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Geometric arguments for proving the Discrete Maximum Principle met by conventional finite

volume schemes in the context of isotropic diffusion problems.

INTRODUCTION

Let  be a bounded connected open subset of 2 whose boundary  is a union of polygonal lines

k kK    
where K is a finite subset of which denotes the set of positive integers. Note that when K is a singleton  is simply connected. Given two sufficiently regular scalar functions D and f

(respectively diffusion coefficient and source/sink term ) defined in  , we would like to compute with a finite volume method the solution  of the following diffusion problem :

(1) where ( )

1 0
H  is the well-known Sobolev space defined as follows:

( ) ( ) ( )   1 2 2 0 with over / 1 2, 0 = ik kK H v L v L i v   =         =    . (2) 
Note that i v  stands for the distributional derivative of v in the th i direction (see for instance [START_REF] Friedlander | Introduction of the theory of distributions[END_REF] to learn more about Distribution Theory). Also note that under the following assumptions on the data:

( )

2 fL  (3) 
and there exist nonnegative real numbers D -and D + , with 0 DD - +  , such that

( ) a.e. in D D x D -+    (4) 
the system (1) gets a unique variational solution i.e. there exists a unique ( )

1 0 H   such that ( ) = ( ) ( ) D x grad grad v dx f x v x dx      ( ) 1 0 vH    . (5) 
Following [START_REF] Boyer | Analyse Numérique des Equations aux Dérivées Partielles[END_REF] one can prove that if the given function f is positive almost everywhere in  then the variational solution  of the system (1) is also positive almost everywhere in  . That is the weak form of the Maximum Principle. Several works on construction of positivity preserving numerical methods for diffusion and diffusion-convection problems are available in the literature (see for instance [START_REF] Eymard | Finite Volume Methods, HandBook of Numerical Analysis[END_REF][START_REF] Potier | A linear scheme satisfying a maximum principle for anisotropic diffusion operators on distorted grids[END_REF][START_REF] Blanc | High-order monotone finite-volume schemes for 1D elliptic problems[END_REF]). Such numerical methods are called monotone schemes.

The main objective of this short communication is to use geometric arguments for proving the wellknown discrete version of the Maximum Principle satisfied by the conventional finite volume solution to the system (1).

Preliminary Tools

Let us define a partition P over  (closure of  in the topological space 2 ) consisting in a finite family of closed convex polygons generically denoted by T . These polygonal elements T are the so-called conventional control volumes in the language of Finite Volume theory. In the context of Conforming Finite Volumes theory the control volumes T should satisfy the following conditions:

(i)

The interior of T , denoted by 

( ) ( ) with = : / I , T T T T v v x v x v T     → =         P P P P P ( ) ( ) with = : / I , k T T T kK T v v x v x v T          → =           P P P P P .
It is worth mentioning that in this work the "characteristic" function I

T is defined almost everywhere (either in  or in = k kK    boundary of  ) as follows:

( ) ( )

1 if int I = 0 if T C xT x xT     
, where 𝑇 𝑐 is the complement of 𝑇 either in 𝛺 ̅ or in Γ.

Definition 2.2

Let us introduce the following discrete function spaces:

=   T P P and   0 = 0   P TP
where 0 P stands for the null vector from the space P .

Conventional Finite Volume approximation of the system (1)

The Finite Volume method is based on the fundamental idea that the exact solution  could be approximated inside any control-volume T with the constant T  corresponding to either the value of  or its approximation at a given point located inside T , with Cartesian coordinates T x . In the context of conventional Finite Volumes the choice of that point is not arbitrary as we will be seeing in assumption (iii) that follows. Let us denote by T  the boundary of any control-volume T . We need to specify the following assumptions that make the classical Finite Volumes very attractive and realistic for certain engineering problems as subsurface flow problems (refer to [START_REF] Marle | Multiphase Flow in Porous Media[END_REF][START_REF] Houpeurt | Mécanique des fluides dans les milieux poreux: critiques et recherches[END_REF] for instance ):

• The diffusion coefficient

() Dx is a piecewise constant function in  ;
• T is compatible with the discontinuities of () Dx in the sense that the discontinuity points of () Dx belong to the mesh interfaces 

TT

  . This is the so-called orthogonality condition required from conventional Finite Volume meshes (see [START_REF] Njifenjou | Overview on conventional finite volumes for elliptic problems involving discontinuous diffusion coefficients. Part I : Focus on the one dimension space models[END_REF][START_REF] Eymard | Finite Volume Methods, HandBook of Numerical Analysis[END_REF]). Finite Volume and Finite Difference approximations of isotropic/anisotropic diffusion problems on distorted grids are intensively developed in the literature and are today considered as a classical theory (see for instance [START_REF] Eymard | Finite Volume Methods, HandBook of Numerical Analysis[END_REF][START_REF] Le | An a Posteriori Error Estimation for the Discrete Duality Finite Volume Discretization of the Stokes Equations[END_REF][START_REF] Hermeline | A finite volume method for approximating 3D diffusion operators on general meshes[END_REF][START_REF] Aavatsmark | Multi-point flux approximation methods for quadrilateral grids[END_REF][START_REF] Njifenjou | Analysis on general meshes of a discrete duality finite volume method for subsurface flow problems[END_REF]. Some extensions of Finite Volume Methods have been designed and known under the name of Gradient Discretization Methods (see [START_REF] Droniou | The Gradient Discretization Methods[END_REF] for learning more). We have the following well-known result. Theorem 3. [START_REF] Marle | Multiphase Flow in Porous Media[END_REF] The system (6) gets a unique solution. Moreover the following discrete Maximum Principle holds:

If ( ) 0 almost everywhere in then 0

T fx    for all T T .
The interest of this work relies up on the technique we are going to use to prove that the solution to (6) meets the discrete Maximum Principle. To the best of our knowledge the technique widely exposed in the literature is based up on algebraic arguments (see for instance [START_REF] Eymard | Finite Volume Methods, HandBook of Numerical Analysis[END_REF][START_REF] Njifenjou | Analysis on general meshes of a discrete duality finite volume method for subsurface flow problems[END_REF]). We are going to display geometric arguments to prove the discrete Maximum Principle stated in Theorem 3.3.

Geometric arguments for proving the Discrete Maximum Principle

We have to prove that:

If ( ) ( ) ( ) 0 , + , T TL TL TL T L L L T mes D D D dist x T D dist x L       -    V T  P (7) with = 0 T T   P (8) 
then

0 T T    P . (9) 
Let us set

( ) ( ) ( ) = , + , TL TL TL T L L T mes D D D dist x T D dist x L     , , with 
T L T L    P . ( 10 
)
Note that

0 TL  , , with 
T L T L    P . ( 11 
)
Let us start the proof with assuming that we have [START_REF] Le | An a Posteriori Error Estimation for the Discrete Duality Finite Volume Discretization of the Stokes Equations[END_REF] and [START_REF] Hermeline | A finite volume method for approximating 3D diffusion operators on general meshes[END_REF]. We should deduce that ( 9 P the inequality [START_REF] Le | An a Posteriori Error Estimation for the Discrete Duality Finite Volume Discretization of the Stokes Equations[END_REF] applies for 𝑇 = 𝑇 ̅ and we get, thanks to notation [START_REF] Njifenjou | Analysis on general meshes of a discrete duality finite volume method for subsurface flow problems[END_REF] and relation [START_REF] Potier | A linear scheme satisfying a maximum principle for anisotropic diffusion operators on distorted grids[END_REF],

0 0 0 L TL T L T       -    V .
Therefore we can easily see that

L T T L  =   V (14) 
For any pair of points from • The second important remark straightly following from ( 14) is that :

L T L   =   P
From these two remarks we see that

= T T 
 , with T  P .

Therefore we have the following :

min T     P P
which is in contradiction with [START_REF] Blanc | High-order monotone finite-volume schemes for 1D elliptic problems[END_REF]. So the Discrete Maximum Principle is proven.

To end the proof of Theorem 3.3 we recall that this Discrete Maximum Principle ensures existence and uniqueness of the solution to the system (6). 

T

  by P the set of boundary edges (considered as degenerate control volumes) and we define the conventional finite volume mesh T as it follows: the characteristic function of the control volume T , let us set:

•

  other words any discontinuity point is located in a control volume boundary; For all ( ) ', '' TT  PP such that ' T and ''T are adjacent (that is

Remark 3 . 1 Definition 3 . 2 5

 31325 An immediate consequence of the first two assumptions is that () Dx is a nonnegative constant in each control volume T . Notation: In the sequel the constant value of () Dx per control volume T is denoted by T D . The conventional Finite Volume approximation of the system (1) consists in what follows (see for instance [ stands for Lebesgue measure in one spatial dimension, T V is the set of control- volumes adjacent to T , while ( ) , dist  represents the Euclidean distance.

  clear that the discrete Maximum Principle is satisfied . Indeed denote by min a (degenerate) control-volume belonging to leads to min  PP . Note that min P is not empty by definition (see relations (12) above). Let us arbitrarily consider a control volume min T  PP . Since 𝑇 ̅ 𝜖
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  with Cartesian coordinates x and y , define the subset of 2 denoted by   , xy in the following way : is an infinite set and there is an obvious bijective mapping from T is also an infinite set. Note that another way to see this is to identify T S with the set of straight semi-lines with origin T x . The set T S contains a finite subset T A made up of segments that pass through a mesh vertex or a mesh edge. So its complement C T A in T S is also infinite. Thus there exists (at least) a segment ( ) , with extremities and T xx  , where T x   F (of course) . In the sequel ( ) , T xx   is simply denoted by  since there is no risk of confusion. Let us set : The first important remark is that  P contains at least two control volumes namely the control volume T belonging to P and a degenerate control volume T  (belonging to P of course) such that xT    .
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 1 Figure 1: Illustration of griddings defined over a bounded connected 2D-domain  with borders