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Abstract

The article investigates axiomatics as a complex mathematical practice whose
inquiry, while taking its cue from the analysis of some specific mathematical the-
ories, requires an interdisciplinary approach. Axiomatics, if analyzed in detail
through a study of its foundational component, of the styles with which it is asso-
ciated and of the rules that govern it, performs a plurality of functions. It serves
heuristic, descriptive, genetic-historical, pedagogical and architectural aims. But
it can also play the role of conceptual analysis, modular analysis and coordina-
tion tool, soliciting a quest for rigor. An example taken from Peano’s investigation
of axiomatic systems illustrates the kind of results that this interdisciplinary ap-
proach to mathematical practice might produce, showing what can be achieved
by considering axiomatics as research on the foundations of mathematics, or as a
mathematical style, or as a social institution.

1 Introduction
What the relation between mathematics and philosophy should be is a delicate
question. Stewart Shapiro has distinguished two different modes of relationship
between philosophy and mathematics, described respectively by the methodolog-
ical principles philosophy first and philosophy last-if-at-all: in the first case the
philosophical reasons in favor of a given mathematical ontology determine norma-
tively how mathematics should be done; in the second case philosophy is a mere
epiphenomenon that exerts no influence on the development of mathematics.1

The philosophy-oriented approach—to which Shapiro aligns himself, while in-
sisting on the need to break down unnecessary walls between philosophy and math-
ematics and on the desirability of considering philosophical normativity defeasible—
assumes that philosophy is an activity carried out exclusively by professional philoso-
phers (who may possibly also be competent in mathematics) and that it influences
mathematics without being in turn significantly influenced by it. To this approach
we ascribe the investigations related to the development of the twentieth-century
‘isms’ (logicism, pragmatism, structuralism, etc.), the research related to the well-
known dilemma of Benacerraf on the indispensability of mathematics, and more

I would like to express thanks to Andrew Haigh, who helped me to improve the English version.
1See Shapiro 1997, pp. 25ff. The philosophy-driven and practice-driven distinction partly traces the

opposition drawn by Paolo Mancosu between analytic philosophy and the maverick tradition, which includes
Lakatos 1976 and Corfield 2003. See Mancosu 2008, p. 3.
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generally all the contributions to the problem of the existence of abstract objects,
their cognitive access and the choice of a first or second order logic.

The practice-oriented approach to mathematics, on the other hand, is charac-
terized by the idea that the search for solutions to open problems in mathematics
as well as the search for definitions and arguments are essentially philosophical
activities—regardless of who is in charge of them—that can have repercussions
as much on the development of mathematical theories themselves as on the trans-
formations of the conceptual tools that philosophy uses. In the practice-oriented
approach we include investigations that show the intersection of philosophy and
history of mathematics, epistemological research related to visualization and ex-
planation in mathematics, investigations of computer-assisted demonstrations, and
analysis of certain properties of mathematical arguments, such as purity, evidence,
and fruitfulness.2

A relevant area of research that requires a back and forth between philoso-
phy first and philosophy last-if-at-all approaches is the investigation of axiomatic
theories and methods. Philosophy offers relevant tools for the conceptual analy-
sis, but mathematics is the starting point since the object of the inquiry are given
mathematical theories.

2 What is axiomatics?
‘Axiomatics’ is used in the following as a general term that stands for an inquiry
into axiomatic theories and methods, including specific epistemological views and
technical solutions, but also meta-theoretical considerations, and different objec-
tives that the axiomatic method and theories might serve. Differences might con-
cern also the purposes that the axiomatic method or the axiomatic formulation of
a theory serve in a specific case (section 3). This paper will list different purposes
that the axiomatic formulation of a theory might serve and illustrate them with an
example taken from the investigation of the Peano School (section 5).

Let us begin with a preliminary conceptual clarification of the terms ‘axiomatic
method’ and ‘axiomatic theory’.

The ‘axiomatic method’ used for the formulation of mathematical theories
comes in many forms, which differ by the language used: formal, informal or
semi-formal. Even when the language is formal, there are several possibilities of
reconstruction, for example by using first or second order logic, classical or intu-
itionistic logic, etc. Variations in the axiomatic method over time are well known
in the literature, and a radical distinction is generally drawn between the classical
Euclidean method and the modern hypothetico-deductive method. The former is
considered as a content-oriented approach (inhaltlich), in which the axioms are
considered as self-evident truths and the fundamental concepts are explicitly de-
fined and known by intuition. The latter is presented as a formal approach, in
which the axioms are hypotheses defining the primitive concepts and their mutual
relations.

2The practice-driven approach as it is understood here includes, for example, Lakatos 1976 and Corfield
2003, but also the new epistemology (Mancosu 2008), the interactions between philosophy and history (Fer-
reirós and Gray 2006; Kerkove, De Vuyst, and Bendegem 2010), recent investigations of argumentation in
logic and mathematics (Gabbay et al. 2002, Aberdein and Dove 2013), research on set theory, probability,
computability, applications and open problems in mathematics (Irvine 2009, p. 461ff. Colyvan 2012). This
distinction intertwines but does not coincide with the distinctions drawn by Cellucci (2013, pp. 93-96) be-
tween static (aimed at the justification of an established body of knowledge) and dynamic (interested rather
in the growth of mathematical knowledge) philosophy of mathematics and between top-down (starting from
some general unproven assumption) and bottom-up (starting from the activity of individuals) approaches.
While it shares with the dynamic approach an interest in inductive arguments alongside deductive ones, it is
bottom-up in the sense that it emerges in the activity of individual mathematicians.
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More recent research has shown that the change in the axioms chosen to un-
derpin a theory often reflected a profound methodological and epistemological
change.3 Besides, the very notions of axiom and definition changed meaning sev-
eral times,4 making it difficult to compare different axiomatic systems without
taking into account precise historical and conceptual differences.

The notions of logical consequence and more generally of logical rule are also
closely linked to the axiomatic method and have undergone profound variations
not only in the transition from syllogistic to twentieth-century symbolic logic (a
transition that was by no means linear, as is still evident in Peano’s school),5 but
also in the transformation of the role of propositions assumed as primitives and
their relation to theorems. The study of various instances of axiomatic method
suggests the existence of multiple variants which are in some way intermediate
between the classical (Euclidean) axiomatic method and the modern hypothetico-
deductive method.

An ‘axiomatic theory’ is composed of a language, a logical theory—including
primitive logical terms, logical axioms and logical rules of inference—a set of
primitive or undefined terms, a set of statements considered as axioms, a set of
defined terms and a set of theorems that can be derived from axioms by means of
the logical rules of inference (often, specific rules of derivation are allowed beside
the fundamental logical rules). Set theory comes in a variety of different formu-
lations, which are related to the technical objective of avoiding paradoxes (e.g.,
modifications to the comprehension axioms as made in type-theory) but also to the
epistemological objective of offering an adequate account of the infinite. If the dif-
ferent formulations of set theory reflect different philosophical viewpoints (pred-
icativism, finitism, and so on), one can find alternative axiomatic formulations of a
theory even inside a single research group: for example, in the Peano School many
different formulations have been offered of the theory of natural numbers, ratio-
nal numbers, real numbers, complex numbers, vector spaces, projective geometry,
plane and solid geometry.

The same axiomatic theory can be analyzed from a syntactic point of view as a
set of statements, from a semantic point of view as a set of non-linguistic models
that satisfy the statements, and finally, from a pragmatic perspective, as a set of
examples, problems, norms, skills and practices. Yet, the general objective of ax-
iomatics as a philosophical investigation of mathematical practices is not limited
to the axiomatic method and the type of language and logic used, nor to axiomatic
theories understood as sets of axioms and theorems or as theories composed of
language, semantics, syntax and pragmatics. For example, 6 axiomatics also ques-
tions the historical reasons why a certain way of conceiving the method and the ax-
iomatic theories has been privileged in a given conceptual framework; it questions
the role that axioms play in the foundations of mathematics, in the development of
a mathematical style and in the institutionalization of a given social mathematical
practice. The paper will thus consider three complementary ways to investigate
‘axiomatics’ as a whole: foundational, stylistic and institutional (section 4).

The axiomatic treatment of scientific theories was central to the early twentieth-
century philosophy of logic and mathematics program and was a fundamental fea-
ture of the philosophy of science until at least logical empiricism. In more re-
cent times, the general philosophy of science has moved toward less systematic
approaches, which by undermining the unity of science at various levels have also
called into question the methodological unity based on axiomatization of theories.7

3See e.g., De Risi 2016 on the role played by the parallel postulate in geometry.
4See e.g., Cantù 2018 on the deductive role played by definitions in Wolff’s mathematical method.
5Cantù 2022b.
6Savage 1990 ; Winther 2016.
7See e.g., Cartwright 1999.
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This is one possible reason for the lack of a systematic survey of the role of
axiomatics not only in contemporary philosophy of science, where it seems to
have fallen out of favor, but also in the period from the late nineteenth to the mid-
twentieth century. The temporal distance allows us to observe that in the first half
of the twentieth century many axiomatic methods, styles, and theories were indeed
developed that do not necessarily constitute a unity. The question is then whether
it is possible to speak of axiomatics as a variegated complex of mathematical re-
search and practices that can be characterized either on the basis of the common
goal of investigating the foundations and the unity of science, or on the basis of
some peculiar stylistic features, or even on the basis of some institutional charac-
teristics.

Having carried out research on the axiomatization of geometry, extensive mag-
nitudes and arithmetic, I got interested in the study of various axiomatic approaches
to mathematical theories. In the literature devoted to the history of analytic philos-
ophy, the role of the axiomatic method is generally associated with the study of the
foundations of mathematics, the philosophical analysis of mathematical principles
and rules, the discussion on the possibility of reducing mathematics to logic, and
questions of purity in the relation between arithmetic and geometry. The objective
here is to plea for a broader vision of what I will call ‘axiomatics’, i.e., a vari-
ety of theoretical inquiries and practical activities related to mathematics and that
present different forms, objectives, and methods. Even limiting attention to the
period from the late nineteenth century to the first half of the twentieth century, the
variety of methods, languages, styles, practices and rules at stake in axiomatized
theories is such that it suggests there is the opportunity for a wider and deeper
study of the subject—an approach that is not common in the literature.8

3 The objectives of axiomatics
To investigate axiomatics one needs to understand the relation between the differ-
ent methods and the objectives pursued by researchers who provide axiomatic for-
mulations of mathematical theories. In this section we will offer a (non-exhaustive)
list of roles which axiomatics has played.

3.1 Heuristics
Axiomatics is useful to formulate new conjectures, to understand why some hy-
potheses are more important than others, to provide new demonstrations, to sim-
plify and speed up proofs, and to discover errors.

As Hilbert says:

Now my present work, as I have already said, is rather a critical inves-
tigation of the principles of Euclidean Geometry. In this research we
have been guided by this fundamental principle: to discuss each ques-
tion that arises in such a way as to examine at the same time whether or
not it is possible to answer this question by following a predetermined
path and by using certain limited means. This fundamental principle
seems to me to contain a general rule in accordance with the nature of
things.9

Freudenthal as a mathematician considers the heuristic objective of axiomatics
as its main trait, and thus considers the Grundlagen der Geometrie as the best
example of axiomatics, even if he acknowledges that an earlier formulation can

8Schlimm 2006, p. 2-3.
9Hilbert 1900, p.110.
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be found in Padoa, and that the elimination of the link with intuition was already
stated by Pasch and Fano (I would also add Bettazzi).10 The cited example explains
very well why, according to the objective considered as primary in axiomatics, one
author or the other becomes the founding father.

3.2 Conceptual Analysis
Axiomatics is also a tool for conceptual analysis, i.e., a tool for understanding
mathematics, and determining which concepts presuppose which, verifying whether
a set of concepts are independent, and distinguishing notions expressed by a single
term but having distinct logical or mathematical functions. Peano’s ideography, for
example, is a form of conceptual analysis11 of the definitions occurring in mathe-
matical textbooks. The analysis takes place in two stages that influence each other.
On the one hand, the analysis of the language and of the structure of proofs al-
lows us to highlight the primitive logical terms, for example by distinguishing the
notions of membership and inclusion, often designated by the same term (the cop-
ula est), or by identifying the primitive logical rules (e.g., syllogism and modus
ponendo ponens). On the other hand, the study of the mathematical definitions
provided in the textbooks of analysis and geometry constitutes the starting point
of the search for the fundamental concepts of mathematics and the axiomatic for-
mulation of arithmetic, geometry, the theory of vector spaces, etc. As Peano and
his collaborators clearly acknowledge, a back and forth between mathematics and
logic is induced by the axiomatic treatment, because the axiomatic formulation of
the mathematical theories induces a modification of the axiomatic formulation of
the logical theory, and in its turn the modification of the latter requires an adjust-
ment of the formulation of logic:

Ideographic logic, in addition to being the most appropriate tool for a
non-superficial study of logic, by abolishing any insidious promiscuity
of its vocabulary with that of other sciences which presuppose only
logic, like arithmetic and geometry, has obliged each of these to an
equally diligent revision of their own vocabulary.”12

3.3 Quest for rigor
Axiomatics serves to eliminate the risk of internal contradictions in a theory and
to eliminate the errors which could result from an excessive recourse to intuitive
ideas, to the assumption of contradictory axioms, the choice of a wrong definition,
the application of an incorrect rule in a derivation, or the making of a mistake in
a proof. The quest for rigor can be expressed in various ways in mathematics,
and it is important to distinguish between mathematical and philosophical needs.
For Peano, although his position on this point differs significantly from Pieri and
Padoa, the search for rigor is dictated by a conceptual analysis that is intrinsic to
mathematics and not by the effort to provide a philosophical foundation for math-
ematics. For Bolzano, the search for rigor is associated with the task of providing
the right order of presentation of the concepts and propositions of a scientific the-
ory.13

The search for rigor cannot be identified neither with the conceptual analysis
which allows us to identify the elements of a theory, nor with the descriptive objec-
tive consisting in the production of an error-free presentation of a theory. Indeed,

10See Freudenthal 1957, p. 153, Padoa 1901, Pasch 1884, Fano 1958 and Bettazzi 1890.
11Schlimm 2021.
12See Padoa 1933, p. 75–77.
13See Bolzano 1804 and Cantù 2014.
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there are a variety of methods to increase rigor in mathematics. In Peano’s case, the
method by counterexamples is the most important and is mainly applied to math-
ematical definitions, whose inadequacy is shown by finding examples that satisfy
the general definition but should be excluded, or examples that do not satisfy the
definition but are intuitively taken to fall under the given concept. For example,
Peano criticizes the definition of Peano-Schwartz because it holds for the length of
a curve arc but not for all concave surfaces.14

Even if we limit ourselves to the logico-philosophical field, it is worth noting
that the search for rigor does not necessarily presuppose a formal conception of
axiomatics, but is perfectly compatible with a content-oriented vision, as well as
with a positive evaluation of the role of intuition in mathematics, which is often
taken to be necessary in order to justify the applicability of mathematics.15

3.4 Descriptive aim
Axiomatics is used to present a theory once it has already been developed. This
objective is often considered by philosophers as purely accessory, or at least sec-
ondary to conceptual analysis or search for rigor, which are usually taken as the
two pillars of the axiomatic method in the philosophical investigation of mathe-
matical foundations. However, in the history of logic, long considered as a general
theory of concepts, the primary objective of the axiomatic method was that of pro-
viding a good presentation of a given topic in a treatise. The right order of concepts
was thus mainly understood as the better way to introduce a topic. For example,
Bolzano defined logic as the art of presenting a theory in an appropriate textbook
(Wissenschaftslehre), which explains the kind of criticism he made to the order of
the geometrical concepts as exposed in Euclid’s Elements.16 Often, various orders
of concepts were considered, and the order of concepts present in the divine mind
(ordo essendi) was contrasted with the order reconstructed by humans and nec-
essary to their understanding (ordo cognoscendi). The difficulty of providing an
exhaustive list of the fundamental concepts of a discipline was precisely linked to
the difference between the human finitude and the divine infinity, a theme that we
also find in Gödel, for example when he observes that the paradoxes of set theory
are due to a bad choice of the axioms and not to a problem concerning the existence
of sets.17

For philosophers of science, the descriptive objective attests to the value of ax-
iomatics in justification contexts, and explains why it does not allow new discover-
ies. Hempel observes for example that axiomatics, being a ‘device of exposition’
of theories, is used to compare and justify them, but not to discover new facts.18

The descriptive objective is here opposed to the heuristic objective.

14Serret had defined the length of a curve arc by analogy to the length of a surface: the former being
defined as the common value to the upper bound of inscribed polygons and the lower bound of circumscribed
polygons, the latter was defined as the limit of an inscribed polyhedric surface. But Serret’s procedure was
flawed, as both Peano and Schwarz acknowledged (Peano 1890, p. 55). Hermite offered an alternative
definition, based on the limit of a series of non contiguous polygons that are tangent to the surface, but he
thus lost the analogy between the inscribed polygons and the inscribed polyhedric surfaces. Peano in 1890
suggested a new definition based on the notions of vector and bivector, which respects the analogy: the length
of the curve arc is the superior limit of the sum of the vectors of its parts; the area of a surface is the superior
limit of the sum of the bivectors of its parts. (Peano 1890, p. 56). For an exhaustive analysis of the problem
of the definition of the surface area, see Gandon and Perrin 2009.

15See for example Gödel 1953/9, p. 348–9.
16See Bolzano 1837, Bolzano 1804 and Bolzano 1810.
17Crocco et al. 2020, p. 48, 73, 86.
18Hempel 1970.
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3.5 Genetic-historical aim
Axiomatics is sometimes used to compare different theories, to explain the trans-
formation or the evolution of a theory into another and possibly the ensuing cog-
nitive progress. A well-known example is Hilbert’s Grundlagen der Geometrie,
in which the distinction between groups of axioms is also used to compare differ-
ent geometrical theories.19 But I would also like to mention the case of Giuseppe
Veronese, because his axiomatic formulation of infinitesimal geometry was from
the beginning linked to the comparison between the non-Archimedean continuum
and the continuum of Dedekind, and prompted him to write a long appendix to his
book Fondamenti della geometria which constitutes one of the first examples of
the history of mathematics being deeply influenced by axiomatics.20

Other interesting examples are Peano’s Formulario and Bourbaki’s Éléments
de mathématiques, both of which are extremely attentive to the axiomatic formu-
lations and their history, explaining the first occurrence of a certain formula or the
evolution of mathematical ideas.21

3.6 Architectural Aim
Axiomatics can be used to restructure and better understand the global edifice of
a science, which evolves according to the individual axiomatic theories of which
it is composed, and is renewed thanks to new structural analogies allowed by the
development of axiomatics itself (think for instance of the mother structures in
Bourbaki 1950 or the disciplinary reorganization that transformed geometry from
a mathematical science to a physical science in the 19th century).22

The reorganization of the architecture of mathematics can also influence its po-
sition in the classification of sciences, a problem that was crucial at the end of the
19th and the beginning of the 20th century, because of the multiplication of math-
ematical disciplines, including arithmetic, geometry and analysis, but also prob-
abilities, combinatorics vector spaces and hypercomplex systems, and the frag-
mentation of other scientific disciplines, which increased the number of possible
applications.

3.7 Modular Analysis
In some cases, the interest in a mathematical problem or theorem is not only re-
lated to the understanding of the role it plays in a given axiomatic system. What
one wants to study is the amount of mathematics needed to derive the theorem or
to solve the problem. An example of this is the interest for axiomatics developed
by Hilbert in the Grundlagen der Geometrie, as he investigated what can be proved
using only one or some of the five groups of axioms he isolated (incidence, order,
congruence, parallelism and continuity).23 This is the objective of reverse mathe-
matics, to determine which axioms are necessary to prove a certain set of theorems
or which set of theorems or which formal systems isolate the principles necessary
to prove them.24

19Hilbert 1899.
20Veronese 1891.
21See Peano 1901, Bourbaki 1939-1984 and Dieudonné 1978.
22Torretti 1978.
23Hilbert 1899.
24Friedman 1975, p. 235.
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3.8 Pedagogical Aim
Axiomatics can also be a pedagogical tool, not only because it allows a clear expo-
sition of theories, but also because it develops students’ abstraction skills.25 Asking
students to define a concept or prove a mathematical theorem leads to the study of
several possible definitions and proofs, each based on distinct notions and rules.26

The effort to check that the mathematical content presented by the teacher is
actually accessible to students at a certain level of study requires a distinction be-
tween elementary and non-elementary parts of a theory, and sometimes suggested
alternative axiomatic formulations of a theory using only the axioms that are con-
sidered to be elementary. For example, Giuseppe Veronese distinguished an intu-
itive, experimental and practical method of teaching, which he considered adequate
for young children, from a rational and rigorous axiomatic method, which he rec-
ommended not to introduce before the age of 14. The geometrical propositions
taught in the two cases are not the same, because material or practical geometry
is limited to the field of the observable: instead of stating geometric propositions
about unlimited lines, he referred only to line segments, so as to include only
propositions that can be experimentally verified.27

The pedagogical objective is often associated with a descriptive objective, be-
cause in the writing of a textbook the right order of concepts is the one that fa-
cilitates understanding without requiring concepts that are foreign to the learners’
field of knowledge. The problem of purity—i.e., the search for a proof of a theo-
rem that does not call upon notions foreign to the theory in question—originated
in the philosophical concern to adhere to the Aristotelian prohibition rule on kind
crossing: e.g., one can forbid the use of arithmetical tools in a geometrical proof
or theorems of spherical geometry in plane geometry. But it also emerged in the
didactic concern of presenting a proof that could also be made by students fully
autonomously.

3.9 Coordination tool
If mathematics is considered as a social activity carried out by actual human agents
or multi-agent systems that find themselves with the practical necessity to regulate
their interactions, an axiomatic theory can be used to solve the problems of coor-
dination.

This problem did not originate neither in the recent tendency of the philosophy
of mathematics to deal with concrete scientific practices, nor in computer-assisted
proofs. Peano already envisaged the urge to coordinate mathematical activity, as
he justified the urge to build a collection of mathematical formulas by the need of a
practical tool to distinguish what has already been demonstrated from what is still
in need of a proof.28

Coordination problems can also be solved through a genetic-historical approach,
which allows us to compare theories developed at different times and with differ-
ent tools, and thus also to understand to what extent a new proof provided with
different techniques can be more or less adequate or general than a pre-existing
proof.

From the perspective of the external history of mathematics, which focuses on
concrete institutions in which mathematical agents operate (universities, journals,
research institutions, schools, etc.), the objective of coordination becomes essential

25Piaget 1968.
26Peano 1921.
27Veronese 1909.
28Peano 1896.
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to understanding the dynamics of collective endeavors, peer review and scientific
controversies.

To the extent that the unification of mathematics or science is also part of the
instruments that promote the coordination of mathematical agents, this objective
also intersects the architectural goal mentioned above.

4 Three conceptions of axiomatics in mathemat-
ics
Axiomatics is generally investigated as a method that facilitates research on the
foundations of mathematics. But recent developments in historical epistemology
and social ontology might suggest alternative or complementary viewpoints: ax-
iomatics can be considered as research on the foundations of mathematics, as a
mathematical style, or as a social institution.

4.1 Axiomatics as research on the foundations of mathe-
matics
Axiomatic systems and methods have often been introduced to deal with the ques-
tion of the foundations of mathematics, that is to say, to determine what the prin-
ciples of science are, by possibly distinguishing the ordo essendi from the ordo
cognoscendi, i.e., what is first in itself from what is first for us. In this classical
sense, originated in Aristotle’s Prior Analytics, axiomatics has an ontological and
cognitive scope. Key questions posed by axiomatics are reductionism (which prin-
ciples are really independent of each other and which are those that can be reduced
to principles of other disciplines or to logical principles?) and purity (is it possible
to formulate an axiomatic theory without incorporating principles from other dis-
ciplines or sciences?). Within this general framework, different interpretations of
the question of foundations (relating, for example, to rigor and the elimination of
errors in mathematical definitions and proofs, or to the philosophical clarification
of the nature of fundamental elements) and of formal systems as closed or open,
lead to an enormous variety of axiomatic formulations of a theory.

Actually, there might be two distinct ways to approach the foundations of math-
ematics. By mathematical problem of the foundations, I mean here the objective to
give a rigorous organization to the whole of mathematics, by providing a precise
and unambiguous characterization of its key concepts (e.g., limit and continuity
in the case of analysis).29 Among the authors who have contributed to the re-
newal of mathematics in this sense I include Gauss, Abel, Cauchy, Bolzano, and
in the historical phase of the arithmetization of the analysis, Weierstrass, Cantor
and Dedekind (but also Kossak, Meray, Heine, Lipschitz and Tannery), who tried
to avoid the use of the notion of geometric continuity in the definition of the prop-
erties of real numbers.

By logico-philosophical foundation of mathematics, I rather mean a reflection
on the nature of symbolism and abstraction used in mathematical practices, on
the conditions that legitimize their application and justification.30 The fundamen-
tal question is associated with a hypothetico-deductive view of axiomatic theories
and to the discussion of alternative philosophical points of view on mathematics:
logicism, intuitionism and formalism.31

29Mangione and Bozzi 1993, p. 269.
30Mangione and Bozzi 1993, p. 262.
31Shapiro 2005.
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A similar distinction is made by Leo Horsten: the inquiry is called foundational
research when the mathematicians themselves are “concerned with the foundations
of their subject” and philosophy of mathematics, when “philosophers investigate
philosophical questions concerning mathematics”.32

Axiomatics is one of those areas that requires a joint interaction of the two
approaches, so as to avoid philosophy of mathematics being reduced to a list of
‘isms’ that investigate the nature of mathematical entities or how we can have
knowledge of them. Axiomatics (generally a Hilbert-style axiomatics) is often
taken to be the general framework in which these discussions and analyses are
made. It is seldom questioned in the philosophy of mathematics itself, but rather
delegated to philosophy of logic.33

Axiomatics is also a general topic of philosophy of science: a unitarian view,
guided by a predominantly ontological interest, is the Classical Model of Science,
which presents a list of relevant features of the method that are considered as still
influential in contemporary science.34 The consideration of the mode of presenta-
tion of a set of propositions and how this architecture might be influential in form-
ing the epistemic attitude of the reader is seldom discussed, but this was a central
feature of logic in Bolzano and more generally in the 19th century. An exception is
constituted by researchers who looked for a joint answer to philosophical and his-
torical questions, thereby investigating axiomatics both as a cultural phenomenon
and a foundational issue.35

4.2 Axiomatics as a mathematical style
When axiomatics is considered as a cultural feature that is embodied in a partic-
ular mathematical theory, it is legitimate to wonder whether it could be described
as a style.36 The term ‘style’ has been introduced in mathematics by analogy with
artistic or literary styles, and has been brought into the limelight by different tra-
ditions. Chevalley, a member of the Bourbaki group, remarked that axiomatics
has deeply modified the style of contemporary mathematical writings.37 Granger
developed a general study of style in mathematics, philosophy of language and
human sciences.38

Crombie gave an ostensive explanation, individuating six fundamental styles
that characterize the scientific enterprise: postulation (Greek mathematics), exper-
iment, hypothetical construction of analogical models, ordering by composition
and taxonomy, statistical analysis and probability, and historical derivation of ge-
netic development. Hacking required two further conditions for the identification
of a new style: novelty and persistence through self-stabilization. Historical epis-
temology also insisted on the cultural features of styles, as results of the activity of
a specific school, nation or tradition.

32See Horsten 2022. Note that philosophy of mathematics need not be exclusively identified with the
investigation on the foundations of mathematics, as has been argued by philosophers of mathematical prac-
tices as well as by historians of mathematics. I will not enter in the discussion here, but the reader might
find surveys of these approaches in Mancosu 2008; Ferreirós and Gray 2006; Giardino 2017; Carter 2019;
Kerkove, De Vuyst, and Bendegem 2010.

33See e.g., Jacquette 2002. But note that Quine (1970) claimed that axiomatics does not have an impact on
logical theory, because the latter is a set of logical truths, no matter which are chosen as axioms and which
are derived from them.

34Jong and Betti 2010.
35See e.g., Ferreirós and Gray 2006.
36This idea first came to me while reading Mancosu 2017, Marquis 2022, Rabouin 2017, and was sup-

ported by fruitful discussions with Frédéric Patras and Sébastien Maronne on Bourbaki.
37Chevalley 1935, p. 375.
38Granger 1988.
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Paolo Mancosu, comparing the use of the term made in history of mathematics
and in mathematics, distinguished several kinds of style: individual, methodologi-
cal, epistemic, national, cultural, writing, thinking or cognitive style.39

Nowhere is axiomatics characterized as a style, even if Crombie’s characteri-
zation of the postulationist style of Greek mathematics goes in this direction and
Chevalley highlighted the relation between axiomatics and style modifications.

The question here is how to characterize axiomatics as a style. The term might
refer to the writing style of a certain mathematician, as when one speaks of ax-
iomatics à la Dedekind or à la Peano, or, as is often done, of Hilbert-style ax-
iomatics. In the latter case, an individual axiomatic style is also a methodological
style originating in a research tradition: as Chevalley remarks, the ε-style was an
author’s style that became specific to a mathematical era.40 The same holds for
Buss’s distinction between proof theory in the Hilbert style, in which each step of
a derivation is a formula, and proof theory in the Gentzen style, in which each step
of a derivation is a sequent.41

In another sense, axiomatics can be considered as an element of a style of think-
ing, i.e., as a component of a paradigm or as an epistemic concept.42 Axiomatics
can still be interpreted as a cognitive style, be it the structure of human psycho-
logical development43 or one of the many cognitive styles preferred by agents in
teaching and learning.44

In a historical context, it is possible to consider the axiomatic style as a histori-
ographical or mathematical category—think of the contrast between the deductive
Aristotelian conception of mathematics, in which axioms are true and self-evident,
and the Hilbertian hypothetico-deductive conception45—or as an individual style,
illustrated for example by Zermelo in the case of set theory.46

The axiomatic style could then give rise to sub-styles. The distinction between
(a) a hypothetico-deductive approach, which considers a theory as a closed sys-
tem, (b) a semantic approach, which sees a theory as a set of models, and (c) an
analytical approach—compatible with the understanding of a theory as an open
system47—could be seen as a difference in axiomatic style.

Two other opposite forms of axiomatic style would be content-oriented ax-
iomatics, which includes Euclid’s geometry, Newton’s mechanics and Clausius’
thermodynamics, and formal or existential axiomatics.48 Similarly, one could
compare the style of the modernists, for whom mathematics has only to do with
words, with the style of the anti-modernists, for whom mathematics has to do with
objects.49

4.3 Axiomatics as an institution
A third way of approaching axiomatics is to consider its persistence in time, al-
though in changing forms, as a cognitive enterprise realized by human agents to
regulate complex interactions. The possibility to distinguish axiomatics as a type

39Mancosu 2017.
40Chevalley 1935.
41Buss 1998.
42See respectively Kuhn 1962 and Hacking 1999.
43For Piaget (1947) the mental development of the child is associated with the progressive unraveling of

logical-mathematical axioms.
44See Borromeo Ferri 2005 and Lerman 1990.
45Kline 1990, vol. 3.
46See Zermelo 1908 and Gray 2008, p. 260. See also Lorenzo 1971.
47Cellucci 2017.
48See Hilbert and Bernays 1934, p. 2 and Sieg and Ravaglia 2005, p. 987.
49See Mehrtens 1990 and Gray 2008, p. 9.
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from its instantiations (tokens) based on different methods and different formu-
lations of theories, and the presence of rules, functions agents and roles, legiti-
mates the question of whether axiomatics can be considered as a social institution.
In social ontology, the philosophical discipline that studies social institutions and
their components, an institution is characterized by rules, obligations, coordination
problems, agents and roles.50

Formal axiomatics could be associated with the following set of rules: 1) deter-
mine the primitive terms of a theory and the axioms that implicitly define them; 2)
make the legitimate rules of derivation explicit; and 3) specify which rule is applied
at each stage of a proof. In this approach, some of the classical meta-theoretical
problems associated with axiomatics could be considered as specific obligations.
For example, consistency would be an obligation justified by the fact that it is un-
desirable that a statement and its negation are both axioms or theorems of the same
system. Completeness in the Hilbertian (geometrical) sense could be considered
as an obligation dictated by the desire that the axiomatic system has an adequate
level of generality. Agents include human beings, computers and multi-agent sys-
tems. Roles include researcher, teacher, student, newspaper reporter, etc. Many
coordination problems could be facilitated by axiomatics: a) avoid proving a the-
orem that has already been satisfactorily proven; b) provide a common conceptual
framework for comparing different proofs of the same theorem and evaluate which
one is the most adequate; c) facilitate the interaction and coordination between
different researchers, groups of researchers and research projects in proving new
results or formulating new conjectures; d) facilitate the unification of fragmented
results into an organic unity.51

5 Peano’s example
Peano developed axiomatics as a tool for the scientific study of the foundations of
mathematics, i.e., for organizing the corpus of mathematical knowledge and pro-
viding a precise and adequate characterization of its key terms. Peano also dealt
with the logico-philosophical foundations of mathematics, especially in his reflec-
tions on the nature of symbolism and abstraction used in mathematical practice, but
without adhering to any form of philosophical foundationalism, since the search
for rigor is based neither on rigid deductivism nor on any form of reductionism.

Peano developed a specific axiomatic style, based on the method of counterex-
amples applied to definitions in order to find the right level of generality (for exam-
ple, providing a definition of the length of the curvilinear arc applicable to all con-
cave surfaces), a style based on the refusal to lean clearly towards an exclusively
extensional or exclusively intensional interpretation of logic and mathematics, a
style based on a particular way of associating syntax, semantics, and pragmatics
through the grammar of language.52

Finally, Peano institutionalized axiomatics through collaborative projects: the
Formulario, the Dizionario, the Revue des Mathématiques and the publications of
the Academia pro Interlingua. The journals were the instruments for coordinating
the work, but participation in national and international conferences also provided
an opportunity to invite contributions, critiques, and corrections to collaborative
projects: e.g., the conference held in Livorno in 1901 launched the project for a
dictionary of mathematics.

50Guala 2016; Epstein 2016.
51This interpretation of axiomatics as a social institution was the subject of a presentation at the ENPOSS

2020 international symposium.
52See Cantù 2022a and Luciano 2017.
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The institutional nature of axiomatics is not only the result of an intersubjective
process, but is also shaped by the way interactions are regulated and certain tasks
are assigned to agents. As can be seen from Enriques’ reading of Peano, axiomatics
can be seen as a set of four rules: 1) all concepts must be taken as primitives or
logically derived from primitives; 2) primitive concepts must be independent; 3)
all propositions must be taken as axioms or derived from axioms; 4) axioms must
be independent.53

Each of these perspectives on axiomatics (inquiry into foundations, mathemat-
ical style, social institution) can be characterized by the study of the objectives it
is called upon to fulfill, which, in Peano’s case, are indeed multiple.

1. Axiomatics is essential to conceptual analysis, understood as a preliminary
operation to the introduction of an ideography.

2. It serves a heuristic objective, facilitating the search for errors in the defini-
tions, but also the search for new examples and problems.

3. It induces a quest for rigor, notably elimination of inadequate definitions and
sophisms.

4. It has the descriptive capacity to represent contemporary mathematical prac-
tices.

5. Axiomatics also produces a history of notations and theorems.

6. It allows a comparison of alternative theories on the basis of criteria of sim-
plicity.

7. It facilitates an architectural organization of mathematical knowledge.

8. Axiomatics also plays the role of a modular analysis, either of the theorems
derivable from a single axiom, or of the axioms necessary to derive a given
theorem;

9. It also has a didactic objective, aimed at clearly explaining the theories and
developing the students’ abstraction capacities;

10. Finally, axiomatics also plays the role of a coordination tool allowing mathe-
maticians to quickly discover whether a certain proposition has already been
proved and with what resources.

6 Conclusion
This article has attempted to show how philosophy, even if not taken as a normative
starting point of the inquiry, can contribute to a reflection on the axiomatic activity
of mathematicians. It is often said that mathematicians do not work axiomatically,
and that this method is mainly concerned with organization rather than scientific
discovery. Here we have tried to show that axiomatics, if analyzed in detail through
a study of its foundational component, of the styles with which it is associated and
of the rules that govern it, performs a plurality of functions. But this analysis re-
quires an interdisciplinary approach in which mathematics, philosophy and history
of logic and mathematics are involved: conceptual analysis cannot be dissociated
from the punctual study of mathematical theories and their historical development.
The analysis of Peano’s example offers insight into the kind of results that this
interdisciplinary approach to mathematical practice might produce.

53Enriques 1924–27, p. 11-12.
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erigen Bearbeiter. Sulzbach: Seidel.

Borromeo Ferri, R. (2005). Mathematische Denkstile. Ergebnisse einer
empirische Studie. Hildesheim: Franzbecker.

Bourbaki, Nicolas (1950). “The Architecture of Mathematics”. In: The
American Mathematical Monthly 57.4, pp. 221–232.
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