Kaitao Tang 
email: kaitao.tang@eng.ox.ac.uk
  
Thomas Adcock 
  
Wouter Mostert 
  
Drop Deformation Dynamics and Fragment Characteristics in the Bag-Breakup Regime

We investigate numerically the aerobreakup of liquid droplets with a focus on the bag breakup regime. We solve the two-phase incompressible Navier-Stokes equation using the adaptive mesh refinement (AMR) technique with volume-of-fluid (VOF) interface reconstruction. To minimise the influence of mesh-induced breakup on fragment statistics which has prevented previous studies from reaching grid convergence, we utilise a recently developed numerical algorithm which artificially perforates thin fluid structures once their thickness decreases to a critical value independent of the grid size. We first show good agreement with theoretical predictions and clarify the influence of the surrounding airflow on the drop deformation. Next, we show grid convergence for fragment statistics and identify the physical mechanisms governing bag breakup.

Introduction

Liquid atomisation refers to the process where a bulk volume of liquid deforms and disintegrates into sprays, typically featuring various shapes and spanning large ranges of size and velocity [START_REF] Guildenbecher | Secondary atomization[END_REF]. Liquid atomisation is involved in a wide range of physical processes, including ocean-atmosphere interactions [START_REF] Veron | Ocean spray[END_REF], precipitation and rain-drop dynamics [START_REF] Veron | Ocean spray[END_REF][START_REF] Villermaux | Single-drop fragmentation determines size distribution of raindrops[END_REF], pharmaceutical spray generation and pathogen transmission [START_REF] Bourouiba | The fluid dynamics of disease transmission[END_REF], etc.; and it has recently been shown that the fragmentation of bag-shaped surface ripples dominates sea spume generation under extreme wind conditions, producing large droplets with typical sizes of 10 2 ∼ 10 3 µm [START_REF] Troitskaya | The "bag breakup" spume droplet generation mechanism at high winds. part i: spray generation function[END_REF] where the currently-available sea-spray generation functions (SS-GFs) show large range of scatter [START_REF] Veron | Ocean spray[END_REF]. However, since the physics governing the fragmentation of bag films have not yet been firmly established, their influence on SSGFs have been difficult to quantify. Improving this understanding is the primary motivation of the present work.

As one of the simplest examples of liquid atomisation, the aerobreakup of liquid drops is typically modelled by placing a droplet with density ρ l , viscosity µ l , diameter d 0 and surface tension σ in an ambient gas flow with density ρ a , viscosity µ a and uniform incoming velocity U 0 . Four nondimensional controlling parameters can be proposed [START_REF] Villermaux | Single-drop fragmentation determines size distribution of raindrops[END_REF]:

We ≡ ρ a U 2 0 d 0 σ , Oh ≡ µ l ρ l d 0 σ , ρ * ≡ ρ l ρ a , µ * ≡ µ l µ a . ( 1 
)
Among these, the Weber (We) and Ohnesorge number (Oh) respectively quantify the ratios of inertial to capillary forces, and viscous to capillary forces; and ρ * and µ * are respectively the density and viscosity ratios of the liquid and gas phase. For sufficiently small We, the droplet oscillates without breakup, up to a critical value We c = 11 ± 2 [START_REF] Theofanous | Aerobreakup of newtonian and viscoelastic liquids[END_REF] which marks the transition to the bag breakup regime, and is independent of viscous effects for Oh ≤ 0.1.

In the bag-breakup regime, the droplet first flattens and evolves into an oblate disc. Afterwards, a bag is blown out from the centre, thinning and approaching breakup, while the disc periphery forms a toroidal rim. There are several models describing the early deformation of the droplet [START_REF] Guildenbecher | Secondary atomization[END_REF][START_REF] Theofanous | Aerobreakup of newtonian and viscoelastic liquids[END_REF], but the internal flow mechanism first proposed by Villermaux and Bossa [START_REF] Villermaux | Single-drop fragmentation determines size distribution of raindrops[END_REF] and significantly developed by Jackiw and Ashgriz [START_REF] Jackiw | On aerodynamic droplet breakup[END_REF][START_REF] Jackiw | Prediction of the droplet size distribution in aerodynamic droplet breakup[END_REF] among others has been very promising. In this model, the droplet is assumed to maintain a spheroidal shape governed by axisymmetric and inviscid internal flow, with a well-defined air-phase stagnation point [START_REF] Guildenbecher | Secondary atomization[END_REF][START_REF] Villermaux | Single-drop fragmentation determines size distribution of raindrops[END_REF][START_REF] Jackiw | On aerodynamic droplet breakup[END_REF]. Recently, Jackiw and Ashgriz [START_REF] Jackiw | On aerodynamic droplet breakup[END_REF] used a simple semianalytical argument to propose a constant growth rate of the drop spanwise diamater R m , which has shown good agreement with experimental results [START_REF] Jackiw | On aerodynamic droplet breakup[END_REF]. However, this approach is somewhat empirical and cannot account for the complex interaction between wake vortices and drop surface [START_REF] Marcotte | Density contrast matters for drop fragmentation thresholds at low ohnesorge number[END_REF]. The late-stage breakup behaviour, on the other hand, is delineated into a bag-film rupturing event, and the fragmentation of the remnant rim at a later time. The bag film rupture occurs more rapidly and produces much smaller fragments compared with the remnant rim breakup, and is thus more difficult to capture experimentally [START_REF] Guildenbecher | Secondary atomization[END_REF]; and it has only recently been clarified [START_REF] Jackiw | Prediction of the droplet size distribution in aerodynamic droplet breakup[END_REF] that the major pathways leading to bag fragmentation are the destabilisation and collision of hole rims as they recede over the curved bag and experiences centripetal acceleration. The size and velocity distribution data of aerobreakup fragments are still scarce [START_REF] Zhao | Experimental study of drop size distribution in the bag breakup regime[END_REF], and it remains unclear how each breakup mechanism contributes to the fragment statistics given the large span in time and length scales.

While most of the early aerobreakup studies are experimental, recent development of computational power has enabled numerical investigations of aerobreakup; however, they are highly challenging due to the multiscale nature of the problem. In particular, as the Navier-Stokes equations do not describe the physical mechanisms that control topological changes at phase boundaries, thin films are subject to uncontrolled numerical perforation when their thickness approaches the minimum grid size [START_REF] Chirco | Manifold death: a volume of fluid implementation of controlled topological changes in thin sheets by the signature method[END_REF]. As a result, numerical convergence with respect to bag fragment statistics has not previously been obtained to our knowledge. Using a controlled and well-defined perforation scheme to obtain numerical convergence is therefore one of the major goals of this study.

In this work, we investigate both the early-time deformation and the late time fragmentation process of a droplet in bag breakup. We first introduce in §2 the problem configuration and the numerical method. We then compare our axisymmetric simulation results with previous theoretical predictions in §3 for the early-time deformation period, and discuss in §4 the 3D grid convergence study of fragment statistics and the physical mechanisms governing bag breakup. We consider both axisymmetric and three-dimensional (3D) problem geometries, and the corresponding flow configurations are shown in Figs. 1a and1b, respectively. To eliminate the influence of finite domain size on aerobreakup behaviour, the domain width D is set as 15d 0 . A zero-gradient velocity boundary condition and a uniform incoming velocity U 0 are imposed respectively on the right and left boundaries, while reflecting conditions are applied at the other boundaries. This initialisation results in an impulsive droplet acceleration at the first time step, and induces a flow field satisfying both the incompressibility constraint and the conservation of linear momentum [START_REF] Marcotte | Density contrast matters for drop fragmentation thresholds at low ohnesorge number[END_REF]. We fix ρ * and µ * as 833 and 55 which are typical of air-water systems. We and Oh are varied within 12 ≤ We ≤ 20 and 0.001 ≤ Oh ≤ 0.01, respectively, which covers the bag and bag-stamen breakup regimes.

Formulation and Methodology

We use the open-source software Basilisk [START_REF] Popinet | Basilisk flow solver and pde library[END_REF] to solve the following Navier-Stokes equations for two-phase incompressible, immiscible and isothermal flows,

∇ • u u u = 0, (2) 
ρ ∂u u u ∂t + u u u • ∇u u u = -∇p + ∇ • µ(∇u u u + ∇u u u T ) + σκδ s n n n. (3) 
Equations ( 2) and ( 3) are respectively the continuity and momentum equation, where p is the fluid pressure. σκδ s n n n incorporates surface tension effects, where κ and n n n are respectively the local interfacial curvature and normal vector, and the Dirac delta δ s is non-zero only on the interface [START_REF] Popinet | Numerical models of surface tension[END_REF].

Compressible and mixed compressible-incompressible problems can also be considered using the appropriate Basilisk solver [START_REF] Tang | Effects of surface tension on the richtmyermeshkov instability in fully compressible and inviscid fluids[END_REF], but this is out of the scope of the present work.

The geometric volume-of-fluid (VOF) interface reconstruction method is applied, which solves the following advective equation,

∂ f ∂t + u u u • ∇ f = 0, (4) 
where the VOF function f equals 1 and 0 in the liquid and gas phase, respectively. δ s n n n in Eq. ( 3) is approximated as ∇ f [START_REF] Brackbill | A continuum method for modeling surface tension[END_REF][START_REF] Popinet | An accurate adaptive solver for surface-tension-driven interfacial flows[END_REF], and κ is calculated using the appropriate numerical derivatives of the interface geometry, which is reconstructed through the use of height functions [START_REF] Popinet | An accurate adaptive solver for surface-tension-driven interfacial flows[END_REF]. The quad/octree adaptive mesh refining (AMR) scheme is adopted to reduce the computational cost at high resolution levels L [START_REF] Van Hooft | Towards adaptive grids for atmospheric boundary-layer simulations[END_REF], which is defined using the minimum grid size ∆ = D/2 L . Our axisymmetric simulations are conducted on L = 14, while the 3D simulations are conducted on L = 13 and 14.

To achieve grid convergence of fragment statistics, we adopt and parallelise the manifold death (MD) algorithm of Chirco et al. [START_REF] Chirco | Manifold death: a volume of fluid implementation of controlled topological changes in thin sheets by the signature method[END_REF], which randomly perforates thin films once their thickness decreases to a prescribed value independent of ∆. This is realised by periodically computing quadratic moments of f indicating the local interfacial topology at a given signature level L sig ≤ L. When the detected local thickness reduces to h c = 3D/2 L sig = 3∆ • 2 L-L sig , the algorithm randomly creates cavities on the film by modifying f with a prescribed probability p perf . While this approach changes the total fluid mass, the MD algorithm minimises this side effect by creating cavities with minimum sizes that allow for expansion, and limiting the maximum number of holes n H perforated within a calling interval ∆t c .

Finally, the droplet radius R 0 , incoming flow velocity U 0 , dynamic flow pressure p 0 ≡ ρ l U 2 0 and the characteristic deformation time τ ≡ ρ l /ρ a d 0 /U 0 [START_REF] Nicholls | Aerodynamic shattering of liquid drops[END_REF] provide the natural reference scales for the length, mass and time quantities that appear in Eqs. ( 2) and ( 3), and will be used to non-dimensionalise results in the remainder of this study unless otherwise specified.

Early-time deformation

To provide an overview of the early-time droplet deformation process, we first present in Fig. 2a the development of droplet contours for We = 15, Oh = 0.001. It is found that the windward surface of the droplet continues moving downstream and pushing the liquid to the drop periphery, leading to gradual spanwise flattening; in the meantime a dimple develops on the windward surface that moves radially inwards and eventually evolves into a crater on the axis of symmetry. The leeward side of the droplet remains relatively stationary for a long time after an initial recession to the upstream. Figure 2b shows the gas-phase pressure as a function of the arc length l along the drop surface, where We = 15 and Oh = 0.025, which matches the rigid sphere case in [START_REF] Magnaudet | Accelerated flows past a rigid sphere or a spherical bubble. part 1. steady straining flow[END_REF] with a Reynolds number of 300. At very early time the pressure profile agrees in trend with the steady-state result of [START_REF] Magnaudet | Accelerated flows past a rigid sphere or a spherical bubble. part 1. steady straining flow[END_REF], especially in the wake region; and the axisymmetric and 3D results match very well over the entire deformation period. As the droplet flattens over time, the pressure profiles deviate from the rigidsphere case, which is most apparent at the windward face of the drop.

Recently, Jackiw et al. [START_REF] Jackiw | On aerodynamic droplet breakup[END_REF] found experimentally a period of constant droplet spanwise growth rate Ṙ, and derived the following model assuming axisymmetric and inviscid flow,

Ṙ = R 0 T bal 4τ 2 a 2 - 128 We , (5) 
where the axial stretching rate a is approximated as 6, following the potential flow solution for a sphere; and T bal is the time when a constant streamwise deformation rate is reached, taken as 0.125τ according to the experimental results of [START_REF] Jackiw | On aerodynamic droplet breakup[END_REF]. Figures 3a and3b show the influence of We and Oh on Ṙ, respectively. For Oh = 0.001, Figure 3a shows that Ṙ reaches a plateau around t = 0.3τ, where Eq. ( 5) matches qualitatively with the measured Ṙ values. For Oh = 0.001, this period of constant Ṙ ends around t = 0.55τ, after which Ṙ reaches a peak around t = 0.6τ, indicating a deviation from Eq. ( 5) which becomes more conspicuous as We increases. On the other hand, Figure 3b suggests that as Oh increases, the peaking of Ṙ attenuates, while the match with Jackiw et al.'s model ( 5) is improved, which is particularly interesting as Eq. ( 5) is based on inviscid flow assumptions. The experimental data in [START_REF] Jackiw | On aerodynamic droplet breakup[END_REF] are obtained for Oh = 0.0027 where the peaking behaviour is not apparent, which partially explains why it is not noted therein.

Figure 4 further shows that the gas flow separates from the droplet surface at the upper-left tip, creating a recirculating region with low pressure [START_REF] Marcotte | Density contrast matters for drop fragmentation thresholds at low ohnesorge number[END_REF]. The streamlines within the droplet shows the liquid being pushed from the windward surface to the periphery driven by the air-phase pressure difference; and when the peak in Ṙ is reached for We = 20, Oh = 0.001, a liquid bulge appears around x = 0.5 in the recirculating region and causes a location shift where the maximum spanwise radius R is reached, which could also be seen in Fig. 2a at t ≥ 0.6τ for We = 15. Surface tension then induces a pressure increase in the bulge and decelerates the incoming liquid flow, thus causing the later decrease in Ṙ. Notably, the droplet at Oh = 0.01 shows no bulging behaviour and much weaker gas-phase recirculation near the drop periphery in Fig. 4c, which suggests that the bulge formation and deviation from ( 5) is closely associated with the interactions between the drop surface and the wake vortices, which is in turn determined by liquid and gas viscosity. 

Breakup of Bag Films

While there is still debate on the physical mechanism responsible for the onset of liquid film breakup, for bag films under normal acceleration, it has been argued that RT modulations arise across the film, causing perforation when the perturbation amplitude becomes comparable to the film thickness h [START_REF] Villermaux | Single-drop fragmentation determines size distribution of raindrops[END_REF][START_REF] Jackiw | On aerodynamic droplet breakup[END_REF]. In our simulations the bag film is perforated artificially to minimise the influence of numerical breakup, as discussed in §2; and here we will focus on bag dynamics after its nucleation.

We first show grid convergence for ensemble-averaged fragment statistics in Fig. 5 when applying the MD algorithm, where we set the perforation probability, calling interval and signature level as p perf = 1/17500, ∆t c = 0.25d 0 /U 0 and L sig = 12 (see §2 for their definition). The film rupture behaviour is qualitatively different with and without application of the MD algorithm. Figure 5a is a snapshot for a simulation case run without using the MD algorithm, featuring spurious numerical breakup characterised by small-scale irregular corrugations and ligament breaking on the bag. Figures. 5b and 5c show that the MD algorithm is able to create large expanding holes, and reduce the influence of numerical breakup on fragment statistics. More specifically, Fig. 5b still shows some VOF breakup behaviour which is absent in Fig. 5c. This is because larger L means smaller grid size ∆ at which VOF breakup occurs, which postpones its onset and allows more time for the expansion of holes created by the MD algorithm with L sig unchanged.

Figure 5d shows the evolution of the fragment size distribution for one ensemble realisation at grid level L = 12 and 13, respectively; where each horizontal 'line' corresponds with a fragment with a given size, formed at the time when the line first appears; variations in the radii of fragments correspond roughly with their breakup or coalescence, although there is some numerical noise particularly at small sizes. Initially only a few small fragments with radii close to the grid size ∆ are produced, followed by well-resolved larger fragments with radii r ≥ 4∆ where grid convergence is reached [START_REF] Mostert | High-resolution direct simulation of deep water breaking waves: transition to turbulence, bubbles and droplets production[END_REF]. The small fragments close to grid size are mostly formed due to the breakup of stretched liquid lamella bordering colliding holes [START_REF] Agbaglah | Breakup of thin liquid sheets through hole-hole and hole-rim merging[END_REF], while larger fragments with r ≥ 4∆ are formed as 'nodes' adjacent to three or more expanding holes detach from the bag [START_REF] Lhuissier | effervescent'atomization in two dimensions[END_REF], as shown in Figs 5b and5c. Figure 5e shows the ensemble-and time-averaged fragment size distribution function for L = 12 and 13, where the statistics are approximately grid-converged for the tail with r ≥ 4∆ 12 when the MD algorithm is used. In contrast, fewer fragments with r ≥ 4∆ 12 are generated without using the MD algorithm, which is most likely because of the predominance of irregular tiny fragments characteristic of uncontrolled VOF breakup, as shown in Fig. 5a. It is noted that the difference between the L = 12 and L = 13 data is most apparent for r ≤ 4∆ 13 , where the L = 13 distribution extends further into the range of r ≤ ∆ 13 . This is probably because the smallest fragments near the grid size are produced from capillary breakup of slender ligaments, which are controlled by the grid resolution rather than the MD algorithm. Lastly, the loss of liquid mass incurred by the MD algorithm does not exceed 0.023% for t/τ ≤ 2.18 at both L = 12 and 13, showing minimal influence of MD on mass conservation.

Finally, we briefly discuss the types of fragmentation arising during the bag breakup. In Fig. 5, most fragments are formed by collision between receding rims, as in [START_REF] Agbaglah | Breakup of thin liquid sheets through hole-hole and hole-rim merging[END_REF][START_REF] Néel | fines' from the collision of liquid rims[END_REF], but other mechanisms might also play a role. Figure 6 shows hole rim destabilisation for We = 15, Oh = 0.001, which to our knowledge has not been shown in previous numerical studies. The simulation is run at L = L sig = 14. It could be seen that the rim bordering the major hole protrudes out from the bag surface as it collects up liquid mass during receding, and regularly-spaced digitations develop on the upper half of the rim as time elapses. Jackiw and Ashgriz [START_REF] Jackiw | Prediction of the droplet size distribution in aerodynamic droplet breakup[END_REF] suggests that rims receding at the Taylor-Culick velocity v TC ≡ 2σ/ρ l h over a bag with radius of curvature R are subject to the centrifugal inertial force a rr = v 2 TC /R, which regulates the rim thickness b via the universal Bond-number principle [START_REF] Wang | Universal rim thickness in unsteady sheet fragmentation[END_REF] Bo rim ≡ ρ l b 2 a/σ = 1. The experimental results in [START_REF] Jackiw | Prediction of the droplet size distribution in aerodynamic droplet breakup[END_REF] further suggest that the Rayleigh-Plateau (RP) instability governs rim digitation, while Lhuissier and Villermaux [START_REF] Lhuissier | Bursting bubble aerosols[END_REF] proposes an RT instability mechanism for bursting surface bubbles, which we aim to further investigate in our future work.

Conclusions

This study carries out axisymmetric and 3D numerical simulations of droplet aerobreakup, and utilises a new film perforation algorithm to minimise pollution of fragment statistics by spurious numerical breakup. Our results are validated by good agreement with [START_REF] Magnaudet | Accelerated flows past a rigid sphere or a spherical bubble. part 1. steady straining flow[END_REF]. We reproduce the constant spanwise growth rate predicted in [START_REF] Jackiw | On aerodynamic droplet breakup[END_REF], and explain deviation from this model by the interaction between the drop surface and the wake vortices. Grid convergence for fragment statistics and preliminary results showing the destabilisation of receding rims are presented.
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 1 Figure 1. Sketch showing the initial configuration of axisymmetric (a) and three-dimensional (b) droplet aerobreakup simulations. For the axisymmetric simulations, the axis of symmetry is located at the bottom.

Figure 2 .

 2 Figure 2. (a): Early-time development of droplet contours for axisymmetric simulation case with We = 15, Oh = 0.001; (b): Gas-phase pressure profiles around the droplet from axisymmetric and 3D cases with We = 15, Oh = 0.025. Dashed arrows indicate the profile evolution as time elapses.

Figure 3 .

 3 Figure 3. Development of instantaneous spanwise growth rate Ṙ at various We with Oh = 0.001 (a), and at various Oh with We = 15 (b). Numerical results are scaled using Eq. (5).

Figure 4 .

 4 Figure 4. Flow fields near the droplet before (a) and after (b) the peaks in Ṙ are reached for We = 20, Oh = 0.001, and at the peak in Ṙ for We = 15, Oh = 0.01 (c). Streamlines are shown in black with superimposed arrows indicating flow direction, while the background colour shows the flow pressure magnitude.

Figure 5 .

 5 Figure 5. Grid convergence study at grid level L = 12 and 13 for We = 15, Oh = 0.001. (a)-(c): Simulation snapshots showing fragmenting bag films at t/τ = 1.909 without (a) and with artificial perforation (b,c). The grid resolution level is L = 12 for (a,b) and 13 for (c), while the MD signature level for (b,c) is L sig = 12. (d): Evolution of the instantaneous fragment size distribution; (e): ensemble-and time-averaged fragment size distribution for 1.906 ≤ t/τ ≤ 2.183.

Figure 6 .

 6 Figure 6. Snapshots showing destabilisation of the rim during hole expansion on the bag with We = 15, Oh = 0.001 (a-c). The direction of mean background airflow is from right to left.
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