookean model
introduced in 1971 by Blatz [10]. The complete neo-Hookean model will be
studied in section 5.3. Its associated Helmholtz energy is written as:

ψ(F ) =
G

2ρ
(tr (FF T

) − log det (FF T
) −N)



2.3. Objectivity 39

such that it acts as an elastic potential, i.e. σ = ρ
∂ψ

∂F
(F ).

This model extends to a viscoelastic Kelvin-Voigt solid as σ = 2Ge + 2ηD
where η > 0 is a viscosity coefficient and the stretching is expressed as
D = sym(∇v) = sym (

.
FF −1) from (2.2a). In that case, the reversible part

of the stress is σe = 2Ge while its irreversible part is written as σd = 2ηD.
The viscoelastic Kelvin-Voigt solids will be studied in section 5.9.

Remark 2.4 (internal state variables).
For simplicity, a simple viscoelastic model without internal variables was con-
sidered in theorem 2.1: our goal was to point out some preliminary restrictions
upon constitutive equations. The extension to internal state variables was
first explored in 1967 by Coleman and Gurtin [33] and will be investigated in
depth in chapter 4. Let us mention briefly the changes: since only the mathe-
matical structure is important here, without loss of generality, we could sup-
pose that there is only one scalar internal state variable denoted by α, while .

α
is its Lagrangian rate. Equilibrium corresponds to (∇θ,

.
F ,

.
α) = (0,0,0). Then,

statement (1) in theorem 2.1 extends as ψ is independent of (∇θ,
.
F ,

.
α) i.e. it

depends only upon state variables (θ,F , α) and not their rates. Statement (2)
and (3) could possibly be no longer valid, depending upon constitutive equa-
tions for the internal states.

2.3 Objectivity

This principle, although implicitly used by many scientists in the history of
mechanics, was first stated explicitly in 1950 by Oldroyd [143, p. 524], who
wrote: "The form of the completely general [constitutive] equations must be
restricted by the requirement that the equations describe properties indepen-
dent of the frame of reference", see Fig. 2.4.left. In 1955, Noll [138, p. 17]
developed this idea further but he referred to it as the "principle of isotropy of
space", which is confusing, as isotropy is a different concept (see section 2.7).
Finally, in 1959, Noll [139, p. 280] clarified this as the principle of objectivity,
see also Truesdell and Noll [176, p. 41].

Postulate 2.1 (objectivity).
The constitutive equations should not depend upon the choice of the frame
used to describe them.

The objectivity principle is important for designing constitutive equations: it
strongly restricts the possibilities for the constitutive equations, as shown in
this section. Here, objectivity means independence from a frame, not a per-
son, so, this postulate is also called principle of material frame indifference
in order to avoid possible misinterpretations. When a mathematical model
satisfies this requirement, it is said to be objective or frame-indifferent. Never-
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James G. Oldroyd Walter Noll

Fig. 2.4 (left) James G. Oldroyd (1921-1982), photo from [148]. (right) Walter Noll (1925-
2017) in 2012 at Rome, photo at the 23th international congress of the Italian society of
historians of physics and astronomy (license: CC-BY-SA-2.0).

theless, in most textbooks, the corresponding tensors, rates and functions are
always referred to as objective and never as frame-indifferent. So, in order to
clarify this concept and avoid possible confusion, only one term, objectivity,
will be used here: it refers to both the postulate itself and its consequences
on tensors, rates, functions and constitutive equations.
Without loss of generality, let us consider two frames: frame 1, which is
associated with (0, x1, . . . , xN) at the rest, and frame 2 which is animated by
a rigid motion, i.e. a combination of rotation and translation, and associated
with (x̂0, x̂1, . . . , x̂N), as shown on Fig. 2.5. Let x be the position of a material

χ̂(t, .)

frame 2

frame 1

reference

+

χ(t, .)Ω0

Ω(t)

Ω̂(t)

rotation
R(t)

translation

0

x2

x1

x̂0

x̂1

x̂0(t)x̂2

Fig. 2.5 Frame change with a rigid motion: rotation and translation (N = 2).

https://commons.wikimedia.org/wiki/File:Walter_Noll.JPG
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particle, as observed from frame 1, and x̂, the position of the same material
particle as seen from frame 2. Then we have

x̂ =R(t)x + x̂0(t) (2.9)

where R(t) ∈ O(N) denotes the rotation matrix, i.e. R−1 =RT . Note that,
for any Eulerian scalar field φ defined in ]0, T [×Ω(t), its gradient ∇φ for
frame 1 transforms as R−T∇φ =R∇φ for frame 2.

Proposition 2.5 (Lagrangian rates of vectors and tensors).
The Lagrangian rate of any vector field u and symmetric tensor field τ ,
defined by (2.5), are not objective.

Proof: Let u be any vector field, as observed from the first frame. It transforms
as û =Ru. Taking its Lagrangian rate leads to

.
û =R

.
u +

.
Ru (2.10a)

As the second term of the right-hand-side of the previous relation does not
vanish, the Lagrangian rate of the vector is not objective. Conversely, let τ
be any symmetric tensor, as observed from the first frame. t transforms as
τ̂ =RτR. Taking its Lagrangian rate leads to

.
τ̂ =R

.
τ RT

+
.
RτRT

+Rτ
.
RT (2.10b)

As the two last terms of the right-hand-side of the previous relation do not
vanish, the Lagrangian rate of the symmetric tensor is also not objective. ∎

Remark 2.6 (Lagrangian rate of vector and tensor).
From proposition 2.5 and the principle of objectivity, it is clear that the
Lagrangian rate of vectors and tensors should be avoided in constitutive
equations.

Remark 2.7 (Galilean frames and conservation of momentum).
Note that the acceleration, i.e. the Lagrangian rate of the velocity .

v is thus
not objective: rotations or non-affine translations change the acceleration.
Thus, the conservation of linear momentum (0.2), page 1, is also not objec-
tive. Nevertheless, a rapid inspection shows that .

v is unchanged for a Galilean
change of frame, i.e for an observer that moves with a constant translation
velocity. With the present formalism, a Galilean change of frame corresponds
to R(t) = I and x̂0(t) = v̄0t + x̄0 where v̄0, x̄0 ∈ RN are constant, i.e. inde-
pendent of time. Replacing this expression of R in (2.10a), the acceleration .

v
is then unchanged by any Galilean change of frame. See also remark 1.5,
page 12, for a discussion about Galilean frames and the conservation of mo-
mentum.
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Proposition 2.8 (space-derivatives of the velocity).
The stretching tensor D is objective while the gradient of velocity ∇v and the
vorticity W are non-objective.

Proof: Similar to the position x which is given by (2.1a), the position x̂ is
given by the transformation χ̂ defined by

χ̂(t,X) =R(t)χ(t,X) + x̂0(t) (2.11a)

for all t > 0 and X ∈ Ω0. This transformation satisfies

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∂χ̂

∂t
(t,X) =

.
R(t)χ(t,X) +R(t)

∂χ

∂t
(t,X) +

.
x̂0(t), ∀t > 0

χ̂(0,X) =R(0)X + x̂0(0)

Up to an initial rotation R(0) and translation x̂0(0) for frame 2, we could
assume, for simplicity and without loss of generality, that the two frames
share the same reference configuration at t = 0, as shown in Fig. 2.5. Thus,
compared to (2.1a), the velocity for the second frame could be identified:

v̂(t, χ̂(t,X)) =
.
R(t)χ(t,X) +R(t)

∂χ

∂t
(t,X) +

.
x̂0(t)

=
.
R(t)χ(t,X) +R(t)v(t,χ(t,X)) +

.
x̂0(t)

⇐⇒ v̂ =
.
Rx +Rv +

.
x̂0

The gradient of velocity tensor ∇v = (
∂vi
∂xj
)
1⩽i,j⩽N

transforms for the second

frame as

∇̂v̂ = (
∂v̂i
∂x̂j
)
1⩽i,j⩽N

= (
N

∑
k=1

∂v̂i
∂xk

∂xk
∂x̂j
)

1⩽i,j⩽N

(2.11b)

where the tensor (
∂xi
∂x̂j
)
1⩽i,j⩽N

is simply the inverse of (
∂x̂i
∂xj
)
1⩽i,j⩽N

which

could be identified from (2.9) as R ∈ O(N). Then (
∂xi
∂x̂j
)
1⩽i,j⩽N

=R−1 =RT

and the expression (2.11b) of the velocity gradient for frame 2 becomes suc-
cessively

∇̂v̂ = ∇v̂ RT

= ∇ (
.
Rx +R

.
x +

.
x̂0) R

T

= (
.
R +R∇

.
x) RT

=R∇vRT
+

.
RRT
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Thus ∇̂v̂ ≠R∇vRT and therefore the gradient of velocity tensor is non-
objective. Next, let us turn to the stretching tensor 2D = ∇v +∇vT that
transforms as

2D̂ = ∇̂v̂ + ∇̂v̂T
=R 2DRT

+
.
RRT

+R
.
RT

From R−1 =RT we have RRT
= I and taking the Lagrangian rate of this

last relation, we get .
RRT

+R
.
RT
= 0 (2.11c)

and then D̂ =RDRT . Thus, contrary to the gradient of velocity, the stretch-
ing tensor is objective. Consider finally the vorticity tensor 2W which trans-
forms into

2Ŵ = ∇̂v̂ − ∇̂v̂T

= R∇vRT
+

.
RRT

−R∇vT RT
−R

.
RT

=R 2W RT
+

.
RRT

−R
.
RT

From (2.11c), we obtain
−R

.
RT
=

.
RRT (2.11d)

and then
Ŵ =RW RT

+
.
RRT (2.11e)

Finally, the vorticity tensor is non-objective and the proof is complete. ∎

Stanislaw Zaremba Gustav Jaumann

Fig. 2.6 (left) Stanislaw Zaremba (1863-1942), photo near 1939 (public domain repro-
duction). (right) Gustav Jaumann (1863-1924), in 1908, photo by Viktor von Lang (public
domain reproduction).

https://commons.wikimedia.org/wiki/File:Stanislaw_Zareba_Polish_mathematician.jpg
https://osreo.csch.cz/en/category/contributions
https://osreo.csch.cz/en/category/contributions
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The following corotational rate, i.e. rotating with the material, was indepen-
dently proposed in 1903 by Zaremba [190] and in 1911 by Jauman [97], see
Fig. 2.6.

a(0,x0)

t = 0

v

a(t,x)
t > 0

◦
a= 0

Fig. 2.7 The Zaremba-Jaumann corotational rate combines the local velocity with the
local rotation. The background image is a SPOT satellite aerial picture of a 59×59 km2

portion of the Arctic sea ice cover centered around 80.18○ N, 108.55○ W.

Definition 2.9 (Zaremba-Jaumann corotational rate of vectors and tensors).

The Zaremba-Jaumann corotational rate of any vector field u and any sym-
metric tensor τ are defined respectively by

○
u =

.
u −W u

○
τ =

.
τ −W τ + τ W

(2.12a)

(2.12b)

where .
u and .

τ denote the Lagrangian rates, as defined in 2.5.

Remark 2.10 (interpretation of the Zaremba-Jaumann corotational rate).
Fig. 2.7 shows the behavior of a tensor a that satisfies ○a = 0. It is passively
advected with the velocity v, as for the Lagrangian rate, but also rotated with
the vorticity W = skew(∇v). So, the angle between the eigenvectors of a and
the velocity remains constant during the evolution and the eigenvalues are
also unchanged. In terms of application, the tensor a could represent the
texture of a rigid microstructure that is, as a raft, passively advected and
rotated without deforming.

Proposition 2.11 (objectivity of the Zaremba-Jaumann corotational rate).

The Zaremba-Jaumann corotational rates of vectors and symmetric tensors
are objective.

Proof: Consider the effect of the rotation on the vector field u: it is expressed
as W u and, from (2.11e), it transforms as:
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Ŵ û = (RW RT
+

.
RRT

) (Ru)

=RW Ru +
.
Ru

Note that the last term of the right-hand-side of the previous relation is
the same as the last one in the right-hand-side of (2.10a), that is expressed
as the Lagrangian rate

.
û for the second frame. Since the Zaremba-Jaumann

corotational rate (2.12a) is simply obtained by subtracting the rotation effect
from the Lagrangian rate, the proof is complete for a vector field.
Next, consider the effect of the rotation on the symmetric tensor τ : it corre-
sponds to the symmetric part of 2W τ that is written as:

2 sym (W τ ) =W τ − τ W

since the vorticity tensor W is skew-symmetric. From (2.11e), it transforms
successively as:

2 sym (Ŵ τ̂) = (RW RT
+

.
RRT

) (Rτ RT
)

− (Rτ RT
) (RW RT

+
.
RRT

)

= R (W τ − τ W )RT

−Rτ RT .
RRT

+
.
Rτ RT

=R (W τ − τ W )RT

−Rτ RT
(−R

.
RT
) +

.
Rτ RT from (2.11d)

=R (W τ − τ W )RT

+Rτ
.
RT
+

.
Rτ RT since RT R = I

Note that the two last terms on the right-hand-side of the previous relation
are the same as the last two on the right-hand-side of (2.10b), which expresses
the Lagrangian rate

.
τ̂ for the second frame. Since the Zaremba-Jaumann

corotational rate (2.12b) is simply obtained by subtracting the rotation effect
from the Lagrangian rate of a tensor, the proof is complete. ∎

Table 2.1 summarizes these properties: recall that, from postulate 2.1, only
objective quantities can be involved in constitutive equations, which strongly
restrict the possibilities. The two tensors B and C will be discussed during
the next section.
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position: x z→ x̂ = Rx + x̂0

gradient: ∇φ z→ ∇̂φ = R∇φ

F z→ F̂ = RF

velocity: v =
.
x z→ v̂ = Rv +

.
Rx +

.̂
x0

∇v z→ ∇̂v̂ = R∇vRT +
.
RRT

W z→ Ŵ = RW RT +
.
RRT

D z→ D̂ = RDRT

vector: u z→ û = Ru.
u z→

.̂
u = R

.
u +

.
Ru

W u z→ Ŵ û = RW u +
.
Ru

Ô⇒
○
u =

.
u −W u z→

○
û =

.̂
u − Ŵ û = R (

.
u −W u)

tensor: τ z→ τ̂ = Rτ RT

B z→ B̂ = RBRT

C z→ Ĉ = C

.
τ z→

.̂
τ = R

.
τ RT +

.
Rτ RT +Rτ

.
RT

W τ − τ W z→ Ŵ τ̂ − τ̂ Ŵ

= R (W τ − τ W )RT

+
.
Rτ RT +Rτ

.
RT

Ô⇒
○
τ =

.
τ −W τ + τ W z→

○
τ̂ =

.̂
τ − Ŵ τ̂ + τ̂ Ŵ

= R (
.
τ −W τ + τ W )RT

Table 2.1 Frame change for some kinematic quantities and for any vector u and tensor τ .
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2.4 Cauchy-Green tensors

In order to describe the deformation of an elastic material, constitutive equa-
tions propose a relation between the Cauchy stress σ and the gradient of
deformation F , as defined by (2.2a)-(2.2b). In this section, we first observe
that F decomposes into a pure rotation plus a rotation-free stretch. Recall
that we are interested in isotropic material, for which the behavior is a priori
independent of its initial rotation. Then, in this section, we focus on this
stretch part of the deformation. Here follows a classic result from matrix
analysis:

R

F

V

RU

Fig. 2.8 The polar decomposition F = RU = V R with its two possible combi-
nations of rotation and stretch. The background image is a liquid foam picture
by Dollet and Graner [44], Fig. 1.a.

Lemma 2.12 (polar decomposition).
A matrix F ∈ GL(N) admits an unique decomposition as

F =RU = V R where R ∈ O(N) and U ,V ∈ RN×N
s+

See Fig. 2.8. Moreover, if F ∈ GL+(N), then R ∈ SO(N).
Here, U is referred to as the right stretch and V as the left stretch.

Proof: There are many different proofs of this fundamental result from matrix
analysis, see e.g. Halmos [80, p. 169], Ciarlet [27, p. 94], Itskov [96, p. 197] or
Hashiguchi [83, p. 43]. ∎

Remark 2.13 (rotation and stretch).
Note that the pure rotation factor R does not generate any strain: it is
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then convenient to extract from the gradient of deformation F a rotation-
independent strain measure i.e. either U or V . From the previous polar de-
composition, observe that U =RTF and then, since U is symmetric, we have
U2
= UTU = F TRRTF = F TF . Conversely, V 2

= FF T . These two tensors
merit special attention.

Augustin-Louis Cauchy George Green

Fig. 2.9 (left) Augustin-Louis Cauchy (1789-1857) near 1840. Lithograph by Zéphirin
Belliard from a painting by Jean Roller (public domain reproduction). (right) George Green
(1793-1841). His memorial was in 1993 at Westminster Abbey, 200 years after his birth.
Note the representation of his mill on top. Photo from Cannell [15]. There appears to be
no portrait of him and he died shortly after photography was invented.

Definition 2.14 (Cauchy-Green tensors, see Fig. 2.9).
The left Cauchy-Green tensor is B = F F T while the right Cauchy-Green
tensor is C = F T F .

Proposition 2.15 (Cauchy-Green tensors).
1) The left Cauchy-Green tensor B is both symmetric definite positive and
objective.
2) The right Cauchy-Green tensor C is also symmetric definite positive but
not objective.

Proof: Both B and C are symmetric and positive by construction, while also
being definite since F is invertible. Taking the gradient of (2.11a) leads to
F̂ =RF and thus B̂ =RBRT which is then objective while Ĉ = F TF = C
is invariant but not objective. ∎

Remark 2.16 (using left or right Cauchy-Green tensor ?).
The right Cauchy-Green tensor C is invariant, as shown during the proof of
the previous result. It is used by numerous Lagrangian formulations in the
reference configuration, especially for problems in solid mechanics associated
with bounded deformations.

https://commons.wikimedia.org/wiki/File:Augustin-Louis_Cauchy_1901.jpg
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For the general case of possibly unbounded deformations, e.g. soft solids
or complex fluids, the Eulerian formulation in the transformed configura-
tion Ω(t) is prefered. In that case, the left Cauchy-Green tensor B is the
ideal candidate for writing constitutive equations. Finally, note that B−1 is,
similar to B, symmetric definite positive and objective, and that it develops
interesting properties.

Remark 2.17 (history and terminology).
In 1828, Cauchy [22, 23] introduced first the tensor B−1. Independently,
in 1839, Green [72, 73] proposed the tensor C = F T F . The left Cauchy-Green
tensor B = F F T was then used later. The terms used for these tensors can
sometimes be confusing: for instance, the international union of pure and
applied chemistry (IUPAC) recommends [106, p. 710] for B, B−1, C, C−1

to refer to the Green, Piola, Cauchy, Finger tensors, respectively. We do not
retain this recommendation and prefer here the widely used terms of left and
right Cauchy-Green tensors.

The following upper- and lower-convected rates were proposed in 1950 by
Oldroyd [143], see Fig. 2.4.left.

Definition 2.18 (upper and lower-convected rates, Oldroyd [143]).
The upper-convected rate is defined for any vector field u and any symmetric
tensor τ respectively by

∇
u =

.
u − (∇v)u

∇
τ =

.
τ − (∇v)τ − τ (∇v)T

(2.13a)

(2.13b)

Conversely, the lower-convected rate is defined by

△
u =

.
u + (∇v)T u

△
τ =

.
τ + (∇v)T τ + τ (∇v)

(2.13c)

(2.13d)

Proposition 2.19 (rate of the left Cauchy-Green tensor).

∇
B = 0
△
ÎB−1 = 0

(2.14a)

(2.14b)

Proof: From (2.2a), we get

.
B =

.
Ð
F F T

=
.
F F T

+F
.
F T
= ∇vF F T

+FF T
∇vT

= ∇vB +B(∇v)T

which is equivalent to (2.14a) by definition (2.13b) of the upper-convected
rate. Next, B−1 = (F F T

)
−1
= F −TF −1 and then, taking its time rate and us-

ing (2.3)
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.
ÎB−1 =

.
Ð

F −TF −1 = (

.
ÎF −1)

T

F −1 +F −T
.
ÎF −1 = −(∇v)TB−1 −B−1∇v

which is equivalent to (2.14b) by definition (2.13d) of the lower-convected
rate. ∎

In 1972, Gordon and Schowalter [65] proposed to extend Oldroyd’s idea by
introducing the following rate:

Definition 2.20 (Gordon-Schowalters rate).
The Gordon-Schowalters rate is defined for any vector field u and any sym-
metric tensor τ respectively by

◻
u =

○
u − aDu

◻
τ =

○
τ − a (Dτ + τ D)

where a ∈ R is the Gordon-Schowalters parameter for this rate and ○
u and ○

τ
denote the Zaremba-Jaumann corotational rates, see definition 2.9.

Note that when a = 0, the Gordon-Schowalters rate coincides with the
Zaremba-Jaumann corotational one. Conversely, when a = 1, we obtain the
upper-convected one and when a =−1, the lower-convected one. The upper-
convected rate is also called the Lie rate in the context of differential geom-
etry, see e.g. Lee et al. [112, p. 385, eqn (3.29)]. Finally, the a parameter is
interpreted as a linear interpolation parameter between the upper- and the
lower-convected rates.

Proposition 2.21 (objectivity of Gordon-Schowalters rates).
Both the Oldroyd’s upper- and lower-convected and any Gordon-Schowalters
interpolated rates are objective, for all interpolation parameter a ∈ R.

Proof: From propositions 2.8 and 2.11, both the Zaremba-Jaumann corota-
tional rate and the stretching tensor are objective. Consequently, the Gordon-
Schowalters rate, obtained from the Zaremba-Jaumann corotational rate with
additional terms including the interpolation parameter factor, is also objec-
tive. Since the upper- and lower-convected rates could be obtained from the
Gordon-Schowalters one, the proof is complete. ∎

Remark 2.22 (interpretation of Cauchy-Green tensors and their rates).
Fig. 2.10.top shows the behavior of the tensor B that satisfies

∇
B = 0. It is

passively advected with the velocity v, as for the Lagrangian rate, but also
rotated with the vorticity W = skew(∇v) and deformed with the stretch-
ing D = sym(∇v). When compared with the Zaremba-Jaumann corotational
rate, see Fig. 2.7, the novelty introduced is the deformation. The tensor B
represents a metric attached to the moving frame. While a tensor passively
convected by the Zaremba-Jaumann corotational rate could represent a rigid
raft transported by a river (see remark 2.10), the B tensor, passively con-
vected by the upper-convected rate could represent an assembly of autumn
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v

t > 0t = 0
B(0,x0)

B(t,x)∇
B= 0

v

t > 0t = 0

a(t,x)a(0,x0) �
a= 0

Fig. 2.10 (top) The upper-convected rate combines the local velocity with the rotation
and deformation. (bottom) The Gordon-Schowalters rate partially applies the deformation
(a = 2/3). The background image is a biological tissue picture by Durande [48], Fig. 3.10.c,
p. 65.

leaves transported by the river: while each leaf remains attached to the fluid,
the distance between two leaves stretches, following the fluid deformation,
and thus, the assembly of autumn leaves stretches. The behavior of B−1 is
similar to the lower-convected rate: eigenvalues are changing in the opposite
way, e.g. being shortened instead of elongated. Fig. 2.10.bottom represents
the behavior of a similar metric tensor a that satisfies ◻

a = 0. Its behavior is
similar to those of B, except that deformations are only partially applied, de-
pending upon the value of the Gordon-Schowalters parameter a: the graphics
on Fig. 2.10.bottom uses a = 2/3. The light gray region, delimited by a dot-
ted line, corresponds to the deformation associated with the upper-convected
case a = 1. Moreover, the a parameter is interpreted in terms of microstruc-
ture: Jeffery [98] showed that an assembly of rigid ellipsoids of revolution are
transported and fully rotated by the vorticity W but that only a fraction
a = (r2 − 1)/(r2 + 1) of the stretching D is applied, where r denotes the as-
pect ratio of ellipsoids of revolution. For instance, for an assembly of prolate
ellipsoids, e.g. long fibers, we have r →∞ and a = 1 and, at the macroscopic
scale, we get the upper-convected rate. Conversely, for an assembly of oblate
ellipsoids, e.g. flat discs as clay platelets, then r → 0 and a = −1 i.e. the lower-
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convected rate. Finally, for an assembly of spheres, then r = 1 and a = 0,
i.e. the corotational rate. When only a fraction of the stretching D is ap-
plied, we say that the microstructure, e.g. the assembly of ellipsoids, partially
slips on the suspending material. Then, from this interpretation, the material
parameter a of the Gordon-Schowalters rate is restricted to a = [−1,1] and
associated with the slip of a microstructure. See also Hinch and Harlen [87]
for a recent review on these tensor rates. In the next chapter, section 3.6 will
study how to use these properties to describe the behavior of some micro-
structures that are both convected, rotated and deformed with the moving
frame. Also, chapter 5 will present several examples of models that involve
the Gordon-Schowalters rate.

2.5 Objective function

In this section, the consequences of objectivity are explored for the Helmholtz
energy ψ. In section 2.2, we observed in theorem 2.1, relation (2.7a), page 36,
that the Helmholtz energy ψ acts as an elastic potential for the equilibrium
stress tensor σe. From the previous section 2.3, this tensor should be both
symmetric and objective, thereby imposing a corresponding constraint upon
the Helmholtz energy ψ. Let us analyze this situation.

Definition 2.23 (objective functions).
1) A subset A ⊂ RN×N of a general matrix is objective if for all a ∈ A
and r ∈ O(N) we have ra ∈ A .
2) A scalar-valued function φ ∶ A → R is objective if its domain A is objective
and

φ (ra) = φ(a), ∀a ∈ A , ∀r ∈ O(N)

3) A matrix-valued function φ ∶ A → RN×N is objective if its domain A is
objective and

φ (ra) = rφ(a), ∀a ∈ A , ∀r ∈ O(N)

Proposition 2.24 (objective functions).
Let φ ∶ A → R be a scalar-valued function on an objective do-
main A ⊂ GL(N). Then, we have:
1) if φ is objective then ∂φ/∂F is also objective and

∂φ

∂F
(F )F T is symmetric, ∀FA ⊂ GL(N)

2) φ is objective if and only if there exists φ̃ ∶ A ∩RN×N
s → R such that

φ(F ) = φ̃(U)
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for all F ∈ A with U = (F TF )
1/2

. Moreover, φ̃ is the restriction of φ

to A ∩RN×N
s .

Proof: from Silhavy [169, p. 143]. (1) The objectivity of ∂φ/∂F
is immediate from definition 2.23. For any W ∈ so(N) and t ∈ R,
let R = exp(tW ) ∈ SO(N). From definition 2.23, we have φ(RF ) = φ(F ).
By differentiation with respect to t at t = 0, we get

∂φ

∂F
(F ) ∶(WF ) ⇐⇒ (

∂φ

∂F
(F )F T

) ∶W = 0

Since this is true for any W ∈ so(N), we get the symmetry.
(2) Since F ∈ GL(N), from the polar decomposition, lemma 2.12, there exists
R ∈ O(N) and U ∈ RN×N

s+ such that F =RU . Then φ(F ) = φ(RU) = φ(U)
from definition 2.23, since φ is objective. ∎

Remark 2.25 (objective Helmholtz energy).
Proposition 2.24.1 states that the objectivity of the Helmholtz energy ψ with
respect to F is a sufficient condition for the equilibrium stress tensor σe

in (2.7a) to be both symmetric and objective. Nevertheless, the second part,
proposition 2.24.2, expresses that, in that case, the Helmholtz energy depends
only upon the right stretch U : this is good news, since it is rotation-free, but
also bad news, since both U and the right Cauchy-Green tensor C = U2 are
not objective, see proposition 2.15. A nicer dependency would be upon the
left stretch V , which is objective, together with the left Cauchy-Green tensor
B = V 2. We will reach this aim by introducing an additional constraint on the
Helmholtz energy ψ: the isotropy. For this purpose, we have first to enlarge
our mathematical toolbox for investigating the eigenspace of tensors.

2.6 Eigenspace

In this section, some tools suitable to investigate the eigenspace of matrices
and tensors are introduced. These tools will be used in the next section,
dedicated to isotropy, and also throughout the next chapter, for studying the
strain and stress relations.
Recall that any symmetric matrix a ∈ RN×N

s is diagonalizable and its eigen-
vectors are orthogonal: let (nk,a)1⩽k⩽N denotes these eigenvectors, such that
nk,a.nℓ,a = δk,ℓ for all 1 ⩽ k, ℓ ⩽ N . Let ma be the number of distinct eigen-
values of a and (λi,a)1⩽i⩽ma denotes these distinct eigenvalues. Without loss
of generality, the distinct eigenvalues are sorted by strictly decreasing or-
der: λ1,a > . . . > λi,a > . . . > λma,a. Eigenvectors are numbered in {1, . . . ,N}
while eigenvalues are numbered in {1, . . . ,ma}. Also without loss of gener-
ality, the eigenvectors associated to the i-th eigenvalue λi,a, 1 ⩽ i ⩽ma, are
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numbered contiguously, and a strictly increasing numbering application Ka

is introduced, from {1, . . . ,ma+1} to {1, . . . ,N+1}, such that the eigenspace
associated to the i-th eigenvalue λi,a is spanned by the eigenvectors
(nk,a)Ka(i)⩽k⩽Ka(i+1)−1 with the convention Ka(ma+1) = N+1. With these
notations, the multiplicity of the i-th distinct eigenvalue λi,a, 1 ⩽ i ⩽ ma, is
Ka(i+1) −Ka(i). An increasing reverse application Ia from {1, . . . ,N+1}
to {1, . . . ,ma+1} is also introduced, such that Ia(Ka(i)) = i, 1 ⩽ i ⩽ma

and Ka(Ia(k)) ⩽ k, 1 ⩽ k ⩽ N with the convention Ia(N+1) =ma+1. Thus,
(λIa(k),a,nk,a)1⩽k⩽N denotes all the associated pairs of eigenvalues and eigen-
vectors. Finally, for convenience, the vector of size N containing all the eigen-
values is denoted by eig(a) = (λIa(k),a)1⩽k⩽N ∈ RN . The spectral decompo-
sition of any symmetric matrix a then is written as:

a =
N

∑
k=1

λIa(k),a nk,a ⊗nk,a (2.15)

Let us introduce the eigenprojections on the space associated with the eigen-
values (see e.g. Itskov [96, p. 108]).

Definition 2.26 (eigenprojector).
For any a ∈ RN×N

s , the projector operator from RN onto the the eigenspace
associated with the i-th distinct eigenvalue 1 ⩽ i ⩽ma, called the i-th eigen-
projector, is defined by

P i,a =

Ka(i+1)−1

∑
k=Ka(i)

nk,a ⊗nk,a

The eigenspace of a is defined by

eigsp(a) = {b =
ma

∑
i=1

biP i,a, bi ∈ R, 1 ⩽ i ⩽ma}

It contains all symmetric matrices that share the same eigenvectors as a and
then commute with a.

Lemma 2.27 (eigenprojector).
For any a ∈ RN×N , the eigenprojector satisfy
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a =
ma

∑
i=1

λi,aP i,a

=
ma

∑
i=1

ma

∑
j=1

P i,aaP j,a

P i,aa = λi,aP i,a

ma

∑
i=1

P i,a = I

P i,aP i,a = P i,a, 1 ⩽ i ⩽ma

P i,aP j,a = 0, 1 ⩽ i, j ⩽ma, i ≠ j

(2.16a)

(2.16b)

(2.16c)

(2.16d)

(2.16e)
(2.16f)

Proof: These relations follow directly from the orthonormality of the eigen-
vectors of a symmetric matrix. ∎

Proposition 2.28 (Sylvester formula).
Any analytic function f ∶ R→ R could be extended as a symmetric matrix
valued function, defined for all a ∈ RN×N

s by

f(a) =
ma

∑
i=1

f(λi,a) P i,a (2.17)

For convenience, and when there is no ambiguity, we still denote by f this
extension i.e. f ∶ RN×N

s → RN×N
s . For instance, the extensions to symmetric

matrices of the exponential and logarithm functions are denoted by exp(a)
and log(a) for any symmetric matrix a.

Proof: From the orthogonality (2.16f) of the eigenprojectors, for any n ∈ N,
the n-th power of a is written simply:

an
=

ma

∑
i=1

λni,aP i,a

It directly extends to any polynomial function, as a linear combination of
powers of a, and then, to any analytic function, i.e. that admits a series
expansion. ∎

The following characterization of the eigenprojectors is of practical interest:
their computation requires only eigenvalues and not eigenvectors.

Lemma 2.29 (eigenprojectors, see e.g. Itskov [96, p. 110]).
For any a ∈ RN×N

s , the i-th eigenprojector, 1 ⩽ i ⩽ma, is characterized by

P i,a = δ1,maI +
ma

∏
j=1
j≠i

a − λi,aI

λi,a − λj,a

=
1

∆i(eiga)

ma−1

∑
j=0

κi,ma−j−1(eiga) a
j

(2.18a)

(2.18b)
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with

κi,k(eiga) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 when k = 0

(−1)k ∑
1⩽p1⩽...⩽pk⩽ma

k

∏
r=1

(1 − δi,pr)λpr,a otherwise

1 ⩽ i ⩽ma, 0 ⩽ k ⩽ma−1

∆i(eiga) = δ1,ma +
ma

∏
j=1
j≠i

(λi,a − λj,a) , 1 ⩽ i ⩽ma

Proof: When ma = 1, then all eigenvalues are equal, a = λ1,aI and then
P i,a = I, in agreement with (2.18a). Next, assume ma ⩾ 2. Consider
the Lagrange interpolation polynomials (pi)1⩽i⩽ma satisfying pi(λ1,a) = δi,j ,
1 ⩽ i, j ⩽ma. Then, from the Sylvester formula, proposition 2.28, these poly-
nomials extend as matrix-valued functions and, by definition of this extension:

pi(a) =
ma

∑
j=1

pi(λj,a) P j,a =
ma

∑
j=1

δi,j P j,a = P i,a

Thus, P i,a = pi(a) where the classic expression of the i-th interpolation La-
grange polynomial pi is written as:

pi(λ) =
ma

∏
j=1,j≠i

λ − λj,a

λi,a − λj,a
, ∀λ ∈ R

This leads directly to (2.18a). Finally (2.18b) is just a convenient rearrange-
ment as a sum of powers of a due to Itskov [96, p. 110]. ∎

2.7 Isotropy

The concepts of objectivity and isotropy are often a source of confusion, even
for confirmed researchers: for instance, in 1955, Noll [138, p. 17] introduced
the principle of objectivity while referring to it as the "principle of isotropy
of space"! Of course, he later fixed this mistake.
Objectivity is mandatory for the Helmholtz energy ψ, since the equilibrium
stress σe in (2.7a) should be an objective tensor: this is a structural require-
ment. Isotropy appears as optional for ψ: it refers to a property of the material
itself and it describes how material properties are uniform in all directions.
Our motivation for studying isotropy follows remark 2.25, at the end of sec-
tion 2.3: when the Helmholtz energy ψ is objective, then the corresponding
equilibrium stress σe is both symmetric and objective. Nevertheless, in that
case, the Helmholtz energy depends only upon the right stretch U which is
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not objective. In this section, we show that when the Helmholtz energy is
both objective and isotropic, it could then be expressed in terms of the left
stretch V , or equivalently, in terms of the left Cauchy-Green tensor B = V 2,
which are both objective. Moreover, isotropy leads to amazing simplifications
of the mathematical structure of the Helmholtz energy.
In this section, isotropic functions are studied first, and subsequently, func-
tions which are both objective and isotropic.

Definition 2.30 (isotropic function).
1) A subset A ⊂ RN×N

s of a symmetric matrix is isotropic if for all a ∈ A
and r ∈ O(N) we have rarT ∈ A .
2) A scalar-valued function φ ∶ A → R is isotropic if its domain A is isotropic
and

φ (rarT ) = φ(a), ∀a ∈ A , ∀r ∈ O(N)

3) A matrix-valued function φ ∶ A → RN×N is isotropic if its domain A is
isotropic and

φ (rarT ) = rφ(a)rT , ∀a ∈ A , ∀r ∈ O(N)

Remark 2.31 (isotropic function).
Compare the definition 2.23, page 52, of an objective function with the present
definition 2.30 of an isotropic one: clearly these definitions are not equivalent,
despite the difference being subtle.

Lemma 2.32 (eigenvalues are isotropic scalar functions).
Eigenvalues of a symmetric matrix are isotropic scalar functions of this ma-
trix.

Proof: Let any a ∈ RN×N
s and r ∈ O(N). Observe that for any associated

pairs of eigenvalues and eigenvectors λIa(k),a,nk,a, 1 ⩽ k ⩽ N , we have
(rarT ) (rnk,a) = λIa(k),a, (rnk,a) and then λIa(k),a is also an eigenvalue
of rarT . Since eigenvalues are sorted by non-increasing order, we have
λi,rarT = λi,a for the same index i, 1 ⩽ i ⩽ma. ∎

Proposition 2.33 (isotropic matrix-valued extensions of scalar functions).

The extension in RN×N
s by the Sylvester formula, (proposition 2.28) of any

analytic function φ ∶ R→ R is an isotropic function of its symmetric matrix
argument.

Proof: Let any a ∈ RN×N
s and r ∈ O(N). Then, we get successively:

φ (rarT ) =
ma

∑
i=1

f (λi,rarT ) P i,rarT =
ma

∑
i=1

f(λi,a) rP i,ar
T

= r (
ma

∑
i=1

f(λi,a) P i,a)r
T
= rψ(a)rT
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and then the proof is complete. ∎

Here comes the characterization of linear isotropic functions: this structure
is very frequently used for constitutive equations e.g. for linear elasticity of
Newtonian fluids.

Proposition 2.34 (characterization of linear isotropic functions).
Let φ ∶ RN×N

s → RN×N
s be a symmetric-matrix-valued linear and isotropic

function. Then, there exists λ,G ∈ R such that

φ(a) = λ(tra)I + 2Ga, ∀a ∈ RN×N
s

Proof: There are several proofs of this classic result in the N dimensional
space: see e.g. Jog [101] for a direct proof. ∎

The major result of this section, due to Truesdell and Noll [176, p. 32], is the
relation between isotropic functions and the eigenspace:

Theorem 2.2 (isotropy and eigenspace, Truesdell and Noll [176, p. 32]).
Let φ ∶ A → RN×N be a matrix-valued isotropic function.
Then, for all a ∈ A :
1) the matrix φ(a) is symmetric,
2) φ(a) and a share the same eigensystem i.e. φ(a) ∈ eigsp(a),
3) φ(a) and a commute i.e. φ(a)a = aφ(a).

Proof: Let nk,a, 1 ⩽ k ⩽ N , be any eigenvector of a. Let r ∈ O(N) such that
rnk,a = −nk,a and ru = u for all u ∈ RN such that u.nk,a = 0. The tensor r
can be interpreted as as a reflection on the plane normal to the vector nk,a.
Observe that rarT = a since the reflection is applied twice. Then, by def-
inition 2.30 of the isotropy, we get rφ(a)rT = φ(a) i.e. rb = br where we
have introduced b = φ(a) for convenience. Then r(bnk,a) = brnk,a = −bnk,a.
Since the only vectors transformed by r to the opposite are multiples of nk,a,
we get bnk,a = λnk,a for some λ ∈ R i.e. nk,a is also an eigenvector of
b = φ(a). This is true for any 1 ⩽ k ⩽ N and then a and φ(a) share the
same eigenspace. It implies that φ(a) is symmetric. Finally, the commuta-
tion is also a consequence of a and φ(a) sharing the same eigenspace. ∎

Definition 2.35 (symmetric function of a vector, Silhavy [169, p. 139]).
1) A subdomain S ⊂ RN of the vector space is symmetric if, for any vec-
tor λ ∈S and any permutation matrix P , then Pλ ∈S .
2) A function φ (resp. φ) defined in a subdomain S ⊂ RN and taking its
values in R (resp. RN ) is symmetric if its subdomain is symmetric and
φ(Pλ) = φ(λ) (resp. φ(Pλ) = Pφ(λ)) for any element λ ∈S and any per-
mutation matrix P .

Corollary 2.36 (characterization of isotropic functions).
Let φ ∶ A → R be a scalar-valued function on an isotropic domain A ⊂ RN×N

s .
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Then, φ is isotropic if and only if there exists a symmetric function
φ̃ ∶ RN → R, in the sens of definition 2.35, such that

φ(a) = φ̃(eig(a)), ∀a ∈ A

Moreover, if φ is continuously differentiable, then ∂φ/∂a is also an isotropic
function and

∂φ

∂a
(a) =

N

∑
k=1

∂φ̃

∂λk
(eig(a)) nk,a ⊗nk,a, ∀a ∈ A

and then ∂φ/∂a(a) and a share the same eigensystem i.e.
∂φ/∂a(a) ∈ eigsp(a).

Proof: Let us define φ̃ by φ̃(eig(a)) = φ(a). Since φ is isotropic, this defini-
tion is independent of the choice of the eigenbasis and then φ̃ is well-defined.
Next, recall that the derivative of the k-th eigenvalue of a matrix a with re-
spect to the matrix itself is nk,a ⊗nk,a. Then, the relation for ∂φ/∂a(a) is
obtained by simple differentiation. ∎

Remark 2.37 (principal invariants and principal traces).
Instead of using eigenvalues, it is possible to use equivalently the invariants
(Ik,a)1⩽k⩽N of a matrix a ∈ RN×N , defined as the coefficients of the charac-
teristic polynomial:

det(λI − a) =
N

∏
k=1

(λ − λk,a)
def
= λN +

N

∑
k=1

(−1)kIk,aλ
N−k

Expanding the polynomial and identifying its coefficients, we obtain the prin-
cipal invariants versus the eigenvalues as:

Ik,a = ∑
c∈Ck,N

N

∏
ℓ=1

λcℓ,a, 1 ⩽ k ⩽ N

where Ck,N denotes the set of all distinct combinations of k elements
from {1, . . . ,N}. Note that I1,a = ∑N

ℓ=1 λℓ,a and IN,a =∏
N
ℓ=1 λℓ,a. The prin-

cipal invariants are infinitely differentiable with respect to a, which is an
advantage when compared with the description in terms of eigenvalues, see
e.g. Truesdell and Noll [176, chap. B] or Itskov [96, p. 104]. Conversely, the
eigenvalue description is more convenient for the exploration of the eigenspace
properties, as in the present book.
Another equivalent and commonly used alternative to eigenvalues eig(a) and
principal invariants (Ik,a)1⩽k⩽N are the principal traces (tr (ak))

1⩽k⩽N
. The

principal traces expressed simply versus the eigenvalues:
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tr (ak) =
N

∑
ℓ=1

λkℓ,a

Applying the Newton-Girard formula, we obtain by induction an ex-
pression of the principal invariants versus the principal traces (see e.g.
Itskov [96, p. 104]):

Ik,a =
1

k

N

∑
ℓ=1

(−1)ℓ−1Ik−ℓ,atr (a
ℓ)

with the notation I0,a = 1 for convenience. Note that

I1,a = tra

I2,a =
1

2
((tra)2 − tr (a2))

IN,a = deta

Isotropic dependence upon F is not sufficient for the Helmholtz energy ψ
to obtain an objective equilibrium stress σe from (2.7a), since objectivity is
required. So, now let us combine both.

Definition 2.38 (objective-isotropic function, Silhavy [169, p. 144]).
1) A subset A ⊂ RN×N is objective-isotropic if for all a ∈ A and q, r ∈ O(N)
we have qarT ∈ A .
2) A scalar-valued function φ ∶ A → R is objective-isotropic if its domain A
is objective-isotropic and

φ (qar) = φ(a), ∀a ∈ A , ∀q, r ∈ O(N)

3) A matrix-valued function φ ∶ A → RN×N is objective-isotropic if its do-
main A is objective-isotropic and

φ (qar) = qφ(a)r, ∀a ∈ A , ∀q, r ∈ O(N)

Remark 2.39 (objective-isotropy).
Clearly, if a function is both objective and isotropic, it is objective-isotropic.
Conversely, any objective-isotropic function is objective and also isotropic on
the restriction of its domain to symmetric matrices. So the objective-isotropy
could be considered as a kind of extension of isotropy to general matrices,
not necessarily symmetrical.

Corollary 2.40 (characterization of objective-isotropic functions).
Let φ ∶F → R be a scalar-valued function on an objective-isotropic do-
main F ⊂ GL(N). Then, φ is objective-isotropic if and only if there exists a
symmetric function φ̃ ∶ RN → R, in the sens of definition 2.35, such that

φ(F ) = φ̃(sv(F )), ∀F ∈F
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where sv(F ) = eig(V ) denotes the singular values of F , obtained from the
polar decomposition F = V R, R ∈ O(N) and V ∈ RN×N

s+ , see lemma 2.12.
Moreover, if φ is continuously differentiable, then ∂φ/∂F is objective-
isotropic and

∂φ

∂F
(F ) = (

N

∑
k=1

∂φ̃

∂λk
(sv(F )) nk,V ⊗nk,V )R, ∀F ∈F

and then
∂φ

∂F
(F )F T

∈ eigsp(V )

Proof: is similar to those of corollary 2.36. ∎

Remark 2.41 (eigenspace of the equilibrium stress σe).
From corollary 2.40, when the Helmholtz energy ψ is objective-isotropic ver-
sus F then the equilibrium stress σe obtained from (2.7a) is both symmetric,
objective and shares the same eigensystem as the left Cauchy-Green tensor B,
or equivalently, as the left stretch V . Our journey of exploring the objectiv-
ity principle has finally reached its destination: this major property will be
widely used both in the next chapter 3 while investigating the stress-strain
relation and in chapter 4 for the proposed thermodynamic framework.

We finally close this chapter with the case of a function with a vector argu-
ment, which is useful e.g. for describing a model for the heat flux vector q.
The vector argument case is much simpler: indeed, in that case, the no-
tions of objectivity and isotropy coincide. To emphasize this, and point out
the analogy with the matrix-valued case, we choose here to refer to it as
objective-isotropy.

Definition 2.42 (objective-isotropic function of a vector).
1) A subset U ⊂ RN is objective-isotropic if for all u ∈ U and r ∈ O(N) we
have ruT ∈ U .
2) A scalar-valued function φ ∶ U → R is objective-isotropic if its domain U
is objective-isotropic and

φ (ru) = φ(u), ∀u ∈ U , ∀r ∈ O(N)

3) A vector-valued function φ ∶ U → RN is objective-isotropic if its domain U
is objective-isotropic and

φ (ru) = rφ(u), ∀u ∈ U , ∀r ∈ O(N)

Proposition 2.43 (objective-isotropic function of a vector).
Let φ ∶ U → R be a scalar-valued function on an objective-isotropic do-
main U ⊂ RN . Then, φ is objective-isotropic if and only if there exists a
function φ̃ ∶ R→ R, such that
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φ(u) = φ̃ (∣u∣2) , ∀u ∈ U

Moreover, if φ is continuously differentiable, then ∂φ/∂u is objective-isotropic
and

∂φ

∂u
(u) = 2φ̃′ (∣u∣2)u, ∀u ∈ U

and then ∂φ/∂u(u) and u are colinear.

Proof: Since only the norm of u is invariant under an orthogonal tensor
transformation, it follows that φ depends on u only through ∣u∣2. The rest of
the proof is immediate. ∎

value/arg vector matrix
scalar φ(ru) = φ(u) φ(qar) = φ(a)

vector φ(ru) = rφ(u) φ (rarT ) = rφ(a)

matrix φ(ru) = rφ(u)rT φ(qar) = qφ(a)r

Table 2.2 Summary of objective-isotropic functions for various value and argument types.

Remark 2.44 (several arguments and mixed types).
When there are several arguments, the invariants are coupled. For instance,
a scalar function φ of two vector arguments is objective-isotropic if and only
if

φ (ru1,ru2) = φ(u1,u2), ∀u1,u2 ∈ U , ∀r ∈ O(N)

and there are then three independent invariants, ∣u1∣
2, ∣u2∣

2 and u1.u2. These
independent invariants are called the functional basis of φ.
The situation is similar for an isotropic scalar function φ(a,b) of two symmet-
ric matrix arguments a and b. In N = 3 dimension, it leads to ten independent
invariants (see e.g. Itskov [96, p. 141]) expressed here in terms of principal
traces (see remark 2.37):

tra, tr (a2) , tr (a3) , trb, tr (b2) , tr (b3) ,

tr (ab) , tr (a2b) , tr (ab2) , tr (a2b2) (2.19)

Conversely, for an isotropic scalar function φ(u,a) of a vector u and a sym-
metric matrix argument a, in N = 3 dimension, we get six independent in-
variants (see Smith [170]):

∣u∣2, tra, tr (a2) , tr (a3) , u.(au) , u.(a2u)

Finally, the type of the return value and the argument of the func-
tion φ could be of mixed types, as suggested in Table 2.2. See also
Rivlin and Ericksen [158], Truesdell and Noll [176, chap. B], Smith [170] or
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Itskov [96, chap. 6] when the function φ admits several arguments of mixed
types, e.g. both vectors and matrices.

Remark 2.45 (anisotropic material with isotropic Helmholtz energy ?).
Anisotropic elasticity constitutive equations can be naively introduced as
σ = 2G ∶e where e = (FF T

− I) /2 is the left Green-Lagrange strain tensor
and G is a fourth-order elasticity tensor with first and secondaries symmetries
i.e. Gαβγδ = Gγδαβ = Gβαγδ = Gαβδγ . Note that when G = G I ⊠ I with G > 0,
this model coincides with the simplified neo-Hookean one introduced in sec-
tion 2.3. The associated Helmholtz energy is written as

ψ(F ) =
1

2ρ
tr (G ∶(FF T

− log (FF T
) − I))

Introducing

ψ̃(U) =
1

2ρ
tr (G ∶(U2

− 2 logU − I))

where U = (F TF )
1/2

is the right stretch, observe that ψ(F ) = ψ̃(U). This
is due to the symmetries of the fourth-order tensor G, while using the polar
decomposition (lemma 2.12) and thanks to the Sylvester formula (propo-
sition 2.33) that provides the isotropy of the log extension to symmetric
matrices. Then, from proposition 2.24, ψ is objective. Conversely, from corol-
lary 2.40, ψ could not be expressed in terms of sv(F ) alone and then ψ is
not objective-isotropic.
An elegant solution, suggested in 1962 by Hand [82], is to use a second sym-
metric tensor argument A that represents the microscopic oriented struc-
ture of the material, e.g. anisotropic texture or damage, together with
σ = G(Ae + eA). Note that this expression of the Cauchy stress σ could
be obtained by choosing G = (A ⊠ I + I ⊠A)/2 in the previous expression of
the Helmholtz energy ψ, which can be expressed equivalently as:

ψ(A,B) =
1

2ρ
tr (A (B − logB − I))

Thus, this function is still objective. Moreover, observe that ψ is now isotropic

ψ (RART ,RBRT
) = ψ(A,B), ∀R ∈ O(N)

since the log extension to symmetric matrices is isotropic. So, in conclusion,
choosing objective-isotropic Helmholtz energy is not a definitive obstacle for
considering anisotropic materials.

Remark 2.46 (several arguments and eigenspace).
Consider the function of two vector arguments expressed by φ(u,v) = u.v.
From remark 2.44, this function is objective-isotropic and ∂uφ(u,v) = v
which is not colinear to u in general. So, the statement of proposition 2.43
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is not satisfied, except when φ is objective-isotropic with respect to each
variable separately. Indeed, it was not the case for this example.
A similar situation occurs with matrix arguments. Consider the function of
two symmetric-matrix arguments expressed by φ(a,b) = a ∶b. This function
is objective-isotropic and ∂aφ(a,b) = b /∈ eigsp(a) in general. Also, the state-
ment of corollary 2.40 is not satisfied, except when φ is objective-isotropic
with respect to each variable separately.



Chapter 3

Strain and stress

Continuing the previous chapter’s exploration of the kinematics of large de-
formations, the present one introduces recent and new results which were
obtained at the turn of the 21st century. These results are required to build
the thermodynamic framework of the next chapter( 4). The left Hencky
strain, introduced in section 3.1, and the new concept of thermal strain,
introduced in section 3.7, are certainly the two cornerstone of this new frame-
work.
Section 3.1 first introduces the concept of strain, closely related to the left
Cauchy-Green tensor B studied in the previous chapter. Self-contained pre-
sentation of the properties of the left Hencky strain requires some technical
developments: section 3.2 presents two very useful technical lemmas related
to matrix equations while section 3.3 deals with the time rate of a function
of a tensor. These two technical sections lead to the two amazing properties
of the left Hencky strain: (i) the stretching D is expressed as a corotational
rate of the left Hencky strain, theorem 3.1 in section 3.4, and (ii) the Cauchy
stress σ is the conjugate of the left Hencky strain via the Helmholtz energy ψ,
theorem 3.2 in section 3.5. The proofs of these two important theorems are
provided with details. They widely rely on the eigenspace toolbox developed
in the previous chapter, section 2.6. Note that the Hencky strain is often used
in physics for pertinent interpretation of experimental observation, see e.g.
Graner et al. [66, sec. 3.1]. In section 3.6, the intermediate configuration
is introduced as a powerful concept for defining complex models, e.g. for vis-
coelastic materials. Finally, the new concept of thermal strain is developed
in section 3.7.

65
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3.1 Strain

The strain evaluates how much a displacement differs from a rigid body
displacement. From the study of the previous chapter, we choose to base our
study on the left Cauchy-Green tensor B. At equilibrium, B = I and, by
definition, the strain evaluates how much B differs from I.

0
0 1

λ+ λ−1 − 2

λ 0
0 t

tr
(
B +B−1 − 2I

)
fluid

solid

Fig. 3.1 (left) The function λ↦ λ + λ−1 − 2 (right) Solid and fluid behavior, adapted
from [159], Fig. 1.d.

Observe on Fig. 3.1.left that the function λ↦ λ + λ−1 − 2 is convex and posi-
tive in ]0,∞[ and that it vanishes at its minimum when λ = 1. Then, a scalar
measure of the strain could be evaluated by the norm tr (B +B−1 − 2I). In-
deed, this norm vanishes if and only if B = I. This scalar strain measure is
involved in many mathematical models, e.g. by the viscoelastic Oldroyd-B
fluid for its dissipation in (5.9), page 130.

Definition 3.1 (fluid and solid behavior).
When tr (B +B−1 − 2I) is uniformly bounded in time, the material behaves
as a solid. Otherwise it behaves as a fluid.

Fig. 3.1.right represents these two cases. Remark that, for a given model, some
regions in space could be associated with a solid behavior while some others
with a fluid one. So, this behavior is local only and most complex models
behave both as a solid and as a fluid, depending on some regions in space.
Moreover, these solid and fluid regions usually depend upon values of the
material parameters of the model, see e.g. Cheddadi et al. [24]. Next, observe
that tr (B +B−1 − 2I) = tr (B−1 (B − I)

2
). Then, this scalar measure of the

strain is interpreted as the norm of B − I in the B−1 metric, see remark 2.22.
The B − I expression is involved in a well-known strain tensor.



3.1. Strain 67

Heinrich Hencky Rodney Hill

Fig. 3.2 (left) Heinrich Hencky (1885-1951), photo from MIT Museum. (right) Rodney
Hill (1921-2011), photo by Edward Leigh of King’s parade, Cambridge [168].

Definition 3.2 (Green-Lagrange and Hencky strain tensors).

The left Green-Lagrange strain tensor is e =
1

2
(B − I). The left Hencky strain

is h = (1/2) logB, see Fig. 3.2.left. Note that, since B is symmetric positive
definite, its logarithm is well-defined from the Sylvester formula, proposi-
tion 2.28.

Remark 3.3 (extreme strain).
An extreme strain corresponds to an eigenvalue λi,B of the left Cauchy-
Green tensor B that either tends to zero or infinity. It means that the local
metric associated with B degenerates and a corresponding barrier ψ →∞
is expected for the Helmholtz energy in order to avoid such behavior. Note
that the scalar strain measure tr (B +B−1 − 2I) tends to infinity for any ex-
treme strain. When B → 0 then the Green-Lagrange strain e→ −I/2 while
the Hencky strain tends, in norm, to infinity. Finally, the Hencky strain di-
rectly detects any extreme strains. Thus, it is a better candidate, when com-
pared with the Green-Lagrange strain, for the description of the landscape
in the Helmholtz energy ψ. Let us now investigate more systematically all
other possible definitions of the strain tensor.

Definition 3.4 (left Hill [86] strains).
Let f ∶ ]0,∞[→ R be any strictly increasing, continuous and differentiable
function satisfying f(1) = 0 and f ′(1) = 1. It extends to an isotropic function
of a symmetric tensor, thanks to the Sylvester formula, see proposition 2.33,
Then, the associated left Hill strain is defined from the left stretch V by:

ef = f(V )

Proposition 3.5 (objectivity of left Hill’s strains).
All left Hill’s strains are objective.

https://webmuseum.mit.edu/media.php?module=people&type=related&kv=9795&media=3
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Proof: From proposition 2.15, the left Cauchy-Green tensor B is objec-
tive, and so is V =B1/2. Then, with the notations of section 2.3, the ten-
sor V transforms with a change of frame as V̂ =RV RT , where R ∈ O(N).
Next, from proposition 2.33, the function f extends as an isotropic func-
tion of a symmetric tensor. Then, from definition 2.30 of isotropy, we have
êf = f(V̂ ) = f (RV RT

) =R f(V )RT
=RefR

T i.e. the tensor ef is also ob-
jective. ∎

Definition 3.6 (Seth [167] strains).
The class of Hill’s strains contains all the commonly-used strains. For in-
stance, the class of Seth [167] strains are defined by the specific family of
functions, defined for all λ > 0 by fm(λ) = (λ2m − 1)/(2m) for any m ∈ R/{0}
and f0(λ) = logλ when m = 0. With m = 1, we obtain the left Green-Lagrange

strain e =
1

2
(B − I). Conversely, withm = 0, we get the left Hencky [84] strain

h = (1/2) logB.

Remark 3.7 (small displacement limit).
Let us introduce the displacement vector u(t,X) = χ(t,X) −X, for
any time t ⩾ 0 and X ∈ Ω0. The gradient of displacement ∇u sat-
isfies F = I +∇u. Introducing its symmetric part ε = sym(∇u), we
get B = FF T

= I + 2ε +∇u∇uT . The small displacement limit should take
into consideration the last term of the previous relation as a second order
one and, by linearization, one can then proceed to neglect it. Then, the
previous Hill’s strain becomes ef = f (B

1/2
) ≈ ε for any Hill’s function f

since f ′(1) = 1. Specifically, we have e ≈ ε and h ≈ ε.

3.2 Technics: matrix equation

In order to go further in the study of Hill’s strains and their time rates,
some technical tools are needed. This short section presents two lemmas on
matrix equations: the first lemma, in the symmetric case, is relatively classic,
while the second one, for the skew-symmetric case, is less known, contains
subtleties and thus, the complete proof is presented here.

Lemma 3.8 (matrix equation, symmetric case).
Let a ∈ RN×N

s and b ∈ RN×N be given. Then, the matrix equation:
(P ): find m ∈ RN×N such that

am +ma = b (3.1a)

admits an unique solution if and only if a satisfies:
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det(a)
ma

∏
i=1

ma

∏
j=i+1

(λi,a + λj,a) ≠ 0 (3.1b)

When this condition is satisfied, then the solution of (3.1a) is given by:

m =
ma

∑
i=1

ma

∑
j=1

P i,abP j,a

λi,a + λj,a
(3.1c)

Proof: See e.g. Jog [100, p. 180]. ∎

Lemma 3.9 (matrix equation, skew-symmetric case).
Let a,b ∈ RN×N

s be given. Then, the matrix equation:
(P ): find m ∈ so(N) such that

am −ma = b (3.2a)

admits a solution if and only if a and b satisfy the compatibility condition:

P i,abP i,a = 0, 1 ⩽ i ⩽ma (3.2b)

When this condition is satisfied, then the solutions of (3.2a) are given by:

m =
ma

∑
i=1

P i,am0P i,a +
ma

∑
j=1
j≠i

P i,abP j,a

λi,a − λj,a
(3.2c)

for any m0 ∈ so(N).

Proof: The proof is based on Xiao et al. [187, p. 92], see also Xiao [186].
● Assume first that the solution m ∈ so(N) exists. Then, after left and right
multiplying the left-hand-side of (3.2a) by P i,a and summing, we necessarily
obtain

P i,a(am −ma)P i,a = λi,aP i,amP i,a −P i,amλi,aP i,a = 0

where we have used (2.16c). Then (3.2b) is a necessary condition for the
solution to exist.
● Conversely, let us prove that (3.2b) is a sufficient condition. To this end,
we prove that if (3.2b) is satisfied, then (3.2c) is a solution of (3.2a) for
any m0 ∈ so(N). Indeed:
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am −ma =
ma

∑
i=1

ma

∑
j=1,j≠i

1

λi,a − λj,a
(aP i,abP j,a −P i,abP j,aa)

=
ma

∑
i=1

ma

∑
j=1,j≠i

1

λi,a − λj,a
(λi,a − λj,a)P i,abP j,a

=
ma

∑
i=1

ma

∑
j=1,j≠i

P i,abP j,a

=
ma

∑
i=1

ma

∑
j=1

P i,abP j,a by using condition (3.2b)

= b from (2.16d)

Thus the proof is complete. ∎

Remark 3.10 (non-uniqueness of the solution).
As pointed-out by Xiao [186, p. 3332], when all eigenvalues of a are distinct,
then for all m0 ∈ so(N) we have the following expansion:

ma

∑
i=1

P i,am0P i,a =
N

∑
k=1

(nk,a ⊗nk,a)m0(nk,a ⊗nk,a)

=
N

∑
k=1

((m0nk,a).nk,a) nk,a ⊗nk,a

= 0

since m0 ∈ so(N). Thus, in that case, the solution is uniquely deter-
mined by (3.2c). Otherwise, when a admits repeated eigenvalues, the skew-
symmetric matrix equation admits an infinity of solutions. Nevertheless,
Guo et al. [77] pointed out that, in some applications when a depends con-
tinuously upon a parameter, such as the time, a continuity argument allows
us to completely determine m0 and to obtain the unicity of the solution.

3.3 Technics: rate of matrix function

Our goal is still to study the time rate of Hill’s strains ef = f(V ), so, let’s
first study in detail the rate of a function of a symmetric tensor argument.
The main result of this section is proposition 3.12, preceded by a lemma and
followed by two corollaries.
Let a be a symmetric tensor, i.e. a function: a ∶ R→ RN×N

s that is associated
with each time t ∈ R a symmetric matrix a(t). Also .

a denotes its Lagrangian
rate. Following Hoger [88, p. 1029] and Guo et al. [77], let us introduce the
convenient concept of twirl spin tensor for the expression of the rate of eigen-
vectors.
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Lemma 3.11 (eigenvector rate, Hoger [88, p. 1029]).
For all symmetric tensor a, we introduce the twirl spin tensor, denoted
by W (twi)

a , such that the rate of all the eigenvectors satisfy:

.
nk,a =W

(twi)
a nk,a, 1 ⩽ k ⩽ N (3.3a)

It admits the following explicit expression:

W (twi)
a = −

ma

∑
i=1

ma

∑
j=1
j≠i

P i,a
.
aP j,a

λi,a − λj,a
(3.3b)

Proof: Taking the rate of the spectral decomposition (2.15), leads to:

.
a =

N

∑
k=1

.
λIa(k),ank,a ⊗nk,a + λIa(k),a

.
nk,a ⊗nk,a + λIa(k),ank,a ⊗

.
nk,a

=
N

∑
k=1

.
λIa(k),ank,a ⊗nk,a + λIa(k),a(W

(twi)nk,a)⊗nk,a

+ λIa(k),ank,a ⊗ (W
(twi)nk,a) from (3.3a)

=
ma

∑
i=1

.
λi,aP i,a +W

(twi)
a a − aW (twi)

a

that is written equivalently:

aW (twi)
a −W (twi)

a a =
ma

∑
i=1

.
λi,aP i,a −

.
a (3.4)

For a given a, we recognize in (3.4) a matrix equation, as formulated in
proposition 3.9, in terms of the unknown W (twi)

a .
● For any 1 ⩽ j ⩽ ma, by left and right multiplying the previous relation
by P j,a, we get:

P j,a (
ma

∑
i=1

.
λi,aP i,a −

.
a)P j,a = P j,a (aW

(twi)
a −W (twi)

a a)P j,a = 0 (3.5)

since P j,aa = aP j,a = λj,aP j,a. Thus, from proposition 3.9, the necessary
and sufficient condition (3.2b) for the solution W (twi)

a of (3.4) to exist is
satisfied. Note that, from (2.16e)-(2.16f), relation (3.5) is written equivalently:

.
λj,aP j,a = P j,a

.
aP j,a, 1 ⩽ j ⩽ma (3.6)

● Applying proposition 3.9, the solution of (3.4) expands as:
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W (twi)
a =

ma

∑
i=1

P i,aW t,0P i,a +
ma

∑
j=1,j≠i

P i,a (
ma

∑
m=1

.
λm,aPm,a −

.
a)P j,a

λi,a − λj,a

=
ma

∑
i=1

P i,aW t,0P i,a +
ma

∑
j=1,j≠i

P i,a (
.
λj,aP j,a −

.
a)P j,a

λi,a − λj,a

from (2.16e)-(2.16f)

=
ma

∑
i=1

P i,aW t,0P i,a −
ma

∑
j=1,j≠i

P i,a
.
aP j,a

λi,a − λj,a
from (2.16f)

Following remark 3.10, the twirl tensor is not uniquely determined by
the previous characterization in the case of repeated eigenvalues for a.
Xiao [186, p. 3332] which is interpreted by the computation done by
Guo et al. [77] as the choice W t,0 = 0 in the case of repeated eigenvalues.
Indeed, Guo et al. [77] used a continuity argument of a versus the time for
determining W t,0 = 0. Then we obtain (3.3b) and the proof is complete. ∎

Proposition 3.12 (rate of a composition by a function, Xiao [186, p. 3332]).

Let φ ∶ R→ R be any differentiable function that extends as an isotropic func-
tion on symmetric tensors. Then we have, for all symmetric tensor a:

d

dt
{φ(a)} =

ma

∑
i=1

φ′(λi,a)P i,a
.
aP i,a

+
ma

∑
j=1,j≠i

φ(λi,a) − φ(λj,a)

λi,a − λj,a
P i,a

.
aP j,a (3.7)

Proof: The proof is based on Xiao [186, p. 3332]. From the spectral decom-
position (2.15), and the decomposition (2.16a) upon the eigenprojectors, we
have:

φ(a) =
N

∑
k=1

φ(λIa(k),a)nk,a ⊗nk,a =
ma

∑
i=1

φ(λi,a)P i,a (3.8)

Taking the rate of the previous relation, we get:
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d

dt
{φ(a)} =

N

∑
k=1

.
λIa(k),a φ

′
(λIa(k),a)nk,a ⊗nk,a

+ φ(λIa(k),a)
.
nk,a ⊗nk,a + φ(λIa(k),a)nk,a ⊗

.
nk,a

=
N

∑
k=1

.
λIa(k),a φ

′
(λIa(k),a)nk,a ⊗nk,a

+ φ(λIa(k),a) (W
(twi)
a nk,a)⊗nk,a

+ φ(λIa(k),a)nk,a ⊗ (W
(twi)
a nk,a)

from lemma 3.11, relation (3.3a)

=
ma

∑
i=1

.
λi,a φ

′
(λi,a)P i,a +W

(twi)
a φ(a) − φ(a)W (twi)

a

from (2.16a) and (3.8)

=
ma

∑
i=1

φ′(λi,a)P i,a
.
aP i,a +W

(twi)
a φ(a) − φ(a)W (twi)

a from (3.6)

Expanding W (twi)
a from its characterization (3.3b), we get successively:

W (twi)
a φ(a) = −

⎛

⎝

ma

∑
i=1

ma

∑
j=1,j≠i

P i,a
.
aP j,a

λi,a − λj,a

⎞

⎠
(

ma

∑
m=1

φ(λm,a)Pm,a)

= −
ma

∑
i=1

ma

∑
j=1,j≠i

φ(λj,a)

λi,a − λj,a
P i,a

.
aP j,a from (2.16f)

φ(a)W (twi)
= −

ma

∑
i=1

ma

∑
j=1,j≠i

φ(λi,a)

λi,a − λj,a
P i,a

.
aP j,a

and

W (twi)φ(a) − φ(a)W (twi)
=

ma

∑
i=1

ma

∑
j=1,j≠i

φ(λi,a) − φ(λj,a)

λi,a − λj,a
P i,a

.
aP j,a

Finally

d

dt
{φ(a)} =

ma

∑
i=1

φ′(λi,a)P i,a
.
aP i,a +

ma

∑
j=1,j≠i

φ(λi,a) − φ(λj,a)

λi,a − λj,a
P i,a

.
aP j,a

and the proof is complete. ∎

Corollary 3.13 (derivative of a Sylvester’s extension of a function).
Let φ ∶ R → R be any differentiable function that extends as an isotropic
function on symmetric matrices (see proposition 2.33). Then, the derivative
of this extension is expressed, for all a ∈ RN×N

s , by:
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dφ

da
(a) =

ma

∑
i=1

φ′(λi,a)P i,a ⊠P i,a

+
ma

∑
j=1,j≠i

φ(λi,a) − φ(λj,a)

λi,a − λj,a
P i,a ⊠P j,a (3.9)

where ⊠ denotes the tensor product of two second order tensors (see notations
page 6).

Proof: By definition of the derivative, for any time-dependent symmetric
second-order tensor ã(t), t ∈ R, we have d/dt(φ(ã(t))) = φ′(ã(t)) ∶

.
ã(t) and

then the result follows from proposition 3.12 and from the definition of the
notation ⊠ page 6. ∎

Remark 3.14 (derivative of a Sylvester’s extension of a function).
Note the presence of the non-trivial second sum in the right-hand-side
of (3.9), which is, in general, non-zero. Thus, the derivative of the Sylvester
extension, denoted by dφ/da(a), does not coincide with the Sylvester exten-
sion of the derivative, denoted by φ′(a), which corresponds to the first sum
on the right-hand-side of (3.9). The following corollary furnishes an interpre-
tation of φ′(a).

Corollary 3.15 (derivative of the trace of a matrix-valued function).
Let φ ∶ R→ R be any differentiable function that extends as an isotropic func-
tion on symmetric matrices (see proposition 2.33). Let φ̂ ∶ RN×N

s → R be
defined by: φ̂(a) = tr (φ(a)) for all a ∈ RN×N

s . Then

dφ̂

da
(a) = φ′(a), ∀a ∈ RN×N

s

where φ′ denotes the extension as an isotropic function on symmetric matri-
ces of the usual derivative function φ′ ∶ R→ R.

Proof: For all a,b ∈ RN×N
s and ε > 0, we have the expansion:

φ̂(a + εb) − φ̂(a) = (φ(a + εb) − φ(a)) ∶I

= ε(
dφ

da
(a) ∶b) ∶I +O (ε2)

= ε(
dφ

da
(a) ∶I) ∶b +O (ε2)

by symmetry of the fourth-order tensor dφ/da from corollary 3.13, rela-
tion (3.9). Then

dφ̂

da
(a) ∶b = lim

ε→0

φ̂(a + εb) − φ̂(a)

ε

by definition of the usual Gâteau derivative, and then
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dφ̂

da
(a) =

dφ

da
(a) ∶I from the previous expansion

=
ma

∑
i=1

φ′(λi,a)P i,aI P i,a +
ma

∑
j=1,j≠i

φ(λi,a) − φ(λj,a)

λi,a − λj,a
P i,aI P j,a

after expanding (3.9)

=
ma

∑
i=1

φ′(λi,a)P i,a

from lemma 2.27, relations (2.16e) and (2.16f)
= φ′(a)

by definition of the Sylvester’s extension φ′ of a scalar-valued to a matrix-
valued function, proposition 2.28, relation (2.17). ∎

Lemma 3.16 (inverse of a sum of eigenprojector-based fourth-order tensors).

For all a ∈ RN×N
s and bi,j ∈ R/{0}, 1 ⩽ i, j ⩽ma, we have:

⎛

⎝

ma

∑
i,j=1

bi,jP i,a ⊠P j,a

⎞

⎠

−1

=
ma

∑
i,j=1

b−1i,jP i,a ⊠P j,a

Proof: By expansion, we have:

⎛

⎝

ma

∑
i,j=1

bi,jP i,a ⊠P j,a

⎞

⎠

−1
⎛

⎝

ma

∑
m,n=1

b−1m,nPm,a ⊠P n,a

⎞

⎠

=
ma

∑
i,j,m,n=1

bi,jb
−1
m,n (P i,a ⊠P j,a) (Pm,a ⊠P n,a)

=
ma

∑
i,j,m,n=1

bi,jb
−1
m,n (P i,aPm,a) ⊠ (P j,aP n,a)

from (0.5), page 6

=
ma

∑
i,j=1

P i,a ⊠P j,a

from lemma 2.27, relations (2.16e) and (2.16f)

= (
ma

∑
i=1

P i,a) ⊠
⎛

⎝

ma

∑
j=1

P j,a

⎞

⎠

= I ⊠ I

from lemma 2.27, relation (2.16d)

Since I ⊠ I represents the fourth-order identity, the proof is complete. ∎
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Corollary 3.17 (inverse of the derivative of a Sylvester’s extension).
Let φ ∶ R→ R be any differentiable function that extends as an isotropic func-
tion on symmetric matrices. Then, for all a ∈ RN×N

s such that φ′(λi,a) ≠ 0,
1 ⩽ i ⩽ma, the inverse of the derivative of the Sylvester’s extension of φ ad-
mits the following explicit expression:

(
dφ

da
(a))

−1

=
ma

∑
i=1

1

φ′(λi,a)
P i,a ⊠P i,a

+
ma

∑
j=1,j≠i

λi,a − λj,a

φ(λi,a) − φ(λj,a)
P i,a ⊠P j,a (3.10)

Proof: as a direct consequence of corollary 3.13 and lemma 3.16. ∎

3.4 Strain rate

By investigating the time rate of general Hill’s strains, this section states
theorem 3.1, which is one of the two most important results of this chapter.
This theorem is preceded by two lemmas, one for obtaining an expression
for

.
V versus D and W and the other, for an expression of D versus

.
V

and W . This theorem introduces a new corotational rate, the logarithmic
rate, that is found to be objective. The section closes with a corollary related
to an eigenview of the stretching D as a Lagrangian rate of a strain.

Lemma 3.18 (rate of the left stretch tensor).
The rate of the left stretch tensor V is expressed in terms of the velocity
gradient ∇v =W +D as:

.
V =

mV

∑
i=1

mV

∑
j=1

− (λi,V −λj,V )P i,V W P j,V +
λ2i,V +λ

2
j,V

λi,V +λj,V
P i,V DP j,V (3.11)

Proof: The prof is based on Xiao et al. [187, eqn (40)]. From V 2
=B = FF T

and by differentiation, we obtain successively:

.
V V +V

.
V =

.
FF T

+F
.
F T

= ∇vFF T
+FF T

∇vT from (2.2a)

= ∇vV 2
+V 2

∇vT

= WV 2
−V 2W +DV 2

+V 2D (3.12)

Consider the left-hand-side of the previous relation: left multiplying by P i,V

and right multiplying by P j,V leads to:
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P i,V (
.
V V +V

.
V )P j,V

= P i,V (
.
V (

mV

∑
m=1

λm,V Pm,V ) + (
mV

∑
m=1

λm,V Pm,V )
.
V )P j,V from (2.16a)

= (λi,V + λj,V )P i,V

.
V P j,V from (2.16f)

This can be written equivalently as:

P i,V

.
V P j,V

= (λi,V + λj,V )
−1

P i,V (
.
V V +V

.
V )P j,V

= (λi,V + λj,V )
−1

P i,V (WV 2
−V 2W +DV 2

+V 2D)P j,V from (3.12)

= (λi,V + λj,V )
−1

P i,V {W (
mV

∑
m=1

λ2m,V Pm,V ) − (
mV

∑
m=1

λ2m,V Pm,V )W

+D (
mV

∑
m=1

λ2m,V Pm,V ) + (
mV

∑
m=1

λ2m,V Pm,V )D}P j,V

from (2.16a)

= (λi,V + λj,V )
−1
{− (λ2i,V − λ

2
j,V )P i,V WP j,V + (λ

2
i,V + λ

2
j,V )P i,V DP j,V }

from (2.16f)

= − (λi,V − λj,V )P i,V WP j,V +
λ2i,V + λ

2
j,V

λi,V + λj,V
P i,V DP j,V

Then, the result follows from (2.16b). ∎

Lemma 3.19 (stretching).
The stretching D is expressed in terms of the rate of the left stretch

.
V and

the vorticity W as:

D =
mV

∑
i=1

mV

∑
j=1

λ2i,V − λ
2
j,V

λ2i,V + λ
2
j,V

P i,V WP j,V +
λi,V + λj,V

λ2i,V + λ
2
j,V

P i,V

.
V P j,V (3.13)

Proof: Relation (2.14a) is written also as

BD +DB =
.
B +BW −WB

and we recognize a symmetric matrix equation as in lemma 3.8, equa-
tion (3.1a). As B = V 2 is symmetric definite positive, we have λi,B > 0
and then condition (3.1b) is satisfied. Then, its solution exists and is given
by (3.1c), which is written here:
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D =
mB

∑
i=1

mB

∑
j=1

(λi,B + λj,B)
−1

P i,B (
.
B +BW −WB)P j,B

=
mV

∑
i=1

mV

∑
j=1

(λ2i,V + λ
2
j,V )

−1
P i,V (

.
V V +V

.
V +V 2W −WV 2

)P j,V

=
mV

∑
i=1

mV

∑
j=1

λi,V + λj,V

λ2i,V + λ
2
j,V

P i,V

.
V P j,V +

λ2i,V − λ
2
j,V

λ2i,V + λ
2
j,V

P i,V WP j,V

from (2.16f) and (2.16a)

which is exactly (3.13) and then the proof is complete. ∎

Definition 3.20 (corotational rate of a tensor).
Let W (∗) be any skew-symmetric tensor varying with the time, and called
the spin tensor. It defines a rotating configuration relative to the reference
one. For any tensor a, the associated corotational rate of a is defined by:

○
a(∗) =

.
a −W (∗)a + aW (∗) (3.14)

Note that the classical Zaremba-Jaumann corotational rate is obtained with
W (∗)

=W , which is the vorticity, see definition 2.9, page 44.

Remark 3.21 (interpretation of the corotational tensor rate).
Let r(∗) be the rotation function associated with the spin, i.e. such that
W (∗)

=
.
r(∗)Tr(∗). The tensor a in the reference configuration is observed in

the rotating configuration associated with the spin W (∗) as r(∗)ar(∗)T and
its rate is then

d

dt
(r(∗)ar(∗)T ) = r(∗)

○
a(∗)r(∗)T

Thus, the corotational rate is simply the rate as observed in the rotating
configuration.

Remark 3.22 (objectivity of the corotational tensor rate).
The general corotational rate expressed by (3.14) is not necessarily objec-
tive: consider for instance W (∗)

= 0. See Xiao et al. [188] for a necessary and
sufficient condition upon W (∗) for a corotational rate to be objective.

The following logarithmic corotational rate was introduced independently
in 1991 by Lehmann et al. [113], in 1996 by Reinhardt and Dubey [154, 155]
and in 1997 by Xiao et al. [187, p. 92].

Theorem 3.1 (stretching as a rate of the left Hencky strain).
There exists an unique left Hill strain (see definition 3.4) and an unique
corotational rate (see definition 3.20) such that the symmetric part D of the
velocity gradient ∇v is expressed as a corotational rate of an Hill strain. This
Hill strain is the Hencky strain h = logV and this corotational rate is the
logarithmic rate, such that:

○

h(log) = D (3.15a)
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The logarithmic rate is defined for all symmetric tensor a by:

○
a(log) =

.
a −W log(a,∇v)a + aW log(a,∇v) (3.15b)

and its associated spin W log operator, called the logarithmic spin, is expressed
for all L ∈ RN×N by:

W log(a,L) = skw(L) −
ma

∑
i,j=1

κlog (λi,a−λj,a)P i,asym(L)P j,a (3.15c)

where, for all ξ ∈ R:

κlog(ξ) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1

tanh ξ
−
1

ξ
when ξ ≠ 0

0 otherwise

(3.15d)

Proof: The proof is based on Xiao et al. [187]. Let us consider an arbitrary
Hill’s strain ef with its associated function denoted by f , see definition 3.4.
We also consider an arbitrary corotational rate associated with the spin W (∗).
We are looking for some conditions on f and W (∗) such that the following
relation occurs:

○
e
(∗)

f = D

● From the definition (3.14) of the corotational rate, the previous equation is
written equivalently as:

efW
(∗)
−W (∗)ef = D −

.
ef (3.16)

For a given ef and an unknown W (∗), this corresponds to a matrix equation
as in proposition 3.9. Its solution exists if and only if the condition (3.2b) is
satisfied. This condition is written here as:

P i,V (D −
.
ef)P i,V = 0, 1 ⩽ i ⩽mV

Expanding .
ef from proposition 3.12, relation (3.7), and using (2.16f), this

condition is written equivalently as:

P i,V (D − f
′
(λi,V )

.
V )P i,V = 0, 1 ⩽ i ⩽mV

After left and right multiplying (3.11) by the eigenprojector, we get:

P i,V

.
V P i,V = λi,V P i,V DP i,V , 1 ⩽ i ⩽mV

Replacing this expression of
.
V in the previous relation leads to:
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(1 − λi,V f ′(λi,V ))P i,V DP i,V = 0, 1 ⩽ i ⩽mV

Since this proposition should be true for any D and V , the previous relation
is equivalent to

1 − λf ′(λ) = 0, ∀λ > 0

By definition 3.4 of the Hill’s strain, f(1) = 0 and then, an integration of
the previous differential equation in f yields f(λ) = logλ. This solution f is
strictly increasing and satisfies f ′(1) = 1. Thus, the unique left Hill strain ef
for which a solution exists is the left Hencky strain h = logV .
● From lemma 3.9, the solution of (3.16) is then given by expanding (3.2c),
which is written here as:

W (∗)
=

mV

∑
i=1

P i,V W 0P i,V +
mV

∑
j=1
j≠i

P i,V (D −
.
h)P j,V

logλi,V − logλj,V

where W 0 is an arbitrarily skew-symmetric tensor. From proposition 3.12,
relation (3.7), the Lagrangian rate of h = logV is expressed as:

.
h =

mV

∑
m=1

Pm,V

.
V Pm,V

λm,V
+

mV

∑
n=1
n≠m

logλm,V − logλn,V

λm,V − λn,V
Pm,V

.
V P n,V

Then, for all i ≠ j we have, with (2.16f):

P i,V

.
hP j,V =

logλi,V − logλj,V

λi,V − λj,V
P i,V

.
V P j,V

and the previous expression of the solution W (∗) becomes:

W (∗)
=

mV

∑
i=1

P i,V W 0P i,V +
mV

∑
j=1
j≠i

P i,V DP j,V

logλi,V − logλj,V
−
P i,V

.
V P j,V

λi,V − λj,V

=
mV

∑
i=1

P i,V W 0P i,V +
mV

∑
j=1
j≠i

P i,V W P j,V

+
mV

∑
j=1
j≠i

⎛

⎝

1

logλi,V − logλj,V
−
λ2i,V + λ

2
j,V

λ2i,V − λ
2
j,V

⎞

⎠
P i,V DP j,V

from (3.11). Following remark 3.10, in the case of distinct eigenvalues for V ,
the first term involving W 0, on the right-hand-side of the previous relation,
vanishes. Thus, in that case, the solution W (∗) is uniquely determined by
the previous relation. Otherwise, in the case of repeated eigenvalues for V ,
we have to choose W 0 =W , the vorticity tensor, in order for the solution to
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be continuous versus V . Finally, from (2.16b) we obtain:

W (∗)
=W +

mV

∑
i=1

mV

∑
j=1
j≠i

⎛

⎝

1

logλi,V − logλj,V
−
λ2i,V + λ

2
j,V

λ2i,V − λ
2
j,V

⎞

⎠
P i,V DP j,V

As V and h share the same eigenbasis P i,V = P i,h and λi,V = expλi,h and
then, we obtain:

W (∗)
=W −

mh

∑
i=1

mh

∑
j=1
j≠i

(
1

tanh (λi,h − λj,h)
−

1

λi,h − λj,h
)P i,hDP j,h

Observe that the function κlog(ξ) = 1/ tanh(ξ) − 1/ξ can be extended by con-
tinuity as κlog(0) = 0. This function is odd, strictly increasing on [0,∞[ and
limξ→∞ κlog(ξ) = 1. With these notations we obtain (3.15c) and the proof is
complete. ∎

u(t,X) v(t,x)

∇x

=
∂u

∂t
(t,χ−1(t,x))= χ(t,X)−X

∇X

∇v(t,x)

f1(G)

=
1

2
log((I+G)(I+G)T )

h(t,X)

= f1(∇Xu(t,X))

f2(G)

=
1

2
(G+GT )

D(t,x)

= f2(∇v(t,x))

=
◦

h
(log)

(t,χ−1(t,x)))

∂t and χ
−1

◦.(log) and χ−1

∇Xu(t,X)

Fig. 3.3 Commutation diagram between the displacement vector u, the left Hencky strain
tensor h, the velocity vector v and the stretching tensor D.

Remark 3.23 (practical evaluation of the logarithmic spin).
For the numerical evaluation of the logarithmic rate, the logarithmic
spin W log(a,∇v) has to be evaluated. From its definition (3.15c), the
logarithmic spin depends only upon a and ∇v. Observe first that it de-
pends linearly upon ∇v: it requires only to split it into symmetric D and
skew-symmetric W parts. In contrast, its dependence upon a is strongly
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nonlinear. Nevertheless, it requires only the computations of eigenvalues
eig(a) = (λi,a)1⩽i⩽ma

and not eigenvectors, since the eigenprojector P j,a

then is expressed explicitly, thanks to lemma 2.29.

Remark 3.24 (commutation diagram).
Fig. 3.3 proposes a commutation diagram between the displacement vector u,
the left Hencky strain tensor v, the velocity vector v and the stretching
tensor D: this diagram is elegantly closed by relation (3.15a). Moreover, from
the Clausius-Duhem inequality (1.24), the term σ ∶D = σ ∶

○

h(log)is interpreted
now as a duality product between the Cauchy stress σ and the logarithmic
corotational rate of the left Hencky strain h. This interpretation in terms of
duality is the cornerstone of the thermodynamic framework proposed in the
forthcoming chapter 4.

Remark 3.25 (explicit check vs Xiao et al. [187]).
In Xiao et al. [187, p. 97], eqn (41), the logarithmic spin was expressed as:

W log =W +
mB

∑
i,j=1
i≠j

[(
1 + (λi,B/λj,B)

1 − (λi,B/λj,B)
+

2

log(λi,B/λj,B)
)P i,BDP j,B]

=W −
mB

∑
i,j=1
i≠j

κxiao (
log(λi,B/λj,B)

2
)P i,BDP j,B

with

κxiao(ξ) =
1 + exp(−2ξ)

1 − exp(−2ξ)
−
1

ξ
=

1

tanh ξ
−
1

ξ
= κlog(ξ)

and
log(λi,B/λj,B)

2
= λi,h − λj,h

and thus these two formula for W log coincide.

Proposition 3.26 (objectivity of the logarithmic rate).
For any objective tensor a, its logarithmic rate ○a(log) is objective.

Proof: The proof is similar to those of proposition 2.21 for the objectivity
of the Gordon-Schowalter rate. From propositions 2.8 and 2.11, both the
Zaremba-Jaumann corotational rate and the stretching tensor D are ob-
jective. Then, the logarithmic rate, obtained by (3.15b)-(3.15c) from the
Zaremba-Jaumann corotational rate with an additional term involving D,
is also objective. ∎

This last corollary of the section will be useful when building the thermody-
namic framework during the next chapter 4.

Corollary 3.27 (eigenview of the stretching).
The left Hencky strain h and the stretching D satisfy:
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(D −
.
h) ∶a = 0, for all a ∈ eigsp(h)

It means that the stretching D, appears, from the eigenspace of h, as a La-
grangian rate of h, i.e. for all symmetric test-tensor a that share the same
eigenbasis as h.

Proof: Applying lemma 3.19, the stretching D is expressed by (3.13). Then,
left and right multiplying (3.13) by P i,V we obtain

P i,V DP i,V = λ
−1
i,V P i,V

.
V P i,V (3.17)

Note that eigsp(h) = eigsp(V ) since h = logV shares the same eigenbasis.
Let any a = ∑

mV

m=1 amPm,V ∈ eigsp(V ). Next, expanding, we get:

D ∶a = tr(Da)

= tr
⎛

⎝

⎛

⎝

mV

∑
i=1

mV

∑
j=1

P i,V DP j,V

⎞

⎠
(
mV

∑
m=1

amPm,V )
⎞

⎠
from (2.16b)

= tr(
mV

∑
i=1

aiP i,V DP i,V ) from (2.16f)

= tr(
mV

∑
i=1

ai λ
−1
i,V P i,V

.
V P i,V ) from (3.17)

On the other hand, applying (3.7) with φ(ξ) = log ξ, ξ ∈ R, and using (2.16f),
we get:

P i,V

.
hP i,V = λ

−1
i,V P i,V

.
V P i,V

Then, expanding, we obtain:
.
h ∶a = tr(

.
ha)

=
mV

∑
i=1

aiP i,V

.
hP i,V from (2.16b) and (2.16f)

=
mV

∑
i=1

ai λ
−1
i,V P i,V

.
V P i,V

Grouping, we get D ∶a =
.
h ∶a and then the proof is complete. ∎

Remark 3.28 (spherical and deviatoric Hencky strains).
Recall that, from kinematics, section 2.1, page 31, we
have ρ(t,X) = ρ0(X) (detF (t,X))

−1 for any t ⩾ 0 and X ∈ Ω0 and
where ρ0 is the mass density in the reference configuration. This relation is
written equivalently as

log(ρ/ρ0) = − log detF = −
1

2
log detB = −trh

⇐⇒ ρ = ρ0 exp (−trh) (3.18)
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Next, on the one hand, by a simple time derivation
.
Ïlog ρ = −tr

.
h.

On the other hand, by using the mass conservation (0.1), observe
that

.
Ïlog ρ =

.
ρ/ρ = −divv = −trD. Then, let us introduce the split-

ting h = hs +hd in spherical and deviatoric parts, with hs = −
log(ρ/ρ0)

N
I

and hd = devh. From, theorem 3.1, we get the corresponding

splitting D =Ds +Dd of their rates Ds
def
=

○

h(log)s =
.
hs =

trD

N
I

and Dd
def
=

○

h
(log)
d =

○

h(log)−
○

h(log)s = devD.

3.5 Stress

This section is dedicated to the Helmholtz energy ψ, considered as a potential
for obtaining the reversible part σe of the Cauchy stress, as shown in theo-
rem 2.1, page 36. In 1997, Xiao et al. [187, 189, p. 95] showed that σe is the
conjugate of the left Hencky strain h via the Helmholtz energy ψ. This impor-
tant result is presented in the next theorem 3.2, accompanied by a new and
more direct proof. The proof starts with a technical lemma which explores
all the Hill’s stress-strain conjugacy pairs and fully expands an expression for
the Hill’s conjugate stress.

Definition 3.29 (left Hill’s stress and strain conjugacy).
Let f ∶ ]0,∞[→ R be any strictly increasing, continuous and differentiable
function satisfying f(1) = 0 and f ′(1) = 1. It extends to an isotropic function
of a symmetric tensor, thanks to the Sylvester formula, see proposition 2.33,
Let ψ ∶ GL+(N)→ R be an objective-isotropic Helmholtz energy. From corol-
lary 2.36, there exists a function ψ̃ ∶ RN×N

s → R defined by

ψ̃ (ef) = ψ (F ) , ∀F ∈ GL+(N) where ef = f ((FF T
)

1
2
)

denotes the left Hill’s strain introduced in definition 3.4.
Then, the left Hill [86] stress associated to the left Hill’s strain ef is defined
by:

σf = ρ
∂ψ̃

∂ef
(ef) (3.19)

Lemma 3.30 (explicit expression for left Hill’s stress).
With the notations of definition 3.29, the left Hill stress is given by:

σf =
mV

∑
i=1

1

λi,V f ′(λi,V )
P i,V σeP i,V (3.20)
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where σe denotes the reversible part of the Cauchy stress tensor, defined
from ψ by (2.7a).

Proof: Let any F ∈ GL+(N), and G ∈ RN×N . Since det(F ) > 0 and the func-
tion ε↦ det(F + εG) is continuous, there exists ε0 > 0 such that, for all
ε ∈ [0, ε0[, we have det(F + εG) > 0. Let B = FF T

= V 2. For convenience,
let g be a real function defined for all ξ ∈ ]0,∞[ by g(ξ) = f(

√
ξ). Then g ex-

tends to an isotropic function of symmetric tensors, thanks to the Sylvester
formula, see proposition 2.33 and ef = g(B). From corollary 3.13, the no-
tation dg/dB(B) represents the fourth-order-tensor valued function which
is the derivative of this extension. Then, with these notations and from the
definition of ψ̃, we have,

ψ(F ) = ψ̃ (g (B))

ψ(F + εG) − ψ(F ) = ψ̃ (g ((F + εG) (F + εG)
T
)) − ψ̃ (g (B))

= ψ̃ (g (B) + ε
dg

dB
(B) ∶(FGT

+GF T
) +O (ε2))

− ψ̃ (g (B))

= ε
∂ψ̃

∂ef
(ef) ∶(

dg

dB
(B) ∶(FGT

+GF T
)) +O (ε2)

∂ψ

∂F
(F ) ∶G = lim

ε→0

ψ(F + εG) − ψ(F )

ε

=
∂ψ̃

∂ef
(ef) ∶(

dg

dB
(B) ∶(FGT

+GF T
))

For convenience, let us denote by A = 2
dg

dB
(B) the fourth-order tensor. From

corollary 3.13, it expands as

A =
mB

∑
i=1

2g′(λi,B)P i,B ⊠P i,B

+ 2
mB

∑
j=1
j≠i

g(λi,B)−g(λj,B)

λi,B − λj,B
P i,B ⊠P j,B (3.21a)

This tensor presents several symmetries: denoting Aαβγδ its components in
any orthonormal basis, we have Aαβγδ = Aγδαβ = Aβαγδ = Aαβδγ . Note also

that both
∂ψ̃

∂ef
(ef) and FGT

+GF T are symmetric. Exploiting these sym-

metries leads to
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∂ψ

∂F
(F ) ∶G = ((A ∶

∂ψ̃

∂ef
(ef))F) ∶G, ∀G ∈ RN×N

⇐⇒
∂ψ

∂F
(F ) = (A ∶

∂ψ̃

∂ef
(ef))F

⇐⇒ A ∶
∂ψ̃

∂ef
(ef) =

∂ψ

∂F
(F )F −1

⇐⇒ A ∶σf = σeB
−1 (3.21b)

after multiplication by ρ and from the definition (3.19) of σf and that (2.7a)
of σe while using B−1 = F −TF −1. Next, observe the expansion (3.21a) of A.
This fourth-order tensor is diagonal in the nα,B ⊗nβ,B ⊗nγ,B ⊗nδ,B basis,
1 ⩽ α,β, γ, δ ⩽ N . Moreover, since the function f is strictly increasing, so is g
in ]0,∞[ and then both g′(λi,B) ≠ 0 and g(λi,B) ≠ g(λj,B) when i ≠ j. Thus,
the diagonal coefficients of A are non-zero and A is invertible. Finally, its
inverse is written explicitly as:

A−1 =
mB

∑
i=1

1

2g′(λi,B)
P i,B ⊠P i,B +

mB

∑
j=1
j≠i

λi,B − λj,B

2 (g(λi,B) − g(λj,B))
P i,B ⊠P j,B

Both B and V share the same eigenbasis i.e. mB =mV and P i,B = P i,V ,
1 ⩽ i ⩽mV while λi,B = λ2i,V . Then

A−1 =
mV

∑
i=1

λi,V

f ′(λi,V )
P i,V ⊠P i,V +

mV

∑
j=1
j≠i

λ2i,V − λ
2
j,V

2 (f(λi,V )−f(λj,V ))
P i,V ⊠P j,V

where we have expressed g in terms of f . Then, from (3.21b), we get succes-
sively, after expanding A−1:

σf = A−1 ∶(σeB
−1
)

=
mV

∑
i=1

λi,V

f ′(λi,V )
P i,V σeB

−1P i,V

+
mV

∑
j=1
j≠i

λ2i,V − λ
2
j,V

2 (f(λi,V )−f(λj,V ))
P i,V σeB

−1P j,V

Replacing B−1 by its expansion (2.16a) on the eigenprojectors

B−1 = V −2 =
mV

∑
m=1

λ−2m,V Pm,V

in the previous expression of σf and using (2.16e)-(2.16f), we get:
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σf =
mV

∑
i=1

1

λi,V f ′(λi,V )
P i,V σeP i,V

+
mV

∑
j=1
j≠i

λ2i,V − λ
2
j,V

2λ2j,V (f(λi,V )−f(λj,V ))
P i,V σeP j,V

Since ψ is objective-isotropic, then from corollary 2.40, both σe and V
share the same eigensystem, see also remark 2.41. As a consequence,
P i,V σeP j,V = 0 when i ≠ j and the second sum in the previous expression is
zero. Thus, (3.20) is directly obtained. ∎

Theorem 3.2 (reversible stress σe and left Hencky strain h).
Assume that the Helmholtz energy ψ is objective-isotropic. Then, there ex-
ists a unique left Hill’s strain such that its conjugacy stress is the reversible
stress σe: this strain is the left Hencky strain h. The Helmholtz energy ψ can
be expressed equivalently in terms of h and the reversible stress is expressed
as:

σe = ρ
∂ψ

∂h
(h) (3.22)

Moreover, the reversible stress σe and the left Hencky strain h share the same
eigenbasis i.e. σe ∈ eigsp(h).

Proof: From (3.20), the relation σf = σe holds if and only if the fourth-
order operator involved in (3.20) is the identity. Then, necessarily, we
have λf ′(λ) = 1 for all λ > 0 i.e. f(λ) = logλ, since f should satisfy f(1) = 0.
This condition is also sufficient, and then, from definition 3.4 of the left Hill’s
strain, the left Hencky strain is the unique solution. ∎

Remark 3.31 (change of variable).
The left Hencky strain h could be used as a pivot for changing to var-
ious strain measures. For instance, many authors directly use the left
Cauchy-Green tensor B = exp(2h). Note that ∂hB = 2 exp(2h) = 2B and
then, from (3.22), we get

σe = ρ
∂B

∂h

∂ψ

∂B
(B) = 2ρB

∂ψ

∂B
(B)

Others variables, such as the left stretch V =B1/2 or any left Hill
strain ef = f(V ) could be considered equivalently, see definition 3.4.

3.6 Intermediate configuration

It is convenient to decompose the transformation χ in several steps when
building mathematical models for complex materials. A two step decomposi-
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χp
χe

χ

current configuration
Ω(t)

intermediaite configuration

Ω0

reference configuration

Fig. 3.4 The decomposition of the transformation χ = χe○χp based on the intermediate
configuration.

tion is written as χ = χe○χp and is represented on Fig. 3.4. This decompo-

Bruce A. Bilby Ekkehart Kröner

Fig. 3.5 (left) Bruce A. Bilby (1922-2013), in 1992, photographed by his daughter,
from [74]. (right) Ekkehart Kröner (1919-2000), near 1960, photographed by his daughter,
from Friedrich W. Hehl.

sition was proposed independently in 1955 by Bilby et al. [7], and in 1959 by
Kröner [108, p. 286, eqn (4)] in the context of crystal plasticity, see Fig. 3.5.
These authors postulated the existence of such a decomposition into elastic
and plastic parts. The very conventional subscripts "e" and "p" are conserved
here but they are interpreted here in the more general sense of reversible
and irreversible parts. By taking the spatial gradient of the previous trans-

http://www.thp.uni-koeln.de/gravitation/mitarbeiter/hehl/Kroener100_04.pdf
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formation decomposition, we obtain the multiplicative decomposition of the
gradients F = F eF p where F e = ∇χe and F p = ∇χp. By differentiation, we
get

.
F =

.
F eF p +F e

.
F p which is injected into the expression of the velocity

gradient as:

L
def
= ∇v =

.
FF −1 from (2.2a)

= (
.
F eF p +F e

.
F p)F

−1
p F −1e

=
.
F eF

−1
e +

.
F e (

.
F pF

−1
p )F

−1
e

= ∇ve +
.
F e∇vpF

−1
e with ve =

.
χe and vp =

.
χp

= Le +Lp

with Le = ∇ve and Lp =
.
F e∇vpF

−1
e . The symmetric and skew-symmetric

parts are also introduced as De = sym(Le), Dp = sym(Lp), W e = skew(Le)

and W p = skew(Lp). Following Gurtin et al. [78, p. 567], it is assumed that
it is possible to choose the couple (χe,χp) for the decomposition of χ such
that W p = 0.
Note that the results of chapters 2 and 3 apply to each transformation χe

and χp separately. For instance, the reversible left Cauchy-Green tensor,
defined by Be = F eF

T
e , is symmetric definite positive and objective, from

proposition 2.15, page 48. By differentiation:

.
Be =

.
F eF

T
e +F e

.
F T

e = LeF eF
T
e +F eF

T
e L

T
e

= LeBe +BeL
T
e

= (L −Lp)Be +Be (L −Lp)
T

⇐⇒
∇
Be = −DpBe −BeDp (3.23)

since W p = 0. Note that the upper-convected rate of Be on the left-hand-side
of (3.23) involves the vorticity W and the stretching D associated with the
complete transformation χ. Finally, the reversible left Hencky strain is defined
by he = (1/2) logBe and its complement, called the irreversible part hp, is
such that the following additive decomposition of the left Hencky strain is
satisfied:

h = he +hp (3.24)

Remark 3.32 (rheological schemes).
Based on the additive decomposition (3.24) of the left Hencky strain, the
models could be represented by simple rheological schemes, see Fig. 3.6.

Remark 3.33 (relation with small displacements).
Relation (3.24) is interpreted as an extension of the large strain case of
the usual small displacement additive decomposition ε = εe + εp, see e.g.
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σ

h = hp + he

hp he hpp hpe

hp

h = hpp + hpe + he

σ

he

Fig. 3.6 The intermediate configuration is used for the representation of models. (left)
Maxwell [126] viscoelatic model. (right) Isayev and Fan [95] elastoviscoplastic model, using
two embedded intermediate configurations (adapted from [159], Fig. 2c).

Maugin [125, p. 8]. Thus, the methodology of model design used in the small
displacement case with the standard generalized models extends here with
simplicity to the large strain case.

Remark 3.34 (recursive intermediate decomposition).
The previous decomposition naturally extends to an arbitrary number of
intermediate configurations and this extension could be useful for complex
materials. For instance, Fig. 3.6.right represents the Isayev and Fan [95] elas-
toviscoplastic model (see also [159], Fig. 2c) which corresponds to the ad-
ditive decomposition h = he +hp together with hp = hpe +hpp and thus, fi-
nally h = he +hpe +hpp. This is associated with the decomposition of the
transformation χ = χe ○χpe ○χpp and the corresponding multiplicative de-
composition of its gradient F = F eF peF pp

Remark 3.35 (non-smooth deformations and controversies).
The present intermediate configuration concept, with its multiplicative de-
composition of the gradient of deformation F = F eF p, was obtained after a
very long controversy. Indeed, when the transformation χ is non-smooth,
e.g. when plasticity is involved, the initial lack of foundational justifica-
tion of the present theory has led to numerous debates in the literature
regarding the micromechanical definition of the individual tensors. In 1965,
Green and Naghdi [67, 68, 69] proposed, independently of Bilby et al. [7] and
Kröner [108], an alternative approach, considering the additive decomposition
of the stretching D =De +Dp as the starting point of their theory. These
two kinematic approaches for defining the intermediate configuration rapidly
appeared to be incompatible and led to lively discussions for almost 60 years,
with Casey and Naghdi [18] or Naghdi [130, p. 327] defending the additive
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approach and [119, p. 98] defending the multiplicative one. Recently, in 2017,
Reina and Conti [153] provided a contribution to the missing foundational
justifications for the multiplicative decomposition approach when plasticity
is involved, i.e. when the transformation χ is non-smooth. See also its histor-
ical review in the introduction of the paper.

Recall that the results of the previous sections could be applied to any trans-
formation, e.g. to the reversible one χe instead. Grouping results of theo-
rems 3.1, and 3.2 and corollary 3.27, we obtain for the reversible transforma-
tion:

Proposition 3.36 (reversible left Hencky strain).
1) The reversible stretching De is expressed as a corotational rate of the
reversible Hencky strain he:

○

h(elog)e = De (3.25a)

where ○.(elog) denotes the reversible logarithmic rate, is defined for all sym-
metric tensor a by:

○
a(elog) =

.
a −W log(a,Le)a + aW log(a,Le) (3.25b)

and where the logarithmic spin function W log(., .) is given by (3.15c). Note
that, when compared to (3.15b), the second argument to W log(., .) has been
replaced here by Le = ∇ve, associated with the reversible transformation.
2) Assume that the Helmholtz energy ψ(h,he) is objective-isotropic with re-
spect to all variables separately. Then, the conjugacy stress of he is called the
elastic stress, denoted by σe:

σe = ρ
∂ψ

∂he
(h,he)

Moreover, the elastic stress σe ∈ eigsp(he).
3) The stretching De satisfies:

(De −
.
he) ∶a = 0, for all a ∈ eigsp(he)

It means that the reversible stretching De, appears, from the eigenspace of he,
as a Lagrangian rate of he.

Nevertheless, (3.25b)-(3.25a) is not fully convenient: it has the drawback of
involving Le = ∇ve, while ve, in practice, will not be evaluated. Hopefully,
relation (3.25b) can be rearranged in order to involve only L = ∇v and Dp.
Here Dp is not an obstacle in practice, as it will be expressed by constitutive
equations in terms of computable quantities.

Theorem 3.3 (reversible left Hencky strain).
The kinematic relation (3.23) is written equivalently as
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○

h(log)e + Dp +W log(he,Dp)he −heW log(he,Dp) =D (3.26a)

where W log is given by (3.15c). Moreover, when Dp ∈ eigsp(he) then the
previous relation reduces to

○

h(log)e + Dp =D (3.26b)

Proof: By expanding (3.25b)-(3.25a) together with Le = L −Lp, we get:
.
he −W log(he,L −Lp)he +heW log(he,L −Lp) =D −Dp

Next, using the linearity of the logarithmic spin function W log, expressed
by (3.15c), with respect to its second argument, and then, using W p = 0
i.e. Lp =Dp, we directly obtain (3.26a). Let us now assume Dp ∈ eigsp(he)

i.e. Dp = ∑
mhe

m=1 λm,DpPm,he from lemma 2.27, relation (2.16a). Then, from
definition (3.15c) of the logarithmic spin:

W log(he,Dp) =

mhe

∑
i,j=1

κlog (λi,he−λj,he)P i,heDpP j,he

=

mhe

∑
i,j,m=1

κlog (λi,he−λj,he)λm,DpP i,hePm,heP j,he

=

mhe

∑
i=1

κlog(0)λi,DpP i,he from lemma 2.27, relation (2.16f)

= 0

since κlog(0) = 0 from definition (3.15d) of the function κlog. Thus (3.26a)
reduces to (3.26b) and the proof is complete. ∎

3.7 Thermal strain

Observe the two last terms σ ∶D and −q.∇θ/θ on the right-hand-side of the
Clausius-Duhem inequality (1.24). In the previous section 3.5, we studied the
conjugacy between the Cauchy stress σ, or at least its reversible part σe, and
the stretching D, which was itself interpreted in section 3.4 as D =

○

h(log) i.e.
as a corotational rate of some other quantity. In this section, we are looking
for something similar for the second term −q.∇θ/θ. The main idea of this
section is to obtain a similar mathematical structure in both the dynamical
and thermal sides of thermodynamics.
Indeed, −q.∇θ/θ is interpreted as a duality product between the heat flux −q
and ∇θ/θ = ∇log θ, or alternatively, as a product between −q/θ and ∇θ. Fol-
lowing remark 3.24 and Fig. 3.3, we would like to interpret this duality in
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terms of a product between a flux and something that is expressed as a
corotational rate: this is the cornerstone of the thermodynamic framework
proposed in the forthcoming chapter 4.
An interpretation of ∇θ or ∇log θ in terms of a corotational rate of a quantity
like a thermal strain is still missing in thermodynamics. The concept of ther-
mal displacement was introduced in 1991 by Green and Naghdi [70, p. 180]:
this scalar field is denoted here ϖ and defined from the temperature θ
such that .

ϖ = θ together with an initial condition at the initial time.
Green and Naghdi [70] then defined the thermal strain as β = ∇ϖ and then β

was linked to the gradient of temperature as
.
β = ∇θ. This idea is very ap-

pealing as it closes a commutation diagram between ϖ, ∇ϖ, θ and ∇θ similar
to Fig. 3.3 for the strain. The only weakness of the Green and Naghdi [70]
proposition is that the vector-valued relation

.
β = ∇θ is not objective, as

it involves the Lagrangian rate of the vector β, see Table 2.1. Recall that
objectivity is mandatory for constitutive equations, see 2.3, page 39.
The present contribution is first to replace the Lagrangian rate by an objective
and corotational one. The second contribution is to introduce some flexibility,
in order to balance the 1/θ factor in the duality product, having the choice
between several interpretations such as (−q).∇log θ or (−q/θ).∇θ or some-
thing else between both. Indeed, many interpretations of the term −q.∇θ/θ as
a duality product are possible. By analogy with the Seth [167] strain in kine-
matics, we could consider a product between −q/θm and θm−1∇θ = (1/m)∇θm,
for anym ∈ R/{0}. An even more general concept of thermal strain is obtained
by analogy with the Hill [86] strains in kinematics, see definition 3.4.

∂t
f(θ) = $̇

∇

$

β ∇f(θ) =
◦

β

◦

(.)

Fig. 3.7 Commutation diagram between the thermal displacement ϖ, the thermal strain
vector β, the function of the temperature f(θ) and its gradient ∇f(θ).

Definition 3.37 (thermal displacement and thermal strain).
Let f ∶ ]0,∞[→ R be any strictly increasing, continuous and differentiable
function satisfying f(1) = 0 and f ′(1) = 1. Then, the associated thermal dis-
placement ϖf is defined from the temperature θ by

.
ϖf = f(θ) and ϖf(t=0) = 0
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while the associated thermal strain βf is defined from the temperature θ by

○

βf = ∇f(θ) and βf(t=0) = 0 (3.27a)

where ○. denotes the Zaremba-Jaumann corotational rate, see definition 2.9.
With this definition, the last term of the Clausius-Duhem inequality (1.24)
now is interpreted as

−
q.∇θ

θ
= (−

q

θf ′(θ)
) .
○

βf (3.27b)

i.e. the product between a flux and the corotational rate of a quantity. When
f(θ) = θ (resp. f(θ) = log θ), then ϖf and βf are referred to as linear (resp.
logarithmic) thermal displacement and strain, by analogy with the Green-
Lagrange and Hencky strain in kinematics. When f has been chosen and
there is no ambiguity, the subscript f can be be omitted and the thermal
displacement and strain are simply denoted as ϖ and β.

The situation is summarized on the thermal commutation diagram Fig. 3.7
which shares some similarities with its kinematic counterpart on Fig. 3.3.

Remark 3.38 (explicit expression for the thermal strain).
The linear differential equation (3.27a) admits an unique and explicit solu-
tion, obtained by expanding the definition (2.12a) of the Zaremba-Jaumann
corotational rate and using the flow map Υ defined by (2.4a)-(2.4b), page 33,
for the integration along the trajectories:

βf(t,x) = {∫
t

0
∇

.
ϖf(t1,Υ (t1,x; t)) exp(−∫

t1

0
W (t2,Υ (t2,x; t1))dt2)dt1}

× exp(∫
t

0
W (t3,Υ (t3,x; t))dt3)

Note that when replacing W by zero in the previous relation, it leads to
βf = ∇ϖf which coincides, when also choosing f(θ) = θ, with the original
non-objective proposition by Green and Naghdi [71, p. 291].

By analogy with the intermediate configuration introduced in section 3.6 for
splitting the left Hencky strain as h = he +hp, we assume here an additive
decomposition of the thermal displacement as ϖ =ϖe +ϖp i.e. in reversible
and irreversible parts. Since the previous explicit expression for the ther-
mal strain β is linear versus ϖ, it induces a corresponding additive decom-
position as β = βe +βp. Then, applying the Zaremba-Jaumann corotational
rate, we obtain an additive decomposition of the rate of thermal strain as
∇f(θ) =

○

βe +
○

βp.
These concepts of thermal displacement and strain will be essential in the
next chapter 4 for building the thermodynamic framework and will be used by
several examples in chapter 5 namely the Fourier and Cattaneo heat models.



Chapter 4

Framework

This chapter is dedicated to a new thermodynamic framework, which is the
main result of this book. This framework offers a robust and secure environ-
ment for the design of new models or the combination of some existing mod-
els. The design of mathematical models based on thermodynamic principles
structurally avoids common errors that are otherwise difficult to identify and
could have disastrous consequences. For instance, the use of inappropriate
dissipation potential could result in an unexpected divergence of simulation
codes: instead of spending years looking for a hypothetical programming bug,
a direct design of models from such a thermodynamic framework appears to
be a good alternative.
After a technical lemma, in section 4.1, three main theorems are presented.
Section 4.2 introduces the new framework itself as a necessary and sufficient
condition for the second principle to be satisfied (theorem 4.1). Section 4.3
deals with a nonlinear generalization of Onsager reciprocal relations: it is
expressed as a restriction upon the proposed framework (theorem 4.2). Fi-
nally, section 4.4 presents the heat equation, i.e. an evolution equation for
the temperature obtained from the conservation of energy (theorem 4.3).

4.1 Edelen’s decomposition

The original proof of this decomposition of vector-valued functions was given
in 1973 by Edelen [51, p. 218], see Fig. 4.1.right. An alternative proof was
then provided in 2014 by Goddard [64]. The original proof introduced two
rate variables for the potential ϕ and the gyroscopic term ω and then
Edelen [51, p. 218] stated a corollary where these two variables are equal. A
slight modification of the original proof is presented here: the present proof is
more direct, with only one variable and, for simplicity, we omit the possible
dependence upon the state variables.

95
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Lemma 4.1 (vector decomposition, Edelen [51, p. 218]).
Let n ⩾ 1 be an integer. Let δ = (δi)1⩽i⩽n ∈ E denote the n variables,
where δi ∈ Ei with Ei = R, RN or RN×N

s when δi is scalar, vector or
symmetric-tensor valued, respectively, 1 ⩽ i ⩽ n, and E =∏n

i=1Ei. For simplic-
ity, for any δ,µ ∈ E, the scalar product in each Ei is simply denoted by δi ∶µi,
independently of the scalar, vector or symmetric tensor values, 1 ⩽ i ⩽ n, while
the scalar product in E is denoted by δ.µ = ∑

n
i=1 δi ∶µi.

Let τ ∶ E → E be a C1 mapping.
Then, there exist two unique mappings ϕ ∶ E → R and ω ∶ E → E such that

τ (δ) =
∂ϕ

∂δ
(δ) +ω(δ)

ϕ(0) = 0

δ.ω(δ) = 0

(4.1a)

(4.1b)
(4.1c)

and ω is unique while ϕ is unique up to a constant.
Moreover, these two functions are expressed explicitly as:

ϕ(δ) = ∫
1

0
δ ∶τ (ξδ)dξ

ω(δ) =
⎛

⎝

n

∑
j=1
∫

1

0
ξ δj ∶(

∂τ i

∂δj
−
∂τ j

∂δi
)(ξδ)dξ

⎞

⎠
1⩽i⩽n

(4.1d)

(4.1e)

Proof: Since τ is C1 versus δ, then ϕ defined by (4.1d) is also C1 versus δ.
For all i, 1 ⩽ i ⩽ n, observe the splitting

∂ϕ

∂δi
(δ) = ∫

1

0
τ i(ξδ)dξ +

n

∑
j=1
∫

1

0
δj ∶

∂τ j

∂δi
(ξδ) ξ dξ = A +B (4.2a)

where
A =

n

∑
j=1
∫

1

0
δj ∶

∂τ j

∂δi
(ξδ)dξ

B = ∫
1

0
τ i(ξδ)dξ +

n

∑
j=1
∫

1

0
δj ∶

∂τ j

∂δi
(ξδ) (ξ−1)dξ

Next, the two terms A and B are rearranged separately. The first one is
written equivalently as:

A = ∫
1

0

n

∑
j=1

δj ∶
∂τ i

∂δj
(ξδ)dξ +

n

∑
j=1
∫

1

0
δj ∶(

∂τ j

∂δi
−
∂τ i

∂δj
)(ξδ)dξ (4.2b)

by simply adding and subtracting ∂τ i/∂δj . Next, observe that
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d

dξ
{τ i(ξδ)} =

n

∑
j=1

δj ∶
∂τ i

∂δj
(ξδ) (4.2c)

Then, the first term of the right-hand-side in (4.2b) becomes:

∫

1

0

n

∑
j=1

δj ∶
∂τ i

∂δj
(ξδ)dξ = ∫

1

0

d

dξ
{τ i(ξδ)} dξ = [τ i(ξδ)]

1
0 = τ i(δ) − τ i(0)

and, finally, the first term in (4.2a) develops as:

A = τ i(δ) − τ i(0) +
n

∑
j=1
∫

1

0
δj ∶(

∂τ j

∂δi
−
∂τ i

∂δj
)(ξδ)dξ (4.2d)

Conversely, the second term in (4.2a) is written as:

B = ∫
1

0

⎧⎪⎪
⎨
⎪⎪⎩

τ i(ξδ) + (ξ−1)
n

∑
j=1

δj ∶
∂τ j

∂δi
(ξδ)

⎫⎪⎪
⎬
⎪⎪⎭

dξ

= ∫

1

0

⎧⎪⎪
⎨
⎪⎪⎩

τ i(ξδ) + (ξ−1)
n

∑
j=1

δj ∶
∂τ i

∂δj
(ξδ)

⎫⎪⎪
⎬
⎪⎪⎭

dξ

+
n

∑
j=1
∫

1

0
(ξ−1) δj ∶(

∂τ j

∂δi
−
∂τ i

∂δj
)(ξδ)dξ (4.2e)

by simply adding and subtracting ∂τ i/∂δj . Using again (4.2c), the second
term of the first integral in (4.2e) becomes

∫

1

0
(ξ−1)

n

∑
j=1

δj ∶
∂τ i

∂δj
(ξδ)dξ = ∫

1

0
(ξ−1)

d

dξ
{τ i(ξδ)} dξ

= [(ξ−1)
d

τ i
(ξδ)]

1

0
− ∫

1

0
τ i(ξδ)dξ

after integration by parts

= τ i(0) − ∫
1

0
τ i(ξδ)dξ

Then (4.2e) is written as

B = τ i(0) +
n

∑
j=1
∫

1

0
(ξ−1) δj ∶(

∂τ j

∂δi
−
∂τ i

∂δj
)(ξδ)dξ (4.2f)

From (4.2a), adding (4.2d) and (4.2f) leads to
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∂ϕ

∂δi
(δ) = τ i(δ) +

n

∑
j=1
∫

1

0
ξ δj ∶(

∂τ j

∂δi
−
∂τ i

∂δj
)(ξδ)dξ

= τ i(δ) −ωi(δ)

by definition (4.1e) of ω and then the decomposition (4.1a) is obtained. Then,
again from the definition (4.1e) of ω and exploiting its skew-symmetry, we
have

δ.ω(δ) =
n

∑
i,j=1
∫

1

0
ξ δi ∶{δj ∶(

∂τ i

∂δj
−
∂τ j

∂δi
)(ξδ)} dξ

=
n

∑
i=1

n

∑
j=1
j<i

∫

1

0
ξ δi ∶{δj ∶(

∂τ i

∂δj
−
∂τ j

∂δi
)(ξδ)} dξ

+
n

∑
i=1

n

∑
j=1
j>i

∫

1

0
ξ δi ∶{δj ∶(

∂τ i

∂δj
−
∂τ j

∂δi
)(ξδ)} dξ

= 0

after swapping i and j in the second sum. Then, (4.1c) is also obtained.
Finally, the pair (ϕ,ω) defined by (4.1d)-(4.1e) satisfies (4.1a)-(4.1c).
Let us turn to unicity: assume that there are two pairs of mappings (ϕ1,ω1)

and (ϕ2,ω2) both satisfying (4.1a)-(4.1c) i.e.

∂ϕ1
∂δ
+ω1 =

∂ϕ2
∂δ
+ω2 = τ

δ.ω1 = δ.ω2 = 0

(4.2g)

(4.2h)

Then (4.2g) implies

ω1 −ω2 =
∂

∂δ
(ϕ2 − ϕ1) (4.2i)

and (4.2h) leads to

δ.(ω1 −ω2) = 0 ⇐⇒ δ.
∂

∂δ
(ϕ2 − ϕ1) = 0 (4.2j)

Since both ϕ1 and ϕ2 are C1, the difference ϕ2 − ϕ1 is also C1 and the so-
lution C1 of (4.2j) is necessarily as (ϕ2 − ϕ1)(δ) = ϕ0 which is a constant
and this constant is zero since both −ϕ1(δ) = ϕ2(δ) = 0. Replacing in (4.2i)
gives ω1 = ω2 which completes the proof. ∎

Lemma 4.2 (solution of inequality, Edelen [52, p. 124]).
Consider the notation of lemma 4.1. Let τ ∶ E → E be a C1 mapping.
The function τ satisfies

δ.τ (δ) ⩾ 0 (4.3a)

if and only if there exists a function ω ∶ E → E such that
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τ (δ) =
∂ϕ

∂δ
(δ) +ω(δ)

ϕ ⩾ 0 and ϕ(0) = 0

δ.ω(δ) = 0 and ω(0) = 0

(4.3b)

(4.3c)
(4.3d)

Moreover, ϕ and ω are explicitely expressed by (4.1d)-(4.1e).

Proof: Since τ is C1, then lemma 4.1 applies and there exists ϕ and ω such
that (4.3b) and (4.3d) are satisfied. Replacing (4.3d) in (4.3a) leads to

δ.τ (δ) = δ.
∂ϕ

∂δ
(δ) ⩾ 0

Since τ is C1, so is δ.τ (δ). Integrating leads to

ϕ(δ) = ϕ0 + ∫
1

0
ϑ(ξδ)

dξ

ξ

where ϕ0 is a constant. From its construction in lemma 4.1, relation (4.1b)
gives ϕ(0) = ϕ0 = 0. Thus, from the previous inequality, we also obtain ϕ ⩾ 0
i.e. (4.3c) is also satisfied. Finally, δ.ω(δ) = 0 is obtained from lemma 4.1
by (4.1c) and ω(0) = 0 follows from (4.1e). ∎

4.2 Main theorem

This section introduces the main new result of this book. The proposed ther-
modynamic framework is clearly inspired by those of the standard generalized
materials, as proposed in 1975 by Halphen and Nguyen [81]: it tries to con-
serve as much as possible its clarity, efficiency and possibly non-smooth dis-
sipation potential. As a major improvement, it extends standard generalized
materials to large deformations and introduces objectivity. Moreover, while
the existence of the dissipation potential was previously postulated, here,
thanks to the previous Edelen’s lemma 4.2, the forthcoming theorem 4.1 ex-
presses a necessary and sufficient condition for the second principle (0.4) to be
satisfied. Nevertheless, it strongly differs from the thermodynamic framework
proposed in 1974 by Edelen [52, p. 123]: both the mathematical structure and
the thermodynamic variables here are different.
Let f ∶ ]0,∞[→ R be a strictly increasing, continuous and differentiable func-
tion satisfying f(1) = 0 and f ′(1) = 1.
Let n ⩾ 3 and α = (α1, . . . ,αn) be the set of thermodynamic state variables
with α1 = θ, the temperature, α2 = βf , the thermal strain vector defined
by (3.27a) and α3 = h, the left Hencky strain tensor while the optional αi,
4 ⩽ i ⩽ n are referred to as internal states.
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state description rate description

1 α1 = θ temperature δ1 =
.
θ temperature rate

2 α2 = βf thermal strain δ2 =
○
βf = ∇f(θ) temperature gradient

3 α3 = h left Hencky strain δ3 =
○
h(log)=D stretching

i αi internal state δi internal rate

Table 4.1 Notations used by the thermodynamic framework.

We also consider the associated set of rate variables, denoted
by δ = (δ1, . . . ,δn) with δ1 =

.
θ, δ2 = ∇f(θ), and δ3 =D. For simplicity,

by default, all generic state αi and rate δi variables, 1 ⩽ i ⩽ n, are denoted
in bold face, as vectors or second-order symmetric tensors. In the vector or
tensor cases, αi should be objective and δi should be a corotational rate
of αi. When the i-th variable is a scalar, the boldface notation could be
omitted and then δi =

.
αi is simply the Lagrangian rate. All these notations

are summarized in Table 4.1.
Let ψ(α,δ) be the Helmholtz energy. It describes the reversible effects in-
volved in the model. Assume that ψ is strictly concave versus α1 = θ > 0, and
objective-isotropic separately with respect to all its vector and second-
order symmetric tensor arguments αi (see definition 2.30).

Theorem 4.1 (thermodynamic framework).
A mathematical model satisfying the mass (0.1), momentum (0.2), and en-
ergy (0.3) conservations and involving the Helmholtz energy ψ, also satisfies
the second principle of thermodynamics (0.4) if and only if (i) the Helmholtz
energy ψ depends only upon the state variables α and is independent upon
the rates variables δ and (ii) there exists two functions ϕ and ω such that:
● ϕ, called the dissipation potential, describes the irreversible and dissipa-
tive effects. It is an objective scalar-valued function that depends upon the
rate variables δ and optionally upon α as parameters and its invocation is
denoted as ϕ([α];δ) in order to maintain this distinction. Moreover, ϕ ⩾ 0
and ϕ([α]; 0) = 0 for any state α and it satisfies:

D =
n

∑
i=0

δi ∶
∂ϕ

∂δi
([α];δ) ⩾ 0

∂ϕ

∂
.
θ
([α];δ) = 0

(4.4a)

(4.4b)

Note that the dissipation involved by the Clausius-Duhem inequality (1.24)
coincides with the expression introduced in (4.4a).
● ω, called the gyroscopic function, describes the irreversible and non-
dissipative effects. It is an objective vector-valued function with n compo-
nents, and each component ωi belongs to the same space as δi, 1 ⩽ i ⩽ n. It
depends upon the rate variables δ and optionally upon α as parameters and
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its invocation is denoted as ω([α];δ) in order to maintain this distinction.
Moreover, ω([α]; 0) = 0 for any state α and it satisfies:

n

∑
i=1

δi ∶ωi([α];δ) = 0

ω1([α];δ) = 0

(4.4c)

(4.4d)

Then, the constitutive equations of the mathematical model are given by:

−ρs = ρ
∂ψ

∂θ
(α)

−
q

θf ′(θ)
∈ ρ

∂ψ

∂β
(α) +

∂ϕ

∂∇f(θ)
([α];δ) +ω2([α];δ)

σ ∈ ρ
∂ψ

∂h
(α) +

∂ϕ

∂D
([α];δ) + ω3([α];δ)

0 ∈ ρ
∂ψ

∂αi
(α) +

∂ϕ

∂δi
([α];δ) + ωi([α];δ), 4 ⩽ i ⩽ n

(4.5a)

(4.5b)

(4.5c)

(4.5d)

where the ∈ symbol could be replaced by an equality = symbol when the dissi-
pation potential ϕ is smooth enough.

Proof: Let us start to prove the necessary conditions. Assume first that the
Helmholtz energy ψ depends upon the state α and rate δ variables, and let
us prove that ψ does not depend upon δ. By expanding the time rate

.
ψ of

the Helmholtz energy:

.
ψ(α,δ) =

d

dt
(ψ(α,δ)) =

n

∑
i=1

∂ψ

∂αi
(α,δ) ∶

.
αi +

∂ψ

∂δi
(α,δ) ∶

.
δi (4.6a)

Observe that when a state variable αi is scalar-valued, e.g. α1 = θ then
its associated rate variable δi is its Lagrangian rate, e.g. δ1 =

.
θ. Conversely,

when a state variable αi is vector-valued, on one hand, by hypothesis
of the theorem, ψ is objective-isotropic separately with respect to all its
arguments. Then, from corollary 2.36, ψ depends only upon the invariant
of αi, i.e. its squared norm ∣αi∣

2 and ∂ψ/∂αi is colinear to αi. On the
other hand, also by hypothesis, its associated rate variable δi is a corota-
tional rate, e.g. α2 = βf and, from (3.27a), we have δ2 =

○

βf = ∇f(θ). Then,
from the skew-symmetry of the rotation involved in the corotational rate,
∂ψ/∂αi ∶(δi −

.
αi) = 0 and .

αi could also be replaced by δi in (4.6a). Finally,
when a state variable αi is symmetric tensor-valued, on one hand, since
by hypothesis, ψ is objective-isotropic separately with respect to all its state
variable arguments, then, from corollary 2.36 again, ψ depends only upon
invariants of αi and ∂ψ/∂αi ∈ eigsp(αi). On the other hand, since δi is also
a corotational rate of αi, observe that, also due to the skew symmetry of
the rotation involved, we have: (δi −

.
αi) ∶a = 0 for all a ∈ eigsp(αi). For in-
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stance we have α3 = h and, from corollary 3.27, δ3 =
○

h(log) =D. In all cases,.
αi could be replaced by δi in (4.6a) and we obtain:

.
ψ(α,δ) =

n

∑
i=1

∂ψ

∂αi
(α,δ) ∶δi +

∂ψ

∂δi
(α,δ) ∶

.
δi (4.6b)

Replacing this expression of
.
ψ in those of the dissipation D from the

Clausius-Duhem inequality (1.24) and using (δ1,δ2,δ3) = (
.
θ,∇f(θ),D) to-

gether with (3.27b) for the thermal term −(q.∇θ)/θ, we get

D = −(ρ
∂ψ

∂θ
(α,δ) + ρs)

.
θ − (ρ

∂ψ

∂βf

(α,δ) +
q

θf ′(θ)
) .
○

βf

− (ρ
∂ψ

∂h
(α,δ) −σ) ∶D − ρ

n

∑
i=4

∂ψ

∂αi
(α,δ) ∶δi − ρ

n

∑
i=1

∂ψ

∂δi
(α,δ) ∶

.
δi

where the constitutive functions s, q and σ depend upon α and δ. Observe
that the dependence upon

.
δi occurs only inside the last term and is lin-

ear. Thus, for the dissipation D to remain positive while the quantity
.
δi are

chosen arbitrarily, the coefficient in front of these variables must vanish, i.e.
∂ψ/∂δi = 0. This means that when the Clausius-Duhem inequality (1.24) is
satisfied, then the Helmholtz energy ψ depends only upon the state vari-
ables α and is independent of the rate variables δ. This is also true for the
internal energy e, which is linked to ψ via the partial Legendre transforma-
tion (1.23a) and to the entropy s from (1.23b). So, the first part (i) of the
theorem is obtained.
The previous expression of the dissipation simplies as

D = −(ρ
∂ψ

∂θ
+ ρs)

.
θ − (ρ

∂ψ

∂βf

(α) +
q

θf ′(θ)
) .
○

βf

− (ρ
∂ψ

∂h
(α) −σ) ∶D − ρ

n

∑
i=4

∂ψ

∂αi
(α) ∶δi

Note that the dissipation is written in a more compact form as

D = τ .δ

where τ denotes the generalized force vector, given by



4.2. Main theorem 103

τ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−ρs − ρ
∂ψ

∂θ

−
q

θf ′(θ)
− ρ

∂ψ

∂βf

σ − ρ
∂ψ

∂h

(−ρ
∂ψ

∂αi
)
4⩽i⩽n

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Applying Edelen’s lemma 4.2, the dissipation D = τ .δ is positive, i.e. the
Clausius-Duhem inequality (1.24) is satisfied, if and only if there exist ϕ ⩾ 0
and ω, explicitly expressed from τ by (4.1d)-(4.1e), such that τ = ∂ϕ +ω
with ϕ([.],0) = 0 and τ ([.],0) = 0. Then, expanding the previous notation
for τ , we directly obtain the constitutive equations (4.5a)-(4.5d). The or-
thogonality relation (4.4c) is written as δ.ω = 0, which is exactly (4.3d), also
provided by Edelen’s lemma 4.2. The two conditions (4.4b) and (4.4d) are
also necessary for compatibility with the entropy definition, as pointed out
in remark 4.5. Finally, the dissipation is written as D = δ.τ = δ.∂ϕ + δ.ω and
since δ.ω = 0, we obtain expression (4.4a) of the dissipation. Then, the second
part (ii) of the theorem is obtained, so, the proof of the necessary condition
is complete. The reciprocal sufficient condition is then immediate. ∎

Remark 4.3 (the framework: instructions for use).
The design of a new material based on this framework consists of three steps:

1. Define your set of thermodynamic variables α and rates δ. Check that
each vector or tensor-valued state αi and rate variable δi are objective
and that each rate δi is expressed as a corotational rate of αi.

2. Define your Helmholtz energy ψ versus α only. Check that it is strictly
concave versus θ. Check also that it is objective-isotropic separately versus
each vector or tensor-valued state variable αi. For a tensor-valued variable,
from corollary 2.36, it is equivalent to check that ψ depends only upon
eig(αi) or any equivalent set of invariants. For a vector-valued variable,
it is equivalent to check that ψ depends only upon ∣αi∣.

3. Define your dissipation potential ϕ. Check that it satisfies (4.4a) and
vanishes when δ = 0. Note that convexity of ϕ is sufficient for (4.4a) but
not necessary, see remark 4.4 below.

Then, theorem 4.1 applies.

Remark 4.4 (convexity of ϕ is sufficient but not necessary).
Most thermodynamic theories involving a dissipation potential ϕ impose its
convexity instead of (4.4a). Let us show that this condition is sufficient
for (4.4a) but not necessary. Let ϕ ∶ E → R such that ϕ ⩾ 0 and ϕ(0) = 0.
Then, when ϕ is convex, δ.∂ϕ(δ) ⩾ 0 but the reciprocal is false. Indeed, from
the definition of the subdifferential, see e.g. [162, p. 94], for all τ̂ ∈ ∂ϕ(δ) we
have ϕ(δ̃) ⩾ ϕ(δ) + τ̂ .(δ̃ − δ) for all δ̃ ∈ E. Then, choosing δ̃ = 0 and using
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ϕ(0) = 0 leads to δ.τ̂ ⩾ ϕ(δ) ⩾ 0. Since this is true for all τ̂ ∈ ∂ϕ(δ) it also is
written as δ.∂ϕ(δ) ⩾ 0 which is exactly (4.4a). Let us show that the recip-
rocal is false by a counter example. Consider ϕ(ξ) = ξ+

√
1+ξ−1 which is C1

for all ξ ⩾ 0. We have ϕ ⩾ 0, ϕ(0) = 0 and ξ ϕ′(ξ) = ξ+1/(2
√
1+ξ) ⩾ 0 but ϕ is

strictly concave since ϕ′′ < 0. In consequence, from lemma 4.2, the convexity
of the dissipation potential ϕ is not necessary for a mathematical model to
satisfy the second principle. Finally, let us quote Goddard [64, p. 15], who
wrote about the possible loss of convexity of the dissipation potential: "Such
variational principles are not only relevant to the homogenization of hetero-
geneous media, but they also may find applications to problems involving loss
of convexity, leading to material instability and viscoplastic bifurcations (or
thermo-viscoplastic phenomena such as adiabatic shear bands)".

Remark 4.5 (compatibilities with the entropy definition).
Note that there are two empty slots in the constitutive equation (4.5a):
they are due to conditions (4.4b) and (4.4d). Let us observe what would
happen without assuming these two conditions, i.e. while replacing (4.5a)
with −ρs = ρ∂ψ/∂θ + ∂ϕ/∂

.
θ +ω1.

Recall that the Helmholtz energy ψ has been introduced from the internal
energy e by the Legendre transformation (1.23a), associated with the duality
relation (1.23b) that is expressed as the entropy as s = −∂ψ/∂θ. Conversely, in
theorem 4.1, ψ is directly postulated but there are some minimal requirements
for an internal energy e to exist such that the Legendre transformation (1.23a)
is satisfied. The compatibility relations (4.4b) and (4.4d), together with the
concavity of ψ versus θ, are both necessary and sufficient. Indeed, e could
then always be defined from ψ by another Legendre transformation:

e(s) = inf
θ>0

ψ(θ) + sθ

Note that, from this construction, e is strictly convex versus s, see proposi-
tion 1.19. An alternative is to postulate e first, strictly convex versus s, and
then deduce ψ from (1.23a).

Remark 4.6 (equilibrium state).
An equilibrium state α is associated with the corresponding rate δ = 0. It
leads to

.
θ = 0 and ∇θ = 0 i.e. the temperature θ is constant in space and time.

Since both ϕ([α]; 0) = 0 and ω([α]; 0) = 0, by hypothesis of theorem 4.1, the
heat flux is given by (4.5b), i.e. q = ρθf ′(θ)(∂ψ/∂β)(α). For the equilibrium
heat flux to be zero, it would require in addition that ∂ψ/∂β = 0.

Remark 4.7 (anisotropy).
Remarks 2.44, 2.45 and 2.46, page 63, explored the possibility of describing
anisotropy via the Helmholtz energy ψ by using a secondary microstructural
tensor a, corresponding here to an internal state variable, e.g. ψ(h,a). The
present thermodynamic framework assumes that the Helmholtz energy ψ is
objective-isotropic with respect to each variable separately, and thus, will not
directly handle such a description of anisotropy via ψ, see remark 2.46. Thus,
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you will have (i) first to develop a prototype of your model without cross-
variable invariants such as Ic = tr(ah2

) and check that this prototype satisfies
the requirements of the thermodynamic framework (see remark 4.3) and next
(ii) introduce the cross-variables invariants and directly check that the second
principle is still satisfied. Technics used during the proof of theorem 2.1,
page 36, could be used as templates for this check. Note that a different kind
of anisotropy could also be inserted via the dissipation potential ϕ, as shown
in the forthcoming section 5.13, page 133, with the Giesekus viscoelastic fluid
example. Indeed, the dissipation potential bears fewer restrictions than the
Helmholtz energy ψ.

Remark 4.8 (afterwords).
● When ϕ is differentiable, the symbol ∈ in the constitutive equations can be
replaced by a simple equality. Otherwise, when ψ is convex, for instance when
a constraint or some plasticity is involved, ∂ϕ/∂δi denotes the subdifferential
of ϕ with respect to δi, see e.g. [162, p. 94]. Otherwise, when ψ is neither dif-
ferentiable nor convex, assuming only Lipschitzian regularity, then, it admits
a Clarke [29, p. 10] derivative and the notation ∂ϕ/∂δi is interpreted as the
convex hull of all directional derivatives.
● The system combining the conservation (0.2)-(0.3) and constitutive (4.5a)-
(4.5d) equations involves n+3 relations and n+3 corresponding unknowns:
(ρ,v, e) and the n state variables (α1, . . . ,αn). Of course, such a model
derivation is only formal and it would remain to show that the solution of this
system of equations, closed by appropriate initial and boundary conditions,
can be well-defined.
● From its mathematical structure, the constitutive equations (4.5a)-(4.5d)
suggest a symmetry between ψ and ϕ. Nevertheless, these two functions are
really different: (i) ψ and ϕ do not have the same physical dimension and (ii)
while ϕ is often convex versus all variables, ψ is strictly concave versus θ.
● For simplicity, when a state variable is not used, it is not represented. For
instance, for an isothermal elastic solid, we could use n = 1 and α1 = h.
● In 1973, Edelen [51], while investigating for a nonlinear extension of the
Onsager reciprocal relations, exhibited for the first time the additional term
denoted here ω, see also section 4.1. In his original paper, Edelen [51] referred
to ω as the powerless vector, since it satisfies (4.4c) and thus, does not con-
tribute to the dissipation D . Similar powerless forces and stresses was also
termed gyroscopic by Ziegler [192] and, more recently, also by Goddard [64].
Here, we retain this term gyroscopic, which is more expressive and specific.
Indeed, powerless could induce confusion with the reversible stress σe that
does also not contribute to the dissipation D while ω produces irreversible
but non-dissipative stresses.
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4.3 Onsager-Edelen symmetry

Definition 4.9 (generalized Onsager-Edelen [147, 51] symmetry).
As shown during the proof of the previous theorem 4.1, expression (1.24) of
the dissipation D in the Clausius-Duhem inequality is interpreted as a duality
product D = δ.τ between a set of rate variables δ, called in the context of
the Onsager theory the generalized flux, and the following vector τ , called
the generalized force:

τ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−ρs − ρ
∂ψ

∂θ

−
q

θf ′(θ)
− ρ

∂ψ

∂βf

σ − ρ
∂ψ

∂h

(−ρ
∂ψ

∂αi
)
4⩽i⩽n

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4.7a)

A mathematical model for a material expresses this generalized force as a
function of the rate variables δ and, optionally, the state variables α as
parameters, and this function is denoted by τ ([α];δ).
The model is said to satisfy the generalized Onsager-Edelen symmetry if and
only if:

∂τ i

∂δj
=
∂τ j

∂δi
, 1 ⩽ i < j ⩽ n (4.7b)

together with secondary symmetries for vector- or tensor-valued variables δi.

This theory was developed in 1931 by Onsager [146, 147] when τ is linear
versus δ, see Fig. 4.1, and referred to as the reciprocal relations. From there,
it has been generalized to the nonlinear case in 1973 by Edelen [51, 52] and
referred to as symmetry relations. In 1975, Halphen and Nguyen [81] pro-
posed the framework of standard generalized materials that postulates the
existence of a dissipation potential. These authors showed that, within their
framework, the generalized Onsager-Edelen symmetry relations are necessar-
ily satisfied.

Theorem 4.2 (generalized Onsager-Edelen symmetry).
Assume that the hypotheses of theorem 4.1 hold and, moreover, that ϕ is C2

and ω is C1. Then, the model defined by (ψ,ϕ,ω) satisfies the generalized
Onsager-Edelen symmetry if and only if ω = 0.

Proof: from Edelen [52, p. 127]. Let us denote ∇δ = (∂/∂δi)1⩽i⩽n for simplic-
ity. From (4.5a)-(4.5d) and the definition (4.7a) of τ , we have τ = ∇δϕ +ω
i.e. ∇δϕ = τ −ω. Since ϕ is C2, the second partial derivatives of ϕ commute:
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Lars Onsager Dominic G. B. Edelen

Fig. 4.1 (left) Lars Onsager (1903-1976), photo in 1968 at the occasion of his Nobel
prize in chemistry for his work on reciprocal relations [146, 147], published in 1931 (public
domain reproduction). (right) Dominic G. B. Edelen (1933-2010), photo in 1994 at the the
society of engineering science conference, Texas. Communicated by Lagoudas [109].

∂

∂δj
(τ i −ωi) =

∂

∂δi
(τ j −ωj), 1 ⩽ i < j ⩽ n

Since this relation reduces to (4.7b) when ω = 0, this is clearly a sufficient
condition. Let us show that this is also necessary: assume that a model defined
by (ψ,ϕ,ω) satisfies (4.7b). On one hand, the condition (4.7b) is the necessary
and sufficient condition for a potential ϕ̃ to exist such that τ = ∇δϕ̃. On the
other hand, from lemma 4.1, the decomposition of τ as τ = ∇δϕ +ω is unique
and then ϕ = ϕ̃ and ω = 0. ∎

Remark 4.10 (link with the original Onsager reciprocal relations).
The original Onsager [147] theory assumes a linear force-flux relation e.g.

τ i =
n

∑
i,j=1

Ai,j ∶δj ⇐⇒ τ = A δ

where A = (Ai,j)i,j and the sub-matrix Ai,j could optionally depend upon
the state variables α as parameters: such a possible dependence is omitted
here for simplifying the notations.
This linear case could be recast into the more general nonlinear the-
ory of the present chapter. Indeed, from the results of the previ-
ous sections, this generalized force τ admits an unique decomposition
as τ = ∇δϕ +ω where ϕ = δ.(sym(A )δ)/2 is the quadratic dissipation poten-
tial and ω = skew(A )δ is the linear gyroscopic vector. From theorem 4.2,
we get ω = 0 which imposes the symmetry of the whole A matrix. Thus, the-
orem 4.2 is a natural generalization of the original Onsager reciprocal linear
relations to the nonlinear case.

https://commons.wikimedia.org/wiki/File:Onsager_1968.jpg
https://commons.wikimedia.org/wiki/File:Onsager_1968.jpg
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Finally, note that the dissipation involved by the Clausius-Duhem inequal-
ity (1.24) is written as D = τ .δ = δ.(sym(A )δ) = 2ϕ. From theorem 4.1, a
necessary and sufficient condition for the second principle to be satisfied is
for ϕ to satisfiy (4.4a), i.e. ϕ should be convex, or equivalently sym(A )
should be a positive matrix.

Remark 4.11 (breaking symmetry with a non-zero gyroscopic term).
The generalized Onsager-Edelen symmetry in theorem 4.2 removes the gy-
roscopic term and reduces the irreversible part of the constitutive equa-
tions to a gradient of the dissipation potential. This principle thus ex-
cludes de facto several recent models of major interest. The first concerned
are all non-associate models for plasticity and damage, widely used for ce-
ments, steels and in geoscience, such as the celebrated Coulomb [38] fric-
tion model and the popular non-associate Drucker and Prager [46] elasto-
plastic model, see e.e. de Saxcé and Feng [42], de Saxcé and Bousshine [41]
and Lemaitre and Chaboche [114] for damage models. Also, the study of the
original Cattaneo [19] heat model requires a non-zero gyroscopic term, see
section 5.18 below.
In 1999, Eringen [55, p. 52] wrote: "Onsager reciprocal relations represent
a special assumption based on microscopic time reversal. For large values
of thermodynamic forces, there appears to be no sound physical principle to
set ω = 0".
In 2014, Goddard [64, p. 15] wrote: "[...] there remain interesting and open
questions as to the failure of such symmetry and the emergence of Edelen’s
non-dissipative forces and fluxes, questions that may perhaps be clarified by
statistical micromechanics".
In conclusion, within the present framework, the Onsager-Edelen symmetry
from theorem 4.2 is proposed as an option, but not as a principle that should
be satisfied. A possible non-zero gyroscopic term, associated with a break
of symmetry, will be possible here: it allows us to both study some existing
recent mathematical models of practical interest and also to design some new
ones.

Remark 4.12 (second principle while breaking symmetry).
Let us explore in a tiny example what happens when satisfying the
second principle while breaking the symmetry principle. For simplicity,
we consider n ⩾ 1 scalar internal state variables α = (αi)1⩽i⩽n. Choos-
ing ρ = 1 and ψ(α) = (Aα).α/2 together with ϕ(

.
α) = (sym(M)

.
α).

.
α/2 and

ω(
.
α) = (skew(M)

.
α).

.
α, then the constitutive equations lead to a system

of n differential equations:

M
.
α + sym(A)α = 0

where A and M are two real matrices. Observe that skew(A) is not involved,
so we can assume without loss of generality that A is symmetric. Closing with
initial conditions for α, the stability analysis, i.e. showing that the solution
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decays to a steady state, reduces here to the study of the generalized eigen-
value problem Aα = λMα, looking for re(λ) > 0. Otherwise, an exponential
growth occurs. It is natural to assume for the Helmholtz energy ψ an extreme
state variable behavior such as limξ→∞ ψ(ξα) =∞ for any non-zero α and
then A is symmetric definite positive. Thus, the stability condition reduces
to M > 0. On one hand, from theorem 4.1, the second principle is equivalent
to the condition (4.4a) upon ϕ and we get here sym(M) ⩾ 0 i.e. ϕ is convex
while there are still no constraints upon skew(M). On the other hand, from
theorem 4.2, the symmetry imposes ω = 0, its mean here is skew(M) = 0 i.e.
M is symmetric positive. In conclusion, we observed in this example that
the Onsager reciprocal relations have no influence upon stability while the
second principle is directly related to it.

Remark 4.13 (force, state and rate variables).
In most thermodynamic theories based on the Onsager [147] reciprocal rela-
tions, each rate variable δi which is called a generalized flux, is in duality with
the corresponding generalized force τ i: they play a similar role and could be
interchanged. Also, in these theories, thermodynamic state variable αi are
considered independently: their numbers do not match a priori those of the
flux and there is no correspondence between them.
Here, and this is a major difference, each variable δi is interpreted as a rate
of its corresponding state variable αi, and this is the reason for which we
prefer to call them rate variables rather than flux. As a consequence, the
number of state and rate variables match. Also, rate variables can no longer
be swapped with forces, which can not be interpreted as a rate in general.
This could appear as more restrictive than within the Onsager [147] theory,
but there is no loss of generality since the three fundamental flux δ1 =

.
θ,

δ2 = ∇f(θ) and δ3 =D are interpreted here as rates of a corresponding state,
namely α1 = θ, α2 = βf and α3 = h. Finally, thanks to this correspondence,
the mathematical structure of this thermodynamic framework gains clarity
without losing generality.

4.4 Heat equation

Theorem 4.3 (heat equation).
Assume that the hypothesis of theorem 4.1 holds and, moreover, that ψ is C2.
Then, the conservation of energy (0.3) is expressed as an evolution equation
for the temperature θ:

ρCp(α)
.
θ + divq = r +σ ∶D +

n

∑
i=2

ρ(θ
∂2ψ

∂θ ∂αi
(α) −

∂ψ

∂αi
(α)) ∶δi (4.8)
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where αi and δi are numbered as in Table 4.1 and Cp(α) = −θ
∂2ψ

∂θ2
(α) > 0

denotes the heat capacity.

Proof: Following Gurtin et al. [78, p. 341], let us introduce the heat capacity:

Cp(α)
def
=
∂e

∂θ
(α) =

∂

∂θ
(ψ(α) + θs(α)) from (1.23a)

=
∂ψ

∂θ
(α) + s(α) + θ

∂s

∂θ
(α) = θ

∂s

∂θ
(α) from (4.5a)

= −θ
∂2ψ

∂θ2
(α) from (4.5a) again (4.9a)

This last expression for Cp coincides with those used in theorem 4.3. Next,
let us expand θ .

s as:

θ
.
s(α) = θ (

n

∑
i=1

∂s

∂αi
(α) ∶

.
αi)

= −
n

∑
i=1

θ
∂2ψ

∂θ ∂αi
(α) ∶

.
αi from (4.5a) again

= Cp(α)
.
θ −

n

∑
i=2

θ
∂2ψ

∂θ ∂αi
(α) ∶

.
αi from (4.9a) (4.9b)

By time derivation of the Legendre relation (1.23a) and then expanding
.
ψ:

.
e(α) = θ

.
s(α) +

.
θs(α) +

.
ψ(α)

= θ
.
s(α) +

.
θs(α) +

n

∑
i=1

∂ψ

∂αi
(α) ∶

.
αi

= θ
.
s(α) +

n

∑
i=2

∂ψ

∂αi
(α) ∶

.
αi from (4.5a) again

= Cp(α)
.
θ −

n

∑
i=2

(θ
∂2ψ

∂θ ∂αi
(α) −

∂ψ

∂αi
(α)) ∶

.
αi from (4.9b)

According to the hypothesis of theorem 4.1, ψ is an objective-isotropic func-
tion. Then, from corollary 2.36, ψ depends upon αi only via its invariants,
e.g. eig(αi) when αi is a symmetric second-order tensor. Then ∂ψ/∂θ also
depends only upon invariants of αi, and, from corollary 2.36 again, ∂ψ/∂θ is
also objective-isotropic versus αi. Thus, both ∂ψ/∂αi and ∂2ψ/∂θ∂αi belong
to eigsp(αi). Thus, .

αi could be replaced by δi in the previous expression
of .
e:

.
e(α) = Cp(α)

.
θ −

n

∑
i=2

(θ
∂2ψ

∂θ ∂αi
(α) −

∂ψ

∂αi
(α)) ∶δi
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Finally, replacing this expression of .
e in the conservation of energy (0.3) gives

exactly (4.8) and the proof is complete. ∎

Remark 4.14 (heat capacity).
● The heat equation (4.8) is a source of frequent confusion, especially when
the last term of the right-hand side is missing.
● Note that the heat capacity Cp is always strictly positive since θ > 0 and
the Helmholtz energy ψ is strictly concave versus θ, by the hypothesis in
theorem 4.1, see also proposition 1.19, page 28.
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The example series starts with classic elastic solid and Newtonian fluid models
(sections 5.2 to 5.8). Then, complex viscoplastic, viscoelastic and elastovis-
coplastic models are introduced (sections 5.9 to 5.16). This series closes with
non-isothermal models (sections 5.17 to 5.20).
The Cattaneo heat equation is an emblematic final illustration for the frame-
work of chapter 4. Indeed, we are able to:

● clearly understand in section 5.18 why this model does not satisfy the
second principle

● propose in section 5.19 a variant that fully satisfies all thermodynamic
requirements,

● combine in section 5.20 this variant with a viscoelastic fluid model.

The aim of this example series is to illustrate the clarity and power of the
proposed thermodynamic framework. These examples could be reused as tem-
plates for the design of new variants. In addition, the framework of chapter 4
offers a robust and secure environment for the design of new models or the
combination of some existing models. The design of mathematical models
based on thermodynamic principles structurally avoids common errors that
are otherwise difficult to identify and could have disastrous consequences.
For instance, the use of inappropriate dissipation potential could result in an
unexpected divergence of simulation codes: instead of spending years looking
for a hypothetical programming bug, a direct design of models from such a
thermodynamic framework appears to be a good alternative.

5.1 Hyperelastic solid

Many solids, such as rubbers, deform in a reversible way and could be con-
sidered as elastic materials in usual conditions. As pointed out in remark 2.2,
page 38, from thermodynamic requirements, elastic material are necessarily
obtained by derivation of the Helmholtz energy ψ, acting as an elastic poten-
tial, and are also called hyperelastic models. For an hyperelastic model, the
Cauchy stress σ is expressed as

σ = ρ
∂ψ

∂F
(F )F T

where F ∈ GL+(N) is the gradient of a deformation tensor
and ψ ∶ GL+(N)→ R is the Helmholtz energy, which is assumed to be
continuously differentiable upon its argument F .
The conservation of momentum (0.2) is used to close the mathematical prob-
lem and hyperelastic solids are usually solved numerically by a minimization
method in a Lagrangian frame. Indeed, the problem associated to the sta-
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tionary version of the momentum conservation (0.2) writes simply on the
reference configuration Ω0 as a minimization problem (see e.g. Ciarlet [27,
ch. 4]):

min
χ∈X
∫
X∈Ω0

ρ0 {ψ(∇χ(X)) − g.χ(X)} dX

in terms of the deformation vector χ only (see section 2.1),
where ρ0 = ρdetF is the density of the reference configuration
and X = {χ ∶ Ω0 → RN ; χ(X) =X on ∂Ω0} denotes the set of admis-
sible deformation when considering Dirichlet boundary conditions. This
minimization problem is the starting point of both theoretical results and
efficient numerical methods. It is then possible to prove the existence of
solutions under additional assumptions about the Helmholtz energy ψ. The
first existence result of this minimization problem was obtained in 1976
by Ball [3], see his equation (1), assuming coercivity and polyconvexity
for ψ versus F . Polyconvexity is a weak version of convexity: indeed, ψ
could not be both objective and convex versus F , as pointed out in 1959
by Coleman and Noll [36, p. 110], since it leads to unacceptable restric-
tions upon mathematical models, see also Ciarlet [27, p. 170]. See also
Marsden and Hughes [122], Ciarlet [27] and Silhavy [169] for more recent
theoretical results and a still weaker quasiconvexity assumption for ψ. Let
us study now some practical choices for the Helmholtz energy.

5.2 Hencky elastic solid

Assuming that the Helmholtz energy ψ is also objective-isotropic, it is ex-
pressed equivalently in terms of the left Hencky strain h only. Then, an
isothermal hyperelastic solid could be expressed in the present framework
with n = 1 with α1 = h as the only state variable.
In 1928, Hencky [84] proposed a simple quadratic expression of the Helmholtz
energy ψ versus the Hencky strain. See also the English translation of this
German original paper by Neff et al. [132]). It is written as:

ψ(h) =
λ

2ρ0
(trh)2 +

G

ρ0
∣h∣2

where λ and G are the Lamé coefficients and ρ0 denotes the mass density
in the reference configuration, see section 2.1, page 31. Both the dissipa-
tion potential ϕ and the gyroscopic term ω are zero. This model is repre-
sented by a spring on the rheological scheme of Fig. 5.1.left. Observe that
this Helmholtz energy ψ is objective-isotropic, see corollary 2.40. Follow-
ing remark 4.3, theorems 4.1 and 4.2 apply and the model satisfies both
the second principle and the generalized Onsager-Edelen symmetry. Note
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Robert Hooke Heinrich Hencky

h

λ, G

σ

Fig. 5.1 (left) Solid elastic model. (center) Robert Hooke (1635-1703), in 1680. Oil
painting by Mary Beale, private collection (public domain reproduction). (right) Heinrich
Hencky (1885-1951), photo from MIT Museum.

that the dissipation D involved by the Clausius-Duhem inequality (1.24)
is zero. This model has been shown to be in good agreement with experi-
ments for a wide class of materials for moderately large deformations, see
e.g. Anand [2] and also Neff et al. [133, p. 5] for a recent review. Splitting
the left Hencky strain h = (trh/N)I + devh into its spherical and deviatoric
parts, the Helmholtz energy ψ is expressed equivalently as

ψ(h) =
Nλ + 2G

2Nρ0
(trh)2 +

G

ρ0
∣devh∣2

where λ + 2G/N is referred to as the bulk elastic modulus. Then ψ is strictly
convex versus h if and only if G > 0 and λ > −2G/N , as the sum of two
strictly convex functions. From (4.5c), the Cauchy stress tensor is written
as σ = ρψ′(h). Expanding, we get

ρ0
ρ
σ = λ(trh)I + 2Gh

⇐⇒ σ = exp(−trh) {λ(trh)I + 2Gh} (5.1)

from expression (3.18) of ρ versus trh, see remark 3.28, page 83. Note that
the final expression (5.1) of σ is nonlinear versus h, due to compression
or dilatation effects, i.e. the variation of the mass density ρ. Indeed, in the
incompressible case ρ = ρ0, then trh = 0 and σ = 2Gh becomes linear. Note
that this is the most general expression of an isotropic linear function, as
shown in proposition 2.34. In the small displacement limit, recall that h ≈ ε,
see remark 3.7, page 68, and then σ ≈ λ(trε)I + 2Gε i.e. this model is a direct
extension of the kinematics of large deformations of the usual tensor version
of the linear Hooke’s model [90] from 1678.

https://en.wikipedia.org/wiki/File:Portrait_of_a_Mathematician_1680c.jpg
https://webmuseum.mit.edu/media.php?module=people&type=related&kv=9795&media=3
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Nevertheless, this model has some serious drawbacks, as pointed out by
Neff et al. [133, p. 10]: the Helmholtz energy is not coercive, neither versus F
nor B = exp(2h), and then it is not possible to prove that the associated min-
imization problem is well-posed, see the previous section 5.1. Finally, despite
its many attractive features, it is clear that there cannot exist a general
mathematical well-posedness result for the Hencky elastic model. This situa-
tion changed very recently: in 2019, Martin et al. [123] proposed a promising
polyconvex and coercive extension of this Hencky energy ψ that fully satisfies
all these mathematical requirements.

5.3 Neo-Hookean elastic solid

The isothermal neo-Hookean elastic model was introduced in 1948 by
Rivlin [157], see his eqn (9.3), p. 475, for incompressible materials and then
extended to the compressible case in 1971 by Blatz [10], see his eqn (48),
p. 36. Its Helmholtz energy for any left Hencky strain h is expressed as:

ψ(h) =
γ(trh)

ρ0
+
G

2ρ0
(tr exp(2h) −N)

with γ(ξ) = λ (exp ξ − 1) − (λ +G)ξ, ∀ξ ∈ R

(5.2)

where G > 0 and λ > −G are the Lamé coefficients while ρ0 denotes the
mass density in the reference configuration. Both the dissipation poten-
tial ϕ and the gyroscopic term ω are zero. Observe that the neo-Hookean
energy ψ is objective-isotropic, see corollary 2.40. Following remark 4.3, the-
orems 4.1 and 4.2 apply and the model satisfies both the second principle and
the generalized Onsager-Edelen symmetry. Note that the dissipation D = 0.
From (4.5c), the Cauchy stress tensor is written as σ = ρψ′(h) and, together
with (3.18), we get

ρ0
ρ
σ = γ′(trh)I +G exp(2h)

⇐⇒ σ = exp(−trh) {γ′(trh)I +G exp(2h)}

where γ′(ξ) = λ exp ξ − (λ +G) for all ξ ∈ R. For the derivation of the trace
in the expression of ψ, we used corollary 3.15. The Cauchy stress also is
expressed equivalently in terms of the left Cauchy-Green tensor B = exp(2h)
as

σ = (detB)−
1
2 {γ′ (

1

2
log detB)I +GB}

Note that, in the incompressible case ρ = ρ0, from (3.18), it reduces
to σ = Ge where e = (B − I) /2 is the left Green-Lagrange strain. Observe
that σ = λ(trh)I + 2Gh +O (∣h∣2). Then, the neo-Hookean model appears
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as a first order approximation of the Hencky elastic model (5.1). Moreover,
in the limit of small displacements h ≈ ε, the linear Hooke’s model [90] is
recovered, as in the previous section.
This model has been widely used for years, despite it also having some math-
ematical drawbacks. In Ball [3, p. 390]: "The incompressible neo-Hookean
model [...] is not covered by the theorems. [...] Note, however, that we do
get existence theorems for the [incompressible] neo-Hookean model in two
dimensions". Indeed, there is no warranty in two dimensions with the
compressible neo-Hookean model for the minimization problem to be well-
posed. There is also no warranty when N ⩾ 3 for both the compressible
and incompressible neo-Hookean models. Today there are many variants
of hyperelastic models that fully satisfy theoretical requirements. In 1972,
Ogden [140, 141] proposed a general elastic energy for the compresible case
and Ball [3, p. 367] showed that the corresponding problem is well-posed.
In 1982, Ciarlet and Geymonat [28, p. 424], eqns (13) and (22), presented
one of the most simple expressions of the Ogden energy: it extends the in-
compressible Mooney [127] model to the compressible case in a simple way,
while satisfying theoretical requirements.

5.4 fene-p elastic solid

The fene-p model was introduced in 1980 by Bird et al. [9], eqns (5) and (9),
see also Wedgewood and Bird [185]. It was developed in the context of vis-
coelastic fluid applications and will be discussed again in the forthcoming
section 5.12. The acronym fene means finitely extensible nonlinear elas-
tic and the last "P" stands for the Peterlin closure. Indeed, this model is
a macroscopic closure of the micro-macro model fene introduced in 1972
by Warner [184] as a suspension of an assembly of elastic dumbbells with
bounded elongation, see Fig. 5.2. This idea was independently re-proposed
in 1996 by Gent [61] as a pure elastic solid in the context of rubber applica-
tions.
One of the major interests of this model, when compared to the neo-Hookean
one, is its ability to predict finite elongational properties, in agreement with
experimental observations.

ψ(h) =
G

ρ0

⎛
⎜
⎜
⎝

N

2α
log

⎛
⎜
⎜
⎝

1 − α

1 −
α

N
tr exp(2h)

⎞
⎟
⎟
⎠

−
trh

1 − α

⎞
⎟
⎟
⎠

+ I[0,N/α[ (tr exp(2h))

Both the dissipation potential ϕ and the gyroscopic term ω are zero. Note
that the indicator of a convex set is a convex function, so I[0,N/α[ is convex:
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Robert B. Bird

v

max length

Fig. 5.2 (left) Finitely extensible nonlinear elastic dumbbell (FENE). (right) Robert B.
Bird (1924-2020), photo from Wisconsin-Madison university with permission.

it applies a bound to the strain. The parameter α is assumed to satisfy α < 1
in order to be sure that h = 0 satisfies the bound: thus ψ(0) is finite and
moreover ψ(0) = 0 here. Finally, ψ is well-defined by continuity at the limit
when α → 0: it coincides with the previous neo-Hookean energy. Following
remark 4.3, theorems 4.1 and 4.2 apply and the model satisfies both the
second principle and the generalized Onsager-Edelen symmetry. Note that
the dissipation D = 0.
By usual derivations, the constitutive equation (4.5c) is written as:

σ = G (detB)−
1
2

⎛
⎜
⎜
⎝

B

1 −
α

N
trB

−
I

1 − α

⎞
⎟
⎟
⎠

Observe that when α = 0, the Cauchy stress of the fene-p solid elastic model
nicely reduces to those of the neo-Hookean one with λ = 0, as expected. A
rapid inspection shows that ψ is both polyconvex and coercive, as defined
by Ball [3]. Then, this model fully satisfies all theoretical requirements and
the Ball [3, p. 367] theorem applies: the associated minimization problem is
well-posed. This is a major advantage, when compared with the two previ-
ous elastic models. In conclusion, this model is very attractive, both from a
physical and mathematical point of view: it will be discussed again in the
forthcoming section 5.12 for viscoelastic fluid applications. While until now,
all previous models of elastic solids only involved the Helmholtz energy ψ,
let us turn to fluid applications, which involve the dissipation potential ϕ.

https://search.library.wisc.edu/digital/AS3VJSX5TL5F7D8S
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5.5 Compressible Newtonian fluid

In 1823, Navier [131] introduced the concept of friction at the molecular level,
corresponding, at the continuous level, to the viscous term. This model is rep-
resented by a dashpot on the rheological scheme of Fig. 5.3.left: this dashpot
should be understood as a possibly unbounded strain h, since it acts on its
associated rate variable D. Navier was inspired by the heat equation and by
its second order diffusion term for incorporating the friction effect into the
Euler equations. A recent historical presentation of the elaboration of these
equations can be found in the nice book by Darrigol [39], who mentions on
page 101: "Navier’s theory received little contemporary attention. The Navier-
Stokes equation was rediscovered or rederived at least four times, by Cauchy
in 1823, by Poisson in 1829, by Saint-Venant in 1837, and by Stokes [171]
in 1845. Each new discoverer either ignored or denigrated his predecessors’
contribution. Each had his own way to justify the equation, although they all
exploited the analogy between elasticity and viscous flow". The fluid consid-
ered in 1823 by Navier [131] and in 1845 by Stokes [171] was incompressible:
in this paragraph, we first present the compressible case while incompressible
fluids are introduced in the next section.

Henri Navier George Stokes

ηb, ηs

σ

h

Fig. 5.3 (left) Solid elastic model. (center) Henri Navier (1785-1836), bust at the école
nationale des ponts et chaussées, Paris (public domain reproduction). (right) George Stokes
(1819-1903), photo in 1860 (public domain reproduction).

An isothermal compressible Newtonian fluid is obtained with n = 1
and α1 = h while

ϕ(D) =
ηb
2
(trD)2 + ηs∣D∣

2

together with ψ = 0 and ω = 0 where ηs and ηb are respectively the shear and
second viscosities. Splitting the strain rate D = (trD/N)I + devD into its

https://commons.wikimedia.org/wiki/File:Claude-Louis_Navier.jpg
https://commons.wikimedia.org/wiki/File:Ggstokes.jpg
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spherical and deviatoric parts, the dissipation potential ϕ expresses equiva-
lently as

ϕ(D) =
Nηb + 2ηs

2N
(trD)2 + ηs∣devD∣2

where ηb + 2ηs/N is referred to as the bulk viscosity. Then ϕ is convex if and
only if ηs ⩾ 0 and ηb ⩾ −2ηs/N . Following remark 4.3, theorems 4.1 and 4.2
apply and the model satisfies both the second principle and the generalized
Onsager-Edelen symmetry. The constitutive equation (4.5c) is written as:

σ = ηb(trD)I + 2ηsD

Note the similarity with the Hookean elasticity (5.1): the strain h has just
been replaced by the stretching D, which is its rate. Indeed, this is the
most general expression of an isotropic linear function, as shown in proposi-
tion 2.34. Following (4.4a), the dissipation involved in the Clausius-Duhem
inequality (1.24) is written as:

D = ηb(trD)
2
+ 2ηs∣D∣

2
⩾ 0

Replacing the previous expression of σ in the mass and momentum con-
servations (0.1)-(0.2) together with the kinematic relation D = sym(∇v), we
obtain a problem involving two unknowns (ρ,v) and satisfying two equations:

⎧⎪⎪
⎨
⎪⎪⎩

.
ρ + ρdivv = 0

ρ
.
v − div (ηb(divv)I + ηs (∇v +∇v

T )) = ρg

Note that the pressure is defined by p = −trσ/N = −
Nηb + 2ηs

N
trD. The limit

case ηb →∞ corresponds to an incompressible fluid: this is the subject of the
forthcoming example 5.6.

5.6 Liquids as incompressible Newtonian fluid

Many liquids, such as water, could be considered as incompressible in usual
conditions and thus, the incompressible limit is of major interest. An isother-
mal incompressible Newtonian fluid is obtained with n = 1 and α1 = h:

ϕ(D) = Iker(tr)(D) + η∣D∣
2 (5.3)

together with ψ = 0 and ω = 0. The first term in (5.3) imposes the in-
compressibility constraint: the indicator is zero when trD = 0 and infinity
otherwise. The second term involves the shear viscosity η > 0. Note that the
indicator of a convex set is a convex function, so Iker(tr) is convex and, fol-
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lowing remark 4.3, theorems 4.1 and 4.2 apply and the model satisfies both
the second principle and the generalized Onsager-Edelen symmetry. Follow-
ing (4.4a), the dissipation involved by the Clausius-Duhem inequality (1.24)
is written as D = 2η∣D∣2 ⩾ 0. This provides an alternative direct proof that
the Newtonian fluid model satisfies the second principle of thermodynam-
ics. From the constitutive equation (4.5c) and using [164, prop. 17, p. 13] for
computing the subdifferential of the indicator function, we get the Cauchy
stress σ = −pI + 2ηD. Remark that the Lagrange multiplier p, associated
with the incompressibility constraint, coincides with the physical pressure,
i.e. −trσ/N = p since trD = 0. The mass conservation (0.1) together with
the incompressibility constraint trD = 0 leads to .

ρ = 0 i.e. the density ρ is
constant. The conservation of momentum (0.2) then leads to the usual Navier-
Stokes equations i.e. a system of two unknowns (ρ,v) and two equations:

⎧⎪⎪
⎨
⎪⎪⎩

divv = 0

ρ
.
v − div (−pI + η (∇v +∇vT )) = ρg

The main mathematical existence and uniqueness result for the solution of
the Navier-Stokes equations was obtained in 1934 by Leray [117] for the bi-
dimensional case (N = 2). For a precise statement of this theorem and a
more recent presentation of the proof, see Lions [118], Temam [172, p. 22]
or Boyer and Fabrie [13, p. 352]. When N ⩾ 3, and especially for a three-
dimensional case, the theory is still incomplete: its proof, or the proof of
its impossibility, is the subject of one of the seven millennium prize prob-
lems that were stated by the Clay Mathematics Institute in 2000. A correct
solution to this problem will be awarded a million US dollars.

5.7 Gas as reversible compressible fluid

Many gases, such as air, could be considered as compressible in an almost
reversible way in usual conditions. Remember what happens with a soccer or
tennis ball: it bounces and is partially damped, see Fig. 5.4.right. It loses en-
ergy: where has this energy gone ? Energy losses due to inelastic deformation
and air resistance cause each successive bounce to be lower than the last. In
that case, the compression is neither fully recoverable nor fully dissipative.
While all models until now only involved either the Helmholtz energy ψ, or
the dissipation potential ϕ alone, the present model simultaneously involves
both.
Consider the following example:
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ηb, ηs

σ
c0, γ

trh

N
I devh

h

Fig. 5.4 (left) Reversible compressible gas model. (right) A bouncing ball captured with a
stroboscopic flash at 25 images per second. Michael Maggs, 2007 (license: CC-BY-SA-3.0).

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

ψ(h) =
c0ρ

γ−1
0

(γ−1)
exp (−(γ−1)trh)

ϕ(D) =
ηb
2
∣trD∣2 + ηs∣D∣

2

together with a gyroscopic term ω = 0, where γ > 1 is a parameter referred
to as the adiabatic exponent, c0 ⩾ 0, ρ0 is the mass density in the reference
configuration, and ηs ⩾ 0 and ηb ⩾ −2ηs/N are the shear and bulk viscosities,
respectively. This model is represented on Fig. 5.4: the spring is associated
with the reversible part, which lives in ψ and the dashpot, with the irreversible
dissipative part, which moves to ϕ. Note that the spring acts only on the
spherical part of the strain h while the dashpot acts on both parts of the
strain rate D. Following remark 4.3, theorems 4.1 and 4.2 apply and the
model satisfies both the second principle and the generalized Onsager-Edelen
symmetry. Following (4.4a), the dissipation involved by the Clausius-Duhem
inequality (1.24) is written as D = ηb(trD)

2 + 2ηs∣D∣
2 ⩾ 0 i.e. it is the same

as those of section 5.5. The constitutive equation (4.5c) is written as

σ = ρ
∂ψ

∂h
+
∂ϕ

∂D
= (ηb(trD) − c0ρ

γ
)I + 2ηsD

where we used (3.18) to express the mass density ρ. When coupled
with the mass and momentum conservations (0.1)-(0.2), this consti-
tutive equation leads to a variant of the compressible Navier-Stokes
equations, see e.g. Gurtin et al. [78, p. 256]. The pressure is written

as p = −trσ/N = c0ργ −
Nηb + 2ηs

N
trD. Note that the two viscosities are small

for most gases and then p ≈ c0ρ
γ e.g. for a perfect gas. By an appropriate

change of the Helmholtz energy ψ, more sophisticated pressure relations could

http://www.luminous-lint.com/app/image/292555474929429120812
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be considered instead, see e.g. the recent Noble-Abel stiffened gas proposed
by le Métayer and Saurel [110], suitable for materials ranging from gas to
liquid.

5.8 Edelen’s non-dissipative viscous fluid

Until now, all models have involved the Helmholtz energy ψ or the dissipation
potential ϕ but always with a zero gyroscopic term ω: the present model
explores the case ω ≠ 0, which represents an irreversible and non-dissipative
contribution. In 1977, Edelen [53] proposed a surprising fluid with a non-
dissipative viscous stress component and which satisfies the second principle.
Let us consider the thermodynamic framework with n = 1 and α1 = h together
with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(h) =
c0ρ

γ−1
0

(γ−1)
exp (−(γ−1)trh)

ϕ(D) =
ηb
2
(trD)2 + ηs ∣D∣

2

ω(D) = −
(Nηb + 2ηs) (trD)

N ∣D∣2 − (trD)2
{∣D∣2I − (trD)D}

This model is similar to the previous one for gas, with only a change
for ω ≠ 0. Note that ω(D) ∶D = 0 i.e. ω satisfies the orthogonality condi-
tion (4.4c). Following remark 4.3, theorem 4.1 applies and the model satisfies
the second principle. Note also that since the gyroscopic term ω ≠ 0, from
theorem 4.2, the generalized Onsager-Edelen symmetry is broken. Follow-
ing (4.4a), the dissipation involved by the Clausius-Duhem inequality (1.24)
is written as D = ηb(trD)

2 + 2ηs∣D∣
2 ⩾ 0 i.e. it is the same as those of sec-

tions 5.5 and 5.7, since the gyroscopic term ω is non-dissipative. After rear-
rangements, the constitutive equation (4.5c) is written as:

σ = (ηb(trD) − c0ρ
γ
)I + 2ηsDηb +ω(D)

= −c0ρ
γI + 2ηapp (trD, ∣D∣2)devD

where

ηapp (trD, ∣D∣2) = ηs +
(Nηb + 2ηs) (trD)

2

2 (N ∣D∣2 − (trD)2)

Thus, this fluid appears as a quasi-Newtonian one, i.e. with a non-constant
viscosity ηapp that depends upon D. Moreover, when trD = 0, its stress coin-
cides with those of a viscous one with a constant shear viscosity ηs and zero
bulk viscosity: in the incompressible case, it is then indistinguishable from
the previous example, section 5.7. Edelen [53] pointed out that "In general,
it is surprisingly difficult to distinguish between the fluids considered here and
the classic Navier-Stokes fluids, even though there are characteristic anoma-
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lies associated with the nondissipative stresses". Indeed, this kind of fluid has
not yet been experimentally observed and is still a thermodynamic curiosity.
Note that this dissipation coincides with those of the compressible Newtonian
fluid from example 5.5.

5.9 Kelvin-Voigt viscoelastic solid

An adiabatic compressible fluid, represented on Fig. 5.4, combines in par-
allel a spring and a dashpot, i.e. both reversible elastic and irreversible
viscous mechanisms, see the previous section 5.7. The original Kelvin-
Voigt solid model was independently introduced in 1890 by Voigt [178] and
Thomson [174], best known as Kelvin, in the small displacement context: it
also combines together these elastic and viscous effects, see Fig. 5.5. Its ex-
tension to the kinematics of large strains is a natural idea that was proposed
in 1964 by Kluitenberg [107, p. 1969]. Let us consider n = 1 with a Helmholtz
energy ψ as for the neo-Hookean elastic model (see section 5.3) and a dissi-
pation potential ϕ as for the compressible Newtonian fluid (see section 5.5):

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ψ(h) =
γ(trh)

ρ0
+
G

2ρ0
(tr exp(2h) −N)

ϕ(D) =
ηb
2
(trD)2 + ηs∣D∣

2

together with a gyroscopic term ω = 0. The γ function is given by (5.2) with
the Lamé coefficients G > 0 and λ > −G. Also, ηs > 0 and ηb > −2ηs/N are
respectively the shear and bulk viscosities. This model is represented on
Fig. 5.5: the spring is associated with the reversible part, which lives in ψ
and the dashpot, with the irreversible dissipative part, which moves to ϕ. Ob-
serve the similarities between Fig. 5.4 for the adiabatic gas and Fig. 5.5 for
the present model. While, for the gas, the spring acted only on the spherical
part of the strain, now it acts on both parts when G > 0. The full strain h is
now controlled by the Helmholtz energy ψ and then, the model is no more a
fluid but a solid, associated with bounded strains. See also Fig. 3.1.right and
section 3.1, page 66 for a definition of solid and fluid behaviors in terms of
strains. Following remark 4.3, theorems 4.1 and 4.2 apply and the model satis-
fies both the second principle and the generalized Onsager-Edelen symmetry.
Following (4.4a), the dissipation involved by the Clausius-Duhem inequal-
ity (1.24) is written as D = ηb(trD)

2 + 2ηs∣D∣
2 ⩾ 0 i.e. it is the same as those

of sections 5.5, 5.7 and 5.8. Then, from (4.5c) and by derivation, as in the
previous examples:2
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Woldemar Voigt William Thomson

λ, G

h

σ

ηb, ηs

Fig. 5.5 (left) The Kelvin-Voigt model. (center) Woldemar Voigt (1850-1919), photo
7near 1910 (public domain reproduction). (right) William Thomson, best known as Kelvin
(1824-1907), photo (public domain reproduction).

σ = exp(−trh) {γ′(trh)I +G exp(2h)} + ηb(trD)I + 2ηsD

= (detB)−
1
2 {γ′ (

1

2
log detB)I +GB} + ηbtrDI + 2ηsD

where B = exp(2h) is the left Cauchy-Green tensor.

5.10 Bingham and Herschel-Bulkley viscoplastic fluids

Until now, previous models were based on a quadratic dissipation potential ϕ
i.e. the viscous terms was always linear. The present model develops a highly
nonlinear and non-smooth dissipation potential ϕ. Understanding plastic-
ity and its non-smooth yield stress mechanisms is of major importance for
many applications: concrete, cements and steel mechanics for industry, soil
mechanics in geophysics, debris and volcanic flows, snow avalanches, tissues
in biology, food industry, ceramics extrusion, petroleum industry (pipe-line),
and most soft-solid materials.
The modeling of viscoplastic fluids started in 1900 when Schwedoff [166] stud-
ied gelatins with a one-dimensional time-dependent model involving a yield
stress together with some elastic effects. The Schwedoff paper was the fore-
runner of a multitude of papers on variable viscosity effects in a plethora
of materials. At this time, there was a tendency to label all anomalous be-
havior as manifestations of plasticity, with no clear idea as to what that
meant. In 1922, Bingham [8] published an important book entitled Fluidity
and Plasticity, which contributed to clarifying some ideas during this period.

https://commons.wikimedia.org/wiki/File:Woldemar-Voigt_1850-1919.jpg
https://commons.wikimedia.org/wiki/File:Lord_Kelvin_photograph.jpg
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Théodore Schwedoff Eugene C. Bingham

K,m

σy

σ

h

Fig. 5.6 (left) Bingham and Herschel-Bulkley models. (center) Théodore Schwedoff
(1840-1905), photo in 1890 (public domain. reproduction). (right) Eugene C. Bingham
(1878-1945), photo from Smithsonian museum.

He presented a one-dimensional model with a yield stress that coincides with
a particular case of the Schwedoff model when elastic effects are neglected.
The first multi-dimensional tensor plasticity yield criterion was introduced
in 1913 by von Mises [181]. The modern story of viscoplastic fluids started
in 1932, when Hohenemser and Prager [89], using the von Mises [181] ten-
sor plasticity criterion, proposed to extend the scalar Bingham viscoplastic
model to the multi-dimensional case. Next, in 1947, Oldroyd [142], in a col-
lection of papers, studied the tensor version of both the Bingham model and
its Herschel-Bulkley [85] power-law extension.
An isothermal incompressible viscoplastic Herschel-Bulkley [85] fluid is given
by n = 1 and α1 = h with

ϕ(D) = Iker(tr)(D) +
2K

1 +m
∣D∣1+m + σy ∣D∣ (5.4)

together with ψ = 0 and ω = 0. Here, K > 0 is the consistency and m > 0 is a
power index while σy is the yield stress. Fig. 5.6.left represents the rheological
diagram containing a dry-friction element, associated with a plasticity with
the yield stress σy, and a dashpot for the nonlinear viscous term. Whenm = 1,
the Bingham [8] scalar model is recovered, when σy = 0, this model reduces to
a nonlinear power-law extension of a Newtonian fluid and when both σy = 0
and m = 1, the incompressible Newtonian fluid of section 5.6. is recovered
with K as the viscosity. Note that the norm is convex and then ϕ is convex as
the sum of convex functions. Then, following remark 4.3, theorems 4.1 and 4.2
apply and the model satisfies both the second principle and the generalized
Onsager-Edelen symmetry. Due to the last non-differentiable term in (5.4),
obtaining the Cauchy stress from (4.5c) requires some subdifferential calculus,
see e.g. [163, chap 3]:

https://commons.wikimedia.org/wiki/File:Shvedov_Fedor.jpg
https://siarchives.si.edu/collections/siris_arc_290286
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σ = −pI + τ and
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

τ = 2K ∣D∣−1+mD + σy
D

∣D∣
when D ≠ 0

∣τ ∣ ⩽ σy otherwise

Following (4.4a), the dissipation involved by the Clausius-Duhem inequal-
ity (1.24) is written as:

D = 2K ∣D∣m+1 + σy ∣D∣ ⩾ 0

This provides an alternative direct proof that this viscoplastic model satisfies
the second principle of thermodynamics. For both theoretical and practi-
cal computations of the solution, see [163, chap 3] or [165] and references
therein. Finally, the Bingham and Herschel-Bulkley viscoplastic models will
be extended in section 5.16 to also take elasticity into account.

5.11 Oldroyd-B viscoelastic fluid

All previous examples have involved only one state variable, the left Hencky
strain h. In this section, let us explore models involving several state vari-
ables. Proposed in 1950 by Oldroyd [143, p. 340, eqn. (73)], the Oldroyd-B
model is an objective version of the non-objective Jeffreys [99] style model
introduced in 1946 by Fröhlich and Sack [60] for dilute suspensions of elastic
particles such as emulsions or suspensions. The Lagrangian rate of tensors are
replaced by its upper-convected objective version, see definition 2.18, page 49.
This model is obtained with n = 2 and α = (h,he). Note that the reversible
left Hencky strain h corresponds to an internal state variable in the present
framework. The Helmholtz energy and dissipation potential are

ψ(h,he) =
G

2ρ0
(tr exp(2he) −N − 2 trhe)

ϕ([he]; D,De) = Iker(tr)(D) + η0∣D∣
2
+ η ∣exp(he)(D −De)∣

2

(5.5a)

(5.5b)

with a gyroscopic term ω = 0 and where η0 ⩾ 0 and η > 0 are two viscosities.
Observe that the dissipation potential ϕ, given by (5.5b), imposes the incom-
pressibility constraint trD = 0. Then trh = 0 and ρ = ρ0, see remark 3.28,
page 83. The Helmholtz energy (5.5a) corresponds to an instance of the
neo-Hookean expression (5.2) applied to the reversible left Hencky strain he

while choosing the second Lamé coefficient λ = 0, see Fig. 5.7. When η0 = 0,
the Oldroyd-B model reduces to the upper-convected tensor formulation of
the Maxwell [126] scalar model, known since 1867, see again Fig. 5.7. Note
that η0 represents the solvent viscosity of the suspension, which is expected
to be small when compared with η, so η0 = 0 has a physical sense. Note that
D =

○

h(log) and De =
○

h(elog)e from proposition 3.36, relation (3.25a). Then, the
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James C. Maxwell James G. Oldroyd

σ

η0

h

he hp

G η

Fig. 5.7 (left) The Oldroyd model. (right) James C. Maxwell (1831-1879), engraving by
G. J. Stodart from a photo by Fergus of Greenock, as reproduced in [14], public domain.
(right) James G. Oldroyd (1921-1982), photo from [148].

two rate variables are obtained from corotational rates of the two correspond-
ing state variables. Following remark 4.3, theorems 4.1 and 4.2 apply and the
model satisfies both the second principle and the generalized Onsager-Edelen
symmetry. The constitutive equations (4.5c)-(4.5d) become:

{
σ = −pI + 2η0D + η(DpBe +BeDp)

0 = G(Be − I) − η(DpBe +BeDp)

(5.6a)
(5.6b)

where Be = exp(2he) is the reversible left Cauchy-Green tensor
and Dp =D −De, the irreversible stretching. Combining with the kinematic
relation (3.23) and rearranging, we get

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

σ = −pI + 2η0D +G(Be − I)

η

G

∇
Be + Be = I

(5.7a)

(5.7b)

where η/G is the relaxation time. The reversible left Cauchy-Green ten-
sor Be = exp(2he) coincides, in the viscoelatic fluid context, with the confor-
mation tensor introduced in 1966 by Giesekus [62], see also Beris [5], eqn (31).
Hulsen [92] checked by a direct proof that the solution Be of the linear dif-
ferential equation (5.7b) is always a symmetric definite positive tensor.
From (5.6b), observe that Dp ∈ eigsp(Be) and then Be and Dp commute.
Then, (5.6b) leads to Dp = (G/(2η)) (I −B

−1
e ). Applying theorem 3.3, the

previous expression of Dp could be replaced in the kinematic relation (3.26b).
Then, model (5.7a)-(5.7b) is expressed in terms of he only as:

https://commons.wikimedia.org/wiki/File:James_Clerk_Maxwell_big.jpg
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⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

σ = −pI + 2η0D +G(exp(2he) − I)

○

h(log)e +
G

2η
(I − exp(−2he)) =D

(5.8a)

(5.8b)

where ○.(log) denotes the corotational logarithmic rate, see (3.15b). Let us con-
sider the limit of large relaxation time i.e. η/G→∞: then (5.8b) reduces
to
○

h(log)e =D =
○

h(log) from theorem 3.1 and thus he = h. Replacing in (5.8a)
yields σ = −pI + 2η0D +G(B − I) i.e. a Kelvin-Voigt incompressible solid
which reduces to a neo-Hookean incompressible elastic solid when η0 = 0.
The formulation (5.8a)-(5.8b) is of major interest: especially, it is widely
used for the numerical resolution of the Oldroyd-B model, see e.g. [161]
and references therein. Note that he = (1/2) logBe represents, up to the 1/2
factor, the logarithm of the conformation tensor, as introduced in 2004 by
Fattal and Kupferman [56]. These authors were motivated by the develop-
ment of robust numerical methods. Surprisingly, they did not make the con-
nection between their own logarithm of the conformation tensor and the
Hencky [84] strain, known since 1928. They also did not interpret the new
nonlinear terms in their own equations as a corotational rate. Note that
the corotational logarithmic rate was proposed independently in 1991 by
Lehmann et al. [113], in 1995 by Reinhardt and Dubey [154, 155] and in 1997
by Xiao et al. [187, p. 92].
After expansion from (4.4a), the dissipation involved by the Clausius-Duhem
inequality (1.24) is written as:

D =
∂ϕ

∂D
∶D +

∂ϕ

∂De
∶De

= 2η0∣D∣
2
+ 2η ∣exp(he)Dp∣

2

= 2η0∣D∣
2
+
G2

2η
tr(Be +B

−1
e − 2I)

= 2η0∣D∣
2
+
G2

2η
tr(exp(2he) + exp(−2he) − 2I) (5.9)

since Dp = (G/(2η)) (I −B
−1
e ). Observe that e2ξ + e−2ξ − 2 ⩾ 0 for any ξ ∈ R

and then the second term of the dissipation is always positive. Note that the
strain measure tr(Be +B

−1
e − 2I) detects extreme strains, see also Fig. 3.1.left

and page 66 for its analysis. Then D ⩾ 0, which provides an alternative di-
rect proof that the Oldroyd-B model satisfies the second principle of ther-
modynamics. Expression (5.9) of the dissipation D was used in 2007 by
Hu and Lelièvre [91] for obtaining an a priori estimate: it provides useful
information for both the long-time behavior of the Oldroyd-B model, e.g. its
exponential convergence to equilibrium, and the analysis of numerical meth-
ods, see also Boyaval et al. [12].
Another popular formulation is based on the elastic stress σe = G(Be − I):
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⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

σ = −pI + 2η0D +σe

η

G

∇
σe + σe = 2ηD

(5.10a)

(5.10b)

Let us consider now the limit of small relaxation time i.e. η/G→ 0:
then (5.10b) reduces to σe = 2ηD and, replacing this expression of σe

in (5.10a) leads to σ = −pI + 2(η + η0)D i.e. an incompressible Newtonian
fluid whose viscosity is η + η0. Note that, taking the trace of (5.10a), we
obtain the total pressure ptot = −trσ/3 = p − trσe/3 which does not coincide
with the Lagrange multiplier p, associated with the incompressibility con-
straint trD = 0 since trσe is non-zero in general. The original formulation of
the Oldroyd-B model, as introduced by Oldroyd [143, p. 540, eqn (73)] uses
the tensor τ = 2η0D +σe and is written as

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

σ = −pI + τ

η

G

∇
τ + τ = 2(η0+η)(

η0η

(η0+η)G

∇
D + D)

where η0η/((η0+η)G) is interpreted as a second relaxation time for the strain
rate at zero stress. This last formulation is less convenient for numerical
simulations, since it involves, in addition, the tensor rate

∇
D of the stretching.

The combined effects of elasticity and viscosity render the mathe-
matical analysis of the Oldroyd-B equations extremely challenging: see
Renardy and Thomases [156] for a recent review. Finally, Oldroyd proposed
two extensions of this model with three constant parameters: the first [144]
in 1953 with five constants and the second [145] in 1958 with eight constants.

5.12 fene-p viscoelastic fluid

The fene-p model was previously discussed in section 5.4 as an elastic solid
model. It was first introduced in 1980 by Bird et al. [9] as a viscoelastic fluid
model, corresponding to a suspension of an assembly of elastic dumbbells
with bounded elongation, see Fig. 5.2. Similarly to the previous Oldroyd-B
viscoelastic fluid model, it is obtained with n = 2 and α = (h,he) with

ψ(h,he) =
G

ρ0

⎛
⎜
⎜
⎝

N

2α
log

⎛
⎜
⎜
⎝

1 − α

1 −
α

N
tr exp(2he)

⎞
⎟
⎟
⎠

−
trhe

1 − α

⎞
⎟
⎟
⎠

+ I[0,N/α[ (tr exp(2he))

ϕ([he]; D,De) = Iker(tr)(D) + η0∣D∣
2
+ η ∣exp(he)(D −De)∣

2
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together with a gyroscopic term ω = 0 and where α ∈ [0,1[ is a new param-
eter of the model. It modifies the previous Oldroyd-B model by replacing
its neo-Hookean energy (5.5a) with the fene-p one from section 5.4. Recall
that ψ is well-defined by continuity at the limit when α → 0: in that case,
the fene-p viscoelastic fluid model reduces to the Oldroyd-B one. One of the
major interests of this model, when compared to the Oldroyd-B one, is its
ability to predict a bounded steady elongational viscosity (see Bird et al. [9],
Fig. 3), in agreement with experimental observations. Following remark 4.3,
theorems 4.1 and 4.2 apply and the model satisfies both the second principle
and the generalized Onsager-Edelen symmetry.
By usual derivations, the constitutive equations (4.5c)-(4.5d) are written as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ = −pI + 2η0D +G

⎛
⎜
⎜
⎝

Be

1 −
α

N
trBe

−
I

1 − α

⎞
⎟
⎟
⎠

η

G

∇
Be +

Be

1 −
α

N
trBe

=
I

1 − α
and α trBe < N

(5.11a)

(5.11b)

Observe that when α = 0, the fene-p constitutive equations nicely re-
duce to their Oldroyd-B counterparts (5.7a)-(5.7b), as expected. Formula-
tion (5.11a)-(5.11b) is popular when considering the fene-p model for nu-
merical simulations, see e.g. Purnode and Legat [152], eqn (10). Its original
formulation from Bird et al. [9], eqns (5) and (9), is based on a conformation
tensor of the microstructure that is simply proportional to Be. Thus, this con-
struction directly provides a microstructural interpretation of Be. See also
remark 2.22 and Fig. 2.10, page 51, for a discussion about the interpretation
of the left Cauchy-Green tensor in terms of microstructure.
After expansion from (4.4a), the dissipation involved by the Clausius-Duhem
inequality (1.24) is written as:

D = 2η0∣D∣
2
+
G2

2η
tr

⎛
⎜
⎜
⎝

B−1e

⎛
⎜
⎜
⎝

Be

1 −
α

d
trBe

−
I

1 − α

⎞
⎟
⎟
⎠

2
⎞
⎟
⎟
⎠

⩾ 0

Observe that B−1e = exp(−2he), which is symmetric definite positive by con-
struction, acts here as a metric for the measure of the dissipation of the
viscoelastic contribution.
Another popular formulation for numerical simulations is based on the re-
versible Hencky strain he: this formulation is similar to the Oldroyd-B case
and is not expanded here. Studying the limit case of small and large relax-
ation times is also similar, except that the high relaxation time limit leads to
an incompressible fene-p elastic solid when η0 = 0, as expected. Section 5.4
pointed out that the fene-p elastic solid model presents many more the-
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oretical guaranties of well-posedness than its neo-Hookean counterpart, so
the fene-p viscoelastic fluid model at high relaxation time is expected to be
more robust than its Oldroyd-B counterpart. Indeed, in 2011, Masmoudi [124]
proved the global existence of solutions for the fene-p viscoelastic model
while a corresponding result for the Oldroyd-B model is not available. See
Renardy and Thomases [156] for a recent review on this subject. In conclu-
sion, this model is very attractive, both from a physical and mathematical
point of view.

5.13 Giesekus viscoelastic fluid

In contrast to all previous examples, this model introduces anisotropy in
the dissipation potential ϕ. It was proposed in 1982 by Giesekus [63]. One
of the major interests of this model, when compared to the Oldroyd-B
one, is its ability to predict a non-zero second normal stress difference (see
Giesekus [63], Fig. 2), in agreement with experimental observations. This
model is obtained with:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(h,he) =
G

2ρ0
(tr exp(2he) −N − 2 trhe)

ϕ([he]; D,Dp) = Iker(tr)(D) + η0 ∣D∣
2
+ η ∣A−

1
2

e ∶(D −De)∣
2

with Ae = αI ⊠ I + (1 − α)B−1e

and Be =
1

2
(Be ⊠ I + I ⊠Be)

(5.12a)

(5.12b)

together with a gyroscopic term ω = 0 and where α ∈ [0,1] is a new param-
eter of the model. When compared with the Oldroyd-B dissipation function
in (5.5b), the only modification concerns the last viscous term in (5.12b):
it involves anisotropic dissipation via the fourth-order tensor A−

1
2

e instead
of exp(he) =B

1
2
e in (5.5b) for the Oldroyd-B model. Here Ae represents

the anisotropy of the viscous effects: At the microscopic scale, Ae intro-
duces the anisotropy of the drag of the polymers due to reptation effects,
see Giesekus [63]. When α = 0, we obtain Ae = Be and the model reduces to
the Oldroyd-B one. Conversely, when α = 1, we obtain Ae = I ⊠ I, i.e. the
polymer drag is fully linked to the macroscopic flow frame. In the general
case α ∈ [0,1], Ae represents a geometric interpolation between Be and I ⊠ I,
i.e. between the microstructure configuration associated with Be and the
macrostructure configuration associated with I. Note that Ae is symmetric
definite positive for any α ∈ [0,1] and thus, ϕ is convex. Following remark 4.3,
theorems 4.1 and 4.2 apply and the model satisfies both the second principle
and the generalized Onsager-Edelen symmetry.
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After developments, the constitutive equations are:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

σ = −pI + 2η0D +G(Be − I)

η

G

∇
Be + (I + α(Be − I))(Be − I) = 0

where η/G represents the relaxation time. This formulation was introduced in
Giesekus [63], eqns (10) and (34)-(35), where the reversible left Cauchy-Green
tensor Be is interpreted as a conformation tensor of the microstructure. See
also Wapperom and Hulsen [182], eqns (5)-(6) or Leonov [116, p. 344]. The
formulation in terms of the left reversible Hencky strain he is similar to the
Oldroyd-B case and is not expanded here.
After expansion from (4.4a), the dissipation involved by the Clausius-Duhem
inequality (1.24) is written as:

D = 2η0∣D∣
2
+
G2

2η
tr ((αI + (1 − α)B−1e ) (Be − I)

2
) ⩾ 0

Note that, in the second term, αI + (1 − α)B−1e acts as a metric tensor in
order to measure the strain Be − I.

5.14 Oldroyd-A and Gordon-Schowalter rates

While the Oldroyd-B is associated with an upper-convected tensor rate,
Oldroyd [143, p. 340, eqn. (72)] also introduced, in the same paper in 1950,
the so-called Oldroyd-A model, corresponding to a lower-convected rate.
Next, in 1958, Oldroyd [145] proposed an extension with eight param-
eters: this extension loses the separation between lower-convected and
upper-convected as now there is a new parameter that interpolates be-
tween them. This interpolated tensor rate has also been known since 1972
as the Gordon and Schowalter [65] one and was also used in 1977 by
Johnson and Segalman [102]. See remark 2.22, page 50, for a microstructural
interpretation of the Gordon-Schowalter tensor rate. The major interest of
this variant, when compared to the Oldroyd-B model, is its ability to predict
a non-zero second normal stress difference and also shear-thinning. Let us
consider:

ψ(h,he) =
G

2ρ0a2
(tr exp(2he) −N − 2 trhe)

ϕ([he]; D,De) = Iker(tr)(D) + η0∣D∣
2
+
η

a2
∣exp(he) (aD −De)∣

2

(5.13a)

(5.13b)
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together with a gyroscopic term ω = 0 and where a ≠ 0 is a parameter. Observe
that, when a = 1, the expressions (5.13a)-(5.13b) for ψ and ϕ reduce to those
of the Oldroyd-B model, i.e. (5.5a)-(5.5b). Conversely, when a = −1, we will
get the Oldroyd-A model. Moreover, we will also show that the model extends
by continuity at the limit a = 0: it coincides with an Oldroyd model with
a Zaremba-Jaumann corotational rate. See also Hinch and Harlen [87] for
a recent review on all theses variants. Following remark 4.3, theorems 4.1
and 4.2 apply and the model satisfies both the second principle and the
generalized Onsager-Edelen symmetry.
By usual derivations, the constitutive equations (4.5c)-(4.5d) become:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

σ = 2η0D − pI +
η

a
(Be (aD −De) + (aD −De)Be)

0 = G(Be − I) − η (Be (aD −De) + (aD −De)Be)

(5.14a)

(5.14b)

From (5.14b), observe that aD −De ∈ eigsp(Be). Then, theses two
tensors commute and, from (5.14b), we deduce successively that
aD −De = (G/(2η)) (I −B

−1
e ) and

Dp =D −De = aD −De + (1 − a)D =
G

2η
(I −B−1e ) + (1 − a)D

Remark that Dp and Be do not commute in general. Nevertheless, Dp could
be replaced in the kinematic relation (3.23) and, after rearrangements:

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

σ = −pI + 2η0D +
G

a
(Be − I)

η

G

◻
Be +Be = I

(5.15a)

(5.15b)

where ◻. is the Gordon-Schowalter objective rate, see definition 2.20, page 50.
Conversely, replacing Dp in the general kinematic relation (3.26a), the sys-
tem (5.15a)-(5.15b) expresses equivalently in terms of he only:

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

σ = −pI + 2η0D +
G

a
(exp(2he) − I)

○

h(a,log)e +
G

2η
(I − exp(−2he)) = aD

(5.16a)

(5.16b)

where ○.(a,log) denotes a customized logarithmic corotational rate, defined for
any symmetric tensor c by ○c(a,log) = .

c −W log(c,La)c + cW log(c,La) with
La =W + aD. A formulation similar to (5.16a)-(5.16b) was used for the first
time in 2014 in [161] for an efficient numerical resolution of the stationnary
problem by a monolithic Newton method. Observe that, in the limit case
a→ 0, the right-hand-side of (5.16b) tends to zero. Since (5.16b) involves a
corotational rate, it is easy to deduce by standard energetic methods that
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he → 0 at this limit. Then Be → I when a→ 0 and (5.15a) suggests that
both the strain (Be − I)/a and the elastic stress σe = (G/a)(Be − I) remain
bounded. Indeed, (5.15a)-(5.15b) expresses equivalently as [161, p. 17]:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

σ = −pI + 2η0D +σe

η

G

◻
σe + σe = 2ηD

After expansion from (4.4a), the dissipation involved by the Clausius-Duhem
inequality (1.24) is written as:

D =
∂ϕ

∂D
∶D +

∂ϕ

∂De
∶De

= 2η0∣D∣
2
+
2η

a2
∣exp(he) (aD −De)∣

2

= 2η0∣D∣
2
+

1

2η
∣exp(−he)σe∣

2
⩾ 0 (5.17)

since aD −De = (G/(2η)) (I −B
−1
e ) = (a/(2η))B

−1
e σe. This provides an al-

ternative direct proof that all Oldroyd’s variants involving the Gordon-
Schowalters rate satisfy the second principle of thermodynamics. Observe
that the last expression of the dissipation does not involves the a parameter.

Remark 5.1 (controversies).
Thermodynamics for models involving the Gordon-Schowalter rate present
some subtleties and is often a source of confusion and controversy, even for
confirmed researchers.
● In 1992, Leonov [116], proposed to modify the fundamental kinematic re-
lation (3.23) as his equation (11) page 329, in order to take into account the
Gordon-Schowalter rate into his thermodynamic framework. In the present
book, fundamental kinematic relations are definitively independent of any
constitutive equation. Moreover, models involving the Gordon-Schowalter
rate can be successfully analysed without such modifications.
● In 1998, Wapperom and Hulsen [183, p. 1004], pointed out that, in or-
der "to include the slip parameter [...] it is not necessary to modify the
left-hand side of the evolution equation (3.23), as done by Leonov [116]
and Jongschaap et al. [103]". Indeed, Wapperom and Hulsen [183, p. 1014],
eqn (A.1), obtained an expression of the dissipation that coincides with the
present (5.17) when η0 = 0.
● In 2013, Hütter and Svendsen [93, p. 2] wrote "since the irreversible process
of slippage [in complex fluids with Gordon-Schowalter rate] is dissipation-
free, the dissipation potential [...] is identically zero, and hence, the concept
of the dissipation potential is inappropriate for its description". Moreover, at
page 11, at the end of their section 5.2, these authors wrote: "In conclusion,
then, no dissipation potential exists for the force-flux relation representative
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of the Gordon-Schowalter rate of a complex fluid with slippage". This claim
is clearly in contradiction with the analysis of the present section. Interest-
ingly, these authors suggested in their eqn (49) a different thermodynamic
approach that involves in addition the gyroscopic term ω. Unfortunately,
they do not develop the computation. For instance, consider for ψ and ϕ the
expressions (5.5a)-(5.5b) of the Oldroyd-B model together with a non-zero
the gyroscopic term ω = 2(1−a)η [−sym(BeDe); sym(BeD)]. After compu-
tations, this model exactly furnishes the differential equation (5.15b) while
the Cauchy stress differs from (5.15a): it involves an irreversible and non-
dissipative extra-stress (1−a2)η(DBe +BeD). Thus, neither the Oldroyd-A
model nor any of its variants with a Gordon-Schowalter rate could be ob-
tained with such an approach. Moreover, the Onsager-Edelen symmetry is
broken by this approach while the present section shows that it is possible to
introduce the Gordon-Schowalter rate without breaking the Onsager-Edelen
symmetry.

5.15 Phan-Thien and Tanner viscoelastic fluid

In 1977, Phan-Thien and Tanner [150] proposed to extend the model of the
previous section 5.14 with a Gordon-Schowalters rate. It corresponds with
replacing the dissipation potential (5.13b) with

ϕ([he]; D,De) = Iker(tr)(D) + η0∣D∣
2
+
η ∣exp(he) (aD −De)∣

2

a2φ(tr exp(2he))
(5.18)

while ψ, from (5.13a), is unchanged, together with a gyroscopic term ω = 0
and where φ(ξ) = 1 + α(ξ −N) and α ⩾ 0 is an additional parameter of the
model. In 1978, Phan-Thien [149] proposed another commonly used variant
with φ(ξ) = exp(α(ξ −N)). The parameter is restricted to α ∈ [0,1/N[ for the
first variant, while any α ⩾ 0 is supported by the second one. When α = 0, both
variants reduce to the Oldroyd model with a Gordon-Schowalters rate, see
section 5.14. Following remark 4.3, theorems 4.1 and 4.2 apply and both the
two variants of the model satisfy both the second principle and the generalized
Onsager-Edelen symmetry. For the first variant, the constitutive equations
are:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

σ = −pI + 2η0D +σe

η

G

◻
σe + (1 +

aα

G
trσe)σe = 2ηD

where the elastic stress σe = (G/a)(exp(2he) − I).
One of the major interests of this model, when compared to the Oldroyd one,
is its ability to predict a bounded steady elongational viscosity (see [150],
Fig. 3), in agreement with experimental observations. The Phan-Thien and
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Tanner model share some similarities with the fene-p one: it replaces the
fene-p sharp barrier trBe < 1/α with a smoother one that could be inter-
preted as a penalization, either by a linear or an exponential expression.
Nevertheless, the way to introduce this barrier is completely different: while
the fene-p model introduces it in the Helmholtz energy ψ, the present one
introduces it in the dissipation potential ϕ. Finally, from a conceptual point of
view, the fene-p model is based on a fine interpretation of the microstruc-
tural elastic behavior of polymers while the Phan-Thien and Tanner one
introduces an empirical viscous trick into the Oldroyd one.

5.16 Elastoviscoplastic fluid

The present author proposed [159] in 2007 an elastoviscoplastic fluid model
that combined the viscoplastic Bingham and viscoelastic Oldroyd fluids with
the Gordon-Schowalters rate in one model, see Fig. 5.8.left. The original

hp he

h

G

η

σy

η0

σ

0
0 t

|h(t)|

fluid: |devσe| > σy

solid: |devσe| < σy

Fig. 5.8 (left) Elastoviscoplastic fluid model that extends the viscoplastic Bingham and
the viscoelatic Oldroyd models. (right) Fluid or solid behavior, depending upon flow con-
ditions. Adapted from [159], Fig. 1.d.

paper based its thermodynamic analysis on the small displacement limit.
In the present framework, it could be considered as another extension of
the Oldroyd model with a Gordon-Schowalters rate and it is obtained by
replacing the dissipation potential (5.13b) with

ϕ([he]; D,De) = Iker(tr)(D) + η0∣D∣
2
+
η ∣exp(he) (aD −De)∣

2

a2κ(exp(2he))
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while ψ, from (5.13a), is unchanged, together with a gyroscopic term ω = 0.
The κ function involved at the denominator is given by

κ(Be) = {
1 − aσy/(G∣devBe∣) when G∣devBe∣ > aσy

0 otherwise

and σy ⩾ 0 is the yield stress parameter, as for the Bingham model. Follow-
ing remark 4.3, theorems 4.1 and 4.2 apply and the model satisfies both the
second principle and the generalized Onsager-Edelen symmetry. The consti-
tutive equations are:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

σ = −pI + 2η0D +σe

η

G

◻
σe + κ̂(σe)σe = 2ηD

where the elastic stress σe = (G/a)(exp(2he) − I) and

κ̂(σe) = {
1 − σy/∣devσe∣ when ∣devσe∣ > σy

0 otherwise

When σy = 0, this model reduces to the Oldroyd model with Gordon-
Schowalters rate from section 5.14. Conversely, when η/G→ 0 and η0 = 0,
it coincides with the Bingham fluid model from section 5.10. This model is
between a fluid and a solid model: observe on Fig. 5.8.right that it behaves
locally as a fluid or as a solid, depending upon local flow conditions. See also
section 3.1, page 66, for a discussion about fluid and solid behaviors. This
model was initially developed in the context of liquid foam applications, see
Cheddadi et al. [25, 24]. There was found to be good quantitative agreement
between calculations and experiments, especially for the so-called negative
wake, i.e. the inverted drag of the velocity after a moving obstacle for a
complex non-Newtonian fluid. Fraggedakis et al. [59] also obtained with this
elastoviscoplastic model a quantitative agreement between experiments with
carbopol solutions. See also Tlili et al. [175] for a review on application to
biological tissues. At least two extensions of this model were proposed: the
first one [160] in 2009, in order to combine Herschel-Bulkley viscoplastic and
viscoelastic Oldroyd fluids, and the second one [164] in 2021, that combines
Drucker-Prager viscoplastic and viscoelastic Oldroyd fluids.

5.17 Fourier heat model

Until now, all models have been isothermals: now, let us explore the non-
isothermal cases. The first example of this series is the celebrated heat model
proposed in 1822 by Fourier [57]: it assumes that the heat flux q is propor-
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tional to the gradient of temperature θ as q = −k∇θ where k ⩾ 0 is the thermal
conduction.

Joseph Fourier

Fig. 5.9 Joseph Fourier (1768-1830), near 1800. Engraved portrait by J. Boily, private
collection (public domain reproduction).

The temperature gradient ∇θ is interpreted in the framework of chapter 4
as a rate variable, associated with a state variable which is the thermal
strain vector β, see table 4.1, page 100. The thermal strain β was intro-
duced together with an associated function denoted by f , similar to the Hill’s
strain for kinematics, see section 3.7. Let us choose the logarithmic thermal
strain β associated with f(θ) = log θ. It means that

○

β = ∇ log θ where ○. is
the Zaremba-Jaumann corotational rate, see definition 2.9. For simplicity, a
Newtonian fluid is considered together with the Fourier heat model. It cor-
responds to n = 3 and α = (θ,β,h) with:

ψ(θ,β,h) = Cpθ(1 − log θ)

ϕ([θ];
.
θ,∇θ,D) =

kθ

2
∣∇θ∣2 + Iker(tr)(D) + η∣D∣

2

together with a gyroscopic term ω = 0. Here, Cp > 0 is the constant heat ca-
pacity and k > 0 is the thermal conduction. Note that ψ is strictly concave
versus θ > 0. Following remark 4.3, theorems 4.1 and 4.2 apply and the model
satisfies both the second principle and the generalized Onsager-Edelen sym-
metry. The constitutive equations (4.5a)-(4.5c) lead directly to s = Cp log θ,
q = −k∇θ and σ = −pI + 2ηD. Coupling with the mass and momentum con-
servations (0.1)-(0.2) and combining with the heat equation (4.8) from theo-
rem 4.3, we obtain a system of three unknowns (θ,v, p) and three equations:

https://commons.wikimedia.org/wiki/File:Fourier2.jpg
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⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

ρCp

.
θ − div(k∇θ) = r + 2η∣D∣2

ρ
.
v − div(2ηD) +∇p = ρg

divv = 0

(5.19a)
(5.19b)
(5.19c)

The first one (5.19a) is the very classic Fourier parabolic heat equation in
terms of the temperature θ, with the friction term 2η∣D∣2 on its right-hand-
side. The two last equations (5.19b)-(5.19c) constitute also the classic Navier-
Stokes system. Note that η is generally a function of θ and then the system
is fully coupled.

5.18 Cattaneo heat model

The parabolic equation (5.19a) is incompatible with the theory of relativity
for at least one reason: it admits infinite speed of propagation of heat signals
within the continuum field. For instance, consider a pulse of heat at the
origin: according to the previous parabolic heat equation, the temperature
changes instantaneously at any distant point. This speed of information is
faster than the speed of light in a vacuum, which is inadmissible within the
framework of relativity. In 1958, to overcome this contradiction for the heat
propagation, Cattaneo [19, eqn (5)] proposed to introduce a time scale for
the transmission of the heat flux q i.e.

λ
.
q + q = −k∇θ (5.20)

where λ ⩾ 0 is a time relaxation. Observe that when λ = 0, the Cattaneo
model reduces to the previous Fourier one. Next, in 1969, Fox [58] proposed
to replace the non-objective Lagrangian rate .

q of the vector by a corotational
objective one ○q. See also Joseph and Preziosi [104] for an historical review.
Let us study this objective version of the Cattaneo heat model within the
present framework. A linear thermal strain β, associated with f(θ) = θ, is
selected, see section 3.7. We also consider the decomposition β = βe +βp

of this thermal strain in reversible and irreversible parts, respectively. For
simplicity, this heat model is first studied for a rigid solid: let us consider the
thermodynamic framework with n = 3 and α = (θ,β,βe) together with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(θ,β,βe) = Cθ(1 − log θ) −
γ

2ρ0θ
∣βe∣

2

ϕ ([θ];
.
θ,∇θ,

○

βe) =
k

2θ
(∣∇θ∣

2
− ∣
○

βe∣
2

)

ω([θ];
.
θ,∇θ,

○

βe) =
k

θ

⎛
⎜
⎝

0
○

βe

−∇θ

⎞
⎟
⎠

(5.21a)

(5.21b)

(5.21c)
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where C > 0 is a contribution to the heat capacity, γ > 0 a constant parameter
and ρ0 is the constant mass density of the rigid solid. Observe that ψ is strictly
concave versus θ > 0 and then the Helmholtz energy satisfies the assumptions
of proposition 1.19. Also, the gyroscopic term ω satisfies the orthogonality
condition (4.4c) of theorem 4.1.
The constitutive equations (4.5a)-(4.5d) lead to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s = C log θ −
γ

2ρ0θ2
∣βe∣

2

−
q

θ
=

k

θ
∇θ +

k

θ

○

βe

0 = −
γβe

θ
−
k

θ

○

βe −
k

θ
∇θ

(5.22a)

(5.22b)

(5.22c)

Summing (5.22b) and (5.22c) leads to q = γβe. Then, simply replacing βe

in terms of q into (5.22c) and combining with the heat equation (4.8), we
obtain, after computation of the right-hand-side:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s = C log θ −
1

2ρ0γ
∣
q

θ
∣
2

k

γ

○
q + q = −k∇θ

ρCp(θ,q)
.
θ + divq = r −

2

kθ
q.(k∇θ + q)

(5.23a)

(5.23b)

(5.23c)

where k/γ in (5.23b) represents a relaxation time and ρ = ρ0 in (5.23c) for the
rigid solid. Note that (5.23b) is exactly the extension of (5.20) with a coro-
tational rate as proposed by Fox [58]. Observe also that the zero relaxation
time case, i.e. k/γ →∞, reduces to q = −k∇θ i.e. the previous Fourier [57]
heat flux while (5.23c) reduces to (5.19a), up to D = 0 since a rigid solid was
considered here for simplicity. The expression (5.23a) of the entropy s was
obtained in 2008 by Alvarez et al. [1, eqn (2)] by using independently four
different thermodynamic approaches and also three microscopic formalisms:
these authors conclude that this robustness underlines the consistency and
relevance of relation (5.23a). The non-constant heat capacity Cp involved
in (5.23c) is, from its definition in theorem 4.3:

Cp(θ,q) = C +
1

ρ0γ
∣
q

θ
∣
2

> 0

Finally, all hypotheses in theorem 4.1 are satisfied for the Cattaneo model,
except one: the dissipation potential ϕ, given by (5.21b), does not satisfy
the positivity condition (4.4a): indeed, while quadratic, ϕ is not convex with
respect to

○

βe. Thus the Cattaneo model does not satisfy the second princi-
ple of thermodynamics. Indeed, after expansion from (4.4a), the dissipation
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involved by the Clausius-Duhem inequality (1.24) is written as:

D =
1

kθ
(∣k∇θ∣

2
− ∣k∇θ + q∣

2
) (5.24)

which is not necessarily positive when the heat flux q differs too much from
its Fourier expression −k∇θ. Moreover, since the gyroscopic term ω ≠ 0, from
theorem 4.2, the generalized Onsager-Edelen symmetry is also broken. It
sounds like bad news for the Cattaneo heat model.

Remark 5.2 (controversies).
Thermodynamics of the Cattaneo heat model present some subtleties and is
often a source of confusion and controversy, even for confirmed researchers.
Combining (5.23b) and (5.24) leads to the following righ-hand-side of (1.25),
referred to as the entropy production:

D

θ
=

1

kθ2
q.(q +

2k

γ

○
q) (5.25)

● In 1997, Barletta and Zanchini [4, p. 1011] expressed D/θ with an approx-
imation : the last factor inside the parenthesis in (5.25) was replaced in their
eqn (21) by q + (k/γ)

○
q i.e. without the 2 factor. Indeed, these authors consid-

ered the term −(q.∇θ)/θ as a definition for D while its complete and definitive
expression is given by the Clausius-Duhem inequality (1.24) and leads to a
different result.
● In 2010, Jou et al. [105, p. 43] do the same approximation in their eqn (2.8).
● In 2011, Dong and Guo [45, p. 1925] also replaced the last factor inside the
parenthesis in (5.25) in their eqn (8) by q − (k/γ)

○
q i.e. with both a minus

sign and without the 2 factor.
● In 2017, Morro [129] claimed that the present objective version of the Cat-
taneo equation satisfies the second principle of thermodynamics. This author
exhibited on page 74, four lines after his eqn (23), a Helmholtz energy ψ that
differs from (5.21a): its last term, with the γ > 0 factor, has the opposite sign.
Such a function ψ is no longer concave versus θ. Thus, from proposition 1.19,
the change of variable between the entropy s and the temperature θ is no
longer well-posed and the heat capacity Cp defined in theorem 4.3 vanishes
and changes sign: it means that the heat equation is ill-posed. Finally, the
thermodynamics interpretation proposed by Morro [129] is inconsistent.

5.19 Modified Cattaneo heat model

In order for the Cattaneo model of the previous section 5.18 to be acceptable,
some authors proposed to modify the thermodynamics theory itself, by re-
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laxing the Clausius-Duhem inequality (1.24) with Lagrange multipliers: this
is the so-called extended thermodynamics, proposed independently in 1972 by
Carrassi and Morro [17] and in 1978 by Lebon [111], see also Jou et al. [105].
Another solution is to modify the Cattaneo model in order to satisfy the
classic and unchanged thermodynamics requirements: this is the aim of the
present section. Indeed, consider replacing (5.23b) with

k

γ

○

Í
(
q

θ
)+

q

θ
= −k

∇θ

θ

In comparison with (5.23b), instead of the heat flux q relaxing to ∇θ, we
consider the entropy flux q/θ relaxing to (∇θ)/θ, so the speed of propagation
of heat signals is still finite, which is the main idea of the Cattaneo model.
Moreover, the recent review by Maillet [121] shows that the experimental
validation of the Cattaneo model is still in progress, so there is room for
exploration of some of its variants that may have additional benefits. Let
us show that this modified Cattaneo model fully satisfies all the standard
thermodynamics requirements.
Let us consider the logarithmic thermal strain β, associated with f(θ) = log θ,
see section 3.7. We also consider the decomposition β = βe +βp of this ther-
mal strain in reversible and irreversible parts, respectively. Similar to the pre-
vious section and for simplicity, this heat model is studied for a rigid solid.
The thermodynamic framework is considered with n = 3 and α = (θ,β,βe)

together with

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

ψ(θ,β,βe) = Cpθ(1 − log θ) +
γθ

2ρ0
∣βe∣

2

ϕ([θ];
.
θ,∇log θ,

○

βe) =
kθ

2
∣∇log θ −

○

βe∣
2

(5.26a)

(5.26b)

while the gyroscopic term ω = 0. Here, Cp > 0 is the constant heat capacity
and γ > 0 is a constant parameter. Note that ψ is strictly concave versus θ > 0
and ϕ is convex. Following remark 4.3, theorems 4.1 and 4.2 apply and the
model satisfies both the second principle and the generalized Onsager-Edelen
symmetry. The constitutive equations (4.5a)-(4.5d) lead to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s = Cp log θ −
γ

2ρ0
∣βe∣

2

−q = kθ (∇log θ −
○

βe)

0 = γθβe − kθ (∇log θ −
○

βe)

(5.27a)

(5.27b)

(5.27c)

Summing (5.27b) and (5.27c), we get q = −γθβe. Then, simply replacing βe

in terms of q into (5.27c) and combining with the heat equation (4.8), we
obtain, after computation of the right-hand-side, which reduces to r:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s = Cp log θ −
1

2ρ0γ
∣
q

θ
∣
2

k

γ

○

Í
(
q

θ
) +

q

θ
= −k

∇θ

θ

ρCp

.
θ + divq = r

(5.28a)

(5.28b)

(5.28c)

where k/γ in (5.28b) represents a relaxation time and ρ = ρ0 in (5.28c) for the
rigid solid. Observe first that the expression (5.28a) of the entropy s is un-
changed when compared with those (5.23a) of the original Cattaneo model.
This is an important aspect: recall that Alvarez et al. [1, eqn (2)] obtained
it in 2008 with four different thermodynamic approaches and also three mi-
croscopic formalisms: these authors conclude that this robustness underlines
the consistency and relevance of relation (5.28a). As previously mentioned,
the heat flux relaxation in (5.28b) is now weighted by 1/θ. After expansion
from (4.4a), the dissipation involved by the Clausius-Duhem inequality (1.24)
is written simply as

D =
∣q∣2

kθ
⩾ 0

This provides an alternative direct proof that the modified Cattaneo model
satisfies the second principle of thermodynamics.

Remark 5.3 (Cattaneo model variant by Boyaval and Dostalík [11]).
At the time this book was finished, Boyaval and Dostalík [11, eqn (2.22d)]
independently proposed another modified Cattaneo model that also satisfies
both the second principle and the Onsager reciprocal relations. With the
present notations, it is written as:

kθ

γ

.
q + q = −k∇θ

where kθ/γ acts as a temperature-dependent time relaxation. Note that it
uses a Lagrange derivative .

q: an objective version, with a corotational deriva-
tive ○q, could be easily obtained within the present framework by replacing in
the expression (5.26a) of the Helmholtz energy ψ its last term γθ ∣βe∣

2/(2ρ0)
by γ∣βe∣

2/(2ρ0) i.e. by dropping θ. The dissipation potential ϕ remains un-
changed from (5.26b). The computations are left as an exercise for the reader.
It leads to q = −γβe and the entropy is written as s = Cp log θ as for the Fourier
model. Then, this entropy differs from both (5.28a) and (5.23a) of the orig-
inal Cattaneo model, and also from those of Alvarez et al. [1, eqn (2)]. For
this reason, in our opinion, while interesting, this variant presents less phys-
ical background than (5.26a)-(5.26b). Finally, all these new variants of the
original Cattaneo model should be compared with available experimental ob-
servations, see e.g. the recent review by Maillet [121].
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5.20 Combining Maxwell and modified Cattaneo models

The observation about an infinite speed of information applies also to the
viscous term of the Navier-Stokes equation (5.19b). Indeed, a pulse of force
at the origin produces instantaneously a change of the velocity at any distant
point, which is also inadmissible in the context of relativity. A possible way
to overcome this is to combine the previously modified Cattaneo heat model
with the Maxwell viscoelastic one, i.e. the Oldroyd-B model with η0 = 0, see
section 5.11. As in the previous example, let us choose the logarithmic thermal
strain β associated with f(θ) = log θ. Consider the thermodynamic framework
with n = 5 and α = (θ,β,βe,h,he) together with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(θ,β,βe,h,he) = Cpθ(1 − log θ) +
γθ

2ρ0
∣βe∣

2

+
G

2ρ0
(tr exp(2he) −N − 2 trhe)

ϕ([θ,he];
.
θ,∇log θ,

○

βe,D,De) =
kθ

2
∣∇log θ −

○

βe∣
2

+ Iker(tr)(D)

+ η∣exp(he)(D −De)∣
2

while the gyroscopic term ω = 0. Here, Cp, γ, G, k and η are positive con-
stant parameters and ρ = ρ0 since the fluid is incompressible, see remark 3.28.
Following remark 4.3, theorems 4.1 and 4.2 apply and the combined Maxwell-
modified-Cattaneo model satisfies both the second principle and the general-
ized Onsager-Edelen symmetry. By usual derivations, we obtain the consti-
tutive equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s = Cp log θ −
γ

2ρ0
∣βe∣

2

−q = kθ (∇log θ −
○

βe)

0 = γθβe − kθ (∇log θ −
○

βe)

σ = − pI + η(DpBe +BeDp)

0 = G(Be − I) − η(DpBe +BeDp)

where Be = exp(2he) is the reversible left Cauchy-Green tensor
and Dp =D −De, the irreversible stretching. Next, combining them with
the kinematic relation (3.23), introducing the elastic stress σe = G(Be − I)
and finally coupling with the mass and momentum conservations (0.1)-(0.2)
and combining with the heat equation (4.8) from theorem 4.3, we obtain a
system of five equations with five unknowns (θ,v, p,q,σe) that is written as:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρCp

.
θ + divq = r +

η

2
∣∇v +∇vT ∣

2

ρ
.
v − divσe +∇p = ρg

divv = 0

k

γ

○

Í
(
q

θ
)+

q

θ
= −k

∇θ

θ
η

G

∇
σe +σe = η (∇v +∇v

T )

Observe the analogy between the two last equations. Also, observe that in the
limit case when the two relaxation times k/γ → 0 and η/G→ 0, this system
nicely reduces to the classic Fourier-Navier-Stokes system (5.19a)-(5.19c). For
practical resolution, it could be convenient to replace the heat flux q by the
entropy flux se = q/θ as unknown. Recall that this model derivation is only
formal and it would remain to show that the solution of the present system
of equations, closed by appropriate initial and boundary conditions, can be
well-defined, see e.g. Boyaval and Dostalík [11] for an analysis on a similar
system. Finally, after expansion from (4.4a), the dissipation involved by the
Clausius-Duhem inequality (1.24) is written as:

D =
∣q∣2

kθ
+
G2

2η
tr(Be +B

−1
e − 2I) ⩾ 0

This provides an alternative direct proof that the combined Maxwell-
modified-Cattaneo model satisfies the second principle of thermodynamics.
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Index

anisotropy, 63, 104

Cauchy
stress, see tensor
theorem, 15

Cauchy-Green, see tensor
configuration

current, Ω(t), 32
intermediate, 87
reference, Ω0, 31

conservation
of energy, 1, 22
of mass, 1, 9
of momentum, 1, 12, 20, 41

constitutive equation, v, 2, 39, 41, 45, 47,
58, 101

Coriolis pseudo-force, 13

deformation
Υ , flow map, 33, 94
χ, transformation, 32
gradient, see tensor
small displacement limit, 2, 68, 89, 116,

117, 125, 138
divergence

formula, see formula
of a tensor, 15
of a vector, 10

energy
ψ, Helmholtz, 28, 100
ρ∣v∣2/2, kinetic, 22, 26
e, internal, 1, 22, 28
free, see Helmholtz

entropy, s, 1, 26
extreme strain, 66, 67, 109, 130

formula
divergence, 19

tensor extension, 19
Gauss, 19
Green-Ostrogradsky, see divergence

formula
Jacobi, 33
Reynolds, 10

vector extension, 15
weighted, 23

Stokes, see divergence formula
frame

Galilean, 12, 41
indifference, see objectivity

framework
generic, 2
bracket, 2
present, 95
standard generalized materials, 2, 90, 99,

106

heat
conduction, 23, 139
flux, see vector
radiation, 23, 28

inequality
Clausius-Duhem, 29, 35, 82, 100, 106
second principle, 1, 26, 95

irreversible
ω, gyroscopic term, 100, 106
D , dissipation, 29, 100
ϕ, dissipation potential, 100
energy degradation, 26, 122

Legendre transformation, 28, 104
Levi-Civita symbol, εijk, 14
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mass density, ρ, 1, 9
matrix

P i,a, eigenprojector, 54
R, rotation, 6, 41, 42, 47, 52
nk,a, eigenvector, 53
exp(a), exponential, 55
λi,a, eigenvalue, 53
log(a), logarithm, 55
eigsp(a), eigenspace, 54
eig(a), eigenvalues, 54
sv(F ), singular values, 61
ma, number of distinct eigenvalues, 53
characteristic polynomial, 59
invariants
Ik,a, principal invariants, 59
tr (ak), principal traces, 59, 62
functional basis, 62

polar decomposition, 47
set
RN×N

s , 5
RN×N

s+ , 5
so(N), 5, 53, 69
GL(N), 5, 47
GL+(N), 5, 114
O(N), 5
SO(N), 5, 47, 53

model
Bingham, 126, 138
Cattaneo, 29, 94, 141

modified, 143
Edelen, 124
elastoviscoplastic, 138
fene-p, 131, 137
Fourier, 1, 29, 139
Hencky, 115
Herschel-Bulkley, 126
Hookean, 116
hyperelastic, 38, 114
Kelvin-Voigt, 39, 125
Maxwell, 128, 146
neo-Hookean, 38, 63, 117
Newtonian, 1

compressible, 120, 122
incompressible, 121

Oldroyd
eight constants, 134
Oldroyd-A, 134
Oldroyd-B, 128, 132–134, 138

perfect gas, 123
momentum, ρv, 14

negative wake, 139

objectivity
equation, 39

function, 52
rate, 44, 50
tensor, 42

postulate
mass conservation, 9
momentum conservation, 12
energy conservation, 22
second principle, 26
objectivity, 39

rate
◻
a, Gordon-Schowalters, 50, 51, 134, 137,

138
○
a, Zaremba-Jaumann, 43, 50, 78, 94, 135
○
a(elog), reversible logarithmic, 91, 128
○
a(log), logarithmic, 78, 91, 130
△
a, lower-convected, 49, 50, 134.
φ, Lagrangian, 1, 24, 34, 41, 70
∇
a, upper-convected, 49, 50, 129
corotational, 43, 78
Lie, see upper-convected

temperature, θ, 1, 27
tensor, 15

B, left Cauchy-Green, 48
C, right Cauchy-Green, 48
D, stretching, 1, 24, 42, 43
F , deformation gradient, 33, 47
U , right stretch, 47
V , left stretch, 47
W , vorticity, 42
σ, Cauchy stress, 1, 15, 21, 23, 101
σe, reversible stress, 35, 87
ε, displacement gradient, 68
a1 ⊠ a2, fourth-order tensor product, 6,

74, 75
e, left Green-Lagrange strain, 38, 63, 67,

68, 117
ef , left Hill strain, 67
h, left Hencky strain, 2, 67, 78, 87
u1 ⊗ u2, tensor product of two vectors,

5, 13
∇v, velocity gradient, 20, 42, 43

trajectory, χ, 31

vector
β, thermal strain, 92, 141, 144
n, outward unit normal, 14
q, heat flux, 1, 25, 61, 101, 139, 141, 144
u, displacement, 68
u1 × u2, cross product, 14
u1 ∧ u2, exterior product, 13
v, velocity, 1, 9, 32, 42.
v, acceleration, 12, 41
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